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The discussion to follow will deal with aspects of Plateau's problem
about which no exhaustive information is available today, and particular
attention will be paid to the phenomenon of non-uniqueness. It is well
known that the area of a minimal surface, its suggestive name notwith-
standing, need not furnish a minimum (absolute or relative) among the
areas of all surfaces having the same boundary. Let us consider a minimal
surface S: {t:t(u,a)iu2*a2<R2} which lies imbedded in
Euclidean 3-space. We shall assume that u and a ate isothermal
parameters on S so that t?*(u,u) : r?(u,a) - E(u,a) > O and
q(u,o)t(u,a) : I(u,a) : 0. Let us further denote by ff(u,a) the
unit normal vector of our surface and by K(u , a) its Gaussian curvature.
On B we consider the one-parameter family of Jordan currreg

T, : {r, : r(rcos0, rsind); 0 <8{2n}, 0<r<R,
which bound expanding portions

B(r) : {r:r(u,a)i @,QeF,)
of ,S. Ilere f, is usod. as an abbreviation for the closure of the disc
Pr : { u,ts ; uz * az <r2}. X'or sufficiently small values of r two as-

sertions aro valid:
i) B(r) is the unique solution of Plateau's problem for {, .

ii) The area . [S(r)] of B(r) furnishes the absolute minimum a,mong

the areas of all disc-t5rye surfaces bounded by 1,.
As r increases, either one of these statements may become false. As

for i), S(r) will remain unique as long as f, retains a simply covered
convex curve as its parallel, or central, projection on a plane (see [f0]);
or as long as the total curvature of -l', does not exceed the value 4z
(see [7]). On the other hand., the minimizing property of the surface B(") -
moie precisely, the question whether ,a[S(r)] remains at least a relative
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minimum - depends on the second variation of its area which, in turn,
is closely related to the eigenvalue problem

(r) lt zAEKt: 0 in P,, t_0 on oP,

Because K(u , a) is non-positive and vanishes at most in isolated points,
this problem will have a sequence of eigenvalues {1"(r)) satisfying the
inequalities 0 < ,1r(r) < Xr(r) { )""(r) { ... and corresponding eigen-
functions €1(u,u;r) , €a(u,a ir) , ... subject to the ortho-normality
relations

,l I EWIE*E*d,uita: ö*n.
Pr

The smallest eigenvalue lr(r) is a continuous and strictly decreasing
function of r.

It r1(u , rs) : Zf,:r"* E,(u , a; r) denotes an arbitrary regular function,
vanishing on oP,, then the area of the comparison surface Sc)(r) :
{t.: r(u,a) + eq(u,a) X,(u,a); (u,a) eF,} is found to be

-41,9t"r(r)l :, t6(r)l + + + 2frKrf)dudu + O(ut)

+ O(tt)

E IKI q' du du + O(rt) .

"ffuz+rfiP/

*å,0*v)-l) r?,

(1r(r)-1, I I
P/

If )"r(r) 2 I , then B(r) can be imbedded in a field of minimal surfaces
(a detailed construction can be found in [7]), and by a classical argument
going back to H. A. Schwarz ([l], pp. 224-240,332-gS4) it is seenthat
the area of B(r) furnishes a strong relative minimum. Moreover, since the
boundaryvalueproblem lq-2EKT:0 in P,,4:O on 0P,
under the assumption .1.(r) > I has the unique solution rl(u , a) : 0 , it
follows (see e.g. [2], Lemma 3.a) that B(r) is isolated or, as wo shall also
say, locally unique; see [8]. By [t] the inequalrf Xr(r) is guaranteed at
least as long as the total curvature ![r,E lKld,uita of B(r) remains
smaller than 2n .

