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l. Introrluctlon. For the most part, this peper is of a survey char-

acter, although we present some relatively little-known result's in Section 4.

It is our intention to show the extent to which the results of Gross [9], [lOi
and Iversen [4] have played an important role in the development of
several areas in the modern theory of functions. We assume that the reader

is familiar with the notation for the cluster set C(f , zi, the range set

R(f ,"o\, and the asymptotic set l(f ,zd as defined inthe introduction
to the book [2].

Both Gross and Iversen began with the famous theorem of Picard, that
if zo is an isolated point of the set E c D, and if f(z) is meromorphic
tn D - E , where .& is the set of essential singularities of f(z), then the
complement CR(f , zr) of R(f , "o) 

consists of at most two points. If there

actually exist points in CR(f , zo) , they are called Picard'-etceTttional poi'nts,

and the first main result of fversen ([f4]; see also [2], Theorem 1.6) asserts

that such exceptional points are asymptotic values of zo:

T h e o r e m I. If zo'i,s an isola,ted, essenti,al si,ngul'arity of f(z), then

CR(f , zo) c l(f , zo) .

We remark that, if zo is not an isolated singularity of f(z), but is
a limit point of isolated singularities, then again C R(f , ") contains at
rnost two points and

c R(f , ro) . ,."[ " ,,r(f 
,z) ,

where -l[ is any neighbourhood of zo .

one of the major developments based upon the investigations of Gross

and fversen on the theorem ofPicard has been a description ofthe behaviour

of a meromorphic function in the vicinity of a non-isolated set of singu-

larities, and one of the first important results in this direction was the
following theorom of af Hållström [r1].

T h e o r e m 2. If the set E oJ essenti,al s'i,ngulartties of a merarnorph'i,c
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function f(z) i,s of capaci,tg zero, then C n(f , zo) i,s of capaci,ty zero for all,
zreE.

Cartwright [f] has given the analogue of Theorem I for Theorem 2 by
showing, under the hypotheses of Theorem 2, that, for any x e C R(f , zo1 ,
zoeU,either xef(f ,zo) or uel(f ,z*) forevery zn inasequenceof
points {2,} c.O such that lim,-* zn : ?o. It should also be remarked that
the cluster set C(f , zd consists of the eitended complex plane (or the
Riemann sphere) as the set of singularities -E "grows" from a relatively
thin set to a set of linear measure zerc l2l. However, if, in the above
theorems, we relax the requirement that -E be of linear me&sure zero, &nd,
in particular, the set "E be allowed to contain a continuum, then C(f , zo)
need not be the Riemann sphere and the foregoing theorems may fail. Thus
we find ourselves in a different situation requiring a separate study, where
the characteristic problems are those ofthe boundary behaviour offunctions
defined in a (simply connected) domain whose boundary consists of more
than one point, that is, a domain conformally equivalent to the unit disc.

To state the deeper theorems of Gross and fversen, we define the
bound,ary cluster set Cu(f , eiflo) of afunction f(z) , meromorphic in lzl < I ,

at the point, ei$". We first form the set

(r)

(2)

(3)

c(f , 0

for a fixed rl > 0 , and then define C uff , ,oflo) to be the intersection

Cuff,ro8')- n C$,0
q>o

where C is the closure of C . Clearly C u(f , "fr") 
is a closed subset of

C(f , 
"n8,), 

but it need not be connected (cf. [2], p. Sl). A second result of
Iversen ([5], [6]) ma,y now be stated in terms of cluster sets.

Theo r e m 3. If f("),is meromorphic i,n lzl < I, then, at eaerg po,i,nt

"'8 of lzl: t,

aC (f , eifl) g C o(f , ,n8) ,

where aC(f , eifl) d,enotes the fronti,er of C(f , eio) .

