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EXTREMAL LENGTH AND THE BOUNDARY
BEHAVIOR OF CONFORMAL MAPPINGS

BURTON RODIN® and S. E. WARSCHAWSKI®

Introduction

The Riemann mapping function f: E-—S of a simply connected
region I onto a standard region § sends a prime end ¢ of R to a bound-
ary point of S . The classical boundary behavior problem is to find a more
quantitative description by providing asymptotic estimates of f(w) as
w — { . The estimates will involve the geometry of R near (.

The problem originated with the question of extending the conformality
of the mapping f to a boundary point (. The early results dealt with the
behavior of f at a corner {, and with geometric conditions in a neighbor-
hood of ¢ which ensure the existence of the derivative of f, both for
unrestricted approach to { as well as approach in a Stoltz angle (angular
derivative”). The study eventually evolved into the consideration of asymp-
totic estimates for f under more general boundary configurations.

The present paper is a contribution to this study. It provides a number
of basic estimates, under quite general conditions, which yield new or
improved results when applied to special cases. Another aspect of the
present paper is the systematic use of extremal length techniques. It is
known that such techniques provide an efficient and powerful method of
proof in this subject [2], [11], [13], [14]; it will be seen that they also provide
a useful framework in which necessary and sufficient conditions can be
given for various analytic properties of f.

The convenient normalization of Ahlfors [1] will be used: S is a hori-
zontal parallel strip and f({) = + oo . Chapter I treats the problem in the
abstract. This generality is needed because of the variety of special cases
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considered in subsequent chapters. The basic viewpoint in Chapter I is to
assume that the approach w — { is described in terms of a given set of
cross cuts {V,} of R.If the extremal distances between the cross cuts
satisfy certain conditions then estimates of f(w) follow (Theorems 1 and 2).

In Chapter II these theorems are applied to the case that R is a strip
domain in the w = u + i v plane and the given cross cuts {V} are the
Ahlfors cross cuts {#,} . A number of theorems are obtained; one is a con-
dition for Re f(w) to behave like the Ahlfors integral [*du/d(u) (Theorem
3), and another is a condition for Im f(w) to be approximately linear on
®, (Theorem 5). The former result leads to a short proof of a theorem of
B. G. Eke [3] (see our Theorem 4). In §9 the results from Chapter I are
applied to the angular derivative problem. The result is Theorem 6; it
provides necessary and sufficient conditions for the existence of an angular
derivative. Although the conditions are not strictly geometric (they involve
extremal length), the result seems to mark progress on this unsolved
problem.

Chapter III is devoted to the proof of Theorem 8, an integral estimate
for extremal distance in a quadrilateral. This estimate is used repeatedly
in Chapter IV as a tool for applying the results of Chapter I to various
types of smooth domains R . These applications lead to asymptotic esti-
mates that are new or more general than previously known ones (Theorems
8, 9, 10).
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I. General theorems

Section 1 describes the notations and basic assumptions for the abstract
situation mentioned in the Introduction. It may be useful to mention here
the specific cases covered by this abstraction. Riemann surfaces R, rather
than plane regions, are needed only for §14. Cross cuts {V .} more general
than the Ahlfors vertical cross cuts {9,} are needed only in §§14—15.
In the case that R is a plane region the general cross cuts {V .} of this
chapter could have been required to possess endpoints on &R, although
no real simplifications result from doing so.

Sections 3 and 4 contain the main results of this chapter (Theorems 1
and 2).

1. Definitions and notations. Throughout this paper R will denote
a simply connected plane region or Riemann surface. S will denote the
parallel strip domain {z| —oo < Rez << +o0, 0 <Imz<<1}. f is
a given one-to-one conformal map of R onto S . { is the boundary point
or prime end of R which corresponds under f to z = 4+ 00 in S.

Let {V,] sy =s< +0o0} denote a family of disjoint cross cuts of
R ; 7cross cut’” is used here in the generalized sense that V is an open
Jordan arc in R such that R — V. has two components. It is required
that every sequence {V, }, where s, 7 + o0, be a fundamental sequence

of cross cuts for determining the prime end . In case R is a plane region
this requirement has the standard meaning from classical prime end theory.
In case R is a strip domain (Fig. 2; see Section 5), the Ahlfors cross cuts
{9} satisfy this requirement. It would not be relevant for the purposes of
this paper to review the general theory of prime ends on simply connected
Riemann surfaces in order to make the requirement more explicit; the con-
sequences of it which we use in the remainder of this chapter are easily
verified for each of the specific applications that are treated in Sections
5—10, 13—15. This viewpoint also applies to our use below of general
notions of ideal boundary.”

Let { H,| 0 <<t <1} be a family of disjoint arcs on R which have
their initial points on V,_ , and which tend to (. Note that each H,
intersects every V. .

