Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 2, 1976, 409-427

ON THE GREEN'S FUNCTION OF FUCHSIAN GROUPS

CH. POMMERENKE

1. Introduction

Let Γ be a Fuchsian group, that is a discontinuous group of Möbius transformations

(1.1)
$$\gamma(z) = e^{ilpha} \frac{a-z}{1-ar{a}\,z}$$
 ($0 \leq lpha < 2\pi$, $|a| < 1$)

of the unit disk $D = \{ |z| < 1 \}$ onto itself. For simplicity we assume throughout the paper that 0 is not an elliptic fixed point. Let ι denote the identity $\iota(z) \equiv z$ and let

(1.2)
$$F = \{ z \in D : |\gamma'(z)| < 1 \text{ for all } \gamma \in \Gamma, \ \gamma \neq \iota \}$$

denote the normal fundamental domain with respect to 0.

A character of Γ is a complex-valued function $v(\gamma)$ satisfying

$$v(arphi \circ \gamma) \;=\; v(arphi) \; v(\gamma) \;, \qquad |v(\gamma)| \;=\; 1 \qquad (\; arphi \;,\; \gamma \in \varGamma \;) \;.$$

An analytic function f(z) $(z \in D)$ is called *character-automorphic* if

(1.3)
$$f(\gamma(z)) = v(\gamma) f(z) \quad (\gamma \in \Gamma)$$

for some character v of Γ . This is true if and only if $|f(\gamma(z))| \equiv |f(z)|$ for all $\gamma \in \Gamma$.

We assume now that Γ is of convergence type, that is

$$\sum_{\gamma \in \Gamma} (1 - |\gamma(z)|^2) \equiv (1 - |z|^2) \sum_{\gamma \in \Gamma} |\gamma'(z)| < \infty$$
 $(z \in D).$

Then the *Green's function* of Γ with respect to 0 is defined as the Blaschke product (compare (1.1))

(1.4)
$$g(z) = \prod_{\gamma \in \Gamma} [e^{-i\vartheta(\gamma)} \gamma(z)]$$
 $(\vartheta(\gamma) = \arg \gamma(0), \vartheta(\iota) = 0);$

see Poincaré [15], Myrberg [13] and Nevanlinna [14, p. 214]. We have

doi:10.5186/aasfm.1976.0228

(1.5)
$$|g(z)| = \prod_{\gamma \in \Gamma} |\gamma(z)|, \qquad \frac{g'(z)}{g(z)} = \sum_{\gamma \in \Gamma} \frac{\gamma'(z)}{\gamma(z)}.$$

The Green's function is character-automorphic and satisfies g(0) = 0, |g(z)| < 1 ($z \in D$), and if f(z) is any function with these properties then $|f(z)| \leq |g(z)|$. Projecting $-\log |g(z)|$ to the Riemann surface D/Γ , we obtain the Green's function of D/Γ , the smallest positive harmonic function with a logarithmic pole at a certain point.

We say that an analytic function f(z) ($z \in D$) has the angular limit $f(\zeta)$ at $\zeta \in \partial D$ if $f(z) \to f(\zeta)$ as $z \to \zeta$ in every Stolz angle at ζ . The angular limit of the derivative is called the angular derivative and is denoted by $f'(\zeta)$ if it exists. The function is called of bounded characteristic ("beschränktartig") if

(1.6)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |f(r e^{i\vartheta})| d\vartheta \leq K \quad (0 < r < 1).$$

This is true if and only if f(z) is the quotient of two bounded analytic functions [14, p. 189].

The Green's function g(z) of Γ has angular limits with $|g(\zeta)| = 1$ for almost all $\zeta \in \partial D$. Considering the angular derivative we define:

- (a) Γ is of accessible type if $g'(\zeta)$ exists on a set of positive measure on ∂D ;
- (b) Γ is of fully accessible type if $g'(\zeta)$ exists almost everywhere on ∂D ;
- (c) Γ is of *Widom type* if the function g'(z) is of bounded characteristic in D.

Since every function of bounded characteristic has finite angular limits almost everywhere [14, p. 208], it is clear that (c) \Rightarrow (b) \Rightarrow (a).

We shall give a number of characterizations of these concepts. In Theorem 1 we show, for instance, that

$$\Gamma$$
 is of accessible type $\Leftrightarrow \operatorname{mes}(\partial F \cap \partial D) > 0$.

In Theorems 2 and 3 we characterize groups of accessible type in terms of their Riemann surface D / Γ , using results of J. E. McMillan [11] on the angular derivative of univalent functions. We construct a new example of a group of convergence type that is not of accessible type (compare [19, p. 515]).

Let $H^{\infty}(\Gamma, v)$ denote the Banach space of bounded analytic functions satisfying (1.3) for the character v of Γ . If Γ is of Widom type and $g^*(z)$ is the inner factor in the canonical representation of g'(z) [6, p. 25], we show (Theorem 5) that

(1.7)
$$f(z) = \frac{g(z)}{g'(z)} \sum_{\gamma \in \Gamma} \overline{v(\gamma)} h(\gamma(z)) g^*(\gamma(z)) \frac{\gamma'(z)}{\gamma(z)}$$

defines a bounded linear operator $h \in H^{\infty} \mapsto f \in H^{\infty}(\Gamma, v)$; this is a modification of a construction of Earle and Marden [7, p. 206]. We give an explicit formula for $g^*(z)$ in Theorem 8. It follows from Theorem 7 and from the remarkable results of Widom [21] (see also [20]) that

 Γ is of Widom type $\Leftrightarrow H^{\infty}(\Gamma, v) \neq \{ \text{ const} \}$ for every v

if Γ has no elliptic elements. Hardy classes of regular Riemann surfaces of Widom type were also considered by Hasumi [10].

Our definition (c) was suggested by a paper of Ahern and Clark [1] on the angular derivative of Blaschke products. In Theorem 6 we show that

$$\sum_{\gamma \in \Gamma} l(\gamma) = 2\pi$$
, $\sum_{\gamma \in \Gamma} l(\gamma) \log \frac{2\pi}{l(\gamma)} < \infty \Rightarrow \Gamma$ is of Widom type

where $l(\gamma) = \max \gamma(\partial F \cap \partial D)$, and in Theorem 7 that

$$arGamma$$
 is of Widom type $\Rightarrow \sum_{\gamma \in arGamma} |\gamma'(0)| \log rac{1}{|\gamma'(0)|} < \infty$.

2. Groups of accessible type

An oricycle at $\zeta \in \partial D$ is a disk in D touching ∂D at ζ . We call $\zeta \in \partial D$ an oricyclic point (with respect to Γ) if every oricycle at ζ contains only finitely many points $\gamma(0)$ ($\gamma \in \Gamma$); it is easy to deduce that, for each $z \in D$, every oricycle contains only finitely many points $\gamma(z)$ ($\gamma \in \Gamma$). This concept is motivated by the following lemma.

Lemma 1. For every oricyclic point ζ , with at most countably many exceptions, there exists $\gamma \in \Gamma$ such that the normal fundamental domain $\gamma(F)$ with respect to $\gamma(0)$ is tangential to ∂D at ζ .

