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SOME CONSEQUENCES OF THE THEOREMS OF
GROSS AND IVERSEN

A. J. LOHWATER

1. Introduction. For the most part, this paper is of a survey char-
acter, although we present some relatively little-known results in Section 4.
It is our intention to show the extent to which the results of Gross [9], [10]
and Iversen [14] have played an important role in the development of
several areas in the modern theory of functions. We assume that the reader
is familiar with the notation for the cluster set C(f,z,), the range set
R(f,2,), and the asymptotic set I'(f,2,) as defined in the introduction
to the book [2].

Both Gross and Iversen began with the famous theorem of Picard, that
if z, is an isolated point of the set B < D, and if f(z) is meromorphic
in D—F , where E is the set of essential singularities of f(z), then the
complement CR(f,z,) of R(f,z,) consists of at most two points. If there
actually exist points in CR(f, z,) , they are called Picard-exceptional points,
and the first main result of Iversen ([14]; see also [2], Theorem 1.6) asserts
that such exceptional points are asymptotic values of z,:

Theorem 1. If z, is an isolated essential singularity of f(z), then
CR(f,2) € I'(f, 2) -

We remark that, if z, is not an isolated singularity of f(z), but is
a limit point of isolated singularities, then again C R(f,z,) contains at
most two points and

CR(f,z) c N I'(f,7),
ze NNE—z,
where N is any neighbourhood of z, .

One of the major developments based upon the investigations of Gross
and Iversen on the theorem of Picard has been a description of the behaviour
of a meromorphic function in the vicinity of a non-isolated set of singu-
larities, and one of the first important results in this direction was the
following theorem of af Hallstrom [11].

Theorem 2. If the set E of essential singularities of a meromorphic
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Junction f(z) is of capacity zero, then CR(f,z,) is of capacity zero for all
2ol .

Cartwright [1] has given the analogue of Theorem 1 for Theorem 2 by
showing, under the hypotheses of Theorem 2, that for any « e CR(f, z,) ,
zo€ B, either ae I'(f,z,) or aeI(f,z,) forevery z, in a sequence of
points {z,} C K such that lim, _ z, = z,. It should also be remarked that
the cluster set O(f,z,) consists of the extended complex plane (or the
Riemann sphere) as the set of singularities E “grows” from a relatively
thin set to a set of linear measure zero [2]. However, if, in the above
theorems, we relax the requirement that E be of linear measure zero, and,
in particular, the set £ be allowed to contain a continuum, then O(f, z,)
need not be the Riemann sphere and the foregoing theorems may fail. Thus
we find ourselves in a different situation requiring a separate study, where
the characteristic problems are those of the boundary behaviour of functions
defined in a (simply connected) domain whose boundary consists of more
than one point, that is, a domain conformally equivalent to the unit disc.

To state the deeper theorems of Gross and Iversen, we define the

boundary cluster set Cy(f, 6“9") of a function f(z) , meromorphicin |z| < 1,
at the point ¢® . We first form the set

(1) Of ,0<9=dyl <m) = U O,

0< 1 P-Dy<n

for a fixed 7 > 0, and then define Cy(f, e“?") to be the intersection

(2) Cy(f, ™) = N Cf, 0 < [8—9,] <),

n>0

where €' is the closure of C . Clearly Cy(f, 6“9“) is a closed subset of
cf, 6“9“) , but it need not be connected (cf. [2], p. 81). A second result of
Iversen ([15], [16]) may now be stated in terms of cluster sets.
Theorem 3. If f(z) is meromorphic in |z| < 1, then, at every point
¢ of 12| =1,
(3) 20(f, %) S O(f ),
where e0(f , €%) denotes the frontier of O(f ,e?).
Since Cg(f, e"ﬁ) is a subset of C(f, 6“9) , the inclusion (3) is equivalent
to saying that O(f, ¢?) — C,(f, ¢”) is an open set.
Using the terminology and notation that we have developed in this

introduction, we may now state the principal result of Gross and Iversen
which has proved to be so fruitful,



