Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 2, 1976, 375-381 Commentationes in honorem Rolf Nevanlinna LXXX annos nato

A THEOREM ON CLUSTER SETS OF AN ANALYTIC MAPPING INTO A RIEMANN SURFACE

MAKOTO OHTSUKA

1. Introduction. The author [5] proved in 1952 that if an analytic mapping f of a punctured disk 0 < |z| < r into a Riemann surface R has z = 0 as an essential singularity in a certain sense, then the set of values in R taken by f in any neighborhood of z = 0 is conformally equivalent to a sphere possibly less two points or to a torus. Heins [1] and Marden, Richards and Rodin [2] gave different proofs and the latter applied the above result to the study of analytic self-mappings of Riemann surfaces.

In the present paper we shall treat the case where the singularity is not isolated. Our result gives a generalization of a theorem of Noshiro (see Theorem 6 at p. 26 of [4]). To explain his result, let f be a meromorphic function defined in a domain D, and K a compact set of logarithmic capacity zero on one component of the boundary ∂D . Let z_0 be a point of K not isolated on $(\partial D - K) \cup \{z_0\}$. Then it can be shown that the difference Ω between the cluster set at z_0 and the boundary cluster set defined at z_0 along $\partial D - K$ is an open set. Noshiro proved that f takes every value, with two possible exceptions, of each component of Ω in any neighborhood of z_0 .

2. Preliminaries. Let R be a finite Riemann surface, and $\varrho_z |dz|$ be a conformal metric on R with strictly positive coefficient ϱ_z . Let S be a covering surface of R. One can regard $\varrho_z |dz|$ as a conformal metric on S. The coefficient may vanish on S; actually it does at each branch point of S. We set $L(c) = \int_c \varrho_z |dz|$ for a smooth arc c on R and $I(E) = \iint_E \varrho_z^2 dx dy$ for a measurable set E on R. We shall use the same notation for such quantities on S too.

Let S be a simply connected finite Riemann surface in particular. Ahlfors' main theorem asserts that there exists a constant h depending only on R such that

(1)
$$0 \geq e_0 M(S) - h L(\partial S),$$

where e_0 is the characteristic of R, M(S) = I(S) / I(R) is the mean sheet number of S and ∂S is the boundary of S relative to R.

Let us call a simply connected domain on R with analytic boundary an open disk. Take open disks $\Delta_1, \ldots, \Delta_q$ on R whose closures are mutually disjoint and contained in the interior of R. Denote the projection of Sinto R by f. A component of $f^{-1}(\Delta_j)$ is called an island lying above Δ_j if its boundary consists of inner points of S. Let $\{D_i\}$ be the islands lying above $\Delta_1, \ldots, \Delta_q$. By the aid of (1) we derive

(2)
$$-\sum e(D_i) \geq (e_0+q) M(S) - h L(\partial S),$$

where $e(D_i)$ is the characteristic of D_i ; if there is no island, then the left hand side is set to be zero. See (60) of [6] for our (2).

Let S now be a simply connected bordered covering surface of R. We call an increasing approximation $\{S_n\}$ of S a regular exhaustion of S if each S_n consists of finitely many finite surfaces and

$$\frac{L(\partial S_n)}{M(S_n)} \to 0 \quad \text{as} \quad n \to \infty ,$$

where ∂S_n is the boundary of S_n relative to R. We note that our definition is general in the sense that S_n may not be connected. When there exists a regular exhaustion of S, we say that S is regularly exhaustible.

We have

Lemma. Let S be a regularly exhaustible simply connected bordered Riemann surface which is a covering surface of a finite Riemann surface R of characteristic e_0 . Then $e_0 \leq 0$ and S covers all inner points of R except at most $-e_0$ points.

Proof. Let $\{S_n\}$ be a regular exhaustion. From (1) it follows that $e_0 \leq 0$. Next, assume that S does not cover $q = 1 - e_0$ inner points of R, and take disks $\Delta_1, \ldots, \Delta_q$ around them as above. Then there is no island above $\Delta_1, \ldots, \Delta_q$. By (2) we have $0 \geq M(S_n) - h L(\partial S_n)$ and meet a contradiction.

3. Main theorem. Let G be an open set in the z-plane, $z_0 \in \partial G$ and K a compact subset of ∂G containing z_0 . Let f be a mapping of G into a Riemann surface R. We define the cluster set $f(z_0; G)$ at z_0 to be

$$\bigcap_{U \in \mathscr{U}(z_0)} \overline{f(U \cap G)} ,$$

where $\mathscr{U}(z_0)$ is the system of neighborhoods of z_0 and $f(U \cap G)$ denotes the closure of $f(U \cap G)$, and define a boundary cluster set $f(z_0; \partial G - K)$ by

$$\bigcap_{U \in \mathcal{U}(z_0)} \bigcup_{z \in U \cap (\partial G - K)} f(z ; G) .$$

We shall prove

Theorem. Let f be an analytic mapping of an open set G in the z-plane into a Riemann surface R, $z_0 \in \partial G$ and K a compact set of logarithmic capacity zero which contains z_0 and which is contained in one component of ∂G . If $f(z_0; G)$ contains more than one point, then $f(z_0; G) - f(z_0; \partial G - K)$ is an open set and the genus of every component D of $f(z_0; G) - f(z_0; \partial G - K)$ is at most one. If the genus is 0 (1 resp.), then every point of D is taken by f in any neighborhood of z_0 except for at most two (with no exception resp.).

Proof. Suppose $f(z_0; G) - f(z_0; \partial G - K)$ is not open. Then the boundary $\partial f(z_0; G)$ is not contained in $f(z_0; \partial G - K)$. Let P_0 be a point of $\partial f(z_0; G) - f(z_0; \partial G - K)$, and N be a closed neighborhood of P_0 which does not include the whole $f(z_0; G)$ and which is disjoint from $f(z_0; \partial G - K)$. Let w be a local parameter such that N contains the local disk which corresponds to $|w| \leq 1$ and P_0 corresponds to w = 0. Denote the composed mapping w(f(z)) by g(z), and let Ω be the inverse image of |w| < 1 in G. Since $P_0 \in f(z_0; G)$, there exists a sequence $\{z_n\}$ in G tending to z_0 such that $f(z_n) \to P_0$. Hence z_0 is a boundary point of Ω . Suppose z_0 is isolated on $(\partial \Omega - K) \cup \{z_0\}$. Then $\Omega \cap U = U - K =$ $G \cap U$ for some neighborhood U of z_0 , and hence $f(z_0\,;\,G) \subset N$. This is against our choice of N. Thus z_0 is not isolated on $(\partial \Omega - K) \cup \{z_0\}$. We see that $g(z_0; \partial \Omega - K)$ is contained in |w| = 1 and that w = 0belongs to $\partial g(z_0; \Omega)$. Thus $\partial g(z_0; \Omega) \not \subset g(z_0; \partial G - K)$. However, if we use Theorem 4 at p. 17 of [4] in the theory of cluster sets for functions, then we conclude that $\partial g(z_0; \Omega) \subset g(z_0; \partial \Omega - K)$. This contradiction shows that $f(z_0; G) - f(z_0; \partial G - K)$ is open.

We shall prove next that, in case the genus of a component D of $f(z_0; G) - f(z_0; \partial G - K)$ is zero, f takes on every value of D except for at most two in any neighborhood of z_0 . The proof is exactly the same as for Noshiro's theorem referred to in the introduction. For the sake of completeness, however, we shall prove it. Suppose P_1 , P_2 , $P_3 \in D$ are not taken by f on $G \cap \{ |z-z_0| \leq r \}$. Draw an analytic simple closed curve c which passes through P_3 , whose interior \varDelta contains P_1 and P_2 and above which lies no branch point of G as a covering surface of R. We take c in D so that \varDelta is included in D. Since $D \subset f(z_0; G)$, there is a sequence $\{z_k\}$ tending to z_0 whose image $\{f(z_k)\}$ is contained in \varDelta and tends to P_1 . We may assume that no z_k is a branch point. Let $(f(z_k) P_1)^{\sim}$ be a curve in D which passes through no image of any branch point and converges to P_1 as $k \to \infty$, and let γ_k be the inverse image of $(f(z_k) P_1)^{\sim}$ starting from z_k . If there are infinitely many γ_k which intersect $|z-z_0| = r$, these γ_k cluster to a continuum F connecting z_0 and $|z-z_0| = r$. Since f is not constant, F has no point in G. Accordingly

 $F \subset \partial G$. We see that every $U \in \mathscr{U}(z_0)$ contains some point z of F - K and f(z; G) contains P_1 at such z. Accordingly $f(z_0; \partial G - K)$ contains P_1 . This is impossible. It follows that γ_k must terminate at a point of $K \cap \{ |z - z_0| < r \}$ if k is large. Let S be a component of

$$f^{-1}(\varDelta) \cap \{ |z - z_0| \leq r \}$$

which contains such a γ_k . Since f does not assume P_3 on $G \cap \{ |z-z_0| \leq r \}$, S is simply connected.

Let a conformal metric $\varrho_w | dw |$ be given on \varDelta . Let us see that S is regularly exhaustible as a covering surface of \varDelta . It is well known that there exists a logarithmic potential U(z) of a unit measure supported by K such that $U = \infty$ on K. Let V be a conjugate of U and let $\zeta = F(z)$ be a single-valued branch in S of exp (U(z) + i V(z)). If λ_0 is large, then the level set $\{z ; e^{U(z)} = \lambda\}$ intersects γ_k for every $\lambda \ge \lambda_0$. Take ζ as a local parameter at every point z of S at which $F'(z) \neq 0$, i.e., grad $U \neq 0$. Denote the part of S on which $e^U < \lambda$ by S_{λ} , and the level set $\{z \in S ; |F(z)| = e^{U(z)} = \lambda\}$ by Θ_{λ} . Denoting by (λ, ϑ) the polar coordinates in the ζ -plane, we have

$$I(S_{\lambda}) - I(S_{\lambda_0}) = \int_{\lambda_0}^{\lambda} \int_{\Theta_{\lambda}} \varrho_{\zeta}^2 \lambda \, d\vartheta \, d\lambda ,$$

where $\varrho_{\zeta}|d\zeta|$ is the conformal metric on S expressed in terms of ζ and equals $\varrho_w|dw|$ at every point z at which $F'(z) \neq 0$ and which is not a branch point of f. Set

$$L(\lambda) = \int_{\Theta_{\lambda}} \varrho_{\zeta} \lambda d\vartheta.$$

Denote by $\alpha > 0$ the distance between c and $(f(z_k) P_1)^{\sim}$, measured with respect to $\varrho_w |dw|$. Then $L(\lambda) \ge 2 \alpha$ for $\lambda \ge \lambda_0$. Applying Schwarz's inequality we derive

$$(L(\lambda))^2 \leq \int\limits_{\Theta_{\lambda}} \lambda \, d\vartheta \int\limits_{\Theta_{\lambda}} \varrho_{\zeta}^2 \, \lambda \, d\vartheta = \lambda \, \vartheta(\lambda) \int\limits_{\Theta_{\lambda}} \varrho_{\zeta}^2 \, \lambda \, d\vartheta \, ,$$

where $\vartheta(\lambda) = \int_{\Theta_{\lambda}} d\vartheta$, and

$$\frac{(L(\lambda))^2}{\lambda \,\vartheta(\lambda)} \;\; \leq \;\; \int\limits_{\Theta_\lambda} \,\varrho_\xi^2 \,\lambda \,d\vartheta \;\; = \;\; \frac{dI(S_\lambda)}{d\lambda} \,.$$

Using the relation

$$\vartheta(\lambda) = \int_{\Theta_{\lambda}} dV \leq \int_{U = \log \lambda} \frac{\partial U}{\partial n} ds = 2\pi ,$$

we have

$$\frac{2 \alpha^2}{\pi} \int_{\lambda_{\bullet}} \frac{d\lambda}{\lambda} \leq \int_{\lambda_{\bullet}} dI(S_{\lambda}) = I(S_{\lambda}) - I(S_{\lambda_{\bullet}}).$$

2

It follows that $I(S_{\lambda}) \to \infty$ as $\lambda \to \infty$. If there existed $\beta > 0$ and $\lambda_1 > \lambda_0$ such that $I(S_{\lambda}) \leq \beta L(\lambda)$ for all $\lambda \geq \lambda_1$, then

$$rac{1}{2\pi}\int\limits_{\lambda_1}^{\lambda}rac{d\lambda}{\lambda}\ \le\ eta^2\int\limits_{\lambda_1}^{\lambda}rac{dI(S_\lambda)}{(I(S_\lambda))^2}\ \le\ rac{eta^2}{I(S_{\lambda_1})}\ <\ \infty\ .$$

This is absurd. Therefore there exists $\{\lambda_n\}$ tending to ∞ such that

$$\frac{L(\partial S_{\lambda_n})}{I(S_{\lambda_n})} \ = \ \frac{L(\lambda_n) \, + \, L(\partial S \, \bigcap \, \{ \ |z-z_0| \ = \ r \ \})}{I(S_{\lambda_n})} \ \to \ 0 \qquad \text{as} \ \ n \to \infty \ .$$

Thus S is a regularly exhaustible simply connected bordered covering surface of $\overline{\Delta}$. Our lemma implies that S covers all points of Δ except at most one point. This is not true. Consequently, every component of $f(z_0; G) - f(z_0; \partial G - K)$ of genus zero is covered by the image of any neighborhood of z_0 except for at most two points.

Secondly, let D be a component of $f(z_0; G) - f(z_0; \partial G - K)$ of genus at least one, and assume that $P_0 \in D$ is not taken by f in $G \cap \{ |z-z_0| \leq r \}$. Take a subdomain \varDelta of genus one of D bounded by an analytic simple closed curve c in D which passes through P_0 and above which lies no branch point of G. If there is $P_1 \in \Delta$ which is not taken by f in a neighborhood of z_0 , then we observe that there is a curve γ in any neighborhood of z_0 which terminates at a point of K and along which f tends to P_1 . Let S be a component of $f^{-1}(\varDelta) \cap \{ |z - z_0| \leq r \}$ containing γ . It is simply connected. We can show as above that it is a regularly exhaustible bordered covering surface of Δ . Since the characteristic of \varDelta is one, our lemma gives a contradiction. Hence all points of \varDelta are taken in any neighborhood of z_0 . Since \varDelta contains a topological handle, there are analytic simple closed curves c_1 and c_2 in \varDelta such that they intersect mutually only at a point P_2 and no branch point of G lies above $c_1 \cup c_2$. Let $\{z_k\}$ be a sequence of points tending to z_0 such that $f(z_{\boldsymbol{k}})=P_{2}$ for each \boldsymbol{k} . Consider the component $l_{\boldsymbol{k}}$ of $f^{-1}(c_{1})$ which passes through z_k . Suppose there is no l_k which terminates at K for large k. Then for some $k_0 l_{k_0}$ must be a closed curve in $G \cap \{ |z - z_0| < r \}$. Consider the component l'_{k_0} of $f^{-1}(c_2)$ which starts from z_{k_0} and runs in the interior

 D_{k_0} of l_{k_0} . Since the part of D_{k_0} near l_{k_0} corresponds to one shore of c_1 , l'_{k_0} can not intersect l_{k_0} again. Hence it must terminate at some point of K. It is now concluded that, in any neighborhood of z_0 , there is a curve which terminates at a point of K and whose image by f is contained in c_1 or c_2 . Let S be a component of $f^{-1}(\overline{A}) \cap \{ |z-z_0| \leq r \}$ containing such a curve. It is a simply connected regularly exhaustible bordered covering surface of \overline{A} . This is again impossible. Thus every point of D is taken in any neighborhood of z_0 .

Finally, suppose the genus of a component D is at least two. Take a subdomain Δ of genus one of D bounded by an analytic simple closed curve c in D. Suppose there is a component S_0 of

$$f^{-1}(\varDelta) \cap \{ |z - z_0| \leq r \}$$

which is not simply connected. Then there exists a closed curve γ' on ∂S_0 corresponding to c. Take a non-branch point $z' \in S_0$ close to γ' and let P be its image. Since $D - \overline{\Delta}$ is not planar, it contains two analytic simple closed curves c'_1 and c'_2 which meet only at P and above which no branch point of G lies. The inverse image of c'_1 passing through z' must be a closed curve. If we start from z' in one direction along the inverse image of c'_2 , we have no place to go after all. Consequently, every component of $f^{-1}(\overline{\Delta}) \cap \{ |z-z_0| \leq r \}$ is simply connected. The rest of the proof is the same as above. The proof of our theorem is now completed.

Remark 1. In our theorem the case when $f(z_0; G)$ consists of a single point or is empty is not treated. Therefore it does not include author's result in [5]. See [5] in this aspect.

Remark 2. In [5] the author stated that he could not apply Ahlfors' theory of covering surfaces to prove Theorem 1. The present paper surmounts that difficulty.

Remark 3. If the condition that K is contained in one component of ∂G is removed in our theorem, then the conclusion is not true in general. Actually, Matsumoto [3] proved that, given any K_{σ} -set E of logarithmic capacity zero in the w-plane, there exist a compact set K of logarithmic capacity zero in the z-plane and a meromorphic function w = f(z) defined outside K such that every point of K is a singularity for f and E is the set of exceptional values at each point of K.

In connexion with this remark we mention the following open question due to M. Suzuki:

Let D be a domain in a plane and K be a compact subset of D of logarithmic capacity zero. Let f be an analytic mapping of D - K into a Riemann surface R such that the cluster set of f at a point of K coincides with R. Then, is the genus of R at most one?

References

- HEINS, M.: On Fuchsoid groups that contain parabolic transformations. Contributions to function theory. Tata Institute of Fundamental Research, Bombay, 1960, 203-210.
- [2] MARDEN, M., I. RICHARDS and B. RODIN: Analytic self-mappings on Riemann surfaces. - J. Analyse Math. 18, 1967, 197-225.
- [3] MATSUMOTO, K.: Exceptional values of meromorphic functions in a neighborhood of the set of singularities. - J. Sci. Hiroshima Univ. Ser. A 24, 1960, 143-153.
- [4] NOSHIRO, K.: Cluster sets. Ergebnisse der Mathematik und ihrer Grenzgebiete (Neue Folge) 28. Springer-Verlag, Berlin – Göttingen – Heidelberg, 1960.
- [5] OHTSUKA, M.: On the behavior of an analytic function about an isolated boundary point. - Nagoya Math. J. 4, 1952, 103-108.
- [6] SARIO, L., and K. NOSHIRO: Value distribution theory. The University Series in Higher Mathematics. D. Van Nostrand Company, Inc., Princeton, New Jersey, etc., 1966.

Hiroshima University Faculty of Science Department of Mathematics Hiroshima Japan 730

Received 2 September 1975