The domain $H \subset D$ is called *tangential to* ∂D at ζ if H contains every Stolz angle

$$(2.1) \qquad S = \left\{ z \in D : |\arg(1 - \overline{\zeta} z)| < \frac{\pi}{2} - \delta, |1 - \overline{\zeta} z| < \varrho \right\}$$

for $\delta > 0$ and some $\varrho = \varrho(\delta) > 0$.

Theorem 1. Let Γ be a Fuchsian group and let $0 < \beta \leq 2\pi$. Then the following four conditions are equivalent:

(i) The normal fundamental domains $\gamma(F)$ satisfy

$$\sum_{\gamma \in \Gamma} \operatorname{mes} \left[\partial D \cap \partial \gamma(F) \right] \geq \beta ;$$

(ii) there exists a measurable set $B \subset \partial D$ containing no two Γ -equivalent points such that

$$\sum_{\gamma \in \Gamma} \max \gamma(B) \geq \beta;$$

(iii) Γ is of convergence type and

mes {
$$\zeta \in \partial D$$
 : $g'(\zeta)$ exists } $\geq \beta$;

(iv) the set of oricyclic points has measure $\geq \beta$.

The Fuchsian group Γ is called of *accessible type* if it satisfies the above (equivalent) conditions for some $\beta > 0$. We can replace (i) and (ii) by the more concise conditions

- (i') mes $(\partial F \cap \partial D) > 0$;
- (ii') there exists a set of positive measure on ∂D that contains no two Γ -equivalent points.

The group Γ is called of *fully accessible type* if it satisfies the above conditions with $\beta = 2\pi$. Every group of the second kind is of accessible kind as (i') shows, but need not be of fully accessible type as Example 2 will show.

Remark. One might attempt to "prove" (ii) for all groups as follows: We choose a representative in each Γ -equivalence class. Their union B contains no two Γ -equivalent points and satisfies

$$\bigcup_{\gamma \in \Gamma} \gamma(B) = \partial D ,$$

and this would seem to imply (ii) with $\beta = 2\pi$. Unfortunately, the set B need not be measurable as the existence of groups not of accessible type shows.

We need the following result of Frostman [9] on Blaschke products; see also Ahern and Clark [1].

Lemma 2. Let $\zeta \in \partial D$. If $|g(\zeta)| = 1$ and $g'(\zeta) \neq \infty$ exist then (2.2) $|g'(\zeta)| = \sum_{\gamma \in \Gamma} |\gamma'(\zeta)|$.

Conversely, if this sum converges then $|g(\zeta)| = 1$ and $g'(\zeta) \neq \infty$ exist. Cargo [3] has shown that, in the above case,

(2.3)
$$g(z) \to g(\zeta)$$
 as $z \to \zeta$ in every oricycle at ζ .

Proof of Theorem 1. (i) \Rightarrow (ii): It is sufficient to show that only countably many points on $\partial F \cap \partial D$ can be Γ -equivalent to some other point on $\partial F \cap \partial D$. Let ζ , $\zeta' \in \partial F \cap \partial D$ and $\zeta = \gamma(\zeta')$ for some $\gamma \in \Gamma$, $\gamma \neq \iota$. Since F is n.e. (= non-euclidean) convex and contains a disk around 0, it is easy to see that the radial segments $[0, \zeta]$ and $[0, \zeta']$ lie in F. Hence the n.e. segment from $\gamma(0)$ to $\gamma(\zeta') = \zeta$ lies in $\gamma(F)$, and we deduce that the n.e. bisector of $[0, \gamma(0)]$ also ends at ζ . There exist only countably many such bisectors and thus only countably many such points ζ .

(ii) \Rightarrow (iii): It is easy to deduce from (ii) [19, p. 514] that Γ is of convergence type. Furthermore, (ii) implies

(2.4)
$$\beta \leq \sum_{\gamma \in \Gamma} \max \gamma(B) = \sum_{\gamma \in \Gamma} \int_{B} |\gamma'(\zeta)| |d\zeta| = \int_{B} \left(\sum_{\gamma \in \Gamma} |\gamma'(\zeta)| \right) |d\zeta|.$$

Hence the sum (2.2) converges almost everywhere on B, and Lemma 2 shows that $g'(\zeta) \neq \infty$ exists almost everywhere on B and therefore almost everywhere on $U_{\gamma \in \Gamma} \gamma(B)$. It follows from (ii) that this is a disjoint union and that it has measure $\geq \beta$. We remark that, by (2.4) and (2.2),

(2.5)
$$\int_{B} |g'(\zeta)| |d\zeta| = \sum_{\gamma \in \Gamma} \operatorname{mes} \gamma(B) .$$

(iii) \Rightarrow (iv): It is sufficient to show that $\zeta \in \partial D$ is an oricyclic point if $|g(\zeta)| = 1$ and $g'(\zeta) \neq \infty$ exist. Lemma 2 shows that, under these conditions,

$$\sum_{\gamma \in arGamma} | \gamma'(\zeta) | \; = \; | g'(\zeta) | \; < \; \infty \; .$$

If $\varepsilon > 0$ it follows that, for some finite subset $\Gamma_0 = \Gamma_0(\varepsilon)$ of Γ ,

(2.6)
$$\frac{1-|a|^2}{|\zeta-a|^2} = |\gamma'(\zeta)| < \varepsilon \quad \text{for } \gamma \in \Gamma \smallsetminus \Gamma_0$$

where we use the notation (1.1). This is our assertion because $a = \gamma^{-1}(0)$ and because all oricycles at ζ have the form

(2.7)
$$\left\{\frac{1-|z|^2}{|\zeta-z|^2} \equiv \operatorname{Re}\frac{\zeta+z}{\zeta-z} \geq \varepsilon\right\} \quad (0 < \varepsilon < \infty).$$

(iv) \Rightarrow (i): This assertion follows at once from Lemma 1.

Proof of Lemma 1. Let ζ be oricyclic and not one of the countably many points where $|\gamma'_1(\zeta)| = |\gamma'_2(\zeta)|$ for some $\gamma_1 \neq \gamma_2$. Then, by definition, every oricycle (2.7) contains only finitely many points $a = \gamma^{-1}(0)$ ($\gamma \in \Gamma$). Hence (2.6) holds for some finite set $\Gamma_0 = \Gamma_0(\varepsilon)$. It follows that, for $\gamma \in \Gamma \setminus \Gamma_0$,

(2.8)
$$|\gamma'(z)| = \frac{1 - |a|^2}{|1 - \overline{a}z|^2} \leq \varepsilon \left| \frac{\zeta - 1/\overline{a}}{z - 1/\overline{a}} \right|^2 \quad (z \in D).$$

Let $\delta > 0$ and let S be the Stolz angle (2.1). Since $|1/\overline{a}| > 1$ it is easy to deduce geometrically from (2.8) that $|\gamma'(z)| < 1$ for $z \in S$ and $\gamma \in \Gamma \setminus$

 Γ_0 if $\varepsilon > 0$ is sufficiently small. By the above property of ζ we can choose $\varrho(\delta)$ in (2.1) so small that $|\gamma'_1(z)| \neq |\gamma'_2(z)|$ for $z \in S$ and distinct γ_1 , $\gamma_2 \in \Gamma_0$. Then there exists a unique $\varphi \in \Gamma_0$ such that

$$|\gamma'(z)| < |\varphi'(z)|$$
 ($z \in S$)

for $\gamma \in \Gamma_0$, $\gamma \neq \varphi$. Since $|\varphi'(z)| \ge \iota'(z) = 1$ this relation holds for all $\gamma \in \Gamma$, $\gamma \neq \varphi$, and it follows that $S \subset \varphi^{-1}(F)$.