A quadrilateral @, is a Jordan region with four distinguished boundary
points called vertices. The vertices determine the four sides o, (¢ =
1,2,3,4) of ¢,. We always assume that a definite ordering of the sides
has been chosen. The ordering will be specified by the notation ¢, =
Q(y1,ys5 5,74 - Invariably when this notation is used ¢, and y, will be
a pair of opposite sides of @, . Let @, = Q. fs; fs,0;) be another
quadrilateral. By a quadrilateral mapping of @, into ¢, we mean a 1—1

So ?
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conformal mapping of the interiors of ¢, and @, such that the continuous
extension of the mapping to the closures sends y, onto f; for
i=1,234.

There is a self-explanatory way to indicate the wvarious quadri-
laterals determined by the ares {V} and {H,}. For example,
QV,,V,;H,,H,) is a quadrilateral whose four sides lie on
V., V,, H, ,and H, . (If there is more than one such quadrilateral,
additional specifications must be given so that it becomes uniquely
determined. However, in all the special cases treated in the present paper
each V. and H, intersect in exactly one point; this implies that the
notation determines a unique quadrilateral. For simplicity, we now add
this condition as a general requirement for {V .} and {H,}. The quadri-
lateral notation therefore becomes unambiguous, and no further mention
of uniqueness will be made.) This notation also specifies the ordering of
the sides. We use a similar notation for quadrilaterals in the x,y -plane;
for example,

RQr=a,x=b,y=c,y=d)

has the obvious interpretation.

We shall employ a self-explanatory notation for the extremal distance
between a pair of opposite sides of a quadrilateral. For example,
MV, V,;H,, H,) denotes the extremal length in

Q(] = Q(T/sl ) Vsz 3 H’t1 ) Iite)

of the family of arcs in @, which join the sides of €, that lie on V_
and V.

It will be convenient to extend the notation for quadrilaterals to certain
simply connected regions that need not be Jordan regions. Let R, be the
component of R — ¥V, which is a neighbourhood of ¢ . Its ideal boundary
consists of ¢, V, , and two disjoint connected sets which we shall denote
by H, and H,.We choose the notation so that when f is extended to the
ideal boundary of R, it maps [, onto some ray {z| z>x,} and it
maps H, onto a ray {z| Rez>uz,, Imz=1}. The symbol
QV,,V,;H,, H,) denotes the simply connected subregion of E whose
ideal boundary consists of V, V, , part of H,, and part of H,. The
extremal length of all arcs in this subregion which join V, to ¥ is
denoted A(V, ,V,;H,,H,;). The extremal length of all (open) arcs
in this subregion ‘which separate the two sides lying on V_ and V is
denoted by A(H,,H,; V, ,V,). Variations of the notation, for example
MHy, H,; V,, V) or AV,,V,;H,, H,), are self-explanatory. We
may also speak of quadrilateral mappings” of such subregions.
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Figures 1 and 2 may be useful for keeping track of the symbols intro-
duced so far (in Figure 2, { isat + o).

QV,,. V. H,, H,)

Figure 2

2. Lemmas. In this section we have collected together a number
of lemmas for later use.

Lemma 1. Given a >0 and ¢ > 0, there is a 6, = 0,(a,&) >0
with the following property. Let A = a and let g be the quadrilateral mapping
of @ = Q=0,2=4;y=0,y=1) onlo @, = Qy,,7:;y=0,y=1)
where y, and y, are disjoint arcs which join {y = 0} to {y = 1}. If

(2.1) [Rez, < 8,, |4 —Rez| <06, (all zye€y;, 29€y,)

then |g9(z)—z| < e forall z € Q, with |Rez — (a/2)| < a/4.

Proof. Let G(z) = g(z) — z. If (2.1) holds then Re G is bounded
in absolute value by d, on the vertical sides of €, . Since it has vanishing
normal derivative on the horizontal sides, it satisfies the maximum principle
in ¢,, and hence |Re G| < 4, in

Q = Qx=0,x=a;y=0,y=1) C Q.

Therefore, if the theorem were false for a particular ¢ > 0 and ¢> 0,
we could obtain a sequence {G,} of analytic functions on @’ such that
Im@, =0 on the horizontal sides of @, Re@,—0 in €, and
|G,(z)| = e for some z with |Rez — (a/2)| < a/4; a contradiction.



472 BURTON RODIN and S. E. WARSCHAWSKI

Lemma 2. Let s> s, be given. To each &> 0 there is an a, =
ay(e) > " with the following property. If b > a > a, , then for all sufficiently
large s" one has

(2.2) \fw) + 0 = pw)] < e

Jor all w e QV,,V,;Hy, H)). Here v is the quadrilateral mapping of
QVy,Ve, Hy,H,) onto the rectangle Qx=0,x=A4; y=0, y=1)
where A = MV, V,;H,, Hy); C is a real constant.

Proof. Let {s,} be an arbitrary sequence of real numbers which tend
to +oo. It suffices to prove that the lemma holds when s” is replaced
by s, . Let y,(w) be the quadrilateral mapping  when s” is replaced
by s, . Forany s, let ]NES denote that component of R — V_ which contains
{ as a prime end.

