SOME COEFFICIENT PROBLEMS FOR STARLIKE FUNCTIONS

ALBERT PFLUGER

0. Introduction

Consider the class S^* of normalized starlike functions f in the unit disc $D = \{ |z| < 1 \}$, whose basic results were established by *Rolf Nevanlinna* in his paper [6], and write

(0.1)
$$f(z) = z + a_2 z^2 + \dots + a_n z^n + \dots$$

The mapping

associates to each f a point in C^{n-1} and takes S^* onto some compact set S_n^* which is called the *n*-th coefficient body for the class S^* . This paper deals with some basic properties of S_n^* . It will be proved that S_n^* is homeomorphic to a ball in C^{n-1} , that for each boundary point a of S_n^* there is only one function f in S^* such that $A_n(f) = a$ and that $A_n(f)$ is on the boundary of S_n^* if and only if f takes the unit disc onto a domain which is bounded by at most n-1 rays

$$(0.3) R_j = \{ z = t e^{i\alpha_j} \mid t \ge r_j \}, \alpha_1 < \alpha_2 < \dots < \alpha_m < \alpha_1 + 2\pi ,$$

 $1 \leq m < n$. Contrary to the analogous problem for the class S (cf. [9] for example) the situation here is very explicit and elementary. The basic idea is to consider an analogous coefficient problem for the Carathéodory class C of functions g holomorphic in the unit disc which have positive real part and are normalized by the condition g(0) = 1. For each n the expansion

(0.4)
$$g(z) = 1 + 2c_1 z + ... + 2c_n z^n + ...$$

defines a mapping

$$(0.5) \qquad \qquad \gamma_n: \ g \mapsto (c_1 \ , \ \dots \ , \ c_n)$$

doi:10.5186/aasfm.1976.0226

of C onto some compact set C_n in C^n , which is called the *n*-th coefficient body for the class C. The basic properties of C_n (Theorem A) are due to C. Carathéodory and O. Toeplitz; for completeness a full proof will be given in the third part of the paper.

 C_n is a convex body in C^n , hence C_n admits for each boundary point a supporting hyperplane. This fact gives a set of inequalities for a_2, \ldots, a_{n+1} relative to a boundary point $(a_2^0, \ldots, a_{n+1}^0)$ of S_{n+1}^* . Among them there are coefficient inequalities for the class S^* (Theorem 2) which are quite similar to those the extended general coefficient theorem of J. A. Jenkins gives for the class S. They imply that some sections of S_n^* are convex, i.e. if $a^0 = (a_2^0, \ldots, a_{\varrho}^0)$ is a point of S_{ϱ}^* and if $W_n(a_2^0, \ldots, a_{\varrho}^0)$ is the set of points $(a_{\varrho+1}, \ldots, a_n)$ in $C^{n-\varrho}$ such that $(a_2^0, \ldots, a_{\varrho}^0, a_{\varrho+1}, \ldots, a_n)$ is in S_n^* , then $W_n(a_2^0, \ldots, a_{\varrho}^0)$ is strictly convex for each point a^0 in S_{ϱ}^* provided that $n \leq 2 \varrho$, and this bound for n is sharp.

1. The *n*-th coefficient body

1.1. In this section we will prove the following

Theorem 1. The n-th coefficient body S_n^* is homeomorphic to a ball in C^{n-1} . For each point a on the boundary of S_n^* there is only one function in S^* which is taken onto a by the mapping A_n while $A_n^{-1}(a)$ is an infinite set in S^* if a is in the interior of S_n^* . $A_n(f)$ is on the boundary of S_n^* if and only if there are distinct points $\varkappa_1, \ldots, \varkappa_m$ on the unit circumference $\{ |z| = 1 \}$ and positive numbers μ_1, \ldots, μ_m where $\sum_{j=1}^m \mu_j = 1$ and $1 \leq m < n$ such that

(1.1)
$$f(z) = z \frac{m}{\prod_{1}} (1 - \varkappa_j z)^{-2\mu_j}.$$

Given the boundary point a, the numbers m, \varkappa_i and μ_i are unique.

R e m a r k. f takes the unit disc onto a domain which is bounded by m rays (0, 3), where $\alpha_{j+1} - \alpha_j = 2 \pi \mu_j$, j = 1, ..., m. Conversely, any m such rays, $1 \leq m < n$, up to a suitable homothety $z \rightarrow rz$, r > 0, determine via the mapping function a point on the boundary of S_n^* .

Since f belongs to S^{\ast} if and only if $z\,f'(z)\,/\,f(z)$ is in $\,C\,,$ the differential equation

(1.2)
$$z f'(z) = g(z) f(z)$$

establishes a homeomorphism between C and S^* if C and S^* are provided with the topology of uniform convergence on compact subsets of D. Equation (1.2) implies the following relations between the coefficients a_i and c_j in (0.1) and (0.4) respectively: $a_2 = 2 c_1$,

(1.3)

$$2 a_3 = 2 (c_2 + a_2 c_1) ,$$

(n - 1) $a_n = 2 (c_{n-1} + a_2 c_{n-2} + \dots + a_{n-1} c_1) .$

For each n, n = 2, 3, ..., they define a homeomorphism of S_n^* onto C_{n-1} . Hence, for some basic properties of S_n^* , it suffices to study C_{n-1} .