Some consequences of the theorems of Gross and Iversen 317

Theorem 4. If f(z) is meromorphic in |z| < 1, then for each point
¢ on 2| = 1, every value of C(f, %) — Ch(f, €) is assumed infinitely
often in every neighbourhood of ¢ with two possible exceptions. Furthermore,

every such exceptional value is an asymptotic value of f(z) at e,

We remark that Theorem 4 is valid whether or not ¢? is a singularity
of f(z). The motivation for studying extended versions of Theorem 4

stems from the observation that, whenever e?

larity of f(z), the subset Cy(f,e”) of C(f,¢?) may actually coincide
with O(f, ¢?) so that the open set C(f, ¢?) — O, (f, ¢?) is empty. We
exhibit an example of a function showing that C(f, ¢?) — CL(f, ¢?) may

is not an isolated singu-

be empty for all ¢? on |z| = 1; this example, which is a relatively simple
Blaschke product, will be useful in the sequel.

Bxample. Let w = b(z) be a Blaschke product such that the circle
K : |z| = 1 is the derived set, or set of all limit points, of the zeros {a,};° ,

of b(z). Then, for each point ¢? on K, there is a subsequence @, of

{a,} such that lim, @, = ¢¥ . Hence the cluster set C(b, ¢?) is the
closed disc |w| < 1. Thus the set (1) is the closed disec |w| <1 for any
n > 0, so that Cy(b, e“?) in (2) is also the closed disc |w| <1 for every
¢ on K. It follows that C(b,e?) — Cub,e?) is the empty set for

every ¢” on K .

2. Special cluster sets and exceptional values. As we saw at the
end of Section 1, the usefulness of Theorem 4 is limited to the case when

the singularities ¢ on K: |z| = 1 are isolated in some sense. Since
the set O(f, ¢”) — Cy(f, ¢?) in Theorem 4 is crucial, as the Example at
the end of Section 1 shows, any effort to improve Theorem 4 must be based
on sharpening Theorem 3. Let C_,(f, 6“9) denote the cluster set of f(z)

taken along the radius drawn to ei? , that is, the set of all limiting values
of f(z) when the defining sequences are restricted to that radius. We
form the set

(4) Craalf 0 < 19=5| <3 B) = U Cuglf e,
0< [Py <n
ezﬁeK~E
where K is a given set on K : |z| = 1, and where 7 > 0 is fixed. We

then define the radial boundary cluster set modulo K at ¢ to be the
intersection

(5) Crplf, ™) = QO’ZM(f, 0 < |99y <7;E).
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The following theorem, with a restriction on the set A, generalizes
Theorem 3.
Theorem 5. If f(z) is meromorphic in |z| <1, and if E s a set

of measure zero on K , then, at every point ek,
20(f,¢%) C Crslf,e).

The example of the Blaschke product b(z) given at the end of Section
1 both illustrates Theorem 5 and provides the motivation for our generali-
zation of Theorem 4. As we have remarked, the open set C(f, eiﬁ) -
Cp(f, ¢?) is empty for every e € K. However, since b(z) is analytic and
bounded in |z]| < 1, it follows from the fact that b(z) is a Blaschke product
that b(z) possesses radial limits of modulus 1 almost everywhere on K ;
hence, if we choose # to be that set (of measure zero) on K at which
b(z) either possesses no radial limits, or, if radial limits exist, they are of
modulus less than 1, then the set (5) consists of a set lying on |w| = 1.
Since, by Theorem 5, the set C(b, ¢¥) — Cr p(b, ¢?) is open, it must be
the set {|w| << 1}. However, the exceptional set in Theorem 4, namely
a set consisting of at most two points, is larger, as simple examples show
(see [2], Chapter 5, for further discussion); the main result in this area
is the following theorem.