(i) Suppose s" > s, is given. There exists a one-to-one conformal map

I of R, onto the halfstrip
Sp ={zm=2+tiy |, >0, 0<y, <1}

such that the continuous extension of F to V, sends V_, onto
ey =0,0<y<1}. F maps QV,,V, ; H,, H;) onto a quadri-
lateral D, < §;. Given o > 0, the rectangle {0 <z, <a, 0 <y <1}
will be contained in the closure of D, if » is sufficiently large.

Let 2z, = ¢,(2,) be the quadrilateral mapping of D, onto the rectangle
P, inthe z, = 2, + ¢y, plane, P, = Qx,=0,2, = 4,;94,=0,y,=1);
here 4, = XV,, Ve,; Hy, H)— +o0 as n-—>o. By reflection
across the lines {y; = 0}, {y; = 1}, and then {x;, = 0}, we can extend
¢, to a one-to-one conformal map of a region D onto the region PF =
{ -4, <wxy,<A4;, —1 <y, < 2}. The extended functions ¢, all have
the properties ¢,(¢) = ¢ and ¢,(¢) > 0. Since A, — + co it follows from
the Carathéodory kernel theorem that lim, . ¢,(z;) = 2z, uniformly on any
compact subset of { —o0 <a; <o, —1 <y <<2}.

Thus, given &> 0 and o > 0 there is an N = N(e,«) such that

&

23) o) —al < 5 i

0 <Rez, =a, 0 <Imy, <1, and n > N(¢, a).

S — f(Vy) which contains z = +o00. Let z; = h(z) map f(jifsr) one-to-
one and conformally onto the halfstrip S, = {@;, >0, 0 <y, <1} so
that its continuous extension carries f(V,) onto {2; =0, 0 <y, <1}
and z = + o0 onto z; = +00. Thus F(w) = A(f(w)) . Since h is dif-

(i) The function =z = f(w) maps R, onto the component of
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ferentiable at 2z = 4+ co there is a real constant € such that
lim,_ , , [k(z) — 2] = C, uniformly in {0 <y < 1}. Thus, given &> 0
there is an x(¢) such that

€
]h(z)—z—01<-2~ if Rez>ua(e), 0 <Imz <1.

Now choose a, = a,(e) > s’ sothat Re f(w) > x(e) whenever w eR, .
Then

&€
(2.4) |h(f(w)) — flw) — O] < 5 it wekR, .
(i) Finally, let @, b be given with ay(¢) << a << b. Choose o > 0
so that the image of Q(V,,V,; H,, H,) under F is contained in the
rectangle {0 <a; <o, 0 <y, <<1}.1If n = N(e,a) then by (2.3)

PuF@) = F@)| < = (0 e@V,, V, Hy, Hy).
or, since y,(uw) = g,(F(w)) and Fw) = h(f(w)).,

(25)  lple) — @) < 5 (weQ,, VyiHy, Hy)) .

From (2.4) and (2.5) we obtain the desired conclusion,
lfw) + C = p,(w)] < .
Lemma 3. Given ¢ > 0, thereisa 0, = 04(e) > 0 with the following

property. Let y be an arc in a rectangle ¢ = Qr=0,x=4;y=0,y=1)
such that vy separates the vertical sides of @ . Let

A= Me=0,y;y=0,y=1) and ' = My,x=4 ;y=0,y=1).

If 2+ 2" =4 — 0, then |Rez — 1| <¢ for all zecvy.

Proof. Reflect y and @ across the real axis to obtain y and Q.
Map @ U Q into the annulus {1 < |w| < ¢} by w = ¢™. The closure
of w(y U 9) is a continuum which separates the contours of the annulus.
In this way one can derive the lemma from Teichmiiller’s Modulsatz [17,
p. 649].

Lemma 4. Let M >0 be fixed. To ecach &> 0 there is a 0, =
0,(¢) = 0 with the following property. If A =< M , and if » is an arc in
Q@ = Q=0,2=4;y=0,y=1) which joins the two wvertical sides of
Q, and if
(2.6) » AMy=0,y: .)L—’O , X —4)

My=0,y=1;0=0,rx=A4)

=2t — (SA;
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and

My,y=1;2=0,x=A4)
My=0,y=1;2=0,x=A4)

(2.7) 1 —t—4,,

I\

then |[Imz —t| <e for all zey.

Proof. We simplify the notation so that the left-hand terms in (2.6)
and (2.7) become A’'/A and A”’/A.Thus 4 = 47! and M A > 1. Without
loss of generality we assume M = 2.

Given & > 0, choose J, < d3(¢/2M) /2 where ¢, is determined by
Lemma 3.