If ).r(r)<1, then (by choosing q(u,a):tt(u,air)) disc-type
snrfaces bounded by I, and lying arbitrarily close to B(r) can be con-
structed whose area is smaller than the area of B(r) . B(r) is thus seen to
be unstable. It is a matter of record, however, that f, ako bounds a
pqlqtiqn curfaqe qf least area for Plateau's problem, Obviously, this surfaee
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must be distinct from B(r) . Whether it is close to B(r) or not is, of coutse,

another question. In any case, J-, bounds at least two solutions of Plateau's
problem whenever ),r(r) < L .

The preceding remarks suggest the possible existence of two positive

numbers r, and r, defined. as follows: rr is the supremum of all those

values r for which the surface B(r) represents the unique solution of
Plateau's problem for I,. The number r, is the supremum of all those

values r for which the area of B(r) is a strong relative minimum among

the areas of all disc-type surfaces bounded by T, , i.e., 1r(rr) : | .

Obviously, the inequalities 0 l rr 3 r, hold. Since it is not clear whether

the local uniqueness of B(r) for ).r(r) ;' t implies its global uniqueness,

the strict inequality rt 1 rz cannot be excluded apriori. Our interest here

is directed not so much to this question but rather to the study of the
bi,furcati,on process in which a second or more surfaces branch off from
B(r) as r passes through the critical value r : rz. Considering that the
treasure of general insights is stitl hidden today, we shall pursue this bi-
furcation p"å"u*, in aetait for the case of an explicit example - Enneper's

minimal sulface whose position vector is given with the help of isothermal

parameters uanduby

r(u,a) :
u +'tcuz *uu

a uzrs + årt
u,2 uz

We have E(u,a) : (l+u2+a212 and K(u,u) : - 4 (l+uz+uz)-e . It is
known (seo l9], $ 90) that the part of Enneper's surface which corresponds

to the disc z2 + az < 3 is free of self-intersections. In particular, the image

of every concentric circle uz l n2 : 12, 0i-, <{s, is a Jordan curve

T, : {r: t@;r);0 {8 {2n) with the position vector

6@;r)- r(rcos8, rsind) _
r cos f t r'cos 38

rsinS åttsin38
rz cos 2rj

Pictures of l, can be found in [9], pp. ?6, 79. The points 1u: + {i ,

1) : O ) on the circle uz * az : 3 are mapped by t(u, o) into the same

point {0, 0, 3} in space. Accordingly, we shall choose n = {i .

The curvature of the projection l, of l, onto the (r, y) -plane is
given by

(r+rz) (l-3d) + 4rzsinz2t9

@
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y, is a convex curve for 0 < r < l1{i so that B(r) is the unique solution
of Plateau's problem for f, if 0 < r < tpte . The second criterion for
uniqueness mentioned above leads to a better result. A computation shows
that the total curvatwe x(1,) of I, is equal to

24(r) : #åE@e)),
2r

\f r + ro r, + g rL

and that

d
.t T't \ :,

d,r 
*\t 

') 
z

Here E(fr) : lYt'tf 1 - 7t'"in'6drg denotes the completo elliptic integral
of the second kind. We havo x(1,) : +t/i E(Tlz): 10.162... < 4n for
r: tl{i and x(t,) : +t[ifg{s) : ts.869... > 4n for r: t.
The equality *(1,):4n is achieved for r:0.882 (see [9], $82S). It is
therefore certain that r, > 0.882, although we conjecture that rr: | .

The function ((u,a) : (l-uz-sz) l(t+uz+uz), which is positive
for uz * az < I and zero for uz + a2: l, is asolutionofthedifferential
equation

te -zEKe - /c+ 1r*$*rzyr: o.