Theorem 6. If f(z) is meromorphic in |z| << 1, and if K is an
arbitrary set of measure zero on |z| = 1, then every value of C(f, 2
Cr_plf, ¢?) is assumed by f(z) in any neighbourhood of ¢ with the possible
exception of a set of capacily zero. Furthermore, every exceptional value of
fz) in O(f, %) — Co p(f, %) is an asymptotic value of f(z), either at
¢ | or else at a sequence of points on |z| = 1 having ¢ as a limit point.

An example [2] shows that the exceptional set can actually consist
of a given closed set of capacity zero. If the set I is of capacity zero, and
consequently of measure zero, it can be shown ([2], Theorem 5.15) that
the exceptional set in Theorem 6 is at most countable. An interesting
extension of Theorem 6 has been given by Woolf [25], [26]:

Theorem 7. If, under the hypotheses of Theorem 6, the set H is of
capacity zero, then f(z) assumes every value C(f,¢”) — Cp u(f,e?) in
any neighbourhood of ¢ | with the possible exception of two values in each
component of C(f, ) — Cp u(f, 7).

We conclude this section with several remarks. First, the importance
of the theorems of Gross and Iversen in the modern theory of functions
was first pointed out by Doob [4], who gave simple proofs and a fresh
reformulation of Theorems 3 and 4, and who gave the so-called “one-sided”’



Some consequences of the theorems of Gross and Iversen 319

version [5] of Theorem 3. For a partial description of Doob’s generalizations

of the results of this section by probabilistic methods, see [18, Chapter 6].
Second, it follows from the investigations of Collingwood, who showed

the significance of the notion of Baire category in the theory of boundary

behaviour, that for all ¢? on |z2] = 1, except for a countable set, the set
O(f, €% — Cy(f , €?) is empty, while, except for a set of first category,
the set C(f, €?) — Cp_4(f, ¢?) is empty unless B is residual on |z = 1
(cf. [2], Theorem 5.17).

3. Banach-algebraic methods. In this section, we shall deal with
certain questions in one of the most fruitful areas of investigation, the
theory of Banach algebras of bounded analytic functions, but we shall
restrict ourselves to problems related to, or suggested by, the theorems
mentioned above. In particular, we shall indicate, in yet another way,
how the extension given by Theorem 6 is best possible. (For a full account
of the general theory up to ten or twelve years ago, the reader should see
Naimark [19], Gelfand, Raikov and Shilov [8], Rickart [20], and Hoffman
[12]; Duren’s book [6] contains an excellent account of the applications
to H? spaces, and Rudin [21] contains material on the theory of functions
of several complex variables. Wermer [24] has written one of the best
elementary surveys, and [18] contains a chapter which is oriented towards
the present point of view.)

Our plan of this section is, of necessity, fairly simple. We shall indicate
how the space H” of all bounded analytic functions in |z| << 1 may be
regarded as a Banach algebra, and then introduce the space $ of all
complex homomorphisms of H”, or the maximal-ideal space of H”. The
Shilov boundary will be introduced as the smallest closed subset of $
which satisfies an Iversen-type property.

It will be convenient to adopt certain minor changes of notation. Thus,
let H” denote the space of all bounded analytic functions in the open
unit disc D = {A| |A| <1}. Then H” becomes a Banach algebra
with identity under pointwise operations and under the supremum norm

Il = sup )]

We denote by § the space of all complex homomorphisms of the algebra
H”; the elements of § are complex homomorphisms of H” into the
algebra of complex numbers, that is, the elements of § are the multipli-
cative linear functionals on H”; for each point ¢ in § the kernel of ¢
is a maximal ideal in the algebra H”, and conversely every maximal
ideal in H” arises in this way. It is also known that § is contained in the
unit sphere of the conjugate space (H”)* of H”. Since the unit sphere
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in (H®)* is weak-star compact, it follows that § is a compact Hausdorff
space when it is endowed with the weak-star topology. A basic weak-star
neighbourhood of a point ¢, in § has the form