If 2>1 choose a positive integer n such that 2"' < 1 < 2", If
A <1 choose n = 0. Reflect ¢ across {Rez = 1/1} to obtain @Q*,
and set Q; = Q U @*. Reflect @, across { Rez = 2/1} to obtain @,
and set @, = @, U @f . Continue in this way until

Q = Qu=0,2=2"A;y=0,y=1)
is obtained. The images of » under these reflections piece together to form
an arc y which joins the vertical sides of Q.
Map E) onto Q" = Qu=0,u=412";v=0,v=1) by w = pk)=
#(1—27"2 ). Then y(y) separates @' into two quadrilaterals with ex-
tremal distances

The hypotheses (2.6) and (2.7) yield A"+ A" =1 — 214,. Since
27" 2 <1 this implies

A Z">l - A 6<8>
(2.8) g—{-? 257—264 = o —9\537/)

Therefore, when we apply Lemma 3 to the two quadrilaterals in @', we
obtain |[Rew — 27" 1| < ¢/2M for all wey(y). When this result is
. transferred back to @ via ' weobtain [27"AImz — 27" | < ¢/2M
for z ey, or
e
(2.9) Imz — P
The subadditivity of extremal distance, A" + A" < 1, together with
(2.6) and (2.7), implies that |(A’/A) — t| < 6,. When combined with (2.9)
this gives

_ 2" & .8
=22 =2 (Fev)
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&
(2.10) Imz -t < 0, + 3
for z €y and, a fortiori, for z €y . We originally chose 0, < d5(¢/2 M) [ 2.
We may require, in addition, that 0, < &/2. Then the bound in (2.10) is
< & as desired.

3. Behavior of Ref. In this section we give a condition on the cross
cuts {V,} which leads to an asymptotic estimate for the real part of the
strip mapping f.

Condition I. Given &> 0 there is an s; = s,(¢) > s, such that
if 8y >8> 8, > 8; then

(3.1) MV, VHy, Hy) + AV, Vs Hy, Hy) = AV, V,;Hy,Hy) —¢.

Theorem 1. Assume Condition I holds. Then there is a real constant
C such that

(3.2) lim [Re f(w) — AV, , V,; Hy, Hy)] = C.
wevy
Proof. Let &> 0 be given. Determine 05 = 03(¢/4) according to
Lemma 3; determine s, = s,(d;) according to Condition I; determine
ay = ay(e/4) > s’ = s; according to Lemma 2. We shall first show that if
s > a, then the horizontal oscillation of f(V,) is less than ¢ ; the horizontal
oscillation of a set U is the quantity

sup{ Rez; — Rez,| 2, €U ,2,€U}.

Given s> a,, choose a and b so that a, <a <s <b. For suf-
ficiently large s,

&

(383)  fw) + O —p) < ;  (w e @V, Vi Hy, Hy))

by Lemma 2, where 1y is the quadrilateral mapping of @' =
QV,,Vu; Hy,H) onto Q' = Q=0,x=4;y=0,y=1). Let
Vo= MV, V. Hy, Hy), Vo= MV, Vai Hy, H), and 1 =
Ve, Vy; Hy, H)) . Since ay, > s,(d5), Condition I implies that 24" + 4"
> 1 — ;. Since ¢ preserves extremal distances, a corresponding
inequality holds for the components of @ — y(V). Lemma 3 therefore
implies |Re p(w) — 4’| = e/4 for all we V . This inequality, together
with (3.3), implies that [Ref(w) + C - A'| < g2 for all wel,.
Therefore the horizontal oscillation of f(V) is less than e .

Let S, be the component of S — f(V,) whose boundary contains
+o0. Let S = {z] 0<Rez< 4w, 0<y<1}. Let g be the
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one-to-one conformal map of S, onto §; which makes the upper and lower
edges of S; correspond, respectively, to the upper and lower edges of S, .
Since ¢ is differentiable at + oo, there is a real constant C, such that
g(z) — z— 0, as z-> + oo . Therefore, since the horizontal oscillation of
Sf(V,) tends to zero as s — + oo, the same is true for g¢(f(V,)) . Therefore

Re g(f(w)) — AV,,, Vs Hy, H)) — 0 as  s—> 4o, wel,.
Therefore
Re f(w) + Cy — AV, , V,;Hy,H;) — 0 as s—>+w, wel,.

This completes the proof of Theorem 1.
Condition I is actually necessary and sufficient for (3.2). Both conditions
are related to the oscillation

w(s) = sup{ Re f(w,) — Re f(w,) | w;,w, € V }.

We have the
Corollary. The following statements are equivalent:
(i) The cross cuts {V} satisfy Condition I.

(ii) The oscillation w(s)—0 as s-—> + o0 .

(iii) There is a constant C' such that Equation (3.2) holds.

The proof of Theorem 1 shows that (i) implies (ii), and that (ii) implies
(iii). Clearly, (iii) implies (ii). To prove that (ii) implies (i) we pass to the
image quadrilaterals in S by means of f and verify the inequality that
corresponds to (3.1) there. This inequality is evident there because these
quadrilaterals differ from rectangles only by the horizontal oscillation of
their vertical sides, and these oscillations tend to zero.

4. Behavior of Im f. In this section we give a condition which will
be useful for proving that H, is asymptotic to the level line

{weR| Imfw) =t}.