Since Cr(/,e'81 is a sulset of C(f ,nfr1 ,lhu inclusion (B) is equivalent
to saying that C(f , eia) - Cu(f , nnfl) is an open set.

using the terminology and notation that we have d.eveloped in this
introduction, we may now state the principal result of Gross and rversen
which has proved to be so fruitful,
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The ore m 4. If f(") is meramorgthi,c i,n lzl < l, then for each point
e:8 on lzl : I , eaery ualue of C(f , rnfl) - C"(f , en81 ,i,s assumeil, infi,nitelg
often in eaerg nei,ghbourhood, of 

"08 
with two gtossi,ble ercegttions. Iurthermore,

eaery such eucegtti,onal, aalue,i,s an asymgttotic ualue of f(z) at efi .

We remark that Theorem 4 is valid whether or not en$ is u singularity
of f(z). The motivation for studying extended versions of Theorem 4

stems from the observation that, whenever 
"'8 

is not an isolated singu-

larity of f(z) , the subset C"(f ,"08) of C(f ,efi) may actually coincide

with C(f , efi) so that the open set C(f , r'8) - C"(f , ro8) is empty. We
exhibit an example of a function showing lhat C(f , 

"n8) - Co(f , efr) may
be empty for all 

"00 
oo lzl : l; this example, which is a relatively simple

Blaschke product, will be useful in the sequel.
Erample. Let w : b(z) be a Blaschke product such that the circle

K : lzl : I is the derived set, or set of all limit points, of the zercs {a}f,:,
of b(z). Then, for each point edd on K, there is a subsequence ao, of
{au\ such that limr.-- ouj: 

"n8. 
flence the cluster set C1b,eis1 is the

closed disc lwl < I . Thus the set (f ) is the closed disc lwl < L for any
11> 0, so that CB(b,d8) in (2) is also the closed disc lwl < I for every

"n8 
on K. It follows that C(b,ei81 - Cu(b,ei&1 is the empty spt for

every d8 on K.

2. Special cluster sets and exceptional values. As we saw at the
end of Section l, the usefulness of Theorem 4 is limited to the case when
the singularities en$ on K: lzl : I are isolated in some sense. Since

the set C(f ,"fr) - Cu(f ,"'8) io Theorem 4 is crucial, as the Example at
the end of Section I shows, any effort to improve Theorem 4 must be based

on sharpening Theorem 3. Let C,uu1f , edfl) denote the cluster set of /(z)
taken along the radius drawn to ei$, that is, the set of all limiting values
of f(z) when the defining sequenees are restricted to that radius. We
form the set

C,ua(f , 0
0 < 18- 8ol .--rt

,d8rK-E

(4)

where -D isagivenseton K:lzl: l,andwhere r1>0 isfixed.We
then define the rq,il,i,al, bounilary cluster sef modulo .E at, efro to be the
intersection

Co-u$,ro$,)_ n dr^u(f ,o
r1> o

(5)
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The followirg
Theorem 3.

Theorem
of measure zero

theorem, with a rest'riction on the

5. If f(*) 'i,s rneromorphic 'tn lzl
on K , tlren, at eaerA gto'int ,08 e K ,

set E , generalizes

1 , and, ,f E 'i,s cr, set

aC (f , ei&) c C 
^-"(f , 

'uB)

The example of the Blaschke product ö(z) given at the end of Section
I both illustrates Theorem 5 and provides the motivation for our generali-

zation of Theorem 4. As we have remarked, the open set C(f , rP) -
C"(f , tå) is empty for every e8 e K. However, since b(z) is analy.tic and
bounded in lrl < I , it follows from the fact tt'at b(z) is a Blaschke product
that b(z) possesses radial limits of modulus I almost everywhere on K ;
hence, if we choose fr to be that set (of measure zero) on K at which
å(z) either possesses no radial limits, or, if radial limits exist, they are of
modulus less than I , then the set (5) consists of a set lying on lu:l : | .

Since, by Theorem 5, the set C(b ,"fr) - C*-r1b,edfl) is open, it must be
the set {larl < I }. However, the exceptional set in Theorem 4, namely
a set consisting of at most two points, is larger, as simple examples show
(see [2], Chapter 5, for further discussion); the main result in t'his area
is the following theorem.

