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ON THE GREEN'S FUNCTION OF FUCHSIAN GROUPS
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1. Introduction

Let I be a X'uchsian group, that is a discontinuous group of Möbius

transformations

(t'l) Y(z) : "*- (o ( oc --2n ' lal < I )

of the unit disk D : { l"l < t } onto itself. For simplicity we assume

throughout the paper that 0 is not an elliptic fixed point. Let I denote the
identity t(") : z and let

(1.2) X : {zeD: ly'@)l<l forall yef, y * tJ

denote the normal fundamental domain with respect to 0 .

A charqnter of l- is a complex-valued function a(y) satisfying

a(E"y): u(du(y), lu(y)l: I (9,Tel).

An analytic function f(") (z e D) is called character-automorphic if
(I.3) f(y(")) : a(y)f(z) (y e t)

for some character a of f . This is true if and only if lf\@)l - lf@)l
forall yef.

We assume now that -f is of cuLaergence type, t'hat is

) tt - lv@)l\ - (l - l"l'lZlv'@)l < q (z e D).
lef yef

Then the Green's function of J- with respect to 0 is defined as the Blaschke

product (compare (f.f))

(1.4) s@) : II Se-i^til ,1211 (r\(y) : arg 7(0) , r1(r) : 0 ) '
yer

see Poincar6 [I5], Myrberg llSl and Nevanlinna [14, p.2l+]. We have
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(1 .5)

(1 .6)

ls@)l - nW@)l ,
yel

The Green's function is character-automorphic and satisfies g(0) : 0 ,

lg@)l < | (z e D ) , and tt f(") is any function with these properties then

lf@l < lg@)l . Projecting -log lg(z)l to the Riemann surface D I T, we
obtain the Green's function of D I l, the smallest positive harmonic
function with a logarithmic pole at a certain point.

We say that an analytic function /(z) ( z e D ) has the angular limit
f(e) * teaD if f(z)--f(q as z-->f ineveryStolzangleat 6.The
angular limit of the derivative is called t}lre angul,ar d,er'i,aat'iue and is denoted
by "f'(6) if it exists. The function is called of bounded characteristic ("be-
schrånktarbig") if

log+ lf? nnfl)l ttf

g'(z) S z'(e)

s(r) 
: 

hy@)

2n1r
2nJ

0

This is true if and only if f(z) is the quotient of two bounded analytic
functions [f4, p. 189].

The Green's function g(z) of -l' has angular limits with lg(6)l : t
for almost all f e 0D . Considering the angular derivative we define:

f is of accessible tApe if g'(C) exists on a set of positive measure
on aD;
f is of fully access'ible type if g'(q exists almost everywhere on aD ;

f is of Widom tApe if the function g'(z) is of bounded characteristic
in D.

(u)

(b)
(c)

Since every function of bounded characteristic has finite angular limits
almost everywhere [4, p. 208], it is clear that (c) = (b) = (a) .

We shall give a number of characterizations of these concepts. In
Theorem I we show, for instance, that

.l- isof accessibletype e mes(a-F n aD) > 0.

fn Theorems 2 and 3 we characterize groups of accossible type in terms of
their Riemann surface D lf , using results of J.E.McMillan [ff] on the
angular derivative of univalent functions. We construct a new example
of a group of convergence type that is not of accessible tyle (compare

[r9, p. 515]).
Let, E-(1, u) denote the Banach space of bounded analytic functions

satisfying (f .3) for the character o of .f . If l- is of Widom type and
g*(z) is the inner factor in the canonical representation of g'@) 16, p. 25f,

We sbqw (Theorem 5) that
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(1.7) f(z) : ffi ZrW) 
h(y (")) s* (y(,))#

defines a bounded linear operator h eH*r-f eH*(T,u); this is a

modification of a construction of Earle and Marden [7, p. 206]. We give

an explicit formula for g*(z) in Theorem 8. It follows from Theorem 7

and from the remarkable results of Widom [2f] (see also [20]) that

.l is of Widom type + H*(f , a) * { const } for every a

if J' has no elliptic elements. Hardy classes of regular Riemann surfaces

of Widom t54pe were also considered by Hasumi [10].
Our definition (c) was suggested by e paper of Ahern and Clark [1] on

the angular derivative of Blaschke products. fn Theorem 6 we show that

zn, Z, te) los #yerZttvl :yer

where l(y) -

r
mes yQI n

is of Widom

aD), and in Theorem 7 that

type

2. Groups ol accessible tYPe

An or'i,cycle at e e aD is a d.isk in D touching aD at ( . We call

c e aD an ori,cycl,ic poi,nt (withrespect to J-) ifevery oricycle at f contains

only finitely many points Z(O) ( y e f ) ; it is easy to deduce that, for each

z eD, every oricyclo contains only finitely ma,ny points y(") (y e l).
This concept is motivated by the following lemma'

Lemma I. Ior euery oricyclic poi,nt (, with at m,ost colmtably mnny

ercepti,uns, there eri,sts y e I such thnt the normnl, fund,amental d,omain

y(E) with respect to y(0) is tangential to aD at C .