From this fact it can be concluded that ,X1(f ) : I so that tz : l. X'urther
properties of the curves l, are discussed in [9], $S 9f, 890-896. It has
been proved in [a] that { bounds three distinct solutions of plateau's
problem for r in a certain interval ro'-r <{i. (acrudeestimatefor
ro is ro < 1.682 .) x'rom the following developments it will be soen that

cts r passes increasingl,y through the cri,tical aalue r : | , the curaes T,
acquire the capability of bound,i,ng, in add,ition to Ennegter,s surface,two
fu,rther mi'ni,mal surfa,ces which appear in a continuous bifurcotion r)rocess.It is now necessary to interject some basic definitions. Let . T :
{r. : 6fu) ; 0 ( r 3 2n} be a Jordan curve in Euclidean B-space. TVp u"u
concerned with vectors t(u ,a) defined in the closure F of the unit. disc
P : { 1r, ,1t; u,2 + a2 < I )- which map the boundary ap onto I .

setting u + ia: rr: peio we shall henceforth interchangeabry use the
notations t(u , o) , ot r(w) , or t(g , d) (and later also t(w ; r) instead of
t(u , a; r) , etc.) - whichever is most convenient. Denote by ö : $(J") the
set of vectors r(r.o) e Cz(P) n Co(F) which are harmonic in p and which map
aP onto -l' monotonically so that three fixed distinct points 7D17 rD2 t ,tns

on aP are transformed into three fixed distinct points fu : tki) ,(i : 1,2,3 ) , on J', respectively. Once and for all we shall choose uL : | ,

k(r) :

,t k(r)
orr 

L+rz
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uz: i , 1rg : -t . Then r(ei81 : tk@D where z(tg) is a continuous
monotono function satisfying the conditions r(Q) : rt, r(nl2) : q,
r(n) : z, and r(8 + 2n) : t(8) + 22. Endowed with the distance be=
tween two vectors,

ltr-ttl : max_lx2(u,0) - r.r(u,a)l ,
(u,t) e p

the set $ becomes a metric spa,ce. Each element t(u , z) of $ defines

a, harmonic surface S: tx:r(u,a);(u,u1 eP1. By d.efinition,
a solution of Plateau's problem for tho curve .l' is a harmonic surface
whoso position vector satisfies in P tho additional relations r3 : r?,
T*to : 0 . We denote by Slt the set of all such vectors. ft is a matter of
record that an element t(u , a) of SJt provides a topological mapping
between aP and I .

Since we shall benefit from working with the fixed parameter domain
P , a slight change of the introductory notation is advisable: Tho portion
of Enneper's surface bounded by l, will now be denoted by B(0)(r) :
{r : yto)1t12 ir) ; weFl *he"u

r(o)(g,8;r) -

r q cos I * r'g3 cos 38

- r Q sin tl * r'gs sin 38

rz Q'cos 28

-Re

rw å

irw + i
r2 w2

rswT l

år'tI
)

and 1(o)11 ,8;r) : t@;r) .

Let B(r) : {r : r(w;r); w eF 1 f" another solution of Plateau's
problem for the curve f,. By a theorem of H. Lewy [3] the position
vector of B(r) is analytic in F. Moreover, owing to the results of [6], the
derivatives of t(w; r) can be estimated uniformly for all possible solutions.
We shall refer here to the validity of the inequality

max { lr(l ,8; r)l , 116(r ,8;r)l , lroo(f ,8;r)l) < K(r)
030lzn

with a universal constant K : K(r) depending on r alone, 0 <, < {S .

From the proofs in [6] it would not be difficult to extract an explicit ex-
pression for K(r) in terms of the geometric properties of I,. X'or the
purposes at hand knowledge of the precise form of ff(r) would only be of
minor advantage, however.

X'or the time being a value r, I {r a* is chosen and then kept
fixed. A computation shows that 1r$l1t , 8;r)l : r(t+rz) and

1tt$1r,t9;r)l : r[ 1- 12(6 * 4cos2 20) + gr4futz <rtt:+r'tft*gr'.
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X'rom [8], p. 406, we know that lrd(l ,?9)l 2r(l+rz) 12 as long as

fr-rtor; { er: min(2i50 ,I ll75K). Since J-, is the topological image
'of aP' under tho mapping of the position vectors of both surfaces S'(0)

and B, the bound.ary values of r are related to those of t(0) through an

expression of the form

(2) t(t,rlir): r(o)(1,8+X(8);r).