U(fw---’fn:%,e) = {peP| |<P(fi)‘“%(fi)|<8$ t=1,..,n},

where f,, ..., f, is any finite set of elements in H”, and where ¢ > 0.
With each function f in H” we associate a complex-valued function

f on $ , where f is defined by f((p) = ¢(f) . By the definition of the weak-
star topology on § , each f is continuous on § . If H” denotes the set
of all functions f , then the mapping f-— f\ is an algebra isomorphism of

H” onto H”, which is usually called the Gelfand representation. In the
case of the Banach algebra H® , the Gelfand representation is also isometric,
that is, SUP, ¢ 6 {f((p)[ = |fll . The complex homomorphisms of H”, which
are easy to identify, are those which arise from points in the open unit disc,
namely, ¢,(f) = f(2) . There is a natural projection map = of § onto
[A] =1, which is defined by #(p) = ¢(z) for all ¢ in § ; in other words,
7 is the mapping 2. The following result was proved by Schark [22].

Theorem 8. The projection m is a continuous map of § onto the
closed unit disc in the plane. If A = a='(D), then 7w maps the open set A
homeomorphically onto the open disc D .

Since the set A of all point-evaluation homomorphisms is an open set
in §, the remainder of § , namely § — 4, is mapped by = onto the
circle € = {a| [« =1}. If o is a point of €, we shall call 7~%(x)
the fiber of § over «, and we shall denote this fiber by §, ,

Do = a7l a2) = {peDH| @) =a}.

The fundamental connection between the cluster set C(f, ) of a function
feH” at « €€ and the maximal-ideal space is given by the following
result of Schark [22].

Theorem 9. Let f bea function in H” , and let o be a point on € .
Then f(9,) = C(f, o) .

We define the Shilov boundary I' as the smallest closed subset of §
such that every function in H” attains its maximum modulus at some
point of I,

sup [f(g)| = sup [f(g)] .

pel pe (i)
We know that, in the maximal-ideal space § of H”, the Shilov boundary
I" exists and is unique, and, by the maximum-modulus principle, I" is
contained in § — 4. A point ¢, belongs to I' if and only if, for every
neighbourhood N(g,) of ¢,, there exists a function ¢ in H” whose
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absolute value assumes its maximum in N(g,) and is less than this maxi-
mum outside N(gp,) .

Finally, if we denote by ﬁf the algebra obtained by restricting bk
to the fiber §,, we have (Hoffman [12]) that (i) a % is a uniformly closed
subalgebra of C(9,), the algebra of all continuous complex-valued func-
tions on §,; (ii) the maximal-ideal space of ﬁ;" is §,; (iii) the Shilov
boundary of ﬁf is I, = I'N $, . Furthermore, each fiber is connected
and § — 4 = U, g 9, is connected.

It is known in the general theory of Banach algebras that the image
of any function on the Shilov boundary contains the frontier of the image
of the function on the maximal-ideal space. In the case of the algebra

i ®, this result takes the following form (Max Weiss [23]): For any point

% on |z| = 1 and for any function f in H?, 2f($,) S f(I}).

We shall say that a closed subset s of § has the Iversen property if,
for every function f in ﬁw, af(,s’g - 4) < f’\(s). The Shilov boundary 1"
is then the smallest closed subset of § which has the Iversen property. Both
Schark [22] and Hoffman [12] found the topology on § — 4 to be ex-
tremely curious in this sense: In any given fiber §, some of the points
are limit points of points in fibers £, with f close to «, on one side of
« or the other, whereas some points of §, cannot be approached by points
from any other fibers ;. It was Max Weiss [23] who first pointed out the
connection between this behaviour and the classical theorem of Iversen
(Theorem 3 above), and who made a deep investigation of the significance
of theorems of Gross—Iversen type in the algebra of bounded analytic
functions.