Condition II. Given 0 <t <1 and ¢> 0, there is an a =
alt ,e) >0, M = M), s; = s,(t,¢), and a function d(s) > s, where
d(s) also depends on t and e, such that if s> s,, then
A IIO > Iit 5 VVs > Vd(s))
}'(Ho S Hy 5 Ve, Vd(s))

MH,  Hi 5V, V)
AMH, , Hys Vg, Vd(s)) -

and a(t,e) = AV, Vags Hy, Hy) = M(t) .
Theorem 2. Suppose Conditions I and IT hold. Suppose

(4.1

\Y

t — e,

(4.2)
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A(Vsl ’ ng ; HO ’ Hl)

18 a continuous function of s; and sy . Let 0 <<t << 1. Then

Iim [Im f(w) —¢t] = 0, (w e V,NH,).

s$—-4 00

Proof. Let 0 <t <1 and &> 0 be given. Use the M = M(t), given

by Condition II, in Lemma 4 to determine d, = J,(¢/2). Now apply
Condition IT for 0 < ¢ < 1 and 0, > 0 to determine a = a(t, d,), s;; =
sy (t, 0,), and d(s). Determine d; = d5(a/4) from Lemma 3. Determine
s; = 8;(03) from Condition I. Determine d; = d,(a, ¢/2) from Lemma 1.
By Theorem 1 we can choose o so large that for all weV, and all s> ¢

0

(4.3) Refw) — C = MV, Vi Hy, Hy| < .

Let 0p = max (81 » 8115 U) and choose 0q > 0y SO that
A(Vu‘, ’ Vux s Hy, Hy) > a/2 .

We shall show that w e V, N H, implies |[Im f(w) — ¢{| < ¢ forall s > o, .

Suppose then that s> o; and w e V . Choose, by the continuity
hypothesis, an s; <<s so that A(V,,V;; H,,H,) = a/2; note that
s1>0y. Let @y, = QU ,Vy,;Hy,H;) and note that =
MV, Vasy s Hy, Hy) = a according to Condition II. Let y be the
quadrilateral map of @, onto @, = Q=0,x=4;y=0,y=1).
Condition I supplies an extremal distance inequality for the components of
@y — V, , the inequality can be transferred to ¢; via », and when Lemma
3 is applied in ¢, one obtains

(4.4) for we V.

a a
Re p(w) — —’ = 4’

2

Now (4.1) and (4.2) hold when s and ¢ are replaced by s, and 4§, ; these
inequalities can be transferred to ), , and when Lemma 4 is applied we
obtain

for w e V,N H, .

B o

(4.5) Tm p(w) — f] <

Consider g = foy !, a quadrilateral map of ¢, onto f(§,) . Equation
(4.3) implies that the horizontal oscillations of f(V) and f(V,,) are
no greater than o, = d,(a, ¢/2). We apply Lemma 1 to g — b, where
b = WV, ,V,:H,,H;) + C, and obtain

&
(4.6) (g() —B) — 2] < 3

whenever |Rez — (a/2)] << a/4.
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From (4.4) it follows that z in (4.6) can be replaced by w(w); this
gives |f(w) — p(w) — b] < ¢/2, and hence |Im f(w) — Im p(w)| < ¢/2.
When this last inequality is combined with (4.5) the desired result
Im f(w) — t| << e is obtained.

An examination of the preceding proof leads to the following

Remark. If the parameters M , a, d(s), and s, in Condition [I
are independent of t then the conclusion of Theorem 2,

lim [Im fw) —¢] = 0 (w e V,NH,),

§—>-4 o0

holds uniformly for all t € (0,1).

II. Applications to general strip domains

Theorems 1 and 2 of Chapter I will now be applied to the special case
that R is a strip domain and {V,} are the Ahlfors cross cuts {J,}.
Theorems 3 and 4 concern the real part of f and the Ahlfors integral
| du/9(u) . Theorem 5 gives a condition for the imaginary part of f to
behave approximately linearly on each ¢, . It is of interest to compare
these results with Theorem 8 in Chapter IV which deals with the Ahlfors
integral and linearity of Im f on ¢, for strip domains with smooth bound-
aries. Theorem 6 is an application to the angular derivative problem.

5. Strip domains. The general situation described in Section 1 applies
when R is a strip domain. This means that R is a simply connected region
in the w = wu + 1v plane, and that there is an open arc 7+ w(7),
0 <7<+, in R with lim,_  Rew(r) = 4+ co; this arc determines
the prime end ¢ . It is known (Ahlfors [1]) that one can then choose a
family {9,},>,, of cross cuts of R with the following properties: (i) each
®, lies on a vertical line with real part «, (ii) each #, separates ¢ from
the prime end (, = f(—oc0), (iii) if uy <wu, <u, then 9, separates
9, from (, and (iv) if d(u) is the Euclidean length of , then ¥(u)
is a measurable function of = (note that we allow ¥(u) = + oo ). The
cross cuts {9,},>, qualify as a special case of the general cross cuts {V}>;,
of Section 1 (cf. Figure 2). A strip domain consists of such an R together
with the associated quantities (y, &, {#,},>,, -