3. Groups of accessible type and Riemann surfaces

We give first a characterization in terms of simply connected domains. The orem 2. The Fuchsian group Γ is of accessible type if and only if there exists a simply connected domain $G \subset D$ containing no two Γ equivalent points, such that $\partial G \cap \partial D$ has positive harmonic measure relative to G.

If $z = \psi(s)$ maps { |s| < 1 } conformally onto G and if A is the set of points $e^{i\vartheta}$ where the angular limit $\psi(e^{i\vartheta})$ exists and satisfies $|\psi(e^{i\vartheta})| = 1$, then the last condition of Theorem 2 means that mes A > 0.

Proof. (a) Let Γ be of accessible type. Then we choose the normal fundamental domain F as G. Since ∂F is a rectifiable Jordan curve and since mes $(\partial F \cap \partial D) > 0$ by Theorem 1 (i), it follows from Riesz' theorem [5, p. 50] that mes A > 0.

(b) Conversely, let the condition of the theorem be satisfied and let $e^{i\vartheta} \in A$. Since $|\psi(e^{i\vartheta})| = 1 > |\psi(s)|$ it is clear that $\arg(\psi(s) - \psi(e^{i\vartheta}))$ is bounded in $s \in D$. Hence it follows from McMillan's twist point theorem [11, Th. 1] [16, p. 326] that the angular derivative $\psi'(e^{i\vartheta})$ exists and is $\neq 0, \infty$ on a set $A_0 \subset A$ with mes $A_0 = \text{mes } A > 0$. Another result of McMillan [11, Th. 2 (iii)] [16, p. 328] then shows that $B_0 = \psi(A_0) \subset \partial D$ has positive measure. By a simple property of the angular derivative [16, p. 303], the domain G is tangential to ∂D at every $\zeta \in B_0$. This implies that the sets $\gamma(B_0)$ ($\gamma \in \Gamma$) are disjoint because the domains $\gamma(G)$ are disjoint by the hypothesis of the theorem. Hence B_0 satisfies condition (ii) of our Theorem 1 and Γ is therefore of accessible type.

We turn now to necessary and sufficient (conformally invariant) conditions in terms of the Riemann surface $D \ / \ \Gamma$ obtained by identifying Γ -equivalent points. We assume that Γ has no elliptic elements, so that D is (conformally equivalent to) the universal covering surface of $D \ / \ \Gamma$. Then Theorem 2 states that Γ is of accessible type if and only if $D \ / \ \Gamma$ contains a simply connected domain H such that $\partial H \cap \partial (D \ / \ \Gamma)$ has positive harmonic measure.

In the next criterion, we allow multiply connected domains. The suf-

ficiency proof is based on a modification of the Lusin-Privalov construction due to McMillan [11]. We denote by $\Lambda(E)$ the *linear measure* (one-dimensional Hausdorff measure) of $E \subset C$.

Theorem 3. The Fuchsian group Γ without elliptic elements is of accessible type if and only if there exists a domain $\Delta \subset D \mid \Gamma$ with the following properties:

- (1) there is a conformal map h of some plane domain H onto Δ ;
- (2) there is a set $E \subset \partial H$ with $\Lambda(E) > 0$ such that, for every $w \in E$, the interior T(w) of some equilateral triangle of apex w lies in G;
- (3) if $w_n \in H$, $w_n \to w \in E$ $(n \to \infty)$ then the points $h(w_n) \in \Delta$ have no limit point in $D \mid \Gamma$.

Proof. (a) Let Γ be of accessible type and let $\psi(s) \mod D$ conformally onto F. Since ∂F is a rectifiable Jordan curve and since $\operatorname{mes}(\partial F \cap \partial D) > 0$, we can find a set $A_0 \subset \psi^{-1}(\partial F \cap \partial D)$ with $\operatorname{mes} A_0 > 0$ such that the angular derivative $\psi'(s) \neq \infty$ exists for all $s \in A_0$ [5, p. 51], [16, p. 320]. Hence F is tangential to ∂D at each point $w \in E = \psi(A_0)$ so that F contains a triangle, and $\operatorname{mes} A_0 > 0$ implies $\Lambda(E) = \operatorname{mes} E > 0$.

Since F contains no two Γ -equivalent points the projection h of Donto D / Γ maps F (one-to-one) conformally onto some domain $\Delta \subset D / \Gamma$. Finally let $w_n \in F$, $w_n \to w \in E$. We have $|w_n| \leq |\gamma(w_n)|$ $(\gamma \in \Gamma)$ by the definition of the normal fundamental domain. Since |w| = 1 it follows that $(h(w_n))$ has no limit point in D / Γ .

(b) Conversely, let the condition of the theorem be satisfied. We may assume that the triangle T(w) has the rational angle $\alpha(w)$ at w and that its base lies on the (oriented) line L(w) of rational inclination and rational distance from 0. Since $\{ (\alpha(w), L(w)) : w \in E \}$ is countable and since $\Lambda(E) > 0$, there exists $E_0 \subset E$ with $\Lambda(E_0) > 0$ such that

(3.1)
$$\alpha(w) \equiv \alpha_0, \quad L(w) \equiv L_0 \quad \text{for } w \in E_0.$$

The union of the domains T(w) ($w \in E_0$) has a connected component H_0 such that $\Lambda(E_0 \cap \partial H_0) > 0$. It follows from (3.1) that H_0 is simply connected and that $\Lambda(\partial H_0) > 0$. Let $\varphi(s)$ map D conformally onto H_0 . Then $\varphi(s)$ is continuous in \overline{D} , and

$$A_0 = \{ e^{i\vartheta} : \varphi(e^{i\vartheta}) \in E_0 \cap \partial H_0 \} \subset \partial D$$

satisfies mes $A_0 > 0$ [16, p. 322].

Since $H_0 \subset H$ by property (2), we see from (1) that $h(H_0)$ is a simply connected subdomain of $\Delta \subset D / \Gamma$. Since Γ contains no elliptic elements the inverse p^{-1} of the projection maps $h(H_0)$ conformally onto some simply connected domain G_0 containing no two Γ -equivalent points, and $\psi = p^{-1} \circ h \circ \varphi$ maps D conformally onto G_0 . It follows from property (3) that $\psi(A_0) \subset \partial D$. Hence $\partial G_0 \cap \partial D$ has harmonic measure $\geq \max A_0 > 0$, and we conclude from Theorem 2 that Γ is of accessible type.