The domain H c D is called tangenti,al to aD at C if H contains

every Stolz angle

(2.1) S : {, € D: larg (1 Enl

for ö>0 andsome q:g(ö) >0.
Theorem l. Let T be a Xuchs'i,an group and' Iet 0 < B azn

Then the following four conil,iti,ants are equ'i'oalent:

(i) The normal, fund,amental, d'omai'ns y(F) satisfy

)mesPDnay@)l 2 F;
yef
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(ii) there eui,sts a measurable set B c aD containi,ng no two l-
equiaalent poi,nts such that

,årrtu*z{a) 
> f ;

(iii) I i,s of conaergence type anil,

mes{f eoD:9'(() exists} > f ;

(iv) the set of ori,cycl,ic points has measure 2 B .

The x'uchsian group -l' is called of accessi,ble type if it satisfies the above
(equivalent) conditions for some B > 0. we can replace (i) and (ii) by the
more concise conditions

(i') mes (äX n aD) ) 0;
(ii') there exists a set of positive me€Lsure on aD that contains no

two -l'-equivalent points.
The group "l' is called of fulfu access'i,ble tgpe tf it satisfies the above con-
ditions with B : 2n . Every group of tho second. kind is of accessible kind
as (i') shows, but need not be of fully accessible type as Exampre 2 will
show.

R, e m a r k . One might attempt to "prove', (ii) for all groups as
follows: we choose a representative in each J'-equivalence class. Their
union B contains no two .l'-equivalent points and satisfies

'u 'Y(B) 
: aD 

'

and this would seem to imply (ii) with f :2n. Unfortunately, the set
B need not be measurable as the existence of groups not of accessible
type shows.

we need the following result of Frostman [g] on Blaschke products;
see also Ahern and Clark [f].

Lemma 2. Let (eaD.If bc)l:t and, g'(q+q er,i,stthen

(2.2) ls'G)l - yer

conaersely, if tlt'is surn conLaerges th,en lg@l - I and, g'G) + oo erist.
Cargo t3] has shown that, in the above case,

(2.3) g(z) -> g(e) as z -+ e in everJr oricycle at, e

Proof of Theorem t. (i) :> (ii): ft is sufficient to show that only
countably many points on ar n aD can be J--equivalent to some other
point on aXnaD. Let C, e'ea?naD and €:yG,) for some
y e f , T * l. Since -F is n.e. (: non-euclidean) convex and contains
a disk arqund 0, it is easy to see that the radial segments [0 , 6] and



convergence type. Furthermore, (ii) implies

(2.4) p
yel yel

ly'(C)l We I :

Hence the sum (2.2) converges almost everywhere on .B, and Lemma 2

shows that g'G) + m exists almost ever;rwhere on B and therefore
almost ever;rwhere on Urer y@) . k follows from (ii) that this is a disjoint
union and that it has measure > f . We remark that, by (2.$ and (2.2),

[0 , ,"']
y(E) ,

There
many

(ii)

(2.5)

(iii) +
ir ls(ql -
conditions
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lie in I . Hence the n.e. segrnent from y(0) t'o y(C) _ C lies in
and we deduce that the n.e. bisector of [0 , Z(0)] also ends at C .

exist only countably many such bisectors and thus only countably
such points C .

+ (iii): ft, is easy to deduce from (ii) [9, p. 5L4] that f is of

ls'G)l ldcl : å*"s 1l(B)

!E'"'(r) 
r) wctI

I
(iv): ft is sufficient, to show that C e 0D is an oricyclic point
I and g'(C) + co exist. Lemma 2 shows that, und"er these

yel

If e ) 0 it follows that, for some finite subset fo - J-o(r) of f ,

where we use the notation (1.1). This is
and because all oricycles ab C have the

for y e T \ /-o

our assertion because a _ Z-t(O)
form

(2.6)

(2.7)

(2.8)

1 lol'
lC - "l' 