Theorem 6. If f(")'ismeromorgthi,ci,n lzl <t,and,i,f E isan
arbitrarg set of meas,u,re zero un lzl : I , then euery ualue of C(f , e8) -
C 
^-"(f 

, eo81 ,i,s assumeil, bg f (") i,n any neighbm,rhood, of ,08 , wi,th the possi,ble

ercept'ion of a set of capacity zero. Iurthernl,ore, euery erceptional ual,ue of

f(") in C(f ,nn$) - Co-r(f ,d8) is an asymgttotic aalue of f(z), either at

"n8 
, o, else at q, sequence of gtoi,nts on lzl : I haaing o:8 os a l,i,mi,t gtodnt.

An example [2] shows that the exceptional set can actually consist
of a given closed set of capacity zero. If the set Z is of capacity zero, and
consequently of measure zero, it can be shown ([2], Theorem 5.15) that
the exceptional set in Theorem 6 is at most countable. An interesting
extension of Theorem 6 has been given by Woolf 1251, 126l:

T h e o r e m 7. If, und,er the hypotheses of Theorem 6, the set E i,s of
cagtacity zero, then f(z) crssunl,es euery aal,ue C(f , 

"'8) - C^-"(f , "n8) 
i,n

any nei,ghbourhooil, of 
"08 

, wi,th the Ttossible erceyttion of two aalues 'i,n each

comgtonent of C(f , edfl) - C^_r(f , 
"08) 

.

We conclude this section with several remarks. X'irst, the importance
of the theorems of Gross and Iversen in the modern theory of functions
was first pointed out by Doob [4], who gave simple proofs and a fresh
reformulation of Theorems 3 and 4, and who gave the so-called "one-sided"
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version [5] of Theorem 3. For a partial description of Doob's generalizations
of the results of this section by probabilistic methods, see ll8, Chapter 6] .

Second, it follows from the investigations of Collingwood, who showed
the significance of the notion of Baire category in the theory of boundary

behaviour, that for ull efi on lzl : l, except for a countable set, tho.set

C(f ,"'o) - C"(f ,"'s) is empty, while, except for a set of first category,

the set C(f , ,å) - Cr-"(I , &1 i, empty unless .E is residual on lzl : L

(cf. [2], Theorem 5.17).

3. Banach-algebraic methods. In this section, we shall deal with
certain questions in one of the most fruitful areas of investigation, the
theory of Banach algebras of bounded analytic functions, but we shall
restrict ourselves to problems related tg, or suggested by, the theorems

mentioned. above. In particul&r, we shall indicate, in yet another way,
how the extension given by Theorem 6 is best possible. (X'or a full account
of the general theory up to ten or twelve years ago, the reader should see

Naimark [9], Gelfand, Raikov and Shilov [8], Rickart [20], and Hoffman

[t2]; Duren's book [6] contains an excellent' account of the applications
to HP spaces, and Rudin [21] contains material on the theory of furrctions
of several complex variables. Wermer [24] has written one of the best
elementary surveys, and [IS] contains a chapter which is oriented towards
the present point of view.)

Our plan of this section is, of necessity, fairly simple. We shall indicate
how the space ä- of all bounded analytic functions in lzl < I may be

regarded as a Banach algebra, and then introduce the space S of all
complex homomorphisms of If , or the maximal-ideal space of f/- . The
Shilou bound,ary will be introduced as the smallest closed subset of $
which satisfies an fversen-type property.

It will be convenient to adopt certain minor changes of notation. Thus,
let H* denote the space of all bounded. analytic functions in the open
unit disc D : {ll lll {l}. Then H- becomes a Banach algebra
with identity under pointwise operations and under the supremum norm

ll/ll : ;:f tf?)t'

We denote by S the space of all complex homomorphisms of the algebra
H- ; the elements of S are complex homomorphisms of H- into the
algebra of complex numbers, that is, the elements of $ are the multipli-
cative linear functionais orr H*; for each point g in $ the kernel of g
is a maximal ideal in the algebra H* , and conversely evory maximal
ideal in ä- arises in this way. It is also known that $ is contained in the
unit sphere of the eonjugate space (1/-)* of ä-. Since the unit sphere
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in (11')* is weak-star compact, it follows that $ is a compact Hausdorff
space when it is endowed with t}ne weak-star togtol,ogy. A basic weak-star
nei,ghbu,rhood,of apoint go in $ hastheform

U(fr,...,f*,eo,e) : {q eb I lV(h - Voffr)l .--e; i,: r,...,t1\,
where fr., ... ,fn is any finite set of elements in H*, and where e ) 0.