Hero ,X(d) is a periodic analytic function satisfying the inequality X'(8) 2
- I . We write ,1(r9) as a X'ourier series,

1(8) : ? * år(a,cosnl * b,sinzo)

with the norm ll.Xll defined by

iliil' : ).'(8) a3+d8:t
2:r

In view of the "thteo point condition" above, 1(8) is subject to the
conditions i(0): X(nlz):]'(n):0. Tho relation t6(l ,r1 ;r):
(l+,1'(?9)) x$)(l ,8 + ]'(8);r) which follows from (2) implies the in-
equalities

å < I +1'(8) <+K whenever lr-rrot; (er.

Xlom [8], p. 406, we also concludo that

å P - x(o)l

It follows that the size of the neighborhood of x(0) ,

to the metric of b , is also governed by the
m&x'< Sszn l1(S)l . A series expansion of (2) leads to

(3) x(l ,8;r)_ x(O)(l ,8;r) + l(S)t$'( 1,0;r) + +

We denote by t(u)(g , d ; r) the harmonic vector
values

as measured according
magnitude of L -

ilr(s) r$ä( r,8;r) + ....

in F with boundary

(4) x(å)(r ,8;r): fi,1@)#x(o)(t ,8;r)

The complex-valued expression

(5) @(s,8)+i[(e,8): *(rh-a'r?)+i
: * e, ezds t(r} - rn)

Qxqxd

+ i2 t, Trf
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is an analytic function in P for euery element of S, i.e.,foteaery surface
whose position vector is harmonic in P . It is therefore oasily seen that the
surface B is a solution of Plateau's problem if, and only if, ylt(\ ,8):0.
T'rom [8] we know that'this equation is equivalent with the conilition

(6)

Here the

@

llw1t,8;r,1): o

,1@) are U"Or;;,

o(8 ; r, 1) : - 2r1@(r,8 ; r, 1) : A(L,

turn now to the uti"^pt to find a solution ]L_
r > t close t'o r : I . For this purpose we set

A to be of the form

1(8 ; r) = 8 1,r) (8) + s2 

^Q) 

(8) + ...

ffir8): *oP + 2p*) cosnl + b,lu)rin n8)

(z) A@)(1 ,8 ir,, : |rhl,h(o1ry-nt1t,0;r)ffir('t1t,8;r).
Applying the estimating procedures usod in [5], [8] we find that there
are positive constants € and. -&/ such that for maxo<g<2,li(d)l < L ,

maxo<6<2, li,(r9)l = 
L

(8) 11Ar^t1r ,8;r , t)ll = 
nffilrtt,

11ttt-t1r,8 ;r, 4 - 1r*t1t,o ;r, ),)ll = 
nffiflll'll+ll7'll) llx-' - 1'll.

n'rom [8], p. 408 we take over the computation of o(8 ; r , X) -
,1Et(tt8;r,1):

(e) o(8 ; r , X) : r2(r2+rl {o, ", -'#Uru,

* i ttrt* r)n - (312+ r)l(a*c* + b,s*1][.
n:B I

In this formula the abbreviations o*: eosrlfl and s,: sirtnfl have
been used. Condition (6) can be written as

(r 0)

We

values
a,ssume

where

8;r

1(8 ;

aö

,1).

r) of (10) for
{rr- I a,nd
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Some preparatory beuristic remarks are in order. A lengthy computation 1

shows that

(ll) AQ)(t ,8 ir ,psin 2rg) : -tnA + t4rz * Bra)pzsrn48

I: - 2r, p, sin 4r9 + p2 O(ez) .

Accordingly, we shall choose the first two terms in the expansion of
1(O ; r) as follows:

^{L'(g) 
: bf, srn2g,

1e)(8) : blt)*io 2O + b[zt sin 4r9.