1.2. The following result is due to C. Carathéodory [1] and O. Toeplitz [10] (cf. also [2]).

Theorem A. C_n is a convex body in \mathbb{C}^n containing the origin. To each point $\zeta = (c_1, \ldots, c_n)$ in the interior of C_n there correspond infinitely many functions in C, i.e. $\gamma_n^{-1}(\zeta)$ is infinite; but for each point ζ on the boundary of C_n there is only one g in C which is taken onto ζ by the mapping $\gamma_n \cdot \gamma_n(g)$ is on the boundary of C_n if and only if there are distinct points $\varkappa_1, \ldots, \varkappa_m$ on the unit circumference $\{ |z| = 1 \}$ and positive numbers μ_1, \ldots, μ_m such that

(1.4)
$$g(z) = \sum_{j=1}^{m} \frac{1 + \varkappa_j z}{1 - \varkappa_j z} \mu_j,$$

where $1 \leq m \leq n$ and $\sum_{j=1}^{m} \mu_j = 1$. The numbers m, \varkappa_j, μ_j are determined uniquely by the boundary point ζ .

Proof of Theorem 1. Theorem A, together with (1.2) and (1.3), immediately implies Theorem 1. Since (1.3) establishes a homeomorphism between the boundaries of C_{n-1} and S_n^* , by integration of (1.2), the functions (1.4) give exactly those functions in S^* which are taken onto the boundary of S_n^* under the mapping A_n .

1.3. The implication of Theorem 1 for extremal problems within the class S^* is immediate. Let $F(a_2, \ldots, a_n)$ be a real valued function of the complex variables a_2, \ldots, a_n , which is defined and continuously differentiable with respect to the real variables $x_j = \operatorname{Re} a_j$, $y_j = \operatorname{Im} a_j$, $j = 2, \ldots, n$, in some neighborhood N of S_n^* , such that $|\operatorname{grad} F|$ is positive there. Then the function F attains its maximum on S_n^* only on the boundary. Hence each function f which maximizes F (considered as a functional on S^*) on S^* is necessarily of type (1.1). This result was proved by J. A. Hummel by variational methods of Schiffer's type within the class S^* (cf. [4]).

Furthermore, let F attain its maximum at a point (a_2^0, \ldots, a_n^0) of the boundary ∂S_n^* . Then, from

it follows that

$$\mathrm{Re}\left\{\sum\limits_{2}^{n} \; rac{\partial F}{\partial a_{j}} \; (a_{2}^{0} \; , \, ... \; , \; a_{n}^{0}) \; arDelta a_{j}
ight\} \; + \; o\left(\max_{j} \; \left\{ \; \left|arDelta a_{j}
ight| \;
ight\}
ight) \; \leq \; 0$$

and this shows that $(\partial F/\partial a_2, \ldots, \partial F/\partial a_n)$ is an outer normal vector to S_n^* at (a_2^0, \ldots, a_n^0) . (Cf. also Paragraph 2.1.)

1.4. If $\zeta = (c_1, \ldots, c_n)$ is an interior point of C_n , then $\gamma_n^{-1}(\zeta)$ is an infinite set in C. It is possible, however, to define in a natural way a subset of C which is homeomorphic to C_n under the mapping γ_n . Assume first that $\zeta \neq (0, \ldots, 0)$. Since C_n is a convex body containing the origin, there is a unique number t > 1 such that $t \zeta$ is on the boundary of C_n . By Theorem A there is a unique set of numbers \varkappa_j and μ_j , $j = 1, \ldots, m$, $1 \leq m \leq n$, such that

$$g(z) = \sum_{j=1}^{m} \frac{1+\varkappa_j z}{1-\varkappa_j z} \mu_j$$

corresponds to $t \zeta$, i.e. $\gamma_n(g) = t \zeta$. The function $g^* = g / t + 1 - 1 / t$, which can be written in the form

$$g^*(z) = 1 + 2\sum_{j=1}^m \frac{\varkappa_j z}{1 - \varkappa_j z} \mu_j^*, \qquad \sum_{j=1}^m \mu_j^* = \frac{1}{t},$$

is in C and $\gamma_n(g^*) = \zeta$. If $\zeta = (0, ..., 0)$ we choose 1/t = 0, i.e. μ vanishes and g^* is just the constant 1, which case may be characterized also by setting m = 0. Thus we proved

The orem A'. To each point $\zeta = (c_1, \ldots, c_n)$ of C_n there corresponds a unique set of distinct points $\varkappa_1, \ldots, \varkappa_m$ on the unit circumference and a set of positive numbers μ_1, \ldots, μ_m , where $\sum_{j=1}^m \leq 1$ and $0 \leq m \leq n$, such that

$$g(z \; ; \; \zeta) \; = \; 1 \; + \; 2 \sum_{j=1}^{m} \; rac{\varkappa_{j} \, z}{1 \; - \varkappa_{j} \, z} \; \mu_{j}$$

is in C and $\gamma_n(g(.; \zeta)) = \zeta$. The set of the numbers \varkappa_j and μ_j might be empty in which case we set m = 0. ζ is on the boundary of C_n if and only if $\sum_{1}^{m} \mu_j = 1$. The correspondence $\zeta \mapsto g(.; \zeta)$ defines a homeomorphic mapping of C_n onto the subset $\{g(.; \zeta)\}$ of C. As before, we obtain from this Theorem A', together with (1.3) and (1.2), T heorem 1'. Let M denote the set of measures defined by m distinct points $\varkappa_1, \ldots, \varkappa_m$ on the unit circumference with assigned positive numbers μ_1, \ldots, μ_m such that $\sum_j^m \mu_j \leq 1$ and $0 \leq m < n$. Then by (1.1) there corresponds to M a subset of functions in S* which is homeomorphic to S_n^* .

2. Coefficient inequalities

2.1. Here we derive coefficient inequalities relative to a given boundary point $a^0 = (a_2^0, \ldots, a_n^0)$ of S_n^* . By (1.3) there corresponds to a^0 a point $\zeta^0 = (c_1^0, \ldots, c_{n-1}^0)$ on the boundary of C_{n-1} . Choose a supporting hyperplane at ζ^0 , with normal direction $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$. Then, for any point $\zeta = (c_1, \ldots, c_{n-1})$ of C_{n-1} we have the inequality

(2.1)
$$\operatorname{Re} \langle \zeta - \zeta^0, \alpha \rangle \leq 0.$$

Since by (1.3) $c_j - c_j^0$ depends on the coefficients $a_2, a_2^0, \ldots, a_{j+1}, a_{j+1}^0$ only, (2.1) represents an inequality involving the boundary point a^0 and an arbitrary point a of S_n^* . We transform now (2.1) considering that $\zeta - \zeta^0$ could be small. Let g and g_0 be functions in C such that $\gamma_{n-1}(g) = \zeta$ and $\gamma_{n-1}(g_0) = \zeta^0$:

$$g(z) \;=\; \sum_{0}^{\infty} \; 2 \; c_{j} \; z^{j} \;, \qquad g_{0}(z) \;=\; \sum_{0}^{\infty} \; 2 \; c_{j}^{0} \; z^{j} \;, \qquad 2 \; c_{0} \;=\; 1 \;.$$

Define

(2.2)
$$\Phi(z) = \int_{0}^{z} (g(t) - g_{0}(t)) \frac{dt}{t} = \varphi_{1} z + \dots + \varphi_{n} z^{n} + \dots$$

where $2(c_j - c_j^0) = j \varphi_j$, j = 1, 2, ... Let the functions f and f_0 in S^* correspond to g and g_0 . Equation (1.2) implies then

(2.3)
$$f(z) = z \exp \int_{0}^{z} (g(t) - 1) \frac{dt}{t} = f_{0}(z) \exp \Phi(z).$$

Write now

(2.4)
$$\alpha(z) = \frac{\alpha_{n-1}}{z^{n-1}} + \ldots + \frac{\alpha_1}{z},$$

(2.5)
$$k(z) = -\frac{\alpha'(z)}{f_0(z)} = \frac{k_n}{z^{n+1}} + \dots + \frac{k_2}{z^3} + \dots$$

and correspondingly $\overline{\alpha}(z) = \overline{\alpha(\overline{z})}$, $\overline{k}(z) = \overline{k(\overline{z})}$. It follows then

(2.6)
$$2 < \zeta - \zeta^0, \alpha > = \frac{1}{2\pi i} \oint \overline{\alpha}(z) \left(g(z) - g_0(z)\right) \frac{dz}{z}$$

$$= -\frac{1}{2\pi i} \oint \overline{\alpha}'(z) \Phi(z) dz = \frac{1}{2\pi i} \oint \overline{k}(z) f_0(z) \Phi(z) dz$$

and by (2.1)

(2.7)
$$\operatorname{Re} \frac{1}{2\pi i} \oint \overline{k}(z) f_0(z) \Phi(z) dz \leq 0,$$

where the integration is taken along a positively oriented circuit around the origin.

2.2. Choose a variation of f_0 in S^* , i.e. a mapping $\varepsilon \mapsto f_{\varepsilon}$ of some interval $(0, \varepsilon_0)$ into S^* such that

(2.8)
$$f_{\varepsilon} = f_0 + \varepsilon f_1 + o(\varepsilon) ,$$

where f_1 is holomorphic in D with $f_1(z) = O(z^2)$, and $o(\varepsilon) / \varepsilon$ converges to zero uniformly on compact subsets of D. If

$$f_{\varepsilon}(z) = \sum_{j=1}^{\infty} a_j(\varepsilon) z^j$$
 and $f_1(z) = \sum_{j=2}^{\infty} a'_j z^j$,

then $a' = (a'_2, \ldots, a'_n)$ is a tangent vector to the curve $\varepsilon \mapsto a(\varepsilon) = (a_2(\varepsilon), \ldots, a_n(\varepsilon))$, $0 \leq \varepsilon \leq \varepsilon_0$ at $a(0) : a(\varepsilon) = a(0) + \varepsilon a' + o(\varepsilon)$ for $\varepsilon \to 0$. Corresponding to (2.8) we have

(2.9)
$$g_{\varepsilon} = g_0 + \varepsilon g_1 + o(\varepsilon) \text{ and } \Phi_{\varepsilon} = \varepsilon \Phi_1 + o(\varepsilon),$$

where $\Phi_1(z) = \int_0^z g_1(\zeta) d\zeta / \zeta$. From (2.2) and (2.3) it then follows that

$$(2.10) f_1 = f_0 \Phi_1$$

With $g_{\varepsilon}(z) = \sum_{j=0}^{\infty} c_j(\varepsilon) z^j$ and $g_1(z) = \sum_{j=1}^{\infty} c'_j z^j$ we get $\zeta(\varepsilon) = \zeta(0) + \varepsilon \zeta' + o(\varepsilon)$ for $\varepsilon \to 0$, where $\zeta(\varepsilon) = (c_1(\varepsilon), \dots, c_{n-1}(\varepsilon))$ and $\zeta' = (c'_1, \dots, c'_{n-1})$. If $\alpha = (\alpha_1, \dots, \alpha_{n-1})$ is an outer normal vector to C_{n-1} at the boundary point $\zeta(0)$, it follows from (2.1), (2.6), (2.9) and (2.2) that

$$\operatorname{Re} \frac{1}{2\pi i} \oint \overline{k}(z) f_1(z) dz = \operatorname{Re} \{ \overline{k_2} a'_2 + \dots + \overline{k_n} a'_n \} \leq 0$$

for all tangent vectors a', i.e. (k_2, \ldots, k_n) is an outer normal vector to S_n^* at a^0 .

Conversely, let k be an outer normal to S_n^* at a(0). For any $g \in C$ define $g_{\varepsilon} = g_0 + \varepsilon (g - g_0)$, $0 \leq \varepsilon \leq 1$. This is a variation of g_0 in C. It infers a variation $f_{\varepsilon} = f_0 + \varepsilon f_1 + o(\varepsilon)$ of f_0 in S^* , and a curve $\varepsilon \mapsto a(\varepsilon) = a(0) + \varepsilon a' + o(\varepsilon)$ in S_n^* . Let now the vector $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$ be given by (2.5) and (2.4). From (2.6) and (2.10) it follows that $\operatorname{Re} \sum_{j=1}^{n-1} \overline{\alpha_j} (c_j - c_j^0) \leq 0$ for all points $\zeta = (c_1, \ldots, c_{n-1})$ of C_{n-1} and this shows that $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$ is an outer normal vector to C_{n-1} . Thus, by (2.5), we proved

Proposition 2.2. There is a one to one correspondence between the outer normal vectors to C_{n-1} and S_n^* at associated boundary points, which is given by the equations

$$\alpha_1 = k_n a_{n-1} + k_{n-1} a_{n-2} + \dots + k_3 a_2 + k_2$$

$$2 \alpha_2 = k_n a_{n-2} + k_{n-1} a_{n-3} + \dots + k_3$$

(2.11)

$$(n - 2) \alpha_{n-2} = k_n \alpha_2 + k_{n-1}$$
$$(n - 1) \alpha_{n-1} = k_n .$$

2.3. The preceding considerations suggest to develop (2.3) into powers of Φ and to write (2.7) in the form

(2.12) Re
$$\left\{ \frac{1}{2\pi i} \oint \bar{k}(z) \left(f(z) - f_0(z) - \frac{1}{2!} f_0(z) \Phi^2(z) - ... \right) dz \right\} \leq 0$$
.

. . .

Only the powers $\Phi^2, \ldots, \Phi^{n-1}$ are relevant for the evaluation of the integral, since Φ has a zero at the origin. However, the higher is the order of this zero the less powers of Φ are needed. Observe that by (2.2) we have

(2.13)
$$\Phi(z) = \varphi_{\varrho} z^{\varrho} + \varphi_{\varrho+1} z^{\varrho+1} + \dots, \quad 1 \leq \varrho < n ,$$

or $c_j = c_j^0$ for $j = 1, ..., \varrho - 1$ if and only if $a_j = a_j^0$, $j = 2, ..., \varrho$, and that in case of (2.13) we have

$$(2.14) \quad \overline{k}(z) f_0(z) \Phi^2(z) = \left(\frac{\overline{k}_n}{z^{n+1}} + \dots\right) (z + a_2^0 z^2 + \dots) (\varphi_{\varrho}^2 z^{2\varrho} + \dots) \\ = \overline{k}_n \varphi_{\varrho}^2 z^{2\varrho-n} + \dots .$$

We consider two cases.

1° $2 \rho \ge n$. In this case inequality (2.12) reduces to

(2.15)
$$\operatorname{Re}\left\{\sum_{j=\varrho+1}^{n}\overline{k}_{j}\left(a_{j}-a_{j}^{0}\right)\right\} \leq 0.$$

Equality occurs if and only if it holds in (2.7) also. $k = (k_2, \ldots, k_n)$ is an outer normal vector to S_n^* at the point $a^0 = (a_2^0, \ldots, a_n^0)$. To a^0 and k there corresponds the outer normal vector $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$ to C_{n-1} at $\zeta^0 = (c_1^0, \ldots, c_{n-1}^0)$. From (2.6) it follows that equality holds in (2.7) if and only if

$${
m Re} < \zeta \ - \ \zeta^0 \ , \ lpha > \ = \ {
m Re} \ \sum_{j=1}^{n-1} (c_j \ - \ c_j^0) \ \overline{lpha}_j \ = \ 0 \ ,$$

i.e. the point $\zeta = (c_1, \ldots, c_{n-1})$ lies on the supporting hyperplane through ζ^0 with normal direction α . Since, by assumption, $c_j = c_j^0$ for $j = 1, \ldots, \varrho - 1$ and $2\varrho \ge n$ it follows from Lemma 3.5 (in Paragraph 3.5, with $\varrho - 1$ and n-1 instead of ϱ and n respectively) that this occurs only if $\zeta = \zeta^0$, hence only if $a = a^0$ or $f = f_0$.

 $2^{\circ} n = 2 \varrho + 1$. In this case the residue of $k(z) f_0(z) \Phi^2(z)$ at the origin is $\overline{k}_n \varphi_{\varrho}^2$ and from (2.3) it follows $\varphi_{\varrho} = a_{\varrho+1} - a_{\varrho+1}^0$. Hence (2.12) implies

$$\operatorname{Re}\left\{\sum_{j=\varrho+1}^{n} \overline{k}_{j} \left(a_{j} - a_{j}^{0}\right) - \frac{\overline{k}_{n}}{2} \left(a_{\varrho+1} - a_{\varrho+1}^{0}\right)^{2}\right\} \leq 0.$$

If $a_{\varrho+1} = a_{\varrho+1}^0$ equality occurs only if $a = a^0$, because then we are in the preceding case, i.e. $n < 2 (\varrho + 1)$. Thus we proved

Theorem 2. Let $a^0 = (a_2^0, \ldots, a_n^0)$ be a boundary point of the coefficient body S_n^* , let $k = (k_2, \ldots, k_n)$ be an outer normal vector to S_n^* at a^0 and let the integer ϱ satisfy the condition $\varrho < n \leq 2 \varrho + 1$. If $\varepsilon = 0$ for $n \leq 2 \varrho$ and $\varepsilon = 1$ for $n = 2 \varrho + 1$, then the inequality

(2.16)
$$\operatorname{Re}\left\{\sum_{j=\varrho+1}^{n} \overline{k}_{j} \left(a_{j} - a_{j}^{0}\right) - \varepsilon \frac{k_{n}}{2} \left(a_{\varrho+1} - a_{\varrho+1}^{0}\right)^{2}\right\} \leq 0$$

holds for all points a of S_n^* such that $a_j = a_j^0$, $j = 2, ..., \varrho$. In the case that $n \leq 2 \varrho$ or that $n = 2 \varrho + 1$ and $a_{\varrho+1} = a_{\varrho+1}^0$ equality occurs in (2.16) if and only if $f = f_0$.

R e m a r k. Theorem 2 gives a coefficient inequality which is quite similar to the one J. A. Jenkins has given in his general coefficient Theorem [5] for the particular case of the normalized schlicht functions in the unit disc.

2.4. In the case $n \leq 2 \varrho$ Theorem 2 has an interesting corollary. Choose in S_{ϱ}^* a fixed point $(a_2^0, \ldots, a_{\varrho}^0)$, $1 < \varrho < n$. Denote by $W_n(a_2^0, \ldots, a_{\varrho}^0)$ the set of all points $(a_{\varrho+1}, \ldots, a_n)$ in $C^{n-\varrho}$ such that $(a_2^0, \ldots, a_{\varrho}^0, a_{\varrho+1}, \ldots, a_n)$ is in S_n^* . Let $(a_{\varrho+1}^0, \ldots, a_n^0) = A^0$ be on the boundary of W_n . Then $(a_2^0, \ldots, a_{\varrho}^0, a_{\varrho+1}^0, \ldots, a_n^0) = a^0$ is a boundary point of S_n^* . Choose there an outer normal vector $k = (k_2, \ldots, k_n)$. By Theorem 2 we have (2.15) for all points $(a_{\varrho+1}, \ldots, a_n)$ in $W_n(a_2^0, \ldots, a_{\varrho}^0)$. This shows that at each boundary point W_n has a supporting hyperplane, hence W_n is convex. It is even strictly convex, i.e. each supporting hyperplane to W_n contains only one point of W_n because equality occurs in (2.15) only if $a_i = a_i^0$, $j = \varrho + 1, ..., n$.

Now we show that $W_n(a_2, \ldots, a_{\varrho})$ is no more convex for arbitrary points $(a_2, \ldots, a_{\varrho})$ in S_{ϱ}^* , if $n > 2 \varrho$. More precisely, we show that $W_{2\varrho+1}(0, \ldots, 0)$ is not convex. For this purpose we consider the two functions

$$f_1(z) = (k(z^{\varrho}))^{1/\varrho} = z + \frac{2}{\varrho} z^{\varrho+1} + \frac{\varrho+2}{\varrho^2} z^{2\varrho+1} + \dots \text{ and}$$

$$f_2(z) = \varepsilon^{-1} f_1(\varepsilon z) = z - \frac{2}{\varrho} z^{\varrho+1} + \frac{\varrho+2}{\varrho^2} z^{2\varrho+1} + \dots$$

in S^* , where $\varepsilon^{\varrho} = -1$ and k is the Koebe function $k(z) = z / (1 - z)^2$. They show that $W_{2\varrho+1}(0, ..., 0)$ contains the points

$$(2 | \varrho, 0, ..., 0, (\varrho + 2) | \varrho^2)$$
 and $(-2 | \varrho, 0, ..., 0, (\varrho + 2) | \varrho^2)$.

But the midpoint $(0, \ldots, 0, (\varrho + 2) / \varrho^2)$ of them does not belong to $W_{2\varrho+1}(0, \ldots, 0)$, because for any schlicht function, hence for any starlike function $f(z) = z + a_{2\varrho+1} z^{2\varrho+1} + \ldots$ we have $|a_{2\varrho+1}| \leq 1 / \varrho$ by a result of Prawitz ([8]) and because $1 / \varrho < (\varrho + 2) / \varrho^2$. Thus we proved

Theorem 3. Associate to a point $(a_2^0, \ldots, a_{\varrho}^0)$ in S_{ϱ}^* and an integer $n > \varrho$ the set $W_n(a_2^0, \ldots, a_{\varrho}^0)$ of those points $(a_{\varrho+1}, \ldots, a_n)$ in $C^{n-\varrho}$ for which $(a_2^0, \ldots, a_{\varrho}^0, a_{\varrho+1}, \ldots, a_n)$ is in S_n^* . Then $W_n(a_2^0, \ldots, a_{\varrho}^0)$ is a strictly convex body if $n \leq 2 \varrho$. However, $W_{2\varrho+1}(0, \ldots, 0)$ is no longer convex.

A similar theorem holds for the coefficient bodies of the class S (cf. [7]).

Let consider the particular case that $\varrho = n-1$. If $(a_2^0, \ldots, a_{n-1}^0)$ is on the boundary of S_{n-1}^* , then obviously $W_n(a_2^0, \ldots, a_{n-1}^0)$, the range of a_n , is a point. Thus we may assume that $(a_2^0, \ldots, a_{n-1}^0)$ is in the interior of S_{n-1}^* . The corresponding point $(c_1^0, \ldots, c_{n-2}^0)$ is in the interior of C_{n-2} . As was remarked by Carathéodory ([1]), the range of C_n is a disc. Hence, by (1.3), it follows: For a given point $(a_2^0, \ldots, a_{n-1}^0)$ in S_{n-1}^* the range of a_n is either a disc or a point. Based on a different method this result was given by J. A. Hummel in [3].

3. Proof of Theorem A

3.1. C_n is a compact and convex set in C^n , since C is convex and compact (in the topology of uniform convergence on compact subsets of D), and γ_n is continuous and linear.

17

3.2. Let ζ be an interior point of C_n . There is a λ , $\lambda > 1$, such that $\lambda \zeta = (\lambda c_1, \ldots, \lambda c_n)$ is still in C_n . Choose in C a function g such that $\gamma_n(g) = \lambda \zeta$. Then $g_1 = \lambda^{-1}g + (1 - 1 / \lambda)$ is in C and satisfies $\operatorname{Re} g_1(z) > 1 - 1 / \lambda$. Hence, $g_1 + h$ is in C and $\gamma_n(g_0 + h)$ equals to ζ for each function $h(z) = b_{n+1} z^{n+1} + \ldots$ which is holomorphic in D, such that $\sup_{z \in D} |h(z)| \leq 1 - 1/\lambda$. This proves that $\gamma_n^{-1}(\zeta)$ is an infinite set in C.

3.3. Let P denote the set of probability measures supported by the unit circumference $\{ |z| = 1 \}$. According to a result of Herglotz g belongs to the class C if and only if

$$g(z) \;\; = \;\; \int\limits_{0}^{2\pi} rac{1 \;+\; e^{i heta} \, z}{1 \;-\; e^{i heta} \, z} \; d\mu_{ heta} \,, \qquad \mu \in P \;,$$

or equivalently if and only if the coefficients c_n of g (in (0, 4)) are the trigonometric moments of a probability measure, i.e.

(3.1)
$$c_n = \int_{0}^{2\pi} e^{in\theta} d\mu_{\theta}, \quad \mu \in P, \quad n = 0, 1, 2, \dots$$

In the sequel we represent points in \mathbb{R}^{2n} in the form $\zeta = (\zeta_1, ..., \zeta_n)$, $\zeta_j \in \mathbb{C}$, as points in \mathbb{C}^n , and consequently, we write the standard scalarproduct in \mathbb{R}^{2n} as Re $<\zeta$, $\zeta^1 > = \operatorname{Re} \sum_{j=1}^n \overline{\zeta_j} \zeta'_j$.

Hence, the norm of ζ is given by $|\zeta| = (\langle \zeta, \zeta \rangle)^{1/2}$. Defining

(3.2)
$$\zeta(\mu) = \int_{0}^{2\pi} (e^{i\theta}, \dots, e^{in\theta}) d\mu_{\theta}$$

for any real measure (supported by the unit circumference) we have

$$C_n = \{ \zeta(\mu) \mid \mu \in P \},\$$

i.e. C_n is the convex hull of the curve

$$arGamma$$
: $heta\mapsto (e^{\,i heta}\ ,\ ...\ ,\ e^{in heta})\ ,\qquad 0\ \leq \ heta\ \leq 2\pi$.

Let α be a unit vector:

$$\alpha = (\alpha_1, \ldots, \alpha_n), \qquad |\alpha| = 1.$$

Define

(3.3)
$$h(\alpha) = \max_{\theta} \operatorname{Re} \left\{ \overline{\alpha}_{1} e^{i\theta} + \dots + \overline{\alpha}_{n} e^{in\theta} \right\}$$

and

(3.4)
$$T(e^{i\theta}, \alpha) = h(\alpha) - \operatorname{Re}\left\{\sum_{j=1}^{n} \overline{\alpha}_{j} e^{ij\theta}\right\}.$$

Obviously $T(e^{i\theta}, \alpha) \ge 0$ for all θ and α . Hence, by a lemma of Fejer and Riesz, there is a polynomial $p(z) = \xi_0 + \xi_1 z + \ldots + \xi_n z^n$ such that

(3.5)
$$T(e^{i\theta}, \alpha) = |p(e^{i\theta})|^2$$
.

Let now $\zeta_0 = \zeta(\mu_0)$, $\mu_0 \in P$, be a point on the boundary of C_n . Since C_n is convex there is a supporting hyperplane

$$\operatorname{Re} < \zeta - \zeta_0 \,, \, \alpha > \; = \; 0 \,, \quad |\alpha| = 1 \,, \, \text{i.e.} \quad \max_{\zeta \in C_n} \operatorname{Re} < \zeta \,, \, \alpha > \; = \; \operatorname{Re} < \zeta_0 \,, \, \alpha > \,.$$

Since C_n is the convex hull of Γ we have also

$$\max_{\theta}\,\operatorname{Re}\sum_{j=1}^{n}\overline{\alpha}_{j}\,e^{ij\theta}\ =\ \operatorname{Re}\,\!<\!\zeta_{0}\,,\,\alpha\!>$$

or by (3.3) $h(\alpha) - \text{Re} < \zeta_0$, $\alpha > = 0$. With the notations (3.4) and (3.5) and with (3.1) it follows

$$\int_{0}^{2\pi} T(e^{i\theta}, \alpha) \, d\mu_0 = \int_{0}^{2\pi} |p(e^{i\theta})|^2 \, d\mu_0 = 0$$

and this shows that a measure μ_0 , $\mu_0 \in P$, such that $\zeta(\mu_0)$ is on the boundary of C_n , is a measure supported by at most n points on the unit circumference.

Conversely, for an integer m, $1 \leq m \leq n$, choose m distinct points \varkappa_j on the unit circumference and positives numbers μ_j , j = 1, ..., m such that $\sum \mu_j = 1$. Let the pairs $\{(\varkappa_j, \mu_j)\}$ define the measure μ_0 . Then $\zeta(\mu_0)$ is on the boundary of C_n . In fact, setting $p(z) = \prod_1^m (z - \varkappa_j)$ we have

(3.6)
$$\int_{0}^{2\pi} |p(e^{i\theta})|^2 d\mu_0 = \sum_{1}^{m} p(\varkappa_j) \mu_j = 0.$$

But

$$|p(e^{i heta})|^2 = lpha_0 - \operatorname{Re}\sum_{j=1}^n \overline{lpha}_j e^{ij heta}$$

for suitably chosen numbers α_j . As a positive factor is not relevant we can assume that $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a unit vector and this implies $\alpha_0 = h(\alpha)$. Equivalently to (3.6) we have then

$$\int_{0}^{2\pi} T\left(e^{i\theta}, \alpha\right) d\mu_{0} = 0, \quad \text{and} \quad \int_{0}^{2\pi} T(e^{i\theta}, \alpha) d\mu \geq 0 \quad \text{ for all } \mu \in P,$$

i.e.

$$\max_{\zeta \in C_n} \operatorname{Re} < \zeta \text{ , } \alpha > \ = \ \operatorname{Re} < \zeta(\mu_0) \text{ , } \alpha > \text{ .}$$

This shows that $\zeta(\mu_0)$ is on the boundary of C_n ending the proof that $\zeta = \gamma_n(g)$ belongs to the boundary of C_n if and only if g is given by (1.4).

3.4. It will be shown now that for a point $\zeta^0 = (c_1, \ldots, c_n)$ on the boundary of C_n there is only one measure μ in P such that $\zeta(\mu) = \zeta^0$, and then this implies that there is a unique g in C satisfying $\gamma_n(g) = \zeta_0$.

Let μ be a measure in P such that $\zeta(\mu) = \zeta^0$. μ is carried by some points $\varkappa_1, \ldots, \varkappa_m$, $1 \leq m \leq n$; hence,

$$\zeta^0 = \mu_1 \zeta^1 + \ldots + \mu_m \zeta^m, \quad \mu_j > 0, \quad \sum_{1}^m \mu_j = 1,$$

where

(3.7)
$$\zeta^{j} = (\varkappa_{j}, \varkappa_{j}^{2}, ..., \varkappa_{j}^{n}), \quad j = 1, ..., m.$$

These vectors ζ^j are linearly independent (because the points \varkappa_j are distinct). Their convex hull coh { ζ^1 , ..., ζ^m } lies on the m-1 dimensional hyperplane

(3.8)
$$\zeta = \sum_{j=1}^m \lambda_j \zeta^j, \qquad \sum_{j=1}^m \lambda_j = 1,$$

and contains ζ^0 in its interior, since all the weights μ_i are positive.

Let now μ' be another measure in P such that $\zeta(\mu') = \zeta(\mu) = \zeta^0$. μ' is carried by some points \varkappa_{1i} , $j = 1, ..., m_1$, $1 \leq m_1 \leq n$ such that

$$\zeta^0 \;=\; \sum_{j=1}^{m_1} \zeta_1^j \,\mu_j^{'} \,, \qquad \mu_j^{'} > 0 \;, \qquad \sum_{1}^{m_1} \mu_j^{'} \;=\; 1 \;,$$

where

$$\zeta_1^j \;=\; (arkappa_{1j}\,,\,arkappa_{1j}^2\,,\,\ldots\,,\,arkappa_{1j}^n)\,,\qquad j \;=\; 1,\,...,\,m_1\;.$$

Since ζ^0 is in the interior of either convex hull, say of coh { $\zeta', ..., \zeta^m$ } and of coh { $\zeta_1^1, ..., \zeta_1^{m_1}$ }, these convex hulls lie on the same hyperplane of dimension $m-1 = m_1-1$. Choose a $\varkappa_{1\varrho}$, $\varrho = 1, ..., m_1$, and write $\varkappa_{1\varrho} = \varkappa$. From $\zeta_1^e = \sum_{j=1}^m \lambda_j \zeta^j$, $\sum_1^m \lambda_j = 1$, according to (3.8) it follows that the vectors $\zeta_1^e - \zeta^1$, $\zeta^2 - \zeta^1$, ..., $\zeta^m - \zeta^1$ are linearly dependent, hence

$$\begin{array}{c|c} \varkappa - \varkappa_{1} \,,\, \varkappa_{2} - \varkappa_{1} \,, \ldots \,,\, \varkappa_{m} - \varkappa_{1} \\ \varkappa^{2} - \varkappa_{1}^{2} \,,\, \varkappa_{2}^{2} - \varkappa_{1}^{2} \,, \ldots \,,\, \varkappa_{m}^{2} - \varkappa_{1}^{2} \\ & & \\ & \ddots & \\ \varkappa^{m} - \varkappa_{1}^{m} \,,\, \varkappa_{2}^{m} - \varkappa_{1}^{m} \,, \ldots \,,\, \varkappa_{m}^{m} - \varkappa_{1}^{m} \end{array} \right| = 0 \,.$$

Consider this determinant as a polynomial in \varkappa . It is of degree m and does not vanish identically; its roots are $\varkappa_1, \ldots, \varkappa_m$; hence, $\varkappa_{1\varrho} = \varkappa$ equals to one of these roots and this implies that the two sets $\{\varkappa_1, \ldots, \varkappa_m\}$ and $\{\varkappa_{11}, \ldots, \varkappa_{1m_1}\}$ are identical, i.e. the two measures μ and μ' have the same support $\{\varkappa_1, \ldots, \varkappa_m\}$. Their values μ_j carried by the points \varkappa_j have to satisfy the linear system

$$\sum_{j=1}^m arkappa_j^{\lambda} \, \mu_j \; = \; c_{\lambda} \, , \qquad \lambda = \, 1, \, ..., \, n \; .$$

Since the matrix $(\varkappa_{j}^{\lambda})_{j=1,...,m}^{\lambda=1,...,m}$ has rank m, the point $\zeta^{0} = (c_{1}, ..., c_{n})$ uniquely determines the weights μ_{j} and this implies $\mu^{1} = \mu$. We conclude that for a boundary point ζ^{0} of C_{n} there is a unique function g in Csuch that $\gamma_{n}(g) = \zeta^{0}$, and this completes the proof of Theorem A.

3.5. The lemma we used in Paragraph 2.3 easily follows by a similar argument as used just ahead. Let a supporting hyperplane to C_n , with normal direction α , be given. If the polynomial $h(\alpha) - \operatorname{Re} \sum_{j=1}^{n} \overline{\alpha}_j z^j$ has the zeros $\varkappa_1, \ldots, \varkappa_m$ on the unit circumference, then the intersection of C_n with the given supporting hyperplane is the convex hull of the points ζ^j , $j = 1, \ldots, m$, where the ζ^j are given by (3.7). Furthermore, let the coefficients c_1, \ldots, c_{ϱ} be given. With $c_{-k} = \overline{c}_k$, $k = 1, \ldots, \varrho$ and $c_0 = 1$ they have to satisfy the equations

$$\sum_{j=1}^m \varkappa_j^k \, \mu_j \; = \; c_k \; , \qquad k \, = \, 0 \; , \; \pm 1 \, , \, \ldots \; , \; \pm \varrho \; ,$$

because the μ_j are real. The matrix $(\varkappa_j^{k,j=1,\ldots,m}_{k=-\varrho,\ldots,\varrho}$ has rank m if $2\varrho + 1 \ge m$. This shows that the coefficients c_1, \ldots, c_{ϱ} uniquely determine the point (c_1, \ldots, c_n) on the supporting hyperplane with the given normal direction α . Thus we proved

L e m m a 3.5. Let a given supporting hyperplane to C_n touch the curve

$$arGamma: heta\mapsto (e^{i heta}\,,\,e^{2i heta}\,,\,\dots\,,\,e^{in heta})\,, \qquad 0\,\leq\, heta\,\leq\, 2\pi\,,$$

in *m* distinct points, $1 \leq m \leq n$. A point (c_1, \ldots, c_n) of C_n on this hyperplane is then uniquely determined by its coordinates c_1, \ldots, c_{ϱ} , if $2 \varrho + 1 \geq m$.

References

- CARATHÉODORY, C.: Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen. - Rend. Circ. Mat. Palermo 32, 1911, 193-217.
- [2] GRENANDER, U., and G. SZEGÖ: Toeplitz forms and their applications. -California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958.
- [3] HUMMEL, J. A.: The coefficient regions of starlike functions. Pacific J. Math. 7, 1957, 1381-1389.
- [4] -»- A variational method for starlike functions. Proc. Amer. Math. Soc. 9, 1958, 82-87.
- [5] JENKINS, J. A.: An extension of the general coefficient theorem. Trans. Amer. Math. Soc. 95, 1960, 387-407.
- [6] NEVANLINNA, R.: Über die konforme Abbildung von Sterngebieten. Översikt av Finska vetenskaps-societetens förhandlingar 63. A. 6, Helsingfors, 1920-1921, 1-21.
- [7] PFLUGER, А.: О выпуклости некоторых сечений *n*-тел козффициентов однолистных функций. Некоторые проблемы математики и механики, К семидесятилетию академика М. А. Лаврентъева, Издателъство "Наука", Ленинград, 1970, 233—241. Translation: On the convexity of some sections of the *n*th coefficient body for schlicht functions. Some problems of mathematics and mechanics, On the occasion of the seventieth birthday of Academician M. A. Lavrent'ev, Amer. Math. Soc. Transl. (2) 104, 1976, 215—222.
- [8] PRAWITZ, H.: Über Mittelwerte analytischer Funktionen. Ark. Mat. Astronom. Fys. 20. A. 6, 1927-1928, 1-12.
- [9] SCHAEFFER, A. C., and D. C. SPENCER: Coefficient regions for schlicht functions. - American Mathematical Society Colloquium Publications 35, New York, 1950.
- [10] TOEPLITZ, O.: Über die Fourier'sche Entwickelung positiver Funktionen. -Rend. Circ. Mat. Palermo 32, 1911, 191-192.

Eidgenössische Technische Hochschule Mathematisches Institut CH 8001 Zürich Schweiz

Received 27 October 1975