With each function f in H- we associate a complex-valued function

.l o" S , where / is defined AV f(d : q(fl. By the definition of theweak-
star topology on S , each / is continuous on ,b . If å- denotes the set
of all functions /, then the mapping f - f is an algebra isomorphism of
11- onto å- , *hi"h is usually called the Gelfand, representati,on In the
case of the Banach algebra H- , the Gelfand representation is also isometric,
that is, supee$ lÅE)l : ll/ll . The complex homomorphisms of ä-, which
are easy to identify, are those which arise from points in the open unit disc,
namely, Etff) : /(.tr) . There is a natural projection map z of $ onto
lXl <1, whichisdefinedby n(d:V@) forall I in S; inotherwords,
z is the mapping ä. ttre following result was proved by Schark [22].

Theorem 8. Thepro;jecti,on n isacontinuousmapof $ ontothe
closed, unit d,isc i,n the plane. If / : n-t(D) , then n mnps the open set /
homeomorphical,ly onto the open d,isc D .

Since the set / of all point-evaluation homomorphisms is an open set
io S, the remaind.er of S, namely 6 - /, is mapped by z onto the
circle O : {o(l l"l :t}. If a isapointof U,weshallcall z-l(a)
the fiber of $ over oc , and we shall denote this fiber by So ,

So : n-L(a) : {v ebl q@) : o}.
The fundamental connection between the cluster set C(f , oc) of a function
f .If at a e O and the maximal-ideal space is given by the following
result of Schark [22].

Theorem g. Let f beafunctionin H*,and,let u beapoi,ntan 8,.
rnen i1g,'1 : C(f , o) .

We define t'he Shi,l.ou bounil.arg f as the smallest closed subset of $
such that every function in å* attains its maximum mod.ulus at some
point of .l',

sup l"frs)l : sup Åv)l .

Eer E.$

We know that, in the maximal-ideal space $ of H*, the Shilov boundary
-f exists and is unique, and, by the maximum-modulus principle, -t is
contained in S - / . A point go belongs to I' if and only if, for every
neighbourhood .l[(90) of go, there exists a function 0 in ?I* whose
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absolute value assumes its maximum in .l/(go) and is less than this maxi-
mum outside l/(qo) .

Finally, if we denot, e Ay fr7 the algebra obtained by restrictin g fr-
to the fiber $" , we have (Hoffman [2]) that (i) åf is a uniformly closed

subalgebra of C($") , the algebra of all continuous complex-valued func-

tions on 6"; (ii) the maximal-ideal space of ,å; ir $"; (iii) the Shilov

boundary of fr? i" ./-" : l. n $" . Furthermore, each fiber is connected
and $ - / - Uo.g So is connected.

It is known in the general theory of Banach algebras that the image

of any function on the Shilov boundary contains the frontier of the image

of the function on the maximal-ideal space. In the case of the algebra

å; , thir result takes the following form (Max Weiss [23]): X'or any point

u on lzl: I andforanyfunction i i" fr|, ufub")=f!-).
We shall say that a closed subset s of $ has the laersen property if,

for every function f in fr* , t@ - /) 
=/(s) 

. The Shil,ou bound,ary I
is then the smal,l,est cl,oseil, subset of $ which hus the Iaersen property. Both
Schark l22l and Hoffman lf 2l found the topology on $ - / to be ex-
tremely curious in this sense: fn any given fiber $o some of the points
are limit points of points in fibers $B with B close to a , on one side of
oc or the other, whereas some points of 6n cannot be approached by points
from any other fibers SB . It was Max Weiss [23] who first pointed out the
connection between this behaviour and the classical theorem of Iversen
(Theorem 3 above), and who made a deep investigation of the significance
of theorems of Gross-Iversen type in the algebra of bounded analytic
functions.