We construct now an example. Let L_1 be an open arc on ∂D ; we allow $L_1 = \emptyset$. We choose a countable set $P \subset D$ with

$$P \cap \partial D = L_0 = \partial D \setminus L_1$$

such that, at each $w \in L_0$, the symmetric Stolz angle of opening $\pi/2$ contains infinitely many points of P. Let Γ be the Fuchsian group associated with the domain $G = D \setminus P$. Thus G is conformally equivalent to D/Γ . Hence the projection map is an automorphic function f(z) $(z \in D)$ with f(D) = G which is thus non-constant and bounded. In particular, it follows that Γ is of convergence type. We may assume that f(0) = 0.

By Fatou's theorem the angular limit $f(\zeta)$ exists for almost all $\zeta \in \partial D$. We set

(3.2)
$$E_j = \{ \zeta \in \partial D : f(\zeta) \in L_j \}$$
 $(j = 1, 2).$

Since all angular limits $f(\zeta)$ lie on $\partial G = L_0 \cup L_1 \cup P$ and since P has zero capacity, it follows [14, p. 209] that mes $E_0 + \text{mes } E_1 = 2\pi$.

We show now that

(3.3)
$$\operatorname{mes}\left[E_0 \cap \bigcup_{\gamma \in \varGamma} \partial \gamma(F)\right] = 0.$$

Otherwise there would exist $\gamma \in \Gamma$ such that $\operatorname{mes} (E_0 \cap \partial \gamma(F)) > 0$. Let $\varphi(s) \operatorname{map} D$ conformally onto $\gamma(F)$. Since $\partial \gamma(F)$ is rectifiable it follows from Riesz' theorem that $A_0 = \varphi^{-1}(E_0 \cap \partial \gamma(F))$ has positive measure. Now $\psi(s) = f(\varphi(s))$ maps D conformally onto $f(\gamma(F)) = f(F) \subset G$. It follows from (3.2) for every $e^{i\partial} \in A_0$ that $\psi(s)$ tends to a limit on L_0 as $s \to e^{i\partial}$ along a suitable arc. Since ψ is a bounded function it follows that the angular limit exists and satisfies $\psi(e^{i\partial}) \in f(E_0) = L_0$, in particular $|\psi(e^{i\partial})| = 1$. As in the proof of Theorem 2 we therefore deduce from McMillan's twist point theorem that f(F), and thus G, is tangential to ∂D at some point of L_0 . But this is false by our choice of $P = D \setminus G$. Thus (3.3) has been proved.

If we choose $L_1 = \emptyset$ then mes $E_0 = 2\pi$. It follows from (3.3) that mes $(\partial F \cap \partial D) = 0$. Hence we have obtained (compare Tsuji [19, p. 515]:

E x a m p l e 1. There is a Fuchsian group not of accessible type for which there exists a non-constant bounded automorphic function and which is therefore of convergence type.

Let now L_1 be an arc of length ε and let $\omega(w)$ be the harmonic

measure of L_1 at w relative to D. Then $\omega(f(z))$ is bounded and harmonic in D and has, by (3.2), the angular limit 0 on E_0 and 1 on E_1 . Therefore

$$\varepsilon = 2\pi \omega(0) = 2\pi \omega(f(0)) = \int_{E_1} |d\zeta| = \operatorname{mes} E_1.$$

Using (3.3) and the fact that $\operatorname{mes} E_0 + \operatorname{mes} E_1 = 2\pi$ we deduce that

$$\operatorname{mes}\left[\,\partial D \, \cap \, \bigcup_{\gamma \, \epsilon \, \Gamma} \, \partial \gamma(F) \, \right] \; \leq \; \operatorname{mes} \, E_{\, 1} \; = \; \epsilon \; .$$

Hence we have shown:

Example 2. For every $\varepsilon > 0$, there is a Fuchsian group of the second kind (thus of accessible type) such that

$$\sum_{\gamma \in \Gamma} \operatorname{mes} \left[\partial D \cap \partial \gamma(F) \right] \leq \varepsilon .$$

In particular the limit set of Γ has measure $\geq 2\pi - \varepsilon$.

4. Groups of Widom type

Let Γ be a Fuchsian group of convergence type for which 0 is not an elliptic fixed point. We set

(4.1)
$$u(z) = \sum_{\gamma \in \Gamma} |\gamma'(z)| \qquad (z \in \overline{D}).$$

Then u(z) > 1 because $\iota \in \Gamma$. It follows from (1.5) that the Green's function g(z) satisfies

(4.2)
$$|g'(z)| = \left| g(z) \sum_{\gamma \in \Gamma} \frac{\gamma'(z)}{\gamma(z)} \right| \leq u(z) \quad (u \in D).$$

Theorem 4. The following three conditions are equivalent:

- (i) g'(z) is of bounded characteristic;
- (ii) $\int_{\partial D} \log u(z) |dz| < \infty$;
- (iii) there exists a character-automorphic function $g^*(z)$ with $g^*(0) \neq 0$ such that

$$|g^*(z)| \leq rac{|g'(z)|}{u(z)} \leq 1 \qquad (z \in D).$$

If (i) holds then we can choose g^* as the inner factor of g', so that

(4.3)
$$g'(z) = g^*(z) \exp\left[\frac{1}{2\pi} \int_{\partial D} \frac{\zeta + z}{\zeta - z} \log u(\zeta) |d\zeta|\right] \quad (z \in D).$$

We say that Γ is of Widom type if it satisfies the above equivalent conditions; we shall describe the relation of our definition with Widom's work in Section 5. We deduce first a consequence of (iii):

Theorem 5. Let Γ be of Widom type and let $g^*(z)$ be the inner factor of g'(z). If v is any character of Γ and if h(z) is analytic and bounded in D then

(4.4)
$$f(z) = \frac{g(z)}{g'(z)} \sum_{\gamma \in \Gamma} \overline{v(\gamma)} g^*(\gamma(z)) h(\gamma(z)) \frac{\gamma'(z)}{\gamma(z)}$$

is analytic in D and satisfies $f(\gamma(z)) \equiv v(\gamma) f(z)$ ($\gamma \in \Gamma$) and

(4.5)
$$\sup_{z \in D} |f(z)| \leq \sup_{z \in D} |h(z)|, \quad f(0) = g^*(0) h(0).$$

Thus (4.4) defines a bounded linear operator from H^{∞} into $H^{\infty}(\Gamma, v)$; compare [7]. If v^* is the character associated with g^* then we can write (4.4) as

(4.6)
$$f(z) = \frac{g(z) g^*(z)}{g'(z)} \sum_{\gamma \in \Gamma} \overline{v(\gamma)} v^*(\gamma) h(\gamma(z)) \frac{\gamma'(z)}{\gamma(z)}.$$

Metzger and Rajeswara Rao [12] have shown that this Poincaré theta series is $\neq 0$ if $h(z) \neq 0$ is a polynomial.

We only mention that (4.4) defines a bounded linear operator from the Hardy space H^{p} into $H^{p}(\Gamma, v)$ for every $p \geq 1$ and that

$$\|f\|_p \leq \|h\|_p$$
 ($1 \leq p \leq \infty$);

compare Earle–Marden [7] and Widom [21].