According to Weiss, an operator K in H”x € to subsets of the plane
is called a cluster operator if, for each f in H” and « in €, K(f,«) is
a subset of the cluster set C(f, «) of f(z) at «. If K is a cluster operator,
the set K(f, «) is a cluster set of f(z) at « . The set of all cluster operators
may be partially ordered, and we write K < K’ if K(f,«)c K'(f,«)
for each f(z) and «. In particular, the sets C(f, o), Cgx(f,a), and
Cr_p(f,a) defined in Sections 1 and 2 give rise to the cluster operators
C, Oy, and O, . The definition also includes the operator R whose
value at (f,«) is the range R(f,«), as well as the operator aC whose
value at (f, «) is the frontier oC(f, «) of C(f,«). Now by Theorem 9,
the cluster set C(f, «) is the image under f of the fiber 9, over o,
and similarly the radial cluster set C,4(f,«) is the image under fA of
a compact subset of $,: the compact subset is the intersection of 9,
with the closure in § of the radius drawn to « . A cluster operator K is
called a uniform cluster operator if for each « € € there is a closed subset
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K, of 9, such that, for each function f(z) in H”, K(f,«) = f(Ka).

The analogues of the sets (2) and (5) are obtained in the following way.
Let J be any collection of subsets of € which contains the empty set
and which is closed under finite unions. For each « € € let J(x) be the
collection of all differences, where N is a neighbourhood of «, where
M eJ, and where « € N — M . Let K be a given cluster operator and
define the operator K/ for each f in H” and « on € by

Kif,0) = n | U K(.p).
Nejl@ feN—{«}
It is clear that K/ is a cluster operator and that KJ/(f, «) is a subset of
COs(f, o) . The first main result of Weiss [23] is that K7 is a uniform cluster
operator whenever K is. All the cluster operators mentioned above are
uniform cluster operators with the exception of R and &C .

The most important of the cluster operators considered by Weiss was
the Shilov boundary cluster operator S defined by S(f, «) = f( I,), that is,
S(f, o) is the image under f of that part of the Shilov boundary of § in
the fiber §, . The following result relates the Shilov operator to the results
in Section 2.

Theorem 10. For each f in H” and o on €,

S(f,a) = n OR~E(f’ ) ,
Ee],
where the symbolism E e J, means that E ranges over all sets of Lebesgue
measure zero on € .

Theorem 10 also shows that for each f in H” and « on € there exists
aset  on € of measure zero such that S(f, «) = C,_,(f, «) . In terms
of Picard-type behaviour, Theorem 10 leads to the following result, which
is a special case of Theorem 6 above.

Theorem 11. Let f be a function in H” and o« a point of € . Then
the set

C(f, o) — S(f,«) is open and the set
C(f,o) — S(f, «) — R(f, «) is of capacity zero.

It should be remarked that, even though the classical results (such as
Theorem 6) were proved for meromorphic functions, the restriction to
functions of H” does not involve a real loss of generality, because the
proofs in the more general case involved a localization principle in which
a reduction to bounded analytic functions was made ([18], Chapter 4).

We remark that there are some immediate corollaries of the above
results. First, it has been pointed out by Csordas [3] that if O (f, «)
is the radial cluster set of f(z) at «, then the set of points « on |z = 1
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such that C 4(f, «) N f (I)) is empty is of measure zero. Furthermore, a
necessary and sufficient condition that a function f(z) in H” be an inner
function is that the image of the Shilov boundary be a subset of [z| = 1
(Csordas [3]; see also Hoffman [12], who showed that | fA(]’)] =1 if f is
an inner function).