According to Weiss, an operator K in H- x O to subsets of the plane
iscalled aclusterogterator if,foreach / in l/- and a in 0, J((/,a) is
a subset ofthe cluster set C(/, a) of f(z) at' a . If K is a cluster operator,
the set K(f , ") is a cluster set of f(a) at' oc . The set of all cluster operators
may be partially ordered, and we writ'e K I K' if K(J , u) c K'(f , u)

for each /(z) and a. fn particular, the sets C(f ,"), Cu(f ,n), and
Co-"(f,n) defined in Sections I and 2 give rise to the cluster operators
C , C u , and C o-u . The definition also includes the operator ,B whose

value at (/, a) is the range R(f , "), as well as the operator 3C whose

value at (/, a) is the frontier aC(f , x) of C(f , oc) . Now by Theorem 9,

the cluster set C(f , o) is the image under / of the fiber $o over ot' ,

and similarly the radial cluster set C,"u(f , a) is the image under / of
a compact subset of Sn : the compact subset is the intersection of S*
with the closure in $ of the radius drawn to a . A cluster operator K is
called a un'i,form cluster oyterator if for each * e O there is a closed subset
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Ko of $" such that, for each function f(z) in H* , K(f , q : i(X*) .

The analogues of the sets (2) and (5) are obtained in the following way.
Let J be any collection of subsets of G which contains the empty set
and which is closed under finite unions. For each oc e O let "I(a) be the
collection of all differences, where .ltr is a neighbourhood of a, where
M eJ, and where a e .trfl - M. Leb K be a given cluster operator and
define the operator KJ for each f in H* and oc on CI by

Kr(f,n) n { u xC,Bl
rveJ(d) BeN-td]

It is clear fhat KJ is a cluster operator and that Kt(f , ") is a subset of
Cu(f , o). The first main result of Weiss [23] is that Kr is a uniform cluster
operator whenever K is. All the cluster operators mentioned aboye are
uniform cluster operators with the exception of .B and aC .

The most important of the cluster operators considered by Weiss was
the Bhilou baundnry cluster olterator B defined by S(/ , a) : ?Q*) , that is,
S("f , ") is the image under f of that part of the Shilov boundary of $ in
the fiber $* . The following result relates the shilov operator to the results
in Section 2.

Theorern 10. Foreach f 'i,n II* and q. on g 
,

n Co-"ff , e) ,
E e f m

s(/,e) -
where the sgmboli,sm E e J* nleans that E ra,nges oaer al,I sets of Lebesgue
nxeasure zero on E .

Theorem l0 also shows that for each f in 1/- and oc on 0 there exisds
a set "E on o of measure zero such that B(/ , a) : c^-"(.f , oc) . rn terms
of Picard-type behaviour, Theorem l0 leads to the following result, which
is a special case of Theorem 6 above.

Theorem 11. Let f beafuncti,onin H* anil, q, apointof E,.Then
the set

C(f ., n) - S(/ , a.) ,i,s open anil, the set

C(f , ") - B(/ , e) - R(f , ") is of cagtac,ity zero.

It should be remarked that, even though the classical results (such as
Theorom 6) were proved for meromorphic functions, the restriction to
functions of ä- does not involve a real loss of generality, because the
proofs in the more general case involved a localization principle in which
a reduction to bounded analytic functions was made ([f8], Chapter 4).

we remark that there &re some immediate corollaries of the above
results. First, it has been pointed out by Csordås lB] that if C,uu(f , u)
is the radial cluster set of f(z) at cr, then the set of points a on lzl-: 1
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such that C,^u(f , "l nitf"l is empty is of measute zero' I'urthermore, a

necessary and sufficient condition that a function f(z) in H- be an inner
function is that the image of the Shilov boundary be a subset of lzl : f
(Csordås [3]; see also Hoffman [2], who showed that l,fif)l : r if / is

an inner function).

4. Gleason Parts. Despite the fact that each fiber S" has no
interior, it is known l22l t'hat $o contains a homeomorphic image of $ .