: lY'(01

(iv) + (i): This assertion follows at once from Lemma l.
Proof of Lemma l. Let f be oricyclic and not one of the countably

ma,nypointswhere lyr!)l : lyz!)l for some /1 * y2. Then, bydefinition,
every oricycle (2.7) contains only finitely many points a : y-t(O) ( y e I ).
Hence (2.6) holds for some finite set .l-, : .l-.(r) . It follows that, for
7 e J-r Ie,

IL lzl, ( +:
ilr-4r:Re=z_-J

lv'@)l - f-gf
11 a,zlz

T IIAP- '=.1 ("eD)z Llol

Let ö ) 0 and let B be the Stolz angle (2.1). Since l1 lAl> I it is easy
todeducegeometricallyfrom(2.S)that ly'@)l<l for z e B and yeJ-r
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J", if e)0
choose A(ö)

Tt, Tz e J-o '

for yel-s,
YeT, T+

is sufficiently small. By the above property of C we can

in (2.L) so small that lyr@)l + lyr@)l for z e ,S and distinct
Then there exists a unique V e l-o such that

ly'@)l < lv'Q)l (z €s)
y + (p. Since lV'@)l > i(r):1 this relation holds for all

g , and it follows that I c V-t@) .

3. Groups of accessible type and Riemann surlaces

We give first a characterization in terms of simply connected domains.
T h e o r e m 2. The Euchsi,an grougt T'i,s of access'i'bl'e type i'f anil, only

if there eui,sts a simply connecteil d,omain G c D containing no two f-
equ,åaatrent po'i,nts, such that aG n aD has pos'i,t'i,ue harmoni,c rnecuture relati'ae

to G.
If z:y(s) maps {lsl <t} conformallyonto G andif A isthe

set of points ei$ where the angular limit ,p("'ö) exists and satisfies

lrp@'fl)l : l, then the last condition of Theorem 2 means that mes A > 0 .

Proof. (a) Let l" be of accessible type. Then we choose the normal
fundamental domain F as G. Since a-F is a rectifiable Jordan curve and
since mes QI n aD) > 0 by Theorem I (i), it follows from Riesz' theorem

[5, p. 50] that mes A > O .

(b) Conversely, let the condition of the theorem be satisfied and let
ei$ eA. Since l,rp("no)l: r > Irp(s)l it is clear that arg (rp(s) - ,p("'8))

is bounded in s e D . Hence it follows from McMillan's twist point theorem

[1, Th. f] [f6, p. 326] that the angular d.erivative y,'(r'fl) exists and. is

* 0, @ on a set AocA with meslo : mes A> 0. Another result
of McMillan [], Th.2 (iii)] [6, p.328] thenshowsthat Bo : tp(Ao)caD
has positivo measure. By a simple property of the angular derivative

[16, p. 303], the domain G is tangential to aD at evety C e Bo. This
implies that the sets y(Bi (y e I ) are disjoint because the domains
y(G) are d.isjoint by the hypothesis of the theorem. Hence Bo satisfies
condition (ii) of our Theorem I and J' is therefore of accessible type.

We turn now to necessary and sufficient (conformally invariant) con-
ditions in terms of the Riemann surface D I I obtained by identifying
J"-equivalent points. We assume that I' has no elliptic elements, so that
D is (conformally equivalent to) the universal covering surface of D I T .

Then Theorem 2 states that J' is of accessible type if and only if D I f
contains a simply connected d"omain H such that aH n a@ | f) has
positive harmonic me&sure.

In the next criterion, v'e allow multiply connected domains. The suf-
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ficiency proof is based. on a modification of the Lusin-Privalov construction
due to McMillan [fI]. We denote by A(E) the linear measure (one-

dimensional Hausdorff measure) of D c C .

T h e o r e m 3. The Xuchsi'an group I without elli,Ttti'c elements is af
accessi,ble type i,f anil onl,y i,f there eri,sts a d,omni'n I c D I T wi,th the follorn-
ing properti,es:

(l) there is a conformal, map h of some pl,ane d'omain H onto / ;

(2) there i,s a set E caH with A(E)> 0 such that, for eaery w eE ,

the i,nteri,or T(w) of some equilateral triangle of aper w lli'es i,n G;
(3)i,f w"eH, wn->lDeE (n-+co) thenthepo'i'nts h(w*)e/ hnue

tn limit gtoi,nt i,n D I f .

Proof. (a) Let f be of accessible tlpe and let tp(s) map D
conformally onto -F . Since ä1 is a rectifiable Jordan curve and since

mes (al' n oD) > 0 , we can find a set Aocy-t(aI n aD) with
mesr4o > 0 such that the angular derivative yt'(s) + a exists for all
s eAo [5, p. 5f], [6, p.320]. Hence -F is tangentialto aD at eachpoint
w eE : V(Ao) so that -X' contains a triangle, and mes Ao) 0 implies
A(E):mes,E>0.