Proof of Theorem 5. Since $g(0) / \gamma(0) = 0$ for $\gamma \neq \iota$ and = g'(0) for $\gamma = \iota$, we have $f(0) = g^*(0) h(0)$ because $v(\iota) = 1$. If $|h(z)| \leq M$ for $z \in D$ then, by (4.6), (4.1) and (iii),

$$|f(z)| \leq M \left| rac{g^*(z)}{g'(z)}
ight| \sum_{\gamma \in \Gamma} \left| rac{g(z)}{\gamma(z)}
ight| |\gamma'(z)| \leq M \left| rac{g^*(z)}{g'(z)}
ight| u(z) \leq M \;.$$

In particular, we see that the series (4.4) converges absolutely and that f(z) is analytic in D. For $\varphi \in \Gamma$, we obtain from (4.4) and (1.5) that

$$\begin{split} f(\varphi(z)) \ \varphi'(z) \ &= \ \frac{g(z)}{g'(z)} \ \sum_{\gamma \in \Gamma} \overline{v(\gamma)} \ g^*(\gamma \circ \varphi(z)) \ h(\gamma \circ \varphi(z)) \ \frac{\gamma'(\varphi(z)) \ \varphi'(z)}{\gamma(\varphi(z))} \\ &= \ \frac{g(z)}{g'(z)} \ \sum_{\chi \in \Gamma} v(\varphi) \ \overline{v(\chi)} \ g^*(\chi(z)) \ h(\chi(z)) \ \frac{\chi'(z)}{\chi(z)} \ &= \ v(\varphi) \ f(z) \ . \end{split}$$

Proof of Theorem 4. (a) Suppose that (i) holds. Since, by (2.2), $|g'(\zeta)| = u(\zeta)$ for almost all $\zeta \in \partial D$, it follows [6, p. 17] that (ii) holds. Furthermore we can write [6, p. 25]

(4.7)
$$g'(z) = g^*(z) w(z) \quad (z \in D)$$

where the inner factor is $g^*(z)$ and where the outer factor is given by the exponential in (4.3) because $|g'(\zeta)| = u(\zeta)$ for almost all ζ . Hence

(4.8)
$$\log |w(z)| = \frac{1}{2\pi} \int_{\partial D} \frac{1 - |z|^2}{|\zeta - z|^2} \log u(\zeta) |d\zeta|.$$

It follows from a well-known identity and from $u(\zeta) = u(\gamma(\zeta)) |\gamma'(\zeta)|$ that, for $\gamma \in \Gamma$,

$$\log |w(z)| = \frac{1}{2\pi} \int_{\partial D} \frac{1 - |\gamma(z)|^2}{|\gamma(\zeta) - \gamma(z)|^2} |\gamma'(\zeta)| \left[\log u(\gamma(\zeta)) + \log |\gamma'(\zeta)| \right] |d\zeta| .$$

If we substitute $\zeta^* = \gamma(\zeta)$ and use the Poisson integral formula to evaluate the contribution from the second summand, we see that

$$\log |w(z)| = \log |g(\gamma(z))| + \log |\gamma'(z)|.$$

It follows that w(z) is character-automorphic, hence also $g^*(z)$.

We write now $\Gamma = \{ \gamma_k : k = 1, 2, \dots \}$ and

(4.9)
$$v_n(z) = \log \sum_{k=1}^n |\gamma'_k(z)|$$
 $(n = 1, 2, ...).$

Computation shows that the Laplacian is

$$\Delta v_n = -e^{-2v_n} \left| \sum_{k=1}^n |\gamma'_k| \frac{\gamma''_k}{\gamma'_k} \right|^2 + e^{-v_n} \sum_{k=1}^n \frac{|\gamma''_k|^2}{|\gamma'_k|}.$$

Hence we obtain from Schwarz's inequality that $\Delta v_n \geq 0$. Therefore $v_n(z)$ is subharmonic in D, and it follows from (4.9) and (4.8) that

$$v_n(z) \leq rac{1}{2\pi} \int\limits_{\partial D} rac{1-|z|^2}{|\zeta - z|^2} v_n(\zeta) |d\zeta| \leq \log |w(z)| \quad (z \in D).$$

If we let $n \to \infty$ we obtain that $\log u \leq \log |w|$ and thus, by (4.7), that $u \leq |w| = |g' / g^*|$. Hence (iii) holds.

(b) Suppose now that (ii) holds. It is easy to deduce from (1.1) that $|\gamma'(rz)| \leq 4 |\gamma'(z)|$ for |z| = 1, $0 \leq r < 1$. Hence $u(rz) \leq 4 u(z)$ by (4.1). Therefore it follows from (4.2) that, for $0 \leq r < 1$,

$$rac{1}{2\pi}\int\limits_{\partial D}\,\log^+\,|g'(r\,z)|\;|dz|\;\;\leq\;\log\,4\;+rac{1}{2\pi}\int\limits_{\partial D}\,\log\,u(z)\;|dz|\;<\;\infty\;.$$

Thus (i) holds. This proof is due to Ahern and Clark [1, p. 118].

(c) Suppose finally that (iii) holds. Then

$$|g^*(z)| \leq 1$$
, $\left|rac{g^*(z)}{g'(z)}
ight| \leq rac{1}{u(z)} \leq 1$ ($z \in D$)

so that g'(z) is the quotient of two bounded analytic functions and therefore of bounded characteristic [14, p. 189].

Theorem 6. If there exists a measurable set $B \subset \partial D$ containing no two Γ -equivalent points such that, with $l(\gamma) = \max \gamma(B)$,

(4.10)
$$\sum_{\gamma \in \Gamma} l(\gamma) = 2\pi , \qquad \sum_{\gamma \in \Gamma} l(\gamma) \log \frac{2\pi}{l(\gamma)} < \infty$$

then Γ is of Widom type.

Proof. We shall verify that condition (ii) of Theorem 4 is satisfied. It follows from the inequality between the geometric and arithmetic means that

$$\begin{split} \exp\left(\frac{1}{l(\gamma)}\int\limits_{\gamma(B)}\log\,u(z)\,\left|dz\right|\right) &\leq \frac{1}{l(\gamma)}\int\limits_{\gamma(B)}u(z)\,\left|dz\right| \\ &= \frac{1}{l(\gamma)}\int\limits_{B}u(\zeta)\,\left|d\zeta\right| \;=\; \frac{2\pi}{l(\gamma)} \end{split}$$

where we have used (2.5). Hence, by (4.11),

$$\int\limits_{\partial D} \log u \; |dz| \; = \; \sum\limits_{\gamma \in \varGamma} \int\limits_{\gamma(B)} \log u \; |dz| \; \; \leq \; \sum\limits_{\gamma \in \varGamma} \, l(\gamma) \log \, rac{2\pi}{l(\gamma)} \; < \; \infty \; .$$

R e m a r k 1. The conditions (4.10) may be related to Carleson sets [4]. These are closed sets $E \subset \partial D$ for which

$$\sum_n l_n = 2\pi$$
, $\sum_n l_n \log \frac{2\pi}{l_n} < \infty$

where l_n are the lengths of the open arcs of which $\partial D \setminus E$ is composed. The Carleson sets are the zero sets on ∂D of analytic functions with boundary values in Lip α for some $\alpha > 0$. Their zero sets A in \overline{D} satisfy

(4.11)
$$\int_{\partial D} \log \frac{1}{\operatorname{dist}(z, A)} |dz| < \infty$$

as Taylor and Williams [18] have shown (I want to thank Dr. J. Stegbuchner for this reference). Since

$$|\gamma'(z)| = rac{1-|a|^2}{|z-a|^2} \leq rac{1-|\gamma^{-1}(0)|^2}{{
m dist}\,(z\,,A)^2} \qquad (\,\gamma\in\Gamma\,,\,\,z\in\partial D\,)$$

it is clear that

(4.12)
$$A = \{ \gamma(0) : \gamma \in \Gamma \}$$
 satisfies (4.11) $\Rightarrow \Gamma$ is of Widom type.