The integral [ du/9(u) played an inportant role in Ahlfors [1]. It is
well known that this integral provides a lower bound for the extremal
distance between 9, and ¢, (see, for example, [2, p. 56] or [11, p. 665]):



Extremal length and behavior of conformal maps 479

1 du
5.1 <L M, 9, Hy, Hy) .
(5.1) ) = (D, s D, s Hy , Hy)

Define the error term H(u, , u,) in this estimate by

(5.2) Z(ﬂm > ﬁu, s Hy, Hy) = ﬁ% + B(uy , uy) (ug < uy).
U

Note that E(u,,u,) = 0. In Sections 6 and 7 we investigate the con-
sequences that follow when HE(u, ,u,) is unformly bounded.

6. Boundedness of F(u,,u,) . Let R be a strip domain. Suppose
that H(u,,u,) in Equation (5.2) is bounded for all u; > u,. It
follows that H(u;,u,) -0 as wu;— + 0. Indeed, since extremal
distance is subadditive (i.e., A(d, ,?,; Hy, Hy) + A(8,,9,,; Hy, Hy) =
M8, .9, ;s Hy, Hy)), (5.2) shows H(uy,u,) is subadditive:

(6.1) By, u) + Eu,u) = Hug, uy) (u; <u <y).
Therefore E(u,,w) is an increasing function of u ; let

A = lim E(u,,u).

%U—> -+ 0

Let w-— +o0o in (6.1) and obtain A4 + lim, H(u,u,) <A . Therefore

(6.2) lim BE(u,uy) = 0 (u <<uy)
U—>—+ 0
as asserted.

Now consider Condition I of Section 3. Equations (5.2) and (6.2) show
immediately that Condition I is satisfied in this case. Therefore Theorem 1
can be applied; the result can be stated as follows:

Theorem 3. Let R be a strip domain. Suppose the error function
E(uy ,uy) of Equation (5.2) is uniformly bounded for all w, > u, . Then
for all w> u, and all w e, we have

u

(6.3) Re f(w) = ﬂ + C + H(u)
(u)
where C is a real constant and lim, , K(u) = 0.
Theorem 3 yields a short proof of a theorem of B. G. Eke [3, Theorem 2].

Let

x(u) = mi;l Re f(w),  x(u) = max Re f(w).
- wedy, wel),
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We shall prove:
Theorem 4 (Eke [3]). Let R be a strip domain. Then the quantities

u U

(6.4) x(u) — . and  w(u) — L
= ) J o)
tend to a common limit B as w - + o0, where —o0 < f < + 0 .

Proof. Ahlfors’ Distortion Theorem [1] states that if w, > u, > u,
and  [rduld(u) > 2 then x(uy) — @(uy) = [ipdu/d(u) — 4. An im-
mediate consequence is that the two quantities in (6.4) are either simul-
taneously bounded or else tend simultaneously to +oo as u-—> + oo .
The second alternative corresponds to f = + oo in Theorem 4. If the first
alternative holds, let M be a bound for the two quantities. Then

- du
9(u) = M, 0, Hy  Hy) = Mf(,),f@,);y=0,y=1)

Mo = 2(uy), @ = @up) 5 y=0,y=1) = a(uy) — a(u,)

u.

AN

B
Hu)
which shows that FE(u,,u,) of (5.2) is uniformly bounded by 2 M .
Therefore Theorem 3 can be applied; it shows that the quantities (5.6) have

a common finite limit C' .

7. Approximately linear behavior of Im f. We have seen (Theorem
3) that the boundedness of H(u,,u,) implies that Re f(w) behaves
approximately like [\ du/d(u) + const. (w €4,). Can conclusions be
drawn concerning the behavior of Im f(w) under this hypothesis? The
simplest behavior would be for Imf(u + i2) to be “approximately
linear” in v along #,. That is, if %,(u) denotes the ordinate of the point
on ¢, which divides ¢, into segments of lengths ¢ 9(u) and (1—t) d(u),
the length of the lower segment being ¢ #(u), where 0 < ¢ < 1, then we
say Imf is approximately linear on ¢, if Im f(u + ih(u)) — t as
U —> + 00 .

To provide a background for the next theorem we now describe an
example in which E(u, , u,) is bounded (and so Re f(u + iv) = const. +
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Ju, du/d(u) + o(1)) and yet Imjf is not approximately linear on o, .
Let R’ be the parallel strip {w| —o0o <Rew < +0, 0 <Imw < 1}.
Let {b,},_1,,.. be a sequence of positive numbers such that > b, < oo .
For each n = 1,2, ... consider the isosceles triangle with vertices at
n+2i,n—>0,+¢,and n+0b,+ 1. Let T, be the interior of this
triangle together with its horizontal base. Let R = R" UUy_,7T,, and

consider R as a strip domain with , = — o0, u, = 0 (see Section 5).
We have
" du N du ~
7.1 — =29, .,9,; Hy, H)) < uy — u; = 4+ B, u
( ) ﬁ(u) ( 1 2 0 1 2 1 ’19'(’2,0) ( 1 2)
where Ifi(u1 s Us) = (1 — 9(u)™t) du is uniformly bounded for w, >

uy > 0. Therefore F(u,,u,) of (5.2) is uniformly bounded. Tt will be
shown that for each fixed 0 <t <1,

(7.2) Iim Im f(uw + it) = ¢.