A further study of the fibers 6" may be carried out by introducing
equivalence classes of complex homomorphisms called Gl,easun parts by
using the pseudo-hyperbolic distance

X,@t , zz) _

whichisinvariant,underconformalrnappingSofl"l<
We now define the pseudo-hyperbolic distance on b by

x@t, vz) : ru ,x(vLff) 
,Trff)) ,

and we define g, and g, t'o be equivalent if X@t, g) 1l . The equiva-
lence classes into which S is partitioned are called Gleason parts. The
motivation for introducing the Gleason parts comes from the analytic
structureof certainsubsetsof b.Amap rp from D: lzl(l into $ is

called anal,yti,c if, for each f in H*, the map l.,p i* analytic on D.
Lef P@) be the Gleason part to which g belongs; if y is anal5,'tic and if
gt(l) : E for some l, e D , then yt(D) E_ P(d . Hoffman [3] established
many facts concerning the relations between Gleason parts and interpolat-
ing sequences; we use the terminology that' if Q"*\ is an interpolating
sequence in D , then {E^*} is an interpolating sequence in / . Then each

point of the image of D under a non-constant analytic mapping lies in the
closure of an interpolating sequence.

T h e o r e m 12 (Iloffman [13]; Schark l22l). The transformation from
/ 'i,nto $D , the space of all maps from D i'nto $ , wh'i'ch assigns to the

eaaluati,an hrnnomorphism gt : n-r(l) the I'ånear fractional' mnp At,:
n-7(L^) , where

L^(z) : +Ll+I "'
can be ertend,ed, uni,quely to a cont'i,nuous transformati,an from $ i'nta $D .

If g is a poi,nt of $ which d,oes not li,e in the closure of an i'ntergtolati'ng

selluence, then the carresytonil,ing rrudry A* is constant, whi'le i,f g lies in the

closure of some i,nterpolating sequence, then A, is a one-to-one analytic map
of D onto the Gleason part P(fl .

ry 
-ry

el *2_--=_--
1 - zz?t lztl l,

I onto l"l
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We remark that if g is a point for which A* is constant, then p(g)
reduces to the single point g . Now it is known that the pseudo-hyperbolic
distance I is lower semicontinuous, but not continuous, on $ x $ and
that the connected components of the metric space ($ , y) are the Gleason
parbs in $. There exists 122) an analytic disc in b - z, so that there
exist non-trivial parts besides the disc ,4 , and Kerr-Lawson [r?] showed.
that non-tangential and oricyclic points in $ possess non-trivial parts.
A point g in the fiber $* is called a non-tangential Ttoi,nt or a stolz point
if it lies in the closure of a sector bounded by two line segments in D with
common endpoint a . A point is called ori,cycl,ic if it lies in the closure of the
region between two oricycles tangent to lzl : I at a . Every oricyclic
point, as well as every stolz point, of $ lies in the closure of an interpolat-
ing sequence.

we conclude with an extension of the notion of tangential limit. Ebert
[7] investigated the endomorphisms of ä-; these were rerated to their
adjoints, which constitute a special class of mappings of $ into S .

As an application of the structure of the space of endomorphisms, it was
shown that each analytic part in a fiber has an order oftangency, that is,
a number which provides a partial description of any subset of / whose
closure intersects the given analytic part. Let G be a set in D which
contains in its closure the point a . we define t]ne upgter and. l,ower ord,ers
of tangency of G at a to be

,Gl : lir log (1- lrl)nsuPffi 1,

t1r.l: riminrffi I,

where ( tends to oc through the set G .If t(G) : fG), the comlnon value
is called the ord'er of tangency of G and is d.enoted uy qey. These numbers
may be any non-negative real numbers, or infinity. For example, a Stolz
path ending at a has order of tangency zero, and an oricycle of radius -E
tangent to lzl : I at a has order of tangency l, independent of the
radius -B . The main result of Ebert in this direction is the following.

Theorem 13. If E bel,ongstoananol,yticpart,then g hasaunique
ord'er of tangencg, anil two points bel,onging to the same analyti,c part haue the
same orders of tangency.

We remark that, for each n, 0 < n 3 a, it is not difficult to con-
struct an interpolating sequence with order of tangency n at, z : L

Moreover, the closure of the sequence in $ contains only points lying
in analytic parts.
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