Since 1 contains no two .l-equivalent points the projection h of D
onto D I f maps I (one-to-one) conformally onto some domain
/cDlf . X'inally let wneI, unlweE. We have lw*l {ly(*")l
(y el ) by the definition of the normal fundamental domain. Since

lwl : I it follows that (h(w*)) has no limit point in D I l.
(b) Conversely, let the condition of the theorem be satisfied. We may

&ssume that the triangle T(u;) has the rational angle a(zo) at zu and that
its base lies on the (oriented) line L(w) of nbional inclinat'ion and rational
distance from 0 . Since { (o(w), L(w)) : w e E } is countable and since

A(E) > 0, there exists EocE witr"a A(Eo) > 0 such that

a(tp): fr', L(*) - Lo for we Da(3.1)

The union of the domains f @) (w e ilo ) has a connected. component
flo such that A(Eo n aHo) > 0 . It follows from (3.1) that Ho is simply
connected and that A(aHo) ) 0 . Let p(s) map D conformally onto

flo . Then g(s) is continuous in 5, and

Ao : 1eö8: p@ifl) eUofi aBo) c aD

satisfies mes.do > 0 116, p. 3221.

Since flo c f1 by property (2), we see from (l) that la(fIo) is a simply
connocted subdomain of / c D I l. Since J- contains no elliptic elements
the inverse p-l of the projection maps h(Ho) conformally onto some
simply connected domain Go containing no two J"-equivalent points, and

V : p-L " h " g maps D conformally onto Go . It follows from property
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(3) that tp(Ao) c aD . Hence aGo n aD has harmonic measure
) mes Ao ) 0, and we conclude from Theorem 2 that l- is of accessible
type.

We construct now an erample. Let L, be an open arc on 0D; we
allow .tt : b. We chooseacountableset PCD with

Fnao - Lo: aD\r1

such that, at each w e L* the symmetric Stolz angle of opening z / 2
contains infinitely many points of P . Letr l- be the X'uchsia,n group
associatedwiththedomain G: D rP. Thus G isconformallyequivalent
to D I f . Hence the projection ma,p is an automorphic function /(z)
(zeD ) with f(D): G which is thus non-constant and bounded. In
particular, it follows that -l- is of convergence type. We ma,y assume
that /(0) :0.

By X'atou's theorem the angular limit /(() exists for almost all ( e aD .

We set

(3.2) Ei : {C e aD: f(() eL1} (j : r,z).
Since all angular limits /(1) lie on 0G : Lo U Lt U P and since P has
zero capacity, it follows [4, p. 209] that mes Zo + mes Dt : 2n .

We show now that

(3.3) mes ln,ng ay(n): o

Otherwise there would exist y e f such that mes (.Eo n ay@)) > 0 .

Let 9(s) map D conformally onto y(F). Since ay@) is rectifiable it
follows from Riesz' theorem that A, : E-t(Eo fi ay(I)) has positive
measure. Now ?(s) : /(E(")) maps D conformally onto fQ@D :
f(X)cG. Tb follows from (3.2) for every ei& eAo that rp(s) tends to a
limit on tro ur s --- et$ along a suitable arc. Sinco rp is a bounded function
it follows that the angular limit exists and satisfies ,,p(eta) ef(Eo): L0,
in particular l''rp(ene)l: I . As in the proof of Theorem 2 we therefore deduce
from McMillan's twist point theorem that /(.F') , and thus G, is tangential
to 0D at some point of Zo . But this is false by our choice of P : D r G .

Thus (3.3) has been proved.
If we choose Z, : O then mes -Eo : 2n . It follows from (3.3) that

mes (å1 fi aD): 0. Hence we have obtained (compare Tsuji [19,p.5r5]:
Example l. There is a Tuchs,i,an grm,p not of accessi,ble tgpe for

which there er'i,sts a non-canstant butnd,ed, autarnorphi,c function and, whi,ch is
therefore of canuergence type.

Let now L, be an arc of length e and let a(w) be the harmonic
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measure of L, ab w relat'ive to D. Then ,(f(z)) is bounded and harmonic
in D andhas,by(3.2),theangularlimit 0 on D, and I on Dr. Therefore

e : 2na,(0) : 2n a(f(o)) : I Pel : mes Zr .

!,
Using (3.3) and the fact that mes "Eo * mes Et : 2n we deduce that

-"*fra n g;yql ( mes E, : ,.

Hence we have shown:
Example 2. Ior eaery e)0, tlt'ere'i's a Fuchs'i,an groryt of the

seconil, lcinil, (thus of accessi,ble type) such that

) mes pD n ay@)l { e.
yer

In parti,cul'ar the li'rndt set of T has measure 2 2n - e .

4. Groups of Widom type

Let T be a Fuchsian group of convergence type for which 0 is not
an elliptic fixed point. We set

yer

Then u(z) ) I because c e I . It follows from (I.5) that the Green's

function g(z) satisfies

(4.r )

(4.2) ls'@)l - s(z)Z#l - u@) (ueD).

T h e o r e m 4. The foll,owi,ng three conil'i,t'ions are equiaal'ent:

(i) g'(z) is of bounil,ed, characterist'ic;
f

(ii) ;f tog u(z) lilzl < oo ;

öD

(ili) there erists a character-automorphi,c Juncti'on g*(z) wi'th g*(0) + 0

such that

ls*@)l =W < I (zeD)'

If (i) hold,s tlten we can choose g* as the i'nner factor of g' , so that

(4.8) s'(z) : sx(z) expl* I ?!"^ru0) ld]lf (z e D | .

öD
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We say that T is of Wi,darn type if it satisfies the above equivalent
confitions; we shall describe the relation of our definition with Widom's
work in Section 5. We deduce first a consequence of (iii):

Theorem 5. Let I beof Wid,omtypeand, let g*(z) betheinner
factor of g'(z). If a i,s any character of I and, i,f h(z) is analyti,c and, bound,eil,

i,n D then

(4.4) f(") : #z-rs*0(z))ut t"ll'fa
is analgti,c ån D and, satisfi,es f(y(")) - a(y) f(z) ( y e I ) and,

(4.5) sup l/(z)l ( sup lh(z)l , /(0) : e*(0)å(0) .

zeD zeD

Thus (a.a) defines a bounded linear operator from 11- irrto H*(l , a) ;

compare [7]. If a* is the character associated with g* then we can write
(4.4) as

(4.6)

Metzger and Rajeswara Rao [2] have shown that this Poincard theta
series is + 0 if h(z) * 0 is a polynomial.

We only mention thaf (a.\ defines a bounded linear operator from the
Hardy space 11å into HP(l , u) for every p ) I and that

ll/ll? < llhllp (t <P ( * );
compare Earle-Marden [7] and Widom [2f].

Proof of TheoremS. Since g(O)ly(O):O for y+L and :g'(0)
for y : r, we have /(0) : g*(0) å(0) because u(t) : I . If lh(z)l < M
for z e D then, by (4.6), (a.l) and (iii),

f(")- 
g(z)g*(z) S- v'(z\

tr Aa(y)a*(y)h(y(zryi;

ls*@) I s ls@)

ls'@)lhly@) ty'@)l < *l'#lf@l < M u(z)

fn particular, we see that the series (4.4) converges absolutely and that
f(z) is analytic in D. X'or g e -l-, we obtain from (4.4) and (f .5) that

f@(")) v'@) : ffi Z6', s*(v " q(z)) h(v " E@)/##
: ffi Z,tvt u(x) s*Q@Dh(x@))# : a@) f(z) .

Proof of Theorem 4. (a) Suppose that (i) holds. Since, by (2.2),

W'(ql : u(() for almost all e e aD, it follows [6, p. 17] that (ii) holds.
X'urthermore we can write 16, p. 25]



On the Green's function of Fuchsian groups 419

(4.7) g'(") : g*(z)w(z) (zeD)

where the inner factor is g*(z) and where the outer factor is given by the
exponential in (a.3) because lS'(C)l : u(l) for almost all f . Hence

(4.8) toglw(z)l : * I #_ ,ftosu4) ld,q.*" io 15

It follows from a well-known identity and from u(e) : u\(il) ly'(C)l
that, for TeT,

Iog lw(z)l : * I å#ffilz'(r)l [og uoGD + rog lv'161 l] wel '
öD

If we substitute (* : y(e) and use the Poisson integral formula to evaluate
the contribution from the second summand, we see that

tos lw(z)l - los ls|@)l + tog ly'(z)l .

It follows that w(z) is character-automorphic, hence also g*(z) .

We write now l- : {yo:k : 1,2,... } and

(4.s) u,(z) : togilr'ot")l (n : 1,2, ...) .

h:l

Computation shows that the Laplacian is

lao : -e-Z,*il 
'r;' 

nl' .,-""2:#.
Hence we obtain from Schwarz's inequality that /a* 2 0 . Therefore
u*(z) is subharmonic in D , and it follows from (4.9) and (4.8) that

f f f -lzl2a*(z) 
= *J tt#a"(q\q <roglw(z)l (zeD).

ab I5

If we let n--->@ we obtain that logu lloglwl and thus, by $.7),
lhat u < lwl : lg' I g*1. Hence (iii) holds.

(b) Suppose now that (ii) holds. It is easy to deduce from (1.1) that
ly'(rz)l<aly'@)l for lzl:1, 0(r<1. Hence u(rz)t4u(z) by
(4.1). Therefore it follows from (4.2) that, for 0 ( r 4 I ,

rfrf
n J lo1* ls'(r z)l litzl < log 4 * zn J t"r u(z) ldzl < co .

dD dD

Thus (i) holds. This proof is due to Ahern and Clark [f, p. f 18].
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I
: u(z) -

so that g'(z) is the quotient of two bounded analytic functions and therefore
of bounded characteristic [4, p. 189].

T h e o r e m 6. If there er,i,sts a measurabl,e set B c aD containing
no two f-equi,aalent points such that, wi,th l(y) : mes lr(B) ,

(4.r0) 
*2,rt 

l - 2n, 
Zr*rrrceffi' 

< *
then I is of Widom type.

Proof. We shall verify that condition (ii) of Theorem 4 is satisfied. It
follows from the inequality between the geometric and arithmetic means
that

lr r \ t f
""n (,(r),Jr'r u(z) ld,zl) s *,J, u@) W"l

lf2n: 
Uil J u(c) Wel 

W)

where we have used (2.5). Hence, by (a.rl),

ff\-2n
.l rog u ld,zl

öD "',t""1
R,emark l. The confitions (4.f0) may be related to Carleson sets

[4]. These are closed sets -E c 0D for which

si 2n
>1": 2n, /l,logT . *

where In ate the lengths of the open arcs of which aD \ E is composed.
The Carloson sets are the zero sets on aD of analytic functions with
bound.ary values in Lip oc for some oc ) 0 . Their zero sets A in D satisfy

(4.n) { ^r"+,2 @,zt < a

as Taylor and Williams [8] have shown (I want to thank Dr. J. Stegbuchner
for this reference). Since

l_lalz l_lv-1(0)12
lv'@)l: p_@s dj-t|:ef (ver,zeaD)

(.) Suppose finally that (iii) holds. Then

ls*(*)l < r, lH,
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it is clear that

(4.12) A : {y(O): y e-l-} satisfies (4.rr) + f is of 'Widom type.

It will be proved in a fordlrcoming pa,per in the Michigan Mathematical
Journal lhat I is of Widorrr type if tho limit points of l- form a Carleson
set and if l- has no elliptic elements.

R,e m atk 2. In a manner similar to Theorem 6, ono can show that,
for 0 1g 1I,
(4.13) 2ltyl - 2n , Zt(y)t-o ( co + g' e Hp .

yel yef

If l- is finitely generated and ofthe second kind, Beardon [2] has proved
that

yer
forsome p:p(f)

It is easily seen that ly'@)l < const . ly'(0)l hokls on the free sides of T ,

hence on B : an n aD except for the parabolic vertices. Henco (4.13)

shows t}lLat g' e HP .

Theorem 7. If I isof Widomtypethen

(4.T4)

fnasimilarmannerwecanshowthat g'eHp implies ) ly'(o)lt-, < *.
This estimate is stronger than the estimate of Ahern and Clark [f , p. 120]
for general Blaschke products.

Proof. Let 3:annaD. Thereexists a (0{oc(f )suchthat
Bo: {zeB:u(z)2e") has positive measure becauso u(z)>1.
Since u(y(z)) ly'@)l : u(z) we see that

(4 15) Z {(* + rog ;6,) tu'@)t td,zt 
= Z ! brffii' tu'(z)t td,zl

: 
2^{u"ruo) td'ct t ! beu4) v'e't '

We set 6(r) : tlu* log(l/l)l (0<, <l). There is a unique to

with 0 ( fo ( I and 6(fo) : 6(l) : a. ft is easily verified that f(lt) q
t!z) for tt<-to, 0 < h <tz 

=t. 
Since (l l4) lZ'(0)l S ly'@)l <t

for zeB andsince (l l{ly'Q)l4fo forallbutfinitelyma,ny tel,
we deduco that

ttv'Q)l (" + ros#)
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We integrate over Bo . Since mes Bo > 0 the assertion (4.14) follows from
(4.15).

5. The inner factor of the derivative

Let f be a X'uchsian group of convergence type without elliptic
elements, so that D is conformally equivalent to the universal covering
surfaceof DlT.

We need some results about the Green's function. n'or I e D , we define
the Green's function with respect to I by

It is
g(z ,

(5.2)

fn part'icular
Let now

{ve f : vG)

(5.3)

character-automorphic and sat'isfies g(0 , C)

0) _ g(z) . We easily see that

Is@,C)l - ls(C,z)l (z,Ce-D).

s(o , C) : ls(C)l .

C e aD be a para,bolic fixe,C point of f . Its stabilizer f c _
: å ) consist's of the elements

2z + i"0(C z)v"@):ffi z)
(n - 0, t l, ... )

for some P : p(€) > 0 . Let Re denote a complete set of right coset
representatives of J- with respect to -1, . Thus we can write .l. as the
disjoint union

(8.4) r : 
,yorer,r).

Using the sin-product one can show that

(5.b) ts@,,c)l --- ""n[- #å3"=#)
&s r-->l - 0,locally uniformly in D. Hence we are led to define the
Green's function with respect to the parabolic fixed point ( by

(5 6) s(2, c) : exp l- ;åÅ,G+#- d rm 

=#)]This function is character-automorphic and. satisfies 0 < lS@ ,' C)l < |
and g(0,e)> 0.ftfollowsfrom (5.2) and (5.5) t}rat lg(r ql: g(0,r e)-
g(0 , C) as r --+ I - 0 . Hence the angular limit g(f) satisfies
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(5.7) tsr;1t: s(o,e): "*n[- ffi\,#r,':,J
Since g'(z) | g(z) is of the form (f .5) we can write [8, p. 111]

s,k\ + [ 2nnC+21(5.8) (C - ")':g(") 
: 

,4&rexpL- f -) 
(a* + 0) ,

apowerseries inthe "localuniformizer" e"p l-QnlilG + z)lG -z)1.
The number m is the multiplicity of { .

Theopenset {z eD:lg(z)l <r) (0 <r < f ) isinvariantunder -l'.
Ler G(r) be the component of 0 and let l(r) : { y e I: y(G(r)) : G(r) }
be the stabilizer of G(r) .

Theorem 8. Let T be a nuchsian group of conaergence type wi,thout
elli,ptia elements. Then the following three cond,i'ti,ons e,re equ't'aatrent:

(i) I i,s of Wid,om type;
(ii) the fi,rst Betti number b(r) of G(r) | l(r) satisfi,es

(iii) aG(r) n aD cons'i,sts "f only finitely
para,bolic fired, points, q,nd

r ls@o)l > o

mcnnA equiaalence classes ,f

where zo denotes a full, system of non-equiualent zeros of g'(z\ ön

D anil of non-equi,ualent parabolia fired, poi,nts on, aD , ea,ch with,
prop er rnulti,pl,i,ci,ty.

If I i,s of Widam type then the inner factor of g'(z) i,s giaenby

f ue) r-L d,r

(5.9) g*(z) _ TI g(z , ?n) .

h,

The first Betti number of the Riemann surfaco G(r) | fQ) is the rank
of the first singular homology group, in other words the maximal number
of linearly independent elements in the abelianized group f(r) .H. Widom
l2l, p.3051 proved that

(ii) + H*(l ,a) + {const} foreverycharacter a of l.
His results were expressed in terms of cross-sections of unitary line bundles
which become character-automorphic functions by uniformization. We
shall only need the following easier result:

L e m m a 3 (Widom [2f , p. 3f 2]). We huae
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exp b(r)r-Ldr: supinf{ll/ll-: f eH*(T,u), l/(0)l - l}

where u runs through al'l' characters of T .

Proof of Theorem 8. (i) + (ii). Choosing h(") : I in Theorem 5 we

obtain a function f eH-(|, o) with lf@l < l, "f(0) 
: g*(0) . Hence it

follows from Lemma 3 that

I

exp

{

f
J

:j

I
b(r) r-L dr

(ii) + (iii). It follows from (ii) that b(r) < a for every r < L .

Hence G(r) | f Q) is a compact bordered surface with at most finitely ma,ny

punctures. The border components of G(r) have to lie in D (and not on
aD because ls@)l : I for almost all z e aD ); the punctures correspond

to parabolic fixed points of I , and of these there are only finitely ma,ny

equivalence classes.

X'urthermore b(r) is the number of equivalence classes of critical points
and parabolic fixed points for which lg@n)l < r . Hence

log fI ls@u)l
h

(log r) d,b(r) _ b(r) r-t dr

Thus (iii) holds.
We need a lemma to complete the proof. Let w,(z) map D conformally

onto the simply connected domain G(r) such lhat w,(0) : O , w:(0) > 0 .

Then

@(r) _ {V_ w;l oyowri y e J-(r) }(5.10)

(5.11)

is a X'uchsian group in D .

L e m m a 4. The Green's functi'on g,(z) of @(r) wi,th resgtect to 0

sati,sfi,es g,(z) : r-1 g(w,(z)) .

Proof. The function r-t g(w,(z)) is character-automorphic with respect

to (D(r) and is bound.ed by I . Since the Blaschke product g,(z) has the
same zeros g(0) ( I e <D(r) ) we see that

q(z) : r-L g(r'a,(z)) I g,@)

satisfies O<lq@)l <I.If Do isasufficientlysmalldiskaround 0 then
thedisks y(Do) (yef) aredisjointand lg@)l> a>0 outsidethese
disks. Since q(z) + 0 it follows from the minimum principle that

(5. 12)
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Finallyit follows from (5.11) fhat lq(z)l: I for almost all z e aD. Hence
q(z) is a bounded inner function, and its representation [6, p. 24] shows that
(5.12) is impossible unless lq@)l - I and therefore q(z) : L .

(iii) * (i). We conclude from (iii) and (5.7) that

! tlo , ") : ToI ls("u)l > 0 .

Hence it follows from the choice of (zo) that the functions

Vt"l : fr g(z , zn) , h(") : V@) I g'@)

are ana\rtic n D . Let now 6 be a parabolic fixed point of multiplicity
m . We seo from (5.r3), (5.6) and (5.8) that

(5.13)

(5.14)

(5.16) ur(z) _

We consider again tho group O(r) (0<r<f ) defined by (5.10).
Let X(r) denote its normal fundamental domain. Let € be a parabolic
fixed point of @(r). Then C : w,(€) is a parabolic fixed point of J"(r)
and hence of -l'. Since some oricycle at ( belongs to G(r) , the mapping
function has a finite non-zero angular derivative w:,(t) by a theorem of
Carathdodory [16, p. 308]. Ifence we conclude from (5.1a) that

as z -> t in every angle.

We consider now t'he subharmonic function

r h(n:,(zD 
II > lv'@)l

wr\z) | Ee<nQ)

Since [19, p. 5L7] [17, p. 636]

q e@(r)

it follows from (5.I5) and (5.16) that u,(z)-->O as z*t, zeF(r).
Ifence we conclude from (iii) and (5.fG) tlnat u,(z) is continuous in ,F(r)
and that u"({) : 0 for all parabolic fixed points f .

Since u,(v@D : u,(z) ( E e a(r) ) we deduce that the subharmonic
function u,(z) attains its maximum on the free sides of -F (r) where, by
Lemma 4 and by (5.f3),

ur(z) _
r h(u:r(z)) L _r,- r, 17 ,_.. /^ \\ .., t^_. t- \\ , -
-;M-|wÅal-|h(w,(z))g,(t,',(z))l:lg(*,(,Dl<

(l"l *r)

Hence ur(z) 5 t for z e D and therefore, by (5.16),
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(5.17)

(5.18)

(5.19)

I u,!,@)

*år,lv'@)l 
< l;Mm (z eD)

We keep zeD fixed and let r-->I 0. Since
(5.I7) contains only non-negative terms and since

we see from (5.10) and (5.13) that

I l{ (z)
u(z) : 

Årly'@)l 
< lh@)l: IM

the left-hand side of
u:,(z)->2, u);(z) *l

(z eD)

Henco condition (iii) of Theorem 4 is satisfied, so that "l- is of Widom type.
To prove (5.9) we write the inner factor of g'(z) in the form [6, p. 24]

s*(z) : eo@)exp (- * 
,,,[,

where go(z) is a Blaschke product and p is a non-negative singula,r measuro
because lg*l < I . It follows from (5.f ) and (5.f 3) that the contribution
to g*(z) from the zeros zh e D is equal to go@) . We soe from (5.8) that
pWD : 2n m(() | p(O where mG) is the multiplicity of tho parabolic
fixed point f . Hence (5.6) and (5.13) show that the contribution to g*(z)

from the parabolic fixed points is cancelled by a corresponding term in
(5.19), and it follows thar W*@)l <li@l .

On the other hand, we obtain from (5.f8) that, for 0 < g < I

log ldrl

for almost all z e aD a,nd since
to show that the last' integral tends

li (0) I s*(0) I
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