U-->+ o0

From (7.2) it follows that Im f is not approximately linear on ¥, .

Note that (7.1) implies A(d, , @, ; Hy, H;) = uy — uy + o(1) where
o(1) =0 as uy >u;— + oo . In Theorem 6 we shall see that this condition
implies (7.2). (It is also possible to prove (7.2) directly by means of the
Poisson formula.)

8. Uniformly continuous boundary. The above example suggests
that the hypothesis of bounded E(u,,u,) may imply that Im f is ap-
proximately linear on ¢, in a sense of mean convergence rather than the
pointwise sense. We shall not pursue that direction here; instead we present
a condition on R which, together with the boundedness of H(u, , u,),
does imply approximately linear behavior in the strict sense.

Let ¢, and ¢_ be continuous real valued functions of a real variable,
each with domain (— o0, o). Assume ¢, > ¢_. Let R be the strip domain
bounded by the graphs of ¢, and ¢_. If ¢, and ¢_ are uniformly
continuous we shall say that R is a strip domain with uniformly con-
tinuous boundary. In that case define

81) Hy = {w=u+1iv|v=">te (u)+ (1-t)p_(u)} (0<<t<< 1),

Note that H, satisfies the requirements of Section 1. The approximately

linear behavior of Im f on ¢, can now be expressed by (8.2) below.
Theorem 5. Assume (i) R is a strip domain with uniformly con-

tinuous boundary, (iv) there are positive constants ¢ , L such that ¢ << 9(u) < L
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for all sufficiently large w , and (iii)" any one of the conditions in the Corollary
to Theorem 1 holds. Let 0 <<t << 1. Then

(8.2) lim [Imfw) —¢] = 0 (w e HNY,).
#U—> -+ o0
Proof. The first step of the proof will be to verify that Condition IT
of Section 4 is satisfied for B when H, is defined by (8.1) and {V,} are
the Ahlfors cross cuts {9,}. Let 0 <f{<<1 and &> 0. Choose 5> 0
so that

25 <ct <c(l—i}) 4 ec
(8.3) n="5, =S T4, an 7 3

A

Choose dy, > 0 so that dy, <1 and
(8.4) lp (u) — @ ()] < n  whenever |u—u'| <d,.

Define d(u) by d(u) = u+d,. Choose s,; so that hypothesis (ii) of the
theorem holds for w > s;;. With these choices we shall show that (4.1)

and (4.2) of Condition IT hold. For u > s,; define

9* = min [t (u) + (1-1)p_(u')] — max ¢_(u).

uSw Sd(u uwSw Zd(u)
SwSd(u) Sw=

Then 9* = ¢4 > tc—mn = 0, where

min — 1 =

9 = min{9w) | v £u <d(u)}.

We can therefore estimate A(d, , 9y, ; H,, H,) from above by inscribing a

rectangle of width 9* ; we can estimate A(d,, 9y, ; H,, H,) from below
by the usual lower bound (5.1). These estimates lead to

d(u) — d
(u)u< 0

(85) /I(ﬁu ’ 0d(u) ; HO ’ Ht) é 9% = tﬁmin— " )
" d d
8.6 WO, , Oy Hy, Hy) = f_ﬂ = b
(8.6) ( aw > Ho > Hy) ) = B
where 9,,. = max { du) S Zdu)}. Clearly (Vp0 — Pmin) | Pimax

| v Zu
< 2qfec, 80 1 — (2n/c) £ Opin [ Omax - We use this together with (8.5)

and (8.6) to obtain
}'(HO 7Ht;ﬁu’ﬁd(u)) Do

MHy, Hy 59, , 940 —
2 3
(-2 0= ) 2=
c te/ — [

1 This will be the case if, for example, E(uy , uy) in (5.2) is uniformly bounded
(see Theorem 3).

v
=
EQP B
8 |F
/N
—
|
-
N ‘ =
S

%




Extremal length and behavior of conformal maps 483

Therefore (4.1) is satisfied. In the same way (4.2) can be verified. To com-
plete the verification of Condition II the bounds a(t,e) and M(f) must
be exhibited. The upper bound M(t) = 2/c can be obtained in the same
way that (8.5) was derived,

dy
=7

S

A, ﬂd(u) s Hy , Hy)

A
IIN

the last inequality resulting from our choices d, <1 and 5 < ¢/2. The
lower bound a(f, &) = dy/L > 0 follows directly from (8.6). The verification
of Condition II is now complete.