It will be proved in a forthcoming paper in the Michigan Mathematical Journal that Γ is of Widom type if the limit points of Γ form a Carleson set and if Γ has no elliptic elements.

Remark 2. In a manner similar to Theorem 6, one can show that, for 0 ,

(4.13)
$$\sum_{\gamma \in \Gamma} l(\gamma) = 2\pi , \qquad \sum_{\gamma \in \Gamma} l(\gamma)^{1-p} < \infty \Rightarrow g' \in H^p .$$

If Γ is finitely generated and of the second kind, Beardon [2] has proved that

$$\sum\limits_{\gamma \in arGamma} |\gamma'(0)|^{1-p} < \infty \hspace{0.5cm} ext{for some} \hspace{0.5cm} p \,=\, p(arGamma) > 0 \;.$$

It is easily seen that $|\gamma'(z)| \leq \text{const} \cdot |\gamma'(0)|$ holds on the free sides of F, hence on $B = \partial F \cap \partial D$ except for the parabolic vertices. Hence (4.13) shows that $g' \in H^p$.

Theorem 7. If Γ is of Widom type then

(4.14)
$$\sum_{\gamma \in \Gamma} |\gamma'(0)| \log \frac{1}{|\gamma'(0)|} < \infty.$$

In a similar manner we can show that $g' \in H^p$ implies $\sum |\gamma'(0)|^{1-p} < \infty$. This estimate is stronger than the estimate of Ahern and Clark [1, p. 120] for general Blaschke products.

Proof. Let $B = \partial F \cap \partial D$. There exists α ($0 < \alpha < 1$) such that $B_0 = \{ z \in B : u(z) > e^{\alpha} \}$ has positive measure because u(z) > 1. Since $u(\gamma(z)) |\gamma'(z)| = u(z)$ we see that

$$(4.15) \quad \sum_{\gamma \in \Gamma} \int_{B_{\bullet}} \left(\alpha + \log \frac{1}{|\gamma'(z)|} \right) |\gamma'(z)| |dz| \leq \sum_{\gamma \in \Gamma} \int_{B_{\bullet}} \log \frac{u(z)}{|\gamma'(z)|} \cdot |\gamma'(z)| |dz|$$
$$= \sum_{\gamma \in \Gamma} \int_{\gamma(B_{\bullet})} \log u(\zeta) |d\zeta| \leq \int_{\partial D} \log u(\zeta) |d\zeta| .$$

We set $\xi(t) = t \left[\alpha + \log \left(1 / t \right) \right]$ ($0 < t \leq 1$). There is a unique t_0 with $0 < t_0 < 1$ and $\xi(t_0) = \xi(1) = \alpha$. It is easily verified that $\xi(t_1) < \xi(t_2)$ for $t_1 < t_0$, $0 < t_1 \leq t_2 \leq 1$. Since $(1 / 4) |\gamma'(0)| \leq |\gamma'(z)| \leq 1$ for $z \in B$ and since $(1 / 4) |\gamma'(0)| < t_0$ for all but finitely many $\gamma \in \Gamma$, we deduce that

$$rac{1}{4} \left| \gamma'(0)
ight| \left(lpha \,+\, \log \, rac{4}{\left| \gamma'(0)
ight|}
ight) \ \leq \ \left| \gamma'(z)
ight| \left(lpha \,+\, \log rac{1}{\left| \gamma'(z)
ight|}
ight).$$

We integrate over B_0 . Since mes $B_0 > 0$ the assertion (4.14) follows from (4.15).

5. The inner factor of the derivative

Let Γ be a Fuchsian group of convergence type without elliptic elements, so that D is conformally equivalent to the universal covering surface of $D \ / \Gamma$.

We need some results about the Green's function. For $\zeta \in D$, we define the Green's function with respect to ζ by

(5.1)
$$g(z, \zeta) = \prod_{\gamma \in \Gamma} \left[\frac{\gamma(z) - \zeta}{1 - \overline{\zeta} \gamma(z)} e^{-i\vartheta(\gamma)} \right], \quad \vartheta(\gamma) = \arg \frac{\gamma(0) - \zeta}{1 - \overline{\zeta} \gamma(0)}.$$

It is character-automorphic and satisfies $g(0, \zeta) > 0$, $|g(z, \zeta)| < 1$ and g(z, 0) = g(z). We easily see that

(5.2)
$$|g(z, \zeta)| = |g(\zeta, z)|$$
 $(z, \zeta \in D).$

In particular $g(0, \zeta) = |g(\zeta)|$.

Let now $\zeta \in \partial D$ be a parabolic fixed point of Γ . Its stabilizer $\Gamma_{\zeta} = \{ \varphi \in \Gamma : \varphi(\zeta) = \zeta \}$ consists of the elements

(5.3)
$$\varphi_n(z) = \frac{2 z + i n \beta(\zeta - z)}{2 \zeta + i n \beta(\zeta - z)} \quad (n = 0, \pm 1, ...)$$

for some $\beta = \beta(\zeta) > 0$. Let R_{ζ} denote a complete set of right coset representatives of Γ with respect to Γ_{ζ} . Thus we can write Γ as the disjoint union

(5.4)
$$\Gamma = \bigcup_{\gamma \in R_{\zeta}} (\Gamma_{\zeta} \circ \gamma) .$$

Using the sin-product one can show that

(5.5)
$$|g(z, r\zeta)| \to \exp\left[-\frac{2\pi}{\beta(\zeta)}\sum_{\gamma \in R_{\zeta}} \operatorname{Re}\frac{\zeta + \gamma(z)}{\zeta - \gamma(z)}\right]$$

as $r \to 1 - 0$, locally uniformly in D. Hence we are led to define the Green's function with respect to the parabolic fixed point ζ by

(5.6)
$$g(z,\zeta) = \exp\left[-\frac{2\pi}{\beta(\zeta)}\sum_{\gamma \in R_{\zeta}} \left(\frac{\zeta+\gamma(z)}{\zeta-\gamma(z)} - i\operatorname{Im}\frac{\zeta+\gamma(0)}{\zeta-\gamma(0)}\right)\right].$$

This function is character-automorphic and satisfies $0 < |g(z, \zeta)| < 1$ and $g(0, \zeta) > 0$. It follows from (5.2) and (5.5) that $|g(r \zeta)| = g(0, r \zeta) \rightarrow g(0, \zeta)$ as $r \rightarrow 1 - 0$. Hence the angular limit $g(\zeta)$ satisfies

(5.7)
$$|g(\zeta)| = g(0, \zeta) = \exp\left[-\frac{2\pi}{\beta(\zeta)}\sum_{\gamma \in R_{\zeta}} \frac{1-|\gamma(0)|^2}{|\zeta-\gamma(0)|^2}\right].$$

Since g'(z) | g(z) is of the form (1.5) we can write [8, p. 111]

(5.8)
$$(\zeta - z)^2 \frac{g'(z)}{g(z)} = \sum_{n=m}^{\infty} a_n \exp\left[-\frac{2\pi n}{\beta} \frac{\zeta + z}{\zeta - z}\right] \quad (a_m \neq 0),$$

a power series in the "local uniformizer" exp $\left[-\left(2\pi / \beta\right) \left(\zeta + z\right) / \left(\zeta - z\right)\right]$. The number *m* is the multiplicity of ζ .

