Annales Academiz Scientiarum Fennica Commentationes in honorem
Series A. I. Mathematica Rolf Nevanlinna
Volumen 2, 1976, 383 — 396 LXXX annos nato

SOME COEFFICIENT PROBLEMS FOR
STARLIKE FUNCTIONS

ALBERT PFLUGER

0. Introduction

Consider the class S* of normalized starlike functions f in the unit disc
D = { |z] < 1}, whose basic results were established by Rolf Nevanlinna
in his paper [6], and write
(0.1) f@) = z+ a2+ ... +a,2" + ...
The mapping
(0.2) A, f>(ay, ..., a,)
associates to each f a point in C"~! and takes S* onto some compact set
S* which is called the n-th coefficient body for the class S* . This paper
deals with some basic properties of Sj. It will be proved that Sy is
homeomorphic to a ball in C*~!, that for each boundary point a of Sy
there is only one function f in S* such that 4,(f) = a and that A,(f)

is on the boundary of S¥* if and only if f takes the unit disc onto a domain
which is bounded by at most n—1 rays

0.3) R, = {z=tey[t=r}, oy <og<- <o, <o+ 27,

1 <m < n. Contrary to the analogous problem for the class S (cf. [9]
for example) the situation here is very explicit and elementary. The basic
idea is to consider an analogous coefficient problem for the Carathéodory
class O of functions ¢ holomorphic in the unit disc which have positive
real part and are normalized by the condition ¢(0) = 1. For each n the
expansion

(0.4) gz) = 1+ 2c,2 4+ ... + 2¢,2" + ...
defines a mapping

(0.5) VYo' gr>(Cyy s ty)
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of €' onto some compact set C, in C", which is called the n-th coefficient
body for the class C'. The basic properties of €, (Theorem A) are due to
C. Carathéodory and O. Toeplitz; for completeness a full proof will be given
in the third part of the paper.

C, is a convex body in C”, hence C, admits for each boundary point
a supporting hyperplane. This fact gives a set of inequalities for a,, ..., a, 11
relative to a boundary point (aJ,...,a), ;) of Sk ,. Among them there
are coefficient inequalities for the class S* (Theorem 2) which are quite
similar to those the extended general coefficient theorem of J. A. Jenkins
gives for the class §. They imply that some sections of S* are convex,

ie.if @’ = (a3, ..., a)) is a point of S¥ and if W,(al, ..., al) isthe set of
points (@, ..., @,) in C"7¢ such that (a),..,a),a,,,,..,a, isin
Sy, then W, (ay, .., af) is strictly convex for each point a® in SX

provided that # < 29, and this bound for » is sharp.

1. The n-th coefficient body

1.1. In this section we will prove the following

Theorem 1. The n-th coefficient body S is homeomorphic to
@ ball in C"'. For each point a on the boundary of S* there is only one
function in S* which is taken onto a by the mapping A, while A;'(a) is
an infinite set in S* if a is in the interior of S} . A,(f) is on the boundary
of S if and only if there are distinct points x, , ..., x,, on the unit circum-
ference { |z| = 1} and positive numbers u,, ..., u, where > u=1
and 1 <m < n such that

m

(1.1) fz) = zl_I— (1 — a;2)~% .
1

Given the boundary point a , the numbers m , %, and u; are unique.
Remark. f takes the unit disc onto a domain which is bounded by
m rays (0,3), where o; , — o =2mu;, j=1,..,m. Conversely, any
m such rays, 1 <m < n, up to a suitable homothety z-—>rz, r> 0,
determine via the mapping function a point on the boundary of S* .
Since f belongs to S* if and only if zf(z) /f(z) is in O, the differ-

ential equation

(1.2) 2f'(2) = 9(2) f(2)

establishes a homeomorphism between € and S8* if C and S* are
provided with the topology of uniform convergence on compact subsets of
D . Equation (1.2) implies the following relations between the coefficients
a; and ¢; in (0.1) and (0.4) respectively:
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a, = 2¢q,
(1.3) 2ag = 2(cy + aycq),
(n—1a, = 2(, 3+ ¢ o+ ... +a,,0).
For each n, n = 2,3,..., they define a homeomorphism of S onto

C,_; - Hence, for some basic properties of Sy, it suffices to study C, ;.