Hypothesis (iii) of the present theorem implies that Condition I is
satisfied (see the Corollary of Theorem 1). We have already proved that
Condition II is satisfied. In order to apply Theorem 2 it only remains to
prove that A(#, ,9, ; H,, H;) is continuous in u, and in wu, . Although
this continuity property need not hold for an arbitrary strip domain, it
does hold for a strip domain bounded by the graphs of continuous functions.
In this latter case the property amounts to the convergence of a suitably
normalized family of conformal mappings onto rectangles, and can be
proved by the Carathéodory kernel theorem. We shall omit the details of
the proof. The conclusion (8.2) of the present theorem now follows im-
mediately from Theorem 2.

Remark. An examination of the proof showsthat (8.2) holds uniformly
Jor all t with |t — 1/2] < const. << 1/2 (cf. the Remark following Theorem
2).

9. An application to the angular derivative problem. Tt R be
a strip domain in the w = u + 7o plane. In addition to the notations
¢, 9,, 8, f introduced in Sections 1 and 5, also define ¢ = f1: §— R,
The angular derivative C' at ( may be defined as

lim [z —g()] = C
2 Syt
provided the limit exists for every 0 < 0 << 1/2, and C # o0 .

The angular derivative problem is to find geometric properties of R which
are necessary and sufficient for the existence of an angular derivative
at (. Progress on this famous problem has been made by numerous mathe-
maticians (see [12] for a survey of results prior to 1955; subsequent work
has been done in [4], [5], [6], [10], [19], [20]) but it still remains unsolved.

Another standard, and essentially equivalent, definition of the angular
derivative will be more useful for our purposes. By performing a vertical
translation of R one canrequire that C' be real. Then, since Im g(z) — ¥
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—0 in {d<y<1l-—0} as x— 4o, it follows that R must
contain a half strip

(9.1) By = {w|]u>=Us, 0<v<<1-295}

for each 0 << 0 << 1/2. { must be the prime end at + co which is acces-
sible along the ray {u = U,, v = 1/2 }. Furthermore, there is a w,
such that ¥, intersects the line {» = 1/2} for all w > u,. From now on
we adopt the following definition of angular derivative:

Definition. A strip domain R in the w-plane is said to possess

an angular derivative C at { provided, for every 0 << 6 << 1/2,

(9.2) R contains a half-strip R, of the form (9.1),

and

(9.3) lim [fw) —w] = C +# + w0 (w e Ry).
Re w-—+-+

Note that C in (9.3) is necessarily real. Condition (9.3) is often replaced
by the pair of conditions:

(9.3a) lim [Re f(w) — Rew] = C # + w0 (weRy)
Re w—+ o0
(9.3b) lim [Im f(w) — Imw] = 0 (we Ry) .
Re w—+ o0

Condition (9.3b) is traditionally referred to as semiconformality at ¢ .

In Theorem 6 we present an extremal length property of R which is
necessary and sufficient for the existence of an angular derivative at (.
This result should not be considered as a solution to the classical angular
derivative problem because extremal length is not a geometric property in
the classical (Euclidean) sense. The result does indicate, however, that extremal
length may be a fruitful tool for future progress on the problem.

Theorem 61 Let R bea strip domain. The following properties are
necessary and sufficient for the existence of an angular derivative at { :

(i) R contains a half-strip Rg of the form (9.1) for every 0 < 6 << 1/2,

(i) 4@, 0, Hy, Hy) = uy — uy + H(uy, uy) where E(u,y , uy) — 0

as Uy —> + 0 (U; < Uy ).

Proof. Suppose the angular derivative exists. Then (i) holds. It is well
known (for example, Warschawski [19, Theorem 1b and Theorem 2]) that
the semiconformality implies

v(u) = sup { [Re f(u) — Re fw)| | wed,} — 0

1 K. Oikawa has informed us that he and J. Jenkins have independently obtained
this same theorem in joint work in progress.
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as u — + oo . This fact together with (9.3a) shows that f(9,) “approaches”

the segment {x =u + ¢, 0 <y <1}. If ¢ > 0 then for all sufficiently

large w; with u, + ¢ <wu, — &,

Q@ = u+C0+e, @ = u+0—e;y=0,y=1) C Qf(9,),f@.); y=0,y=1)
CQx=u+C—c,x=uy+C+e;y=0,y=1).

Therefore

Uy — Uy — 2¢ é Z(f(ﬁul)’f(ﬁu,)’yzo’y:l)
= 2By, 0y Hy Hy) < g — uy + 26

If wy+e=>uy,— ¢ then uy, — u; — 2¢ <0 and these last inequalities
still hold. Thus (ii) holds.

Conversely, suppose (i) and (ii) hold. Condition I of Section 3 follows
at once from (ii). Thus Theorem 1 is applicable and it yields (a stronger
version of) (9.3a). It follows from (9.3a) that f'(w)—>1 as u— + o0,
uniformly in any R;, as can be easily seen from the representation

dw
ey (la—wl <)

1
flay = — f Re f(w)
|w—ao| =7
which is an immediate consequence of Schwarz’s formula and is valid as
soon as f is analytