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ON THE GREEN’S FUNCTION OF FUCHSIAN GROUPS

CH. POMMERENKE

1. Introduction

Let I' be a Fuchsian group, that is a discontinuous group of Mdobius
transformations
a—z

(1.1) y(z)ze”‘l_&z (0 La<2n, |a|<1)

of the unit disk D = { |z] < 1} onto itself. For simplicity we assume
throughout the paper that 0 is not an elliptic fixed point. Let : denote the
identity «(z) = z and let

(1.2) F = {zeD: |y'() <1 forall yel, y # ¢}

denote the normal fundamental domain with respect to 0.
A character of I' is a complex-valued function w»(y) satisfying

vpey) = v(@)ely), o) =1 (¢,yel).

An analytic function f(z) (z € D) is called character-automorphic if

(1.3) fy®) = v flz) (yel’)
for some character v of I'. This is true if and only if |f(y(2))] = [f(2)]
forall y e I".

We assume now that [ is of convergence type, that is

SO - = (0= EB3E < o (zeD).

Then the Green’s function of I' with respect to 0 is defined as the Blaschke
product (compare (1.1))

(14)  g) = N[ PpE)] (D) = argy(0), () = 0);

vel

see Poincaré [15], Myrberg [13] and Nevanlinna [14, p. 214]. We have
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2)

(1.5) @ = e, S0 o >

yel yel' 7(2)
The Green’s function is character—automorphw and satisfies g¢(0) = 0,
lg(z)] <1 (zeD), and if f(z) is any function with these properties then
If@)] £ 19()|. Projecting —log |g(z)| to the Riemann surface D /I, we
obtain the Green’s function of D /[I', the smallest positive harmonic
function with a logarithmic pole at a certain point.

We say that an analytic function f(z) (z € D) has the angular limit
f(&) at CeaD if f(z)—f(£) as z—{ in every Stolz angle at (. The
angular limit of the derivative is called the angular derivative and is denoted
by f'(¢) if it exists. The function is called of bounded characteristic (*’be-
schranktartig”) if

1
(1.6) %flong Ifre?)|d9 < K  (0<r<1).
0

This is true if and only if f(z) is the quotient of two bounded analytic
functions [14, p. 189].

The Green’s function g¢(z) of I' has angular limits with |g({)| = 1
for almost all { € éD . Considering the angular derivative we define:

(a) I" is of accessible type if ¢'({) exists on a set of positive measure
on oD ;

(b) I is of fully accessible type if ¢'(¢) exists almost everywhere on 2D ;

(c) I' is of Widom type if the function ¢'(z) is of bounded characteristic
in D.

Since every function of bounded characteristic has finite angular limits
almost everywhere [14, p. 208], it is clear that (c) = (b) = (a) .

We shall give a number of characterizations of these concepts. In
Theorem 1 we show, for instance, that

1" is of accessible type <> mes (af' N 2D) > 0.

In Theorems 2 and 3 we characterize groups of accessible type in terms of
their Riemann surface D | I", using results of J. E. McMillan [11] on the
angular derivative of univalent functions. We construct a new example
of a group of convergence type that is not of accessible type (compare
[19, p. 515]).

Let H*(I',v) denote the Banach space of bounded analytic functions
satisfying (1.3) for the character » of I'. If I' is of Widom type and
g*(z) is the inner factor in the canonical representation of ¢'(z) [6, p. 25],
we show (Theorem 5) that
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0 5 - y'(2)
1.7 2) = — v(y) h(y(2)) g*(y(z
(L) 10 = g 2,10 ROED g
defines a bounded linear operator ke H”r>fe H*(I',v); this is a
modification of a construction of Farle and Marden [7, p. 206]. We give
an explicit formula for g*(z) in Theorem 8. It follows from Theorem 7
and from the remarkable results of Widom [21] (see also [20]) that

I' is of Widom type <« H”(I',v) # {const} forevery v

if I" has no elliptic elements. Hardy classes of regular Riemann surfaces
of Widom type were also considered by Hasumi [10].

Our definition (c¢) was suggested by a paper of Ahern and Clark [1] on
the angular derivative of Blaschke products. In Theorem 6 we show that

2n
> ly) = 2z, Z I(y) log ) < o = I is of Widom type

yel vel
where I(y) = mes y(2F N 2D), and in Theorem 7 that

1
I' s of Widom type = > 1/(0)] log o <

vel )]

2. Groups of accessible type

An oricycle at ¢ e eD is a disk in D touching oD at (. We call
¢ eaD an oricyclic point (with respect to I') if every oricycle at £ contains
only finitely many points y(0) (y € I"); it is easy to deduce that, for each
z e D, every oricycle contains only finitely many points y(z) (y €1").
This concept is motivated by the following lemma.

Lemma 1. For every oricyclic point ( , with at most countably many
exceptions, there exists y € I' such that the mormal fundamental domain
y(F) with respect to y(0) is tangential to oD at (.

The domain H < D is called tangential to oD at ( if I contains
every Stolz angle

T

2—<3,J1_E:1<@

(2.1) S = {z eD: |arg(1~—Ez)J <
for 6 > 0 and some p = 0(0) > 0.
Theorem 1. Let I' be a Fuchsian group and let 0 < f < 2x.
Then the following four conditions are equivalent:
(i) The normal fundamental domains y(I') satisfy
> mes [6D N ap(F)] = f;

yel
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(ii) there exists a measurable set B C oD containing no two I-
equivalent points such that
> mesy(B) = B;

yel
(iii) I' is of convergence type and
mes{{e€aD: g'({) exists } > B;

(iv) the set of oricyclic points has measure > f .

The Fuchsian group I is called of accessible type if it satisfies the above
(equivalent) conditions for some f > 0. We can replace (i) and (ii) by the
more concise conditions

(i) mes (6F N aD) > 0;

(ii") there exists a set of positive measure on aD that contains no

two I-equivalent points.
The group I' is called of fully accessible type if it satisfies the above con-
ditions with f = 2z . Every group of the second kind is of accessible kind
as (i') shows, but need not be of fully accessible type as Example 2 will
show.

Remark. One might attempt to “prove” (ii) for all groups as
follows: We choose a representative in each I-equivalence class. Their
union B contains no two I-equivalent points and satisfies

U y(B) = aD,

yel
and this would seem to imply (i) with f = 2 . Unfortunately, the set
B need not be measurable as the existence of groups not of accessible
type shows.

We need the following result of Frostman [9] on Blaschke products;
see also Ahern and Clark [1].

Lemma 2. Let (eoeD. If |g(¢)] =1 and ¢'(¢) # co exist then

(2.2) g’ = 2 ().

vel

Conversely, if this sum converges then |g(C)| = 1 and 9'(8) # oo exist.
Cargo [3] has shown that, in the above case,

(2.3) 9(z) — g({) as z-= { in every oricycle at (.

Proof of Theorem 1. (i) = (ii): It is sufficient to show that only
countably many points on ¥ N 8D can be I-equivalent to some other
point on @F NoeD. Let ¢, {'eoF NaD and ¢ = y(¢') for some
y€Il', y+#.. Since F is n.e. (=non-euclidean) convex and contains
a disk around 0, it is easy to see that the radial segments [0,C] and
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[0,C'] liein F . Hence the n.e. segment from y(0) to ¢({') = ¢ lies in
y(F), and we deduce that the n.e. bisector of [0, 9(0)] also ends at (.
There exist only countably many such bisectors and thus only countably
many such points (.

(i) = (ii): It is easy to deduce from (ii) [19, p. 514] that I" is of
convergence type. Furthermore, (ii) implies

R4 f = T mesyB) = > f ()] 12| = f (ygy(m)xdd.

Hence the sum (2.2) converges almost everywhere on B, and Lemma 2
shows that ¢'() # oo exists almost everywhere on B and therefore
almost everywhere on U, ., y(B). It follows from (ii) that this is a disjoint
union and that it has measure > . We remark that, by (2.4) and (2.2),

(2.5) f ()] 42| = 3 mes »(B) .

yel

(i) = (iv): It is sufficient to show that { € 2D is an oricyclic point
if Jg(¢)] =1 and g¢'({) # oo exist. Lemma 2 shows that, under these
conditions,

2O =191 < «.

vel
If ¢ > 0 it follows that, for some finite subset I, = Iy(e) of I,
1 — laf?
¢ — af?

where we use the notation (1.1). This is our assertion because a = yp~(0)
and because all oricycles at { have the form

(2.6) = |y'(Q)] < e for yel'\T,

1 — |22 4+ 2z

IC—Z|2:R6C—228} (0<<e<< ).

(iv) = (i): This assertion follows at once from Lemma 1.

Proof of Lemma 1. Let ( be oricyclic and not one of the countably
many points where |y;(£)| = |yy(8)| for some y, # y,. Then, by definition,
every oricycle (2.7) contains only finitely many points « = y1(0) (y € [").
Hence (2.6) holds for some finite set [y = I(¢). It follows that, for
yel'\ Iy,

(2.7)

1 — |af? & — 1]

(2.8) eI = 1= azp < e

e e (2ED).

Let 6 >0 andlet S be the Stolz angle (2.1). Since |1 [a| > 1 it is easy
to deduce geometrically from (2.8) that |y'(z)] << 1 for ze S and y e I'\
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I'y if &> 0 is sufficiently small. By the above property of { we can
choose p(d) in (2.1) so small that |yi(z)] # |ys(z)] for z €S and distinet
v1, v2 € I'y. Then there exists a unique ¢ € I, such that

V'@ <l (z€8)

for yely, v # ¢. Since |¢'(2)] = ¢(z) = 1 this relation holds for all
yel, y+# ¢, and it follows that § C ¢ 1(F).

3. Groups of accessible type and Riemann surfaces

We give first a characterization in terms of simply connected domains.

Theorem 2. The Fuchsian group 1" is of accessible type if and only
if there exists a simply connected domain G C D containing no two I™-
equivalent points, such that oG N oD has positive harmonic measure relative
to G .

If z = y(s) maps {|s|] <1} conformally onto ¢ and if 4 is the
set of points ¢ where the angular limit w(e'?) exists and satisfies
[zp(e“?)l = 1, then the last condition of Theorem 2 means that mes 4 > 0.

Proof. (a) Let I' be of accessible type. Then we choose the normal
fundamental domain F as G'. Since oF is a rectifiable Jordan curve and
since mes (8F N aD) > 0 by Theorem 1 (i), it follows from Riesz’ theorem
[5, p. 50] that mes 4 > 0.

(b) Conversely, let the condition of the theorem be satisfied and let
¢ ed. Since |p(e?) = 1> |y(s)| it is clear that arg (p(s) — w(e'?))
is bounded in s € D . Hence it follows from McMillan’s twist point theorem
[11, Th. 1] [16, p. 326] that the angular derivative w'(eiﬁ) exists and is
#0,0 onaset 4,C4 with mes 4, = mes 4 > 0. Another result
of MeMillan [11, Th. 2 (iii)] [16, p. 328] then shows that B, = y(4,) c aD
has positive measure. By a simple property of the angular derivative
[16, p. 303], the domain (' is tangential to 8D at every ( € B,. This
implies that the sets y(B,) (v € [') are disjoint because the domains
y(G) are disjoint by the hypothesis of the theorem. Hence B, satisfies
condition (ii) of our Theorem 1 and I" is therefore of accessible type.

We turn now to necessary and sufficient (conformally invariant) con-
ditions in terms of the Riemann surface D | I' obtained by identifying
I'-equivalent points. We assume that I" has no elliptic elements, so that
D is (conformally equivalent to) the universal covering surface of D[ 1.
Then Theorem 2 states that I' is of accessible type if and only if D/ I’
contains a simply connected domain /7 such that &H N o(D [ I') has
positive harmonic measure.

In the next criterion, we allow multiply connected domains. The suf-
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ficiency proof is based on a modification of the Lusin—Privalov construction
due to McMillan [11]. We denote by A(HK) the linear measure (one-
dimensional Hausdorff measure) of £ c C .

Theorem 3. The Fuchsian group I without elliptic elements is of
accessible type if and only if there exists a domain A C D | I" with the follow-
ing properties:

(1) there is a conformal map h of some plane domain H onto 4 ;

(2) there is @ set B c oH with A(E) > 0 such that, for every w el ,

the interior T(w) of some equilateral triangle of apex w lies in G ;

3) of w,eH, w,—>wekl (n-—>w) then the points h(w,) € A have

no limit point in D | I".

Proof. (a) Let I' be of accessible type and let w(s) map D
conformally onto F . Since oF is a rectifiable Jordan curve and since
mes (8F N aD) > 0, we can find a set A,cyp (el N aD) with
mes A, > 0 such that the angular derivative w’(s) # oo exists for all
sed, [5, p. 51], [16, p. 320]. Hence I is tangential to 2D at each point
w ekl = (4, so that F contains a triangle, and mes 4, > 0 implies
A(E) = mes . > 0.

Since F contains no two [“-equivalent points the projection 2 of D
onto D/ I' maps F (one-to-one) conformally onto some domain
AcD/|TI'. Finally let w,eF, w,—>wek. We have |w,| = |y(w,)]
(y €eI') by the definition of the normal fundamental domain. Since
lw| = 1 it follows that (k(w,)) has no limit point in D/ I".

(b) Conversely, let the condition of the theorem be satisfied. We may
assume that the triangle 7'(w) has the rational angle «(w) at w and that
its base lies on the (oriented) line L(w) of rational inclination and rational
distance from 0. Since { (x(w), L(w)): w e K} is countable and since
A(E) > 0, there exists K, c kX with A(E,) > 0 such that

(3.1) a(w) = oy, Lw) = L, for wel,.

The union of the domains 7'(w) (w € H,) has a connected component
H, such that A(E, N oH,) > 0. It follows from (3.1) that H, is simply
connected and that A(éHy) > 0. Let ¢(s) map D conformally onto

H, . Then ¢(s) is continuous in D, and
A, = {?: pe®)eE,Nell,} c oD
satisfies mes 4, > 0 [16, p. 322].
Since Hy,c H by property (2), we see from (1) that A(H,) is a simply
connected subdomain of 4 € D | I'. Since I' contains no elliptic elements
the inverse p—! of the projection maps h(H,) conformally onto some

simply connected domain ¢/, containing no two /-equivalent points, and
p =plohogp maps D conformally onto . It follows from property
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(3) that y(4d,)ceD. Hence oG,N oD has harmonic measure
> mes 4, > 0, and we conclude from Theorem 2 that I' is of accessible
type.

We construct now an example. Let L, be an open arc on oD ; we
allow L; = @ . We choose a countable set P < D with

PNnaD = L, = aD\ L,

such that, at each w € L,, the symmetric Stolz angle of opening = /2
contains infinitely many points of P . Let I be the Fuchsian group
associated with the domain G = D \ P . Thus @ is conformally equivalent
to D/ I'. Hence the projection map is an automorphic function f(z)
(zeD) with f(D) = G which is thus non-constant and bounded. In
particular, it follows that 1" is of convergence type. We may assume
that f(0) = 0.

By Fatou’s theorem the angular limit f({) exists for almost all ¢ € 2D .
We set

(3.2) E, = {teoD: fO)eL} (j=1,2).

Since all angular limits f(¢) lie on oG = L, U L; U P and since P has
zero capacity, it follows [14, p. 209] that mes B, + mes F, = 27 .
We show now that

(3.3) mes | B, N U ay(F):I = 0.
yel

Otherwise there would exist 9 € I' such that mes (B, N oy(F)) > 0.
Let ¢(s) map D conformally onto y(F). Since ay(F) is rectifiable it
follows from Riesz’ theorem that A4, = ¢~'(#, N 2y(F)) has positive
measure. Now u(s) = f(p(s)) maps D conformally onto f(y(F)) =
f(F)c @. Tt follows from (3.2) for every e €A, that wu(s) tends to a
limit on L, as s> ¢ along a suitable arc. Since y is a bounded function
it follows that the angular limit exists and satisfies w(em) eflly) = L,
in particular ]w(e"ﬁ)[ = 1. As in the proof of Theorem 2 we therefore deduce
from McMillan’s twist point theorem that f(#), and thus @, is tangential
to @D at some point of L, . But this is false by our choice of P = D\ (.
Thus (3.3) has been proved.

If we choose L; = O then mes E, = 27 . It follows from (3.3) that
mes (2F N aD) = 0. Hence we have obtained (compare Tsuji [19, p. 515]:

Example 1. There is a Fuchsian group not of accessible type for
which there exists a non-constant bounded automorphic function and which is
therefore of convergence type.

Let now L, be an arc of length ¢ and let w(w) be the harmonic
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measure of L, at w relative to D . Then w(f(z)) is bounded and harmonic
in D and has, by (3.2), the angular limit 0 on Z, and 1 on K, . Therefore

e = 270(0) = 2m0(f(0) = f[di] = mes K, .
By

Using (3.3) and the fact that mes E, + mes B, = 2z we deduce that

mesli@Dﬂ U ay(F):I < meskH, = ¢.

vel
Hence we have shown:
Example 2. For every ¢> 0, there is a Fuchsian group of the
second kind (thus of accessible type) such that
> mes [2D N oy(F)] < «.

vel

In particular the limit set of 1" has measure = 27 — €.

4. Groups of Widom type

Let I' be a Fuchsian group of convergence type for which 0 is not
an elliptic fixed point. We set

(4.1) w@) = S @ (zeD).

yel

Then u(z) > 1 because e I'. It follows from (1.5) that the Green’s
function g¢(z) satisfies

< u(z) (weD).

(4.2) lg'(2)] = 19(2)2)@

| vel V(z

Theorem 4. The following three conditions are equivalent:
(i) ¢'(z) s of bounded characteristic;

(ii) flog u(z) |dz| < oo

oD
(iii) there exists a character-automorphic function g*(z) with g*(0) # 0
such that
el < L o0 (sep)
g = ) = .

If (i) holds then we can choose g* as the inner factor of g', so that

1 ¢+
4.3)  g'() = g%@=) eXp[g;; fﬁ _ZIOgu(C) ldC{} (zeD).
oD
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We say that 1" is of Widom type if it satisfies the above equivalent
conditions; we shall describe the relation of our definition with Widom’s
work in Section 5. We deduce first a consequence of (iii):

Theorem 5. Let I' be of Widom type and let g*(z) be the inner
factor of g'(2). If v is any character of I' and if h(z) is analylic and bounded
m D then

9k) S — 7'(2)
(4.4) 1O = iy 2,70 PO RN
is analytic in D and satisfies f(y(z)) = v(y) f(z) (y el') and
(4.5) Rup If@)l = g 1hz)],  f0) = g*(0)A(0).

Thus (4.4) defines a bounded linear operator from H” into H*(I",v);
compare [7]. If »* is the character associated with g* then we can write
(4.4) as

9(2) g*(2) S —— 7' (?)

2. v(y) v*(y) h(y(z)) — .

S 2T e
Metzger and Rajeswara Rao [12] have shown that this Poincaré theta
series is = 0 if A(z) # 0 is a polynomial.

We only mention that (4.4) defines a bounded linear operator from the
Hardy space H? into H?(I",v) for every p >1 and that

Ifl, < lbll, (1L =p=o);
compare Earle—Marden [7] and Widom [21].

Proof of Theorem 5. Since ¢(0)/y(0) =0 for 9y %= and =

for y =, we have f(0) = ¢*(0) ~(0) because v(:) = 1. If |h(z)
for z e D then, by (4.6), (4.1) and (iii),
g*(2) Z 9*(2)
7@ | Sl 7()
In particular, we see that the series (4.4) converges absolutely and that
f(z) is analytic in D . For ¢ € I, we obtain from (4.4) and (1.5) that

(4.6) f) =

9z)

f& = M

V') = M uz) < M.

( S —— M N
Fe@) 7@ = 22550 g5 o @) by 0 gl LT E)

9'(2) o1 7(p(2)
@) - @)
— S 20 D P ) S = vt e

Proof of Theorem 4. (a) Suppose that (i) holds. Since, by (2.2),
l9"(&)| = w(l) for almost all { e oD, it follows [6, p. 17] that (ii) holds.
Furthermore we can write [6, p. 25]
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(4.7) 9'(z) = g*R)wk) (zeD)

where the inner factor is ¢*(z) and where the outer factor is given by the
exponential in (4.3) because |¢'({)] = w(¢) for almost all . Hence

1 1 — |22
(4.8) log [w()| = o- f £ s log u(d) Jde]

It follows from a well-known identity and from w(¢) = wu(y()) [y'({)]
that, for y e,

log [w(z)] = f T ;]”;() 17'(8)] Tlog w(y(2)) + log |y'(2)]] ld2]

If we substitute (* = p({) and use the Poisson integral formula to evaluate
the contribution from the second summand, we see that

log |w(z)| = log |g(y(2))| + log |y'(z)] .

It follows that w(z) is character-automorphic, hence also g*(z) .
We write now I" = {y,:k = 1,2,...} and

(4.9) v,2) = log > @) (n=1.2..).
k=1
Computation shows that the Laplacian is
Wl S
k}='1 7] v,

Hence we obtain from Schwarz’s inequality that Av, > 0. Therefore
v,(2) is subharmonic in D, and it follows from (4.9) and (4.8) that

Z]lk ’

Wk

Av, =

1 1 — |22
= 5;00 £t (8) [ = log |w(z)] (zeD).

v,(2)
If we let n-— co we obtain that logu =log |w| and thus, by (4.7),
that « < |w| = |¢' [ ¢*|. Hence (iii) holds.
(b) Suppose now that (ii) holds. It is easy to deduce from (1.1) that
ly'(rz)] <4|y'(z)] for |z| =1, 0 <r<1. Hence wu(rz) <4u(z) by
(4.1). Therefore it follows from (4.2) that, for 0 <r» <1,

1 1

. + i S

2noflog g/(r2)| |dz| < log 4 + 5 flogu(z) 2| < oo
D

Thus (i) holds. This proof is due to Ahern and Clark [1, p. 118].
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(¢) Suppose finally that (iii) holds. Then

1
é&‘(‘a <1 (zeD)

7
9'(2)
so that g¢'(z) is the quotient of two bounded analytic functions and therefore
of bounded characteristic [14, p. 189].

Theorem 6. If there exists a measurable set B C oD contarning

no two [-equivalent points such that, with l(y) = mes y(B) ,

lg*(z)| = 1,

2n
(4.10) >lly) = 2=, Z l(y) log m; < ©

yel vel

then I' s of Widom type.
Proof. We shall verify that condition (ii) of Theorem 4 is satisfied. It
follows from the inequality between the geometric and arithmetic means

that
1
I >
exp (l(y) y(}! og u(z) |dz|

IIN

¥(B)

27
= ) fu(C) |dg] = )

B

1
) fu(z) \dz|
1

where we have used (2.5). Hence, by (4.11),

r s
Y yB) e

2
./log“[dzl = 2 flogu!dz! < > Iy)log F:} —
oD

Remark 1. The conditions (4.10) may be related to Carleson sets
[4]. These are closed sets K c oD for which

2
;ln=2yz, zlnlogz<oo

where 1, are the lengths of the open arcs of which D \ £ is composed.
The Carleson sets are the zero sets on @D of analytic functions with

boundary values in Lip « for some o > 0. Their zero sets 4 in D satisfy

1
(4.11) flog mz,——m |dz| < o

oD
as Taylor and Williams [18] have shown (I want to thank Dr. J. Stegbuchner
for this reference). Since
1 — laf? 1 — [y(0))?
! = <
V') lz —al* = dist (z, 4)*

(yel, zeoD)



On the Green’s function of Fuchsian groups 421

it is clear that

(4.12) A = {y(0): y e I'} satisfies (4.11) = I' is of Widom type.

It will be proved in a forthcoming paper in the Michigan Mathematical
Journal that I" is of Widom type if the limit points of /" form a Carleson
set and if I" has no elliptic elements.

Remark 2. In a manner similar to Theorem 6, one can show that,
for 0 <p<1,
(4.13) Sly) = 2m, DUy)'* < o = g'eH?.

vel yel

If I' is finitely generated and of the second kind, Beardon [2] has proved
that

> Y(0)* < oo forsome p = p(I') > 0.
vel
It is easily seen that |y’(z)| < const - |p’(0)| holds on the free sides of F',
hence on B = aF N 8D except for the parabolic vertices. Hence (4.13)
shows that ¢’ € H? .
Theorem 7. If I' is of Widom type then

(4.14) z 1 (0 logl g < @

yel

In a similar manner we can show that ¢’ € H? implies > |y(0)|'™? < c0.
This estimate is stronger than the estimate of Ahern and Clark [1, p. 120]
for general Blaschke products.

Proof. Let B = oF N oD . There exists o« (0 <<« << 1) such that
By = {zeB: u(z) >e¢*} has positive measure because wu(z) > 1.
Since u(y(2)) |¥'(2)] = u(z) we see that

(4.15) y;f<a+10gl o) el s Mf‘g| Y @) 1
- Z flogu ¢) |d¢] < flogu £) dg] .

r
7€ By

We set &(t) = t[o + log (1/¢8)] (0 <<t =1). There is a unique ¢,
with 0 <ty <1 and &(t,) = (1) = «. It is easily verified that &(f;) <
Ety) for t,<tf,, 0<t, <t, <1. Since (1/4)y(0) < |y'@)] <1
for z € B and since (1/4)|y'(0)] <{, for all but finitely many y e I',
we deduce that

4 1
o (s + o ) = e (e s ow ).
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We integrate over B, . Since mes B; > 0 the assertion (4.14) follows from
(4.15).

5. The inner factor of the derivative

Let I' be a Fuchsian group of convergence type without elliptic
elements, so that D is conformally equivalent to the universal covering
surface of D [ 1.

We need some results about the Green’s function. For ¢ € D , we define
the Green’s function with respect to { by

Il:l_—cy iz?(*/)jl’ MNy) = agl_(—_)g;y(gs

It is character-automorphlc and satisfies ¢(0,¢) >0, |g(z, )] <1 and
g(z,0) = g(z) . We easily see that

(5.2) lgz, O = 19(C.2)| (z,leD).

In particular ¢(0, ¢) = |g(0)] .
Let now ( € @D be a parabolic fixed point of I'. Its stabilizer I, =
{pel: o) =} consists of the elements
2z +1nfp(l — 2)
for some f = f({) > 0. Let R, denote a complete set of right coset
representatives of [ with respect to [, . Thus we can write I' as the
disjoint union

(5.4) = Uy

(5.1)

Using the sin-product one can show that

2 ¢+
(5.5) lg(z ,r {)] — exp [:— il V(Z)]

05, L= @)

as r—1 — 0, locally uniformly in D . Hence we are led to define the
Green’s function with respect to the parabolic fixed point ¢ by

(5.6) g(z, = exp[ yeRg <§ i ;E:; iImg j ;Eg—;):l .

This function is character-automorphic and satisfies 0 << |g(z, ()| < 1
and ¢g(0, ) > 0. It follows from (5.2) and (5.5) that |g(r {)| = ¢(0,r () —
9(0,%) as r—1 — 0. Hence the angular limit ¢({) satisfies
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2 1 — [y(0)?
(5.7) l9(8)] = ¢g(0,0) = exp —E(% z ET%}%O“;H

yERp

Since ¢'(z) [ g(z) is of the form (1.5) we can write [8, p. 111]

' < 2nn i +
689 €-plD = S aew[ -5 (@ro),

a power series in the “local uniformizer” exp [— (27 [f) (¢ + 2) /(L — 2)].
The number m is the multiplicity of (.

The openset {zeD:|g(z)] <r} (0 <r<1) isinvariantunder I'.
Let G(r) be the component of 0 andlet I'(r) = {y e I': y(G(r)) = GQ(r)}
be the stabilizer of G(r) .

Theorem 8. Let I' be a Fuchsian group of convergence type without
elliptic elements. Then the following three conditions are equivalent:

(i) I'" s of Widom type;
(ii) the first Bettt number b(r) of G(r) | I'(r) satisfies

1
/‘b(r)r*ldr <
0

(iii) oG(r) N @D consists of only finitely many equivalence classes of
parabolic fixed points, and

Ikllg(zk)l >0

where z, denotes a full system of mon-equivalent zeros of g'(z) in
D and of non-equivalent parabolic fixed points on oD , each with
proper multiplicity.

If I' is of Widom type then the inner factor of g'(z) is given by

(5.9) g*) = I;Ig(z,zk)-

The first Betti number of the Riemann surface G(r) [ I'(r) is the rank
of the first singular homology group, in other words the maximal number
of linearly independent elements in the abelianized group ['(r). H. Widom
[21, p. 305] proved that

(i) < H*(I',v) # {const} for every character v of I'.

His results were expressed in terms of cross-sections of unitary line bundles
which become character-automorphic functions by uniformization. We
shall only need the following easier result:

Lemma 3 (Widom [21, p. 312]). We have
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1
expfb(r) rldr = supinf{Hwa:feHm(F,v), [f(0)] =1}
0

where v runs through all characters of 1.

Proof of Theorem 8. (i) = (ii). Choosing A(z) = 1 in Theorem 5 we
obtain a function fe H*(I',v) with |[f(z)] <1, f(0) = g*(0). Hence it
follows from Lemma 3 that

1
1

exp fb(r) rtdr < m

0

(ii) = (iii). It follows from (ii) that b(r) << oo for every r <<1.
Hence G(r) [ I'(r) is a compact bordered surface with at most finitely many
punctures. The border components of G(r) have to lie in D (and not on
@D because |g(z)] = 1 for almost all z € @D ); the punctures correspond
to parabolic fixed points of I", and of these there are only finitely many
equivalence classes.

Furthermore b(r) is the number of equivalence classes of critical points
and parabolic fixed points for which |[g(z,)| < r. Hence

1

1
log I |g(2,)| = f(log r)db(r) = — fb(r) rtdr > —o0o.
* 0 0
Thus (iii) holds.

We need a lemma to complete the proof. Let w,(z) map D conformally

onto the simply connected domain G(r) such that w,(0) = 0, w,(0) > 0.
Then

(5.10) D(r) = {g=woyew: yel(r)}
is a Fuchsian group in D .

Lemma 4. The Green’s function g,z) of @D(r) with respect to 0
satisfies g,(z) = r~tg(w,(z)) .

Proof. The function 71 g(w,(z)) is character-automorphic with respect

to @(r) and is bounded by 1. Since the Blaschke product g,(z) has the
same zeros @(0) (@ € @(r)) we see that

(5.11) q(z) = rtg(w,(2))/g,2)

satisfies 0 < [g(z)] < 1. If D, is a sufficiently small disk around 0 then
the disks y(D,) (y € I') are disjoint and |g(z)| > « > 0 outside these
disks. Since ¢(z) # 0 it follows from the minimum principle that

(5.12) lq(z)] > & > 0 for zelD.
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Finally it follows from (5.11) that |¢(z)| = 1 for almost all z € 2D . Hence
q(z) is a bounded inner function, and its representation [6, p. 24] shows that
(5.12) is impossible unless |[g(2)| = 1 and therefore ¢(z) = 1.

(iii) = (i). We conclude from (iii) and (5.7) that

1;19(0,zk) = Ikllg(zk)l > 0.

Hence it follows from the choice of (z,) that the functions

(5.13) 9) = Mygz,z), k@) = 9()/9R)
k
are analytic in D . Let now ( be a parabolic fixed point of multiplicity
m . We see from (5.13), (5.6) and (5.8) that
9, O)”
5.14 hz)| < - = O(|C — 2|2 2—>C).
(5.14) [A(2)] 7@ (1 I )

We consider again the group @(r) (0 <7 < 1) defined by (5.10).
Let F(r) denote its normal fundamental domain. Let & be a parabolic
fixed point of @(r). Then ( = w,(£) is a parabolic fixed point of I'(r)
and hence of I'. Since some oricycle at { belongs to G/(r), the mapping
function has a finite non-zero angular derivative w,(£) by a theorem of
Carathéodory [16, p. 308]. Hence we conclude from (5.14) that

(5.15)  h(w,(2)) | wi(z) = O(|& — z|?) as z — & in every angle.

We consider now the subharmonic function

r h(w,(2))

—

(5.16) u,(2) = lo'(z)] .

PeD(r)

Since [19, p. 517] [17, p. 636]

') = O((1 = [2D7)  (lz]>1)

ped(r)

it follows from (5.15) and (5.16) that u(z) >0 as z—>&, zel(r).

Hence we conclude from (iii) and (5.16) that w,(z) is continuous in F(r)
and that w, (&) = 0 for all parabolic fixed points & .

Since u,(p(2)) = u,(2) (¢ € D(r)) we deduce that the subharmonic
function wu,(z) attains its maximum on the free sides of F(r) where, by
Lemma 4 and by (5.13),

7 h(w,(2))

—w;‘@*{lgﬁ(z)l = [h(w,(2)) 9'(w,(2)| = lg(w,(z)] = 1.

u,(z) =

r

Hence u,(z) =1 for z e D and therefore, by (5.16),
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w,(2)
(5.17) 2. 19'@)]

ped(r) r h(w,(2))

We keep z €D fixed and let r—1 — 0. Since the left-hand side of
(5.17) contains only non-negative terms and since w,(z)—>2z, w,(z)— 1
we see from (5.10) and (5.13) that

' (zeD).

1 ’
618) e = IO S o = [gg((:)) (2eD).

vel

Hence condition (iii) of Theorem 4 is satisfied, so that I" is of Widom type.
To prove (5.9) we write the inner factor of ¢’(z) in the form [6, p. 24]

1 ¢+
(5.19) g*(z) = go(z) exp <— ‘2;; = Z«MO)

where g,(z) is a Blaschke product and p is a non-negative singular measure
because |g*| < 1. It follows from (5.1) and (5.13) that the contribution
to g*(z) from the zeros z, € D is equal to g,(z) . We see from (5.8) that
w({&}) = 2am(¢) | B(¢) where m({) is the multiplicity of the parabolic
fixed point ¢ . Hence (5.6) and (5.13) show that the contribution to g*(z)
from the parabolic fixed points is cancelled by a corresponding term in
(5.19), and it follows that |g*(z)| < |9(2)] -
On the other hand, we obtain from (5.18) that, for 0 <o << 1

ff_@’ -~ 7

7*(0)| = 2mo J *
lzl=e

Since |¢'(z)] = u(2) and |g*(z)] = 1 for almost all z e oD and since

u(pz) < 4u(z) for z € 2D, it is easy to show that the last integral tends
to0 as o—1 — 0. It follows that 0) /¢*(0)] <1 and hence from

lg*| <1g| that |g*| = |g], g*=§-

l

ldz| < mo |1zl -
HE

log log
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