1.2. The following result is due to C. Carathéodory [1] and O. Toeplitz
[10] (cf. also [2]).

Theorem A. C, is a convex body in C" containing the origin. To
each point { = (cq, ... ,c,) in the interior of C, there correspond infinitely
many functions in C, ie. y, Y C) is infinite; but for each point  on the
boundary of C, there is only one g in C which is taken onto ¢ by the
mapping v, . v,(q) ts on the boundary of C, if and only if there are distinct
pownts xq , ..., x, on theunit circumference { |z| = 1} and positive numbers

U1 s oo sty Such that

e 1—}-%]-2

(1.4) g(z) = P g s
where 1 <m < n and z;?’:l,u]— = 1. The numbers m, x;, p; are deter-
mined uniquely by the boundary point { .

Proof of Theorem 1. Theorem A, together with (1.2) and (1.3), im-
mediately implies Theorem 1. Since (1.3) establishes a homeomorphism
between the boundaries of C,_, and S, by integration of (1.2), the
functions (1.4) give exactly those functions in S* which are taken onto
the boundary of S} under the mapping 4, .

1.3. The implication of Theorem 1 for extremal problems within the
class §* is immediate. Let F(a,, ..., a,) be a real valued function of the
complex variables a,, ..., a,, which is defined and continuously dif-
ferentiable with respect to the real variables ;= Rea;, y;, =Im a; ,
J=2,..,n, in some neighborhood N of S, such that |grad F| is
positive there. Then the function I attains its maximum on S} only
on the boundary. Hence each function f which maximizes F (considered
as a functional on S*) on S* is necessarily of type (1.1). This result was
proved by J. A. Hummel by variational methods of Schiffer’s type within
the class S* (cf. [4]).

Furthermore, let F attain its maximum at a point (a3, ..., a’) of the
boundary &S} . Then, from
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n ol
Fay,..,a,) = F@ad,..  a) + 2Re> — da;

j=2 a“j

+ 0<max{ | da;| }), da; = a; — a,

J
it follows that

s oF 0
Re %% (@, ..., ad) da;| + o m%;x{ da;|}) < 0
J
and this shows that (oF/éa,, ..., ¢F/ea,) is an outer normal vector to

S¥ at (a3, ..., al) . (Cf. also Paragraph 2.1.)

14, If ¢ = (¢y,...,c,) is an interior point of C,, then y,({) is an
infinite set in C' . It is possible, however, to define in a natural way a subset
of C which is homeomorphic to C, under the mapping y, . Assume first
that £ 4 (0,..,0). Since C, is a convex body containing the origin,
there is a unique number ¢ > 1 such that ¢ is on the boundary of C, .
By Theorem A there is a unique set of numbers %oand w;, g=1,...,m,
1 <m < n, such that

m 1+x]z
g(z) = M
ng 1 — 2™

corresponds to ¢ {, ie. v,(g) = ¢ . The function g* =g/t +1 —1/t,
which can be written in the form

m .2 7 1
g*e) = 142> 7o 24 =

= 1 — %2

isin € and y,(9%) =C¢.If {=(0,..,0) we choose 1/t =0,ie. pu
vanishes and ¢* is just the constant 1, which case may be characterized
also by setting m = 0. Thus we proved

Theorem A'. Toeach point { = (¢q, ...,¢c,) of C, there corresponds
a unique set of distinct points xy , ..., x, on the unit circumference and a set
of positive numbers uy, ..., ,, , where Z}”Zl <1 and 0 <m <n, such that

g0 = 1425 2

j=1

1 —x;z Hi

wsan C and y,(9(.;¢) = L. The set of the numbers »; and w; might be
empty in which case we set m = 0. { 1is on the boundary of C, if and only
if D7 =1. The correspondence >g(.;¢) defines a homeomorphic
mapping of C, onto the subset { g(.; )} of C.
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As before, we obtain from this Theorem A’, together with (1.3) and (1.2),
Theorem 1'. Let M denote the set of measures defined by m distinct
points xq, ..., x, on the unit circumference with assigned positive numbers
[y s oo s My, Such that 7 u <1 and 0 <m <n. Then by (1.1) there
corresponds to M a subset of functions in S* which is homeomorphic to S .

2. Coefficient inequalities

2.1. Here we derive coefficient inequalities relative to a given boundary

point a® = (a), ..., al) of S¥. By (1.3) there corresponds to a° a point
& = (%, ...,c)_,) on the boundary of C,_;. Choose a supporting hyper-
plane at £°, with normal direction « = («y, ..., o, ;). Then, for any point
{=1(cy,..,c, ) of C, ; we have the inequality

(2.1) Re <¢ —,a> < 0.

Since by (1.3) ¢, — ¢ depends on the coefficients a,,ay, ..., a;,,,a]

only, (2.1) represents an inequality involving the boundary point a° and
an arbitrary point @ of S . We transform now (2.1) considering that
£ — % could be small. Let ¢ and g, be functions in €' such that

yn—l(g) = C and yn_l(go) — CO .
9() = > 2¢2, gr) = > 2c02, 2¢ = 1.
0

Define

z

dt
(2.2) D(z) = / (gt) — go(t)) o = P12+ o+, 2"+
0

where 2 (c; —¢}) =j¢;, j =1,2,... Let the functions f and f;, in S*
correspond to ¢ and ¢,. Equation (1.2) implies then
di

(2.3) f) = zexp | (9(t) — 1), = folz) exp D(z).

0
Write now

Lp—1 51

(2.4) a(z) = -1 + .o+ 2

o«(2) k, ke
(2.5) k(z) = — = a7+ ..+ 5+ ..
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and correspondingly «(z) = a(z), k(z) = l_ca . It follows then

(26) 2o i0a = oo b ) — o) T
‘ 8> = om T HRIER) = 9o z
1 _ 1 —
= ~ 3 o (z) D(z)dz = P k(z) fo(z) D(2) dz
and by (2.1)
1 —
(2.7) Re 9 §k(z) fo?) P(z)dz < 0,

where the integration is taken along a positively oriented circuit around
the origin.

2.2, Choose a variation of f, in S*, ie. a mapping ¢+ f, of some
interval (0 ,¢,) into S* such that

(2.8) fo = fo+efi +o(e),

where f; is holomorphic in D with f;(z) = O(z% , and o(e) [ ¢ converges
to zero uniformly on compact subsets of D . If

£ = Sa@7 ad fil) = S,

then @ = (ay,..,a,) is a tangent vector to the curve e&r>a(e) =

(ag(e) , ..., a,(e)), 0<e=<eg at a(0): a(e) = al0)+ ea’ + ofe)
for &¢-— 0. Corresponding to (2.8) we have

(2.9) g = 9o+ €9y + o) and &, = &Py + ofe),
where @,(z) = [;9,(C)dl | ¢ . From (2.2) and (2.3) it then follows that
(2.10) Ji = fo @y

With ¢,(z) = D% 4c(e) 2’ and g4(2) = 272,62 we get {(e) = (0
el + o(e) for e-—>0, where ((e) = (cy(¢),...,C,_4(¢)) and
(€ ,sChy). If @ = (a,...,, ;) is an outer normal vector to C,_,
at the boundary point {(0) , it follows from (2.1), (2.6), (2.9) and (2.2) that

) +

Lo B _
Re o 3gk<z>f1(z>dz = Re{kyay+ ..+ k,a,} =0

for all tangent vectors o', ie. (ky,...,k,) is an outer normal vector to
SF at af.
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Conversely, let & be an outer normal to S* at «(0). For any g € C
define ¢, = gy + ¢(g — ¢5), 0 <e <1. This is a variation of g, in C.
It infers a variation f, =f, + ¢f; + o(e) of f, in §*, and a curve
er>ale) = a(0) + ea’ + o(e) in S¥ . Let now the vector o = (ctg, ..., @, ;)
be given by (2.5) and (2.4). From (2.6) and (2.10) it follows that
Re 2721 a;(c; — ¢f) < 0 for all points = (¢cy,...,c,,) of O, , and
this shows that « = (¢y, ..., o, ;) is an outer normal vector to C,_ ;.
Thus, by (2.5), we proved

Proposition 2.2 There is a one to one correspondence between
the outer normal vectors to C, ; and S} at associated boundary points,

which is given by the equations
o, = k,a, 1 +k, 10, o+ ... +kyay + ky
20y = k,a, o+ k, 10, 5+ ... + kg
(2.11)
kn Ay + kn—l

il

(n~2)an—2
(n—l)“n 1 = kn

2.3. The preceding considerations suggest to develop (2.3) into powers
of @ and to write (2.7) in the form

(2.12) Re{é% f k() <f(z) — folz) — —zlr!fo(z) Dz) — > dz} < 0.

Only the powers @2, ..., @1 are relevant for the evaluation of the integral,
since @ has a zero at the origin. However, the higher is the order of this
zero the less powers of @ are needed. Observe that by (2.2) we have
(2.13) D) = @, 2° + @, 2T+ ..., 1 =Zo0<m,

or ¢; = for j=1,..,0 — 1 if and only if @; =@}, j=2,..,0, and
that in case of (2.13) we have

(2.14) k() fo(z) P2(z) = < T + ) (z+ad2 + ..) (gh2* + ..)
+

We consider two cases.
1° 2p = n. In this case inequality (2.12) reduces to

IIA
o

(2.15) Re {jéﬂl@ (@ — a;’)}
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Equality occurs if and only if it holds in (2.7) also. k = (ky, ..., k,) is an
outer normal vector to S* at the point a® = (a3, ..., al). To a® and k
there corresponds the outer normal vector o = (g, ..., , ;) to C,_; at
&0 = (c?, ..., ¢ ;). From (2.6) it follows that equality holds in (2.7) if
and only if

n—1
Re < — (%, a> = Re > (¢, —¢))o; = 0,
=1
i.e. the point ¢ = (¢y, ..., ¢, ;) lies on the supporting hyperplane through

0 with normal direction « . Since, by assumption, ¢, = ¢} for j =
1,..,0—1 and 292% it follows from Lemma 3.5 (in Paragraph 3.5,
with ¢ — 1 and n—1 instead of o and = respectively) that this occurs
only if ¢ = (%, hence only if @ = a® or f = fo

2° n = 29 + 1. In this case the residue of k(z) f,(z) ®2(z) at the origin
is En ¢> and from (2.3) it follows ¢, = a,,, — aj,, . Hence (2.12) implies

n o Zn
2 k(e —d}) - —2’(%“ —ag)?| < 0.
j=e+1
If a,., = a),, equality occurs only if @ = a®, because then we are in the

preceding case, i.e. n < 2 (o + 1). Thus we proved

Theorem 2. Let a® = (a3, ..., ad) be a boundary point of the coef-
fictent body S}, let k = (ky, ..., k,) be an outer normal vector to S at a°
and let the integer o satisfy the condition ¢ <n <20 + 1. If ¢ =0 for

n <20 and ¢ =1 for m =29 + 1, then the inequality

(2.16) Re };' (@, — a?) — e

j=e+

k,
9 (@1 — a2+1)2} =0

holds for all points a of S} such that a; = a), j=2,..,0. In the case
that m <29 or that n=2p + 1 and a, = a),, equalily occurs in
(2.16) if and only of f = f,.

Remark. Theorem 2 gives a coefficient inequality which is quite
similar to the one J. A. Jenkins has given in his general coefficient Theorem
[5] for the particular case of the normalized schlicht functions in the unit
disc.

2.4. In the case n <2p Theorem 2 has an interesting corollary.

Choose in S* a fixed point (a3,...,a)), 1 <o <mn. Denote by
W, .., a) the set of all points (a,,,,..,a,) in C"¢ such that
@, ..,ad,a,1,..,a,) isin SF. Let (a),,,..,a)) = A° be on the
boundary of W,. Then (af,...,a),ad,,,..,a)) =a® is a boundary

point of 8. Choose there an outer normal vector t = (k,, ..., %,). By
Theorem 2 we have (2.15) for all points (@,,,,...,a,) in W,(a3, ..., a)).
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This shows that at each boundary point W, has a supporting hyperplane,
hence W, is convex. It is even strictly convex, i.e. each supporting hyper-
plane to W, contains only one point of W, because equality occurs in

(2.15) only if a; =a), j=po+1,..,7.

Now we show that W,(a,,...,a,) is no more convex for arbitrary
points (a,,...,a,) in S, if n> 2¢. More precisely, we show that
Woei1(0, ..., 0) is not convex. For this purpose we consider the two

functions

2 + 2
f1&) = (k@) = 2z + Ez"“ + QTZ%H + ... and

2 + 2
foz) = el fi(ez) = z — — 2t 4 : 2
0 0
in S*, where & = —1 and k is the Koebe function k(z) =z /(1 — 2)2.
They show that Wy, (0, ..., 0) contains the points

2/0,0,..,0,(0 + 2)/0?) and (—=2/0,0,...,0,(0 + 2)/0?.

But the midpoint (0,..,0, (0 + 2)/0?) of them does not belong to
W i1(0, ..., 0), because for any schlicht function, hence for any starlike
function f(z) = 2 + @y,,1 2% + ... we have |ay, 4] <1/¢ by a result
of Prawitz ([8]) and because 1 /o < (0 + 2)/0?. Thus we proved
Theorem 3. Associate to a point (a3, ..., a)) in SF and an integer
n>p the se¢ W,(a3, ..., a3) of those points (a,,,,...,a,) in C""° for
which (a3, ..., a0, @y 1, ..., a,) is in S¥. Then W, (ay,...,ay) 1is a
strictly convex body if n <29 . However, W, (0, ...,0) is no longer

convex.

A similar theorem holds for the coefficient bodies of the class S (cf. [7]).

Let consider the particular case that ¢ =n—1. If (ad, .., a)_;) is
on the boundary of S* |, then obviously W,(a3, ..., a)_,), the range of
a, , is a point. Thus we may assume that (aJ, ..., aJ_;) is in the interior of
S* . The corresponding point (¢}, ..., cy_,) is in the interior of C,_,.
As was remarked by Carathéodory ([1]), the range of C, is a disc. Hence,
by (1.3), it follows: For a given point (a3, ..., ay_;) in S¥ | the range of
a, 1is either a disc or a point. Based on a different method this result was

given by J. A. Hummel in [3].

zetl 4

3. Proof of Theorem A
3.1. C, is a compact and convex set in C”, since C is convex and

compact (in the topology of uniform convergence on compact subsets of
D), and y, is continuous and linear.

e
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3.2. Let ¢ be an interior point of C, . Thereisa A, 4> 1, such that
A= (Aey,...,Ac,) is still in C,. Choose in C a function ¢ such
that »,(9) = A{. Then ¢, = A1g+ (1 —1/1) is in ¢ and satisfies
Reg,(z) >1 — 1/ 4. Hence, g, + & isin C and y,(g, + h) equals to ¢
for each function h(z) = b,,,2""" + ... which is holomorphic in D, such
that sup,., |A(z)] <1 — 1/4. This proves that y, () is an infinite set in C'.

3.3. Let P denote the set of probability measures supported by the
unit circumference { |z| = 1} . According to a result of Herglotz g belongs
to the class C if and only if

2n

1 + €92
o) = [ wer,
1 —¢e” 2
0

or equivalently if and only if the coefficients ¢, of ¢ (in (0, 4)) are the
trigonometric moments of a probability measure, i.e.

2n

(3.1) 8, = fei""dﬂo, weP, n=012 ..
0

In the sequel we represent points in R* in the form ¢ = (¢, ..., ¢,),
{; € €, as points in C”, and consequently, we write the standard scalar-

product in R* as Re <(,{'> =Re >’ ¢ L.
Hence, the norm of ¢ is given by [ = (<&, {>)12.
Defining

(3.2) L(p) = f (e, ..., e") du,

for any real measure (supported by the unit circumference) we have

C, ={iw)| nel},

i.e. O, is the convex hull of the curve
I': 61— (",... ,e"), 0<6<27.
Let o be a unit vector:

o0 = (0tq 5 ey O,) o] = 1.

(3.3) h(e) = max Re{ a; ¢” + ... + «, "}
0
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N =

(3.4) Te®,a) = h(x) — Re{ o 6’79} .
i=1

Obviously 7T'(¢”,a) >0 for all 6 and «. Hence, by a lemma of Fejer

and Riesz, there is a polynomial p(z) = & + &2+ ... + £,7" such that

(3.5) T(e”, ) = |p(e”)?.

Let now {, = C(ug), wo € P, be a point on the boundary of C, . Since

C, is convex there is a supporting hyperplane

Re <¢ —¢{y,a> = 0, |af=1,ie. maxRe <{,a> = Re<{,,a>.
leC,,

Since C, is the convex hull of " we have also

n

max Re > a; ¢’ = Re <(,, a>

0 j=1

or by (3.3) h(x) — Re <<, ,a«> = 0. With the notations (3.4) and (3.5)
and with (3.1) it follows

2n 2
f T, o) duy = f PE)E duy = 0
0 0

and this shows that a measure pu,, o€, such that C(u,) is on
the boundary of C, , is a measure supported by at most n points on the
unit circumference.

Conversely, for an integer m, 1 <m < n, choose m distinct points
%; on the unit circumference and positives numbers u;, j =1,..,m
such that > u; = 1. Let the pairs { (x;,u,)} define the measure u, .
Then {(uy) is on the boundary of C, . In fact, setting p(z) = I} (z — %;)

we have

n

(3.6) f 1p()[? duy = _?p(%n wo= 0.
0

But

=

()2 = % — Re ‘152]4 e’
J

for suitably chosen numbers o; . As a positive factor is not relevant we can
assume that o = («¢;,...,,) is a unit vector and this implies o, = A(x).
Equivalently to (3.6) we have then
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2n 27
/T(e“’,oc)dyo = 0, and fT(eio,a)dy >0 foral ueP,
0 0
le.

max Re <(,a> = Re <{(yg), o> .

teC,

This shows that ((u,) is on the boundary of C, ending the proof that
¢ = v,(g) belongs to the boundary of C, if and only if g is given by (1.4).

3.4. It will be shown now that for a point (° = (¢y, ..., ¢,) on the
boundary of C, there is only one measure g in P such that ((u) = (0,
and then this implies that there is a unique ¢ in C satisfying y,(9) = ¢, -

Let u be a measure in P such that ((u) = {°. u is carried by some
points #;,...,%,, 1 <m <n; hence,

O =4+ p, ", w>0, ;M = 1,

where
(3.7) o o= (% » xf v i)y J=1,.,m.
These vectors ¢/ are linearly independent (because the points x; are
distinet). Their convex hull coh { 1, ..., (" } lieson the m —1 dimensional
hyperplane
(3.8) C= LU, Dk =1,

i=1 i

and contains (° in its interior, since all the weights u; are positive.
Let now ' be another measure in P such that ((u') = {(u) = 0.
@' is carried by some points x,;, j =1,..,m;, 1 <m; <n such that

my My

C°=ZIC{;4}, u; >0, Elju}=l,
j=

where

Go= Gty gy s ®y),  J=1,0,my.
Since {° is in the interior of either convex hull, say of coh { ¢, .., ("}
and of coh { ¢}, ..., ("}, these convex hulls lie on the same hyperplane
of dimension m—1 = m;—1. Choose a x,, 0 =1,..,m;, and write
%1, = %. From =37, 4, >14 =1, according to (3.8) it follows that

the vectors (§ — (', (2 — (Y, ..., {" — (' are linearly dependent, hence
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Ho— My, Mg — Ky ey Ky — K

2,2 L2 2 2 L2
% My, My — K]y Ky — K
= 0.
m M m wm m m
w"— wy, ny — Ry M, — K

Consider this determinant as a polynomial in x . It is of degree m and does

not vanish identically; its roots are »x,, ..., %, ; hence, »;, = » equals to
one of these roots and this implies that the two sets {x%;,..,%,} and
{ %115 - s %1, } are identical, ie. the two measures p and @' have the
same support {s;,..,x, }. Their values u; carried by the points #x;

have to satisfy the linear system

m

Z%;Mj=("z: A=1.,n.
i=1

Since the matrix (x})/={"7"» has rank m, the point (%= (c;,...,¢c,)
uniquely determines the weights u, and this implies u' = u. We conclude
that for a boundary point (° of C, there is a unique function g in C
such that y,(g) = {°, and this completes the proof of Theorem A.

3.5. The lemma we used in Paragraph 2.3 easily follows by a similar
argument as used just ahead. Let a supporting hyperplane to C,, with
normal direction o, be given. If the polynomial h(ax) — Re >%_; «;2’ has
the zeros x,,...,%, on the unit circumference, then the intersection of
C, with the given supporting hyperplane is the convex hull of the points
&, j=1,..,m, where the ¢ are given by (3.7). Furthermore, let the
coefficients ¢, ,...,c, be given. With ¢_, = ¢, k=1,.,0 and ¢, =1
they have to satisfy the equations

m

zx]’f’yj-;ck, k=0, +1,..., to,

i=1
because the u; are real. The matrix (¢)i=l, ", hasrank m if 2¢ +
1 >m . This shows that the coefficients ¢, ,...,c, uniquely determine
the point (c,, ..., c,) on the supporting hyperplane with the given normal

direction « . Thus we proved
Lemma 3.5. Let a given supporting hyperplane to U, touch the curve

I': 0> (@°,e¥,...,¢e"), 0<0 <27,

in m distinct points, 1 <m <n. A point (cy,..,c,) of C, on this
hyperplane is then uniquely determined by its coordinates ¢y, ..., ¢c,, if
2o+ 1 =2m.
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