Then

o(8;r,1) : 8"'bL4,sin4tl * O(es)

and

A(r, I ; r, 1) : *urlötl)lzsin a8 + O(es)

so that

(r2) bL') : f ruf,t, .

Now the necessity arises to compa,re certain terms in e3. For this purpose
we note the following relations which can be obtained only by extensive
computations (remember the abbreviations s, : sin md ):

AQ)(I ,O;r,psr+qsn)
19 r ): -r2 \ro"n + g p tt (sr+su) * ,aq'(22 sn -f ll7 s8 + z trr)]

* f O(ez) + pqo(ez) * q2O(ez),

,1tt)(I t8 ir,psz) : * #O"(3 sr-su) * ps O(ez) .

It is now seen that the coefficients of sin 28 are

I
in rro(t,8;r,1): -*b!:) +O@n),

I It
in rrA(t,8;r,1): 9ut6tt)6f) z d[bf)]s+o(un).

r lJnfortunately, neither this computation nor the even more extensive explicit
computations, which will become necessary later on, can be reproduced here,
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Consequently, we shall have

-ut" : e bf,i 6tzt +[b[1r1a

or, combined with (I2),

This condition has three distinct solutions

bE) : o, u!]t :7i, btt : -G
and, corresponding to these solutions, bLA : 0 in the first case and
b? : Sll in the other two cases.

The preceding beuristic remarks indicate that a bifurcation appearg
ab e increases from zero to small positive values. i.e., as r increases from
one to values larger than one. The choice ö[t) : 0 leads, of course, to
1.(8 ; r): 0 , that is to say, back to our original surface gro)1r) . Of the
other two cases we shall now discuss rigorously the second for which å[1) :
+pti. The third case c&n be treated similarly.

We shall try to find a solution ),(8 ; r) of (10) for small positive values
of e in the form

where

p(8;e) : az4)c, + a"(e)c, + Dr(e)s, + an(e) 
"n+\(an(e)c, + b*(e)s,)

n-6

and the a*(e) , ö,(e) are themselves power series in e . fn view of the three
point condition we must have

t oo@) + a,LG) + p(o; e) : 0 ,

äao@) +Ö1(e) + p(nlzie) : 0,

i oo@) - atk) * p(n; e) : 0 .

X'rom these equations the three coefficients &s 2 &1, ö, can be determined:

br:) + (* +) rb[u1a : ('- * yuflz)ust: o

(tB) A(8;r) : lh' + ezb,(e) ] r, + [;', + esbn(e)] r^

(T
+ ,' t * "*, + a,r(e) c, + b'(e) s, + p(O, ,) 

)
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eo(e) : - 2 far(e) * an@) + au(e) + ... l
(14) ar(e) : - [ar(") + au@),* ar(e) + ...]

å1(e) : 2lar(e) t au@) + a,LoG) + ... l

+ [år(e) - åu(") * ör(e) - ...]
so that

t5(r5) ,"3@ + a!1e1 + ö!(e) S ,llu'@ ; e)llz .

After substitution of ).(8;r) from (13), (llr21 A(l ,8;r ,,X) attains
an expansion

;zA(l ,o;r ,1) : ZrlA,(, 
,11cn + Bo(e , ]') s*f .

X'rom (5) it is clear, that neither a constant term nor terms with cos tl or
sin tl can appear on the right hand side. In determining the coefficients
A- and, Bn it' is necessary to carrSz the computations to the point that
explicit expressions become available for all terms up to those of order
ea in B, and all terrns up to those of order eB in the other coefficients.
The result of these computations is as follows:

72 36 -
B4je, 1) - t u' * 

V:res 
br(e) + ea Bu@, 1'),

L324 H

Bu(e , A) - zr {ies + ea Bu,e , }L)

All the other coeffi.cients have the form

A*(u, 1) - ea Än@, 1) ? n 22,

Bnb,]L)- uoEnb,l), n

On the other hand,

4 Trso r8g a6 I
81jre,),) : - rtut * L* - 7 br(e) + 

"fibn(r)lrn 
* esBr(e,X),

hrrt;r,1): (2+e')esar(e)c, (; 
"+ 

eabr(e)) ,,

+ 2 es (2 + ez) las(e) cs + br(e) srl i

+ e3 (2 * e',) (4 + e2) au@) cn
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+ (z + er) (4* rr) (? ', + eB öu(e)) ,-

* e3 (2aez) 
)rtz*e2) 

n - G+3 ez)l @,@) c* + bn@) s,) .

The conditions for the coefficients eo?) , ar(e) , br(e) are contained in
(14). A comparison leads to a system of equations for the Fourier coefficients
of )"(8; r) . The three "special" equations a,re

180 r83 36
-b2@) : 4s -, br(e) * Viån(e) * e Br(e, 1),

(8+6e2+ ea)bn@) : #br4) -€(6+s2) + eiln1e,),1 ,

(rG + 14 ez +B ea)öu(e) : ##, + e Eup , ),1 .

The remaining equations are

(2 + ez) ar(e) : u Är1u , ],1 ,

(2+e2)l(2+ez)n - (4+Bez)la,(e) : e Åo@, X), n 28 ,

(z+ez)l?+ez)n - (++Bez)lb*(e) : eE*@,A), n zr, n14,6.

X'or e:0 weobtain

ez@) : ask) - ... - o,

år(e) : öu(e) : br(u): åe(e) : ... - 0,

and

-b,(o): # Tö,(o) + #bne),

s ö4(o) : #bre) ,

L324
t 6 ö6(0) - zL yri ,
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L76 36 180

7 br(o) 
r?bn(o) 

: 
4s ,

36_rtbr(o) + 8b4(0) : 0

and bu(0) : 33r I $4{1, so that

90
br(o) - 49 ,

405 331
bu(o) : As7i, öu(o) - 8r{i.

In view of the estimates (8), (15) and the solvability for e : 0 it can be
shown that our system of equations has, for all small non-negative values
of e , in fact a solution 1t+tQg;r) of the form (f3) whose derivative has
a uniformly bounded norm:

^e)(o;r) 
: efr,,. *[# ,, *f,*] * o(,a) .

Let us summarize: We have seen that equations (10) have three distinct
solutions for values of r 2 I close to r : I :

X@t(O;r) : o,

xt+)(8 iD : 
å{rz-tsin2d + o(rz-r),

1r-t@ ;r) : - aVrr-rsin 2tg + o(rz-ty .

^/7
Each generates a solution of Plateau's problem for the Jordan curve l, .

l(0) : 0 leads us back to Enneper's surface gro)(r) with the position
vector r(o'(q , I ; r) . But in addition to Enneper's surface two new surfaces
6t+)1r) and gr-l(r) appea,r. In view of (3) the position vectors of these
surfaces are, respectively,

f etcB - e5c6)

r'*)(q, 8;r) : r(o)(Q, 8;r) + jrtta- 
I - *ss - QE", 

I 
. oez-r).

[ - z + 2Qncn 
J

We know that Enneper's surface is not stable for r > I . The surfaces
gt+l1r) 

"trd 
gt-)(r) will be the two surfaces of least area bounded by ,1, .

(It is the special symmetry of { which gives rise to two distinct, but
congruent surfaces of least area.) Whilo the point u, : 't) : 0 is mapped
by 1{o) into the origin of 3-space for all values of r, its image under the
mapping by the vectors r(+) and t(-) , roughly the point
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(0, o, - äva-) * (0,0,j1a,,-'),
moves along the a-axis, down or up, as r increases. In this way the surfaces
S(+) and B(-) arrange to decrease the surface are& of B(0) .
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