4. Gleason Parts. Despite the fact that each fiber $, has no
interior, it is known [22] that $, contains a homeomorphic image of § .
A further study of the fibers §, may be carried out by introducing
equivalence classes of complex homomorphisms called Gleason parts by
using the pseudo-hyperbolic distance

ozl <L, a1

which is invariant under conformal mappings of |z| <1 onto |[z] < 1.
We now define the pseudo-hyperbolic distance on § by
21, 92) = sup x2(a(f), @of)) s
<1
and we define ¢; and ¢, to be equivalent if x(¢;, @;) < 1. The equiva-
lence classes into which § is partitioned are called Gleason parts. The
motivation for introducing the Gleason parts comes from the analytic
structure of certain subsets of . A map p from D: |z| <1 into § is

called analytic if, for each f in H®, the map f\o v is analytic on D .
Let P(¢) be the Gleason part to which ¢ belongs; if v is analytic and if
p(2) = ¢ for some A€ D, then y(D)C P(p). Hoffman [13] established
many facts concerning the relations between Gleason parts and interpolat-
ing sequences; we use the terminology that if {1,} is an interpolating
sequence in D, then {¢, } is an interpolating sequence in 4 . Then each
point of the image of D under a non-constant analytic mapping lies in the
closure of an interpolating sequence.

Theorem 12 (Hoffman [13]; Schark [22]). The transformation from
A4 into P, the space of all maps from D into © , which assigns to the
evaluation homomorphism ¢, = a~Y(1) the linear fractional map A, =
a(L;) , where
z+A
1+4z’
can be extended uniquely to a continuous transformation from £ into HP .
If ¢ is a point of © which does not lie in the closure of an interpolating
sequence, then the corresponding map A, 1is constant, while if @ lies in the
closure of some interpolating sequence, then A, 1is a one-to-one analytic map
of D onto the Gleason part P(yp) .

L(z) =
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We remark that if ¢ is a point for which A, is constant, then P(p)
reduces to the single point ¢ . Now it is known that the pseudo-hyperbolic
distance y is lower semicontinuous, but not continuous, on H x H and
that the connected components of the metric space ($), 4) are the Gleason
parts in . There exists [22] an analytic disc in § — 4, so that there
exist non-trivial parts besides the disc 4, and Kerr—Lawson [17] showed
that non-tangential and oricyclic points in § possess non-trivial parts.
A point ¢ in the fiber ©, is called a non-tangential point or a Stolz point
if it lies in the closure of a sector bounded by two line segments in D with
common endpoint « . A point is called oricyclic if it lies in the closure of the
region between two oricycles tangent to [z| = 1 at «. Every oricyclic
point, as well as every Stolz point, of § lies in the closure of an interpolat-
ing sequence.

We conclude with an extension of the notion of tangential limit. Ebert
[7] investigated the endomorphisms of H”; these were related to their
adjoints, which constitute a special class of mappings of H into H.
As an application of the structure of the space of endomorphisms, it was
shown that each analytic part in a fiber has an order of tangency, that is,
a number which provides a partial description of any subset of 4 whose
closure intersects the given analytic part. Let ¢ be a set in D which
contains in its closure the point « . We define the upper and lower orders
of tangency of G at o to be

- . log (1—12[)

t(G¢) = lim sup log la_—CI— -1,
log (1—

E(G) = lim illf{H -1,

where { tends to « through the set (. If #(G) = K@) , the common value

is called the order of tangency of G and is denoted by #(@) . These numbers
may be any non-negative real numbers, or infinity. For example, a Stolz
path ending at « has order of tangency zero, and an oricycle of radius R
tangent to |z| =1 at « has order of tangency 1, independent of the
radius R . The main result of Ebert in this direction is the following.

Theorem 13. If ¢ belongs to an analytic part, then ¢ has a unique
order of tangency, and two points belonging to the same analytic part have the
same orders of tangency.

We remark that, for each n, 0 <n < oo, it is not difficult to con-
struct an interpolating sequence with order of tangency = at z = 1.
Moreover, the closure of the sequence in § contains only points lying
in analytic parts.
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