The open set $\{z \in D : |g(z)| < r\}$ (0 < r < 1) is invariant under Γ . Let G(r) be the component of 0 and let $\Gamma(r) = \{\gamma \in \Gamma : \gamma(G(r)) = G(r)\}$ be the stabilizer of G(r).

Theorem 8. Let Γ be a Fuchsian group of convergence type without elliptic elements. Then the following three conditions are equivalent:

- (i) Γ is of Widom type;
- (ii) the first Betti number b(r) of $G(r) \mid \Gamma(r)$ satisfies

$$\int_{0}^{1} b(r) \ r^{-1} \ dr \ < \ \infty \ ;$$

(iii) $\partial G(r) \cap \partial D$ consists of only finitely many equivalence classes of parabolic fixed points, and

$$\prod_{k} |g(z_k)| > 0$$

where z_k denotes a full system of non-equivalent zeros of g'(z) in D and of non-equivalent parabolic fixed points on ∂D , each with proper multiplicity.

If Γ is of Widom type then the inner factor of g'(z) is given by

(5.9)
$$g^*(z) = \prod_k g(z, z_k)$$
.

The first Betti number of the Riemann surface $G(r) / \Gamma(r)$ is the rank of the first singular homology group, in other words the maximal number of linearly independent elements in the abelianized group $\Gamma(r)$. H. Widom [21, p. 305] proved that

(ii) $\Leftrightarrow H^{\infty}(\Gamma, v) \neq \{ \text{ const} \}$ for every character v of Γ .

His results were expressed in terms of cross-sections of unitary line bundles which become character-automorphic functions by uniformization. We shall only need the following easier result:

Lemma 3 (Widom [21, p. 312]). We have

$$\exp \int_{0}^{1} b(r) r^{-1} dr = \sup_{v} \inf \{ \|f\|_{\infty} : f \in H^{\infty}(\Gamma, v) , \|f(0)\| = 1 \}$$

where v runs through all characters of Γ .

Proof of Theorem 8. (i) \Rightarrow (ii). Choosing $h(z) \equiv 1$ in Theorem 5 we obtain a function $f \in H^{\infty}(\Gamma, v)$ with |f(z)| < 1, $f(0) = g^{*}(0)$. Hence it follows from Lemma 3 that

$$\exp \int_{0}^{1} b(r) r^{-1} dr \leq rac{1}{|g^{*}(0)|} < \infty \; .$$

(ii) \Rightarrow (iii). It follows from (ii) that $b(r) < \infty$ for every r < 1. Hence $G(r) / \Gamma(r)$ is a compact bordered surface with at most finitely many punctures. The border components of G(r) have to lie in D (and not on ∂D because |g(z)| = 1 for almost all $z \in \partial D$); the punctures correspond to parabolic fixed points of Γ , and of these there are only finitely many equivalence classes.

Furthermore b(r) is the number of equivalence classes of critical points and parabolic fixed points for which $|g(z_k)| < r$. Hence

$$\log \prod_{k} |g(z_{k})| = \int_{0}^{1} (\log r) \, db(r) = -\int_{0}^{1} b(r) \, r^{-1} \, dr > -\infty \, .$$

Thus (iii) holds.

We need a lemma to complete the proof. Let $w_r(z)$ map D conformally onto the simply connected domain G(r) such that $w_r(0) = 0$, $w'_r(0) > 0$. Then

(5.10)
$$\Phi(r) = \{ \varphi = w_r^{-1} \circ \gamma \circ w_r : \gamma \in \Gamma(r) \}$$

is a Fuchsian group in D.

Lemma 4. The Green's function $g_r(z)$ of $\Phi(r)$ with respect to 0 satisfies $g_r(z) = r^{-1} g(w_r(z))$.

Proof. The function $r^{-1} g(w_r(z))$ is character-automorphic with respect to $\Phi(r)$ and is bounded by 1. Since the Blaschke product $g_r(z)$ has the same zeros $\varphi(0)$ ($\varphi \in \Phi(r)$) we see that

(5.11)
$$q(z) = r^{-1} g(w_r(z)) / g_r(z)$$

satisfies 0 < |q(z)| < 1. If D_0 is a sufficiently small disk around 0 then the disks $\gamma(D_0)$ ($\gamma \in \Gamma$) are disjoint and $|g(z)| > \alpha > 0$ outside these disks. Since $q(z) \neq 0$ it follows from the minimum principle that

(5.12)
$$|q(z)| > \alpha' > 0$$
 for $z \in D$.

Finally it follows from (5.11) that |q(z)| = 1 for almost all $z \in \partial D$. Hence q(z) is a bounded inner function, and its representation [6, p. 24] shows that (5.12) is impossible unless $|q(z)| \equiv 1$ and therefore $q(z) \equiv 1$.

(iii) \Rightarrow (i). We conclude from (iii) and (5.7) that

$$\prod_{k} g(0, z_{k}) = \prod_{k} |g(z_{k})| > 0$$

Hence it follows from the choice of (z_k) that the functions

(5.13)
$$\tilde{g}(z) = \prod_{k} g(z, z_{k}), \quad h(z) = \tilde{g}(z) / g'(z)$$

are analytic in D. Let now ζ be a parabolic fixed point of multiplicity m. We see from (5.13), (5.6) and (5.8) that

$$(5.14) |h(z)| \leq \frac{|g(z,\zeta)|^m}{|g'(z)|} = O(|\zeta-z|^2) (z \to \zeta).$$

We consider again the group $\Phi(r)$ (0 < r < 1) defined by (5.10). Let F(r) denote its normal fundamental domain. Let ξ be a parabolic fixed point of $\Phi(r)$. Then $\zeta = w_r(\xi)$ is a parabolic fixed point of $\Gamma(r)$ and hence of Γ . Since some oricycle at ζ belongs to G(r), the mapping function has a finite non-zero angular derivative $w'_r(\xi)$ by a theorem of Carathéodory [16, p. 308]. Hence we conclude from (5.14) that

(5.15)
$$h(w_r(z)) \mid w'_r(z) = O(|\xi - z|^2)$$
 as $z \to \xi$ in every angle.

We consider now the subharmonic function

(5.16)
$$u_r(z) = \left| \frac{r h(w_r(z))}{w'_r(z)} \right| \sum_{\varphi \in \Phi(r)} |\varphi'(z)| .$$

Since [19, p. 517] [17, p. 636]

$$\sum_{\varphi \in \varPhi(r)} |\varphi'(z)| = O((1 - |z|)^{-1})$$
 ($|z| \to 1$)

it follows from (5.15) and (5.16) that $u_r(z) \to 0$ as $z \to \xi$, $z \in F(r)$. Hence we conclude from (iii) and (5.16) that $u_r(z)$ is continuous in $\overline{F(r)}$ and that $u_r(\xi) = 0$ for all parabolic fixed points ξ .

Since $u_r(\varphi(z)) = u_r(z)$ ($\varphi \in \Phi(r)$) we deduce that the subharmonic function $u_r(z)$ attains its maximum on the free sides of F(r) where, by Lemma 4 and by (5.13),

$$u_r(z) = \left| \frac{r h(w_r(z))}{w'_r(z)} \right| |g'_r(z)| = |h(w_r(z)) g'(w_r(z))| = |\tilde{g}(w_r(z))| \leq 1.$$

Hence $u_r(z) \leq 1$ for $z \in D$ and therefore, by (5.16),

(5.17)
$$\sum_{\varphi \in \Phi(r)} |\varphi'(z)| \leq \left| \frac{w'_r(z)}{r h(w_r(z))} \right| \quad (z \in D).$$

We keep $z \in D$ fixed and let $r \to 1 - 0$. Since the left-hand side of (5.17) contains only non-negative terms and since $w_r(z) \to z$, $w'_r(z) \to 1$ we see from (5.10) and (5.13) that

(5.18)
$$u(z) = \sum_{\gamma \in \Gamma} |\gamma'(z)| \leq \frac{1}{|h(z)|} = \left| \frac{g'(z)}{\tilde{g}(z)} \right| \quad (z \in D).$$

Hence condition (iii) of Theorem 4 is satisfied, so that Γ is of Widom type.

To prove (5.9) we write the inner factor of g'(z) in the form [6, p. 24]

(5.19)
$$g^{*}(z) = g_{0}(z) \exp\left(-\frac{1}{2\pi} \int_{|\zeta|=1}^{\zeta} \frac{\zeta+z}{\zeta-z} d\mu(\zeta)\right)$$

where $g_0(z)$ is a Blaschke product and μ is a non-negative singular measure because $|g^*| \leq 1$. It follows from (5.1) and (5.13) that the contribution to $g^*(z)$ from the zeros $z_k \in D$ is equal to $g_0(z)$. We see from (5.8) that $\mu(\{\zeta\}) = 2\pi m(\zeta) / \beta(\zeta)$ where $m(\zeta)$ is the multiplicity of the parabolic fixed point ζ . Hence (5.6) and (5.13) show that the contribution to $g^*(z)$ from the parabolic fixed points is cancelled by a corresponding term in (5.19), and it follows that $|g^*(z)| \leq |\tilde{g}(z)|$.

On the other hand, we obtain from (5.18) that, for $0 < \varrho < 1$

$$\log\left|rac{\widetilde{g}\left(0
ight)}{g^{st}\left(0
ight)}
ight| \;=\; rac{1}{2\pi\,arrho}\int\limits_{|z|=arrho}\log\left|rac{\widetilde{g}}{g^{st}}
ight||dz|\;\;\leq\; rac{1}{2\pi\,arrho}\int\limits_{|z|=arrho}\log\left|rac{g'}{g^{st}u}
ight||dz|\;.$$

Since |g'(z)| = u(z) and $|g^*(z)| = 1$ for almost all $z \in \partial D$ and since $u(\varrho z) \leq 4 u(z)$ for $z \in \partial D$, it is easy to show that the last integral tends to 0 as $\varrho \to 1 - 0$. It follows that $|\tilde{g}(0) / g^*(0)| \leq 1$ and hence from $|g^*| \leq |\tilde{g}|$ that $|g^*| = |\tilde{g}|$, $g^* = \tilde{g}$.

References

- AHERN, P. R., and D. N. CLARK: On inner functions with H^p-derivatives. -Michigan Math. J. 21, 1974, 115-127.
- [2] BEARDON, A. F.: Inequalities for certain Fuchsian groups. Acta Math. 127, 1971, 221-258.
- [3] CARGO, G. T.: Angular and tangential limits of Blaschke products and their successive derivatives. - Canad. J. Math. 14, 1962, 334-348.
- [4] CARLESON, L.: Sets of uniqueness for functions regular in the unit circle. -Acta Math. 87, 1952, 325-345.
- [5] COLLINGWOOD, E. F., and A. J. LOHWATER: The theory of cluster sets. -Cambridge Univ. Press, Cambridge, 1966.

- [6] DUREN, P. L.: Theory of H^p spaces. Academic Press, New York, 1970.
- [7] EARLE, C. J., and A. MARDEN: On Poincaré series with application to H^p spaces on bordered Riemann surfaces. Illinois J. Math. 13, 1969, 202-219.
- [8] FORD, L. R.: Automorphic functions. Chelsea Publ. Comp., New York, 1951.
- [9] FROSTMAN, O. Sur les produits de Blaschke. Kungl. Fysiogr. Sällsk. i Lund Förh. 12, 1942, 169-182.
- [10] HASUMI, M.: Invariant subspaces on open Riemann surfaces. Ann. Inst. Fourier (Grenoble) 24, 1974, 241-286.
- [11] MCMILLAN, J. E.: Boundary behavior of a conformal mapping. Acta Math. 123, 1969, 43-67.
- [12] METZGER, T. A., and R. RAJESWARA RAO: Approximation of Fuchsian groups and automorphic functions of dimension -2. - Indiana Univ. Math. J. 21, 1972, 937-949.
- [13] MYRBERG, P. J.: Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche. Acta Math. 61, 1933, 39-79.
- [14] NEVANLINNA, R.: Eindeutige analytische Funktionen. 2nd edition. Springer-Verlag, Berlin, 1953.
- [15] POINCARÉ, H.: Sur l'uniformisation des fonctions analytiques. Acta Math.
 31, 1908, 1-63.
- [16] POMMERENKE, CH.: Univalent functions. Vandenhoeck u. Ruprecht, Göttingen, 1975.
- [17] RAJESWARA RAO, K. V.: Fuchsian groups of convergence type and Poincaré series of dimension -2. - J. Math. Mech. 18, 1969, 629-644.
- [18] TAYLOR, B. A., and D. L. WILLIAMS: Zeros of Lipschitz functions analytic in the unit disc. - Michigan Math. J. 18, 1971, 129-139.
- [19] TSUJI, M.: Potential theory in modern function theory. Maruzen Co., Tokyo, 1959.
- [20] WIDOM, H.: The maximum principle for multiple-valued analytic functions. -Acta Math. 126, 1971, 63-81.
- [21] $\gg H_{\phi}$ sections of vector bundles over Riemann surfaces. Ann. of Math. (2) 94, 1971, 304-324.

Technische Universität Berlin Fachbereich Mathematik D 1000 Berlin 12

Received 15 August 1975