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1. Introduction. The author [5] proved in 1952 that if an analytic
mapping f of a punctured. disk 0 <l"l < r into a Riemann surface "B
has z : 0 as an essential singularity in a certain sense, then the set of
values in -B taken by "f in any neighborhood of z : 0 is conformally
equivalent to a sphere possibly less two points or to a torus. Heins [] and
Marden, Richards and Rodin [2] gave different proofs and the latter applied
the abovo result to the study of analytic self-mappings of Riemann surfaces.

In the present paper we shall treat the case where the singularity is not
isolated. Our result, gives a generalization of a theorem of Noshiro (see

Theorem 6 at p. 26 of $)). To explain his result, let / be a meromorphic
function defined in a domain D , and K a compact set of logarithmic
capacity zero on one component of the boundary aD . Let, zo be a point
of K not isolated on (aD - K) U {zo} . Then it can be shown that the dif-
ference !2 between the cluster set at zo and the boundary cluster sot
defined al' zo along aD - K is an open set. I{oshiro proved that / takes
every value, with two possible exceptions, of each component of o in any
neighborhood of zo.

2. Preliminaries. Let R be a finite Riemann surface, and p,ld,zl be
a conformal metric on -E with strictly positive coefficient g, . Let B be
a covering su-rface of ,B . One can regard p,lilzl as a conformal metric on
S . The coefficient may vanish on S ; actually it does at each branch
point of B . We set L(c) : I" q"ld"l for a smooth arc c on R and
I(E) : l[, p! d,r d,y for a measurable set E on n . We shall use the
same notation for such quantities on S too.

Let B be a simply connected finite Riemann surface in particular.
Ahlfors' main theorem asserts that there exists a constant ä depending
only on -B such that

(1) 0
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where eo is the characteristic of -B , M(S) : 1(B) I I(R) is the mean sheet
number of B and aB is the boundary of B relative to .B .

Let us call a simply connected domain on -B with analytic boundary
anopendisk. Takeopendisks / r, ..., lo on -B whoseclosuresaremutually
disjoint and contained in the interior of -R. Denote the projection of B
into -B by /. A componenb of f-L(/,) is called an island lying above /,
if its bound.ary consists of inner points of B . Let {D} be the islands lying
above Åt, ... , lo . By the aid of (f ) we derive

(2) - 2"@n) 2 (eo+il M(S) - h L(aB) ,

where e(Dr) is the characteristic of Dn; if there is no island, then the left
hand side is set to be zero. See (60) of [6] for our (2).

Let B now be a simply connected bordered covering surface of .B . We
call an increasing approximation {8,} of B a regular exhaustion of B if
each B, consists of finitely ma,ny finite surfaces and

L(aS")
u1s,1 * tt &s ?? -> @ 

'

where aB" is the boundary of B" relative to R . We note that our definition
is general in the sense that B" may not be connectod. When there exists
a regular exhaustion of B , we say that S is regularly exhaustiblo.

We have
L e m m a. Let S be a regularly erhausti,ble si,mply connecteil, borilered,

E'iemann surface whi,ch is a coaer'i,ng surface of a fini,te R'i,emann surface R
of characteristi,c eo . Then eo ( 0 anil, S coaers al,l i,nner poi,nts of R ercegtt
at most -e, po'i,nts.

Proof. Let {8"} be a regular exhaustion. From (f) it follows that
eo ( 0. Next, assumo that B does not cover q : l-eo inner points of
-8, and take disks / r, ..., .40 arowd them as above. Then there is no
island above /r, ... ,lo. By (2) we have 0 > M(5") - h L(aS*) and meet
a contradiction.

3. Main theorem. Let G be an open set in the z-plane, zo e oG and
K a compact subset of aG containing zo. Let / be a mapping of G into
a Riemann surface .B . We define the cluster set /(zo ; G) at zo to bo

n J1ane1 ,
a e%Qo,

where Qt(zr) isthe system of neighborhoods of zo and tta n el d.enotes
the closure of f (U O G) , and define a boundary cluster set /(ao ; aG - K) by

n U f("; G)
Uea/@ol zeUn(AG-.K)
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We shall prove
Theorem. Let f beananalyti,cmappingof anopenset G i,nthe

z-plane i,nto a Riemann surface R , ?o e 0G anil, K a compact set of loga-
ri,thmic cd,paci,tA zero which contaåns zo anitr whi,ch'i,s containeil ,i,n one com-
ponent of aG. If f(zo;G) contains more than one po,i,nt, then f(zr;G) -
f(zo ; aG - K) i,s an open set anil the genus of eaerg component D of f(zo ; G) -
f (zr; aG - K) is at most one. If the genus i,s O ( I resp.) , th,en euerg potnt of
D is talcen by f in any neighborhooil of z, ercept for at most two (with no
erception resp.).

Proof. Suppose f(zo; G) - f(zo; aG - K) is not open. Then the
boundary af(zo; G) is not contained in f(zo; aG - K) . Let Po be a point
of aflzr; G) - f(zo; aG - K) , and .lf be a closed neighborhood of Po
which does not include the whole f(zo; G) and which is disjoint from
f(zo; aG - K) . Let w be a local parameter such that .l[ contains the local
disk which corresponds to lwl ( I and Po corresponds to w : O. Denote
the composed mapping w(f(z)) by g(z), and let !? be the inverse image of
lwl < I in G. Since Po ef(zo; G) , there exists a, sequence {z*\ in G
tending to zo such that f (z*) * Po . Hence zo is a boundary point of o .

Suppose zo isisolatedon @A-K)U{zo}. Then 9nU:U-K:
G n U for some neighborhood U of zs , and hence f(zo; G) c .lf . This
is against our choice of ,l/ . Thus ao is not isolated on Q A - K) U {zo} .

Weseethat g(zo;aA-K) iscontainedin lwl:l andthat u:0
belongs to ag(2, ; a) . Thus ag(zo; 9) * g(zo; aG - K) . However, if we
use Theorem 4 at p. 17 of [a] in the theory of cluster sets for functions,
then we conclude that ag(zo; 9) c g(zo; a a - K) . This contradiction
shows lhat f(zo t G) - f(zo; aG - K) is open.

We shall prove next that, in caso the genus of a component D of
f@o; G) - f(zo; aG - K) is zero, / takes on every value of D except
for at most two in any neighborhood of zo . The proof is exactly the same
as for Noshiro's theorem referred. to in the introduction. X'or the sake of
completeness, however, we shall prove it. Suppose Pr, Pr, Ps e D are
not taken by / on Gn{p-zol ! r}. Draw an analytic simple closed
curve c which passes through Pr, whose interior I contains P, and
P, and above which lies no branch point of G as a covering surface of
-8. We take c in D so that, / is included in D. Since D cf(zo;G),
there is a sequence {zu} tendinglo zo whose image {f(z)} is contained in
I and, tends to P,. We ma,y assume that no zu is a branch point. Let
(f(zo) Pr)- be a curve in D which passes through no image of any branch
point and converges to P, as l0 -> oo , and let yu be the inverse image
of (f (zo) Pr)- starting from zo . ff there are infinitely many yu which
intersect lz-zol: r, these 7o cluster to a continuum .?' connecting zo

and lz-zol: r. Since / isnotconsta,nt, -F hasnopointin G. Accordingly
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I c aG. We see that every U e 07t(zo) contains some point z of F - K
and, f (z; G) contains P, at such z . Accordingly f(zo; aG - K) contains
P, . This is impossible. It follows that' yo must terminate at a point of
if n { p-zrl<rl if k is large. Let B be a component of

ffh fi { lz-zol 1r }
whichcontainssucha yo. Since / doesnotassume P, on Gfi{lz-zol 3
r), S is simply connected.

Let a conformal metric e,ldwl be given on / . Let us seo that S is
regularly exhaustible as a covering surface of I . It is well known that
there exists a logarithmic potontial U(z) of a unit meåsure supported by
K suchthab U: oo on K. Let' V beaconjugateof U andlet l: l(z)
beasingle-valuedbranchin B of exp (a@) + i'V(z)).If tro islarge,then
the level set {z; svvl: i} intersects yu for every X 2Xo. Take e
as a local parameter at every point z of B at which F'(z) * 0, i.e.,
grad U + O. Denote the part of B on which eu < 1 by B, , and the
level set {z e B; lP(z)l - eu(''t : ).) by @^. Denoting by (1,8) tho
polar coordinates in the f-plane, we have

where Aeldcl i* the conformal metric on S
equals Qrldlal at every point z at which
branch point of f . Set,

fL(1): J e,tao.
@X

Denote by a ) 0 the distanco between c and (f("u) Pr)-, measuted
with respect to p,lilwl. Then L(1) > 2 a for X 2 lo. Applying Schwarz's
inequality we derive

(L(1il2 s I ^ds I p!)"d,o : 
^oe) [ n?tao,

@7 @7 @1

where 8(1) : Io^d$ , and

II
2'o @7s

a? 1d8 il, ,

expressed in terms of C and
F'(") + 0 and which is not' a

a?),ds: ry)I
@1

IIsing the relation
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we have

ry
It follows that /(8,
such that /(Br)

This is absurd.

L(aS 
^*)

f
J dr(s 

^) 
: /(sr) /(Br.) .

1.

A + q . Ift'here existed p >
all 121r, then

I+
Ao

)-t m
p L(^)

I rdl
,"J T

J,L

Therefore there

s(1) :' .[ dv
@7 U:logl

AS

for
0 and 1r7 Ao

idr(s^) pz

! ((sr)'

exists {1*) t'ending to oo such that

L(1") + L(aS n { P-zol: r}) 0 as ?L+ oo.
.f(,S, ) :

\ tLll,

Thus B is a regularly exhaustible simply connected. bordered covering

surface of Z . Our lemma implies that B covers all points of I except
at most one point. This is not true. Consequently, every component of
f (zo; G) - f ("r; aG - K) of genus zero is covered by the image of any
neighborhood of zo except for at most two points.

Secondly, let D be a, component of f ("o; G) - j("r; aG - K)
of genus at least one, and assume ihat Po e D is not taken by / in
Gi{lz-zol 3r}. Takeasubdomain / of genusoneof D boundedby
an analytic simple closed curve c in D which passes through Po and
above which lies no branch point of G . If there is P, e / which is not
taken by / in a neighborhood of zo , then we observe that there is a curve
y inany neighborhood of zo which terminates at a point of K and along

which / tends to Pr. Let B beacomponentof f-'Q)n{p-zrl 1r}
containing y . It is simply connected. We can show as above that it is a

regularlS, exhaustible bordered covering surface of Z. Since the char-
acteristic of / is one, our lemma gives a contradiction. Hence all points
of ,4 are taken in any neighborhood of zo . Since / contains a topological
hand.le, there are analytic simple closed curves c, and c, in / such that
they intersoct mutually only at a point P, and no branch point of G lies
above crUcr. Let {zo\ beasequenceofpointstendingto zo suchthat
f(zu): P, for each k. Considerthe component lu of f-t(cr) whichpasses
through zo . Suppose there is no /o which terminates at K for large k .

Thenforsome &o lun mustbe a closed curvein G n {p-zol < r}. Consider
the component I,!0" of f-t(cr) which starts from zo, and runs in tho interior

I (S 
^*)
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Doo of l,oo. Sinco the part of Do" rtear loo corresponds to one shore of
cr, trL, can not intersect lo" again. Ifence it must terminate at some point
of K . It is now concluded that, in any neighborhood of zo, there is a
curve which terminates at a point of K and whose image by / is contained

in c, or cr. Let B be a component of f-t(l) ll {lz-zol ( r} containing
such a curve. It is a simply connected regularly exhaustible bordered cover-

ing surface of Z . This is again impossible. Thus every point of D is taken
in any neighborhood of zo .

X'inally, suppose the genus of a component D is at least two. Take
a subdomain / of genus one of D bounded by an analytic simple
closed curve c in D . Suppose there is a component Bo of

f-r6)fi{lz-zol <r}
which is not simply connected. Then there exists a closed curve y' on
3So corresponding to c . Take a non-branch point a' € Bo close to y' and.

let P be its image. Since D - Z i" not planar, it contains two analytic
simple closed curves ci and ci which meet only at P and above which
no branch point of G lies. The inverse image of ci passing through z'
must be a closed curve. If we start from z' in one direction along the
inverse image of i, . we have no placo to go after all. Consequently, every
component of f-L(A) n { p-zol < r } is simply connected. The rest of the
proof is the sa,me as above. The proof of our theorem is now completed.

Remark 1. In our theorem the case when /(zo; G) consists of a single
point or is empty is not treatod. Therefore it does not include author's
result in [5]. See [5] in this aspect.

Remark 2. In [5] the author stated that he could not epply Ahlfors'
theory of covering surfaces to prove Theorem l. The present paper
surmounts that difficulty.

Remarlt 3. If the condition that K is contained in one component of
?G is removed in our theorom, then the conclusion is not true in general.
Actually, Matsumoto [3] proved that, given any K"-set "0 of logarithmic
capacity zero in the rl-plane, there exist a compact set K of logarithmic
capacity zero in the z-plane and a meromorphic function w : f(z) defined
outside K such that every point of K is a singularity for / and Z is
the set of exceptional values at each point of K .

In connexion with this remark we mention the following open question
due to M. Suzuki:

Let D be a domain in a plane and K bo a eompact subset of D of
logarithmic capacity zoro. Let / be an analytic mapping of D - K into
a Riemann surface ,l? such that the cluster set of f at a point of K coin-
cides with .E . Then, is the genus of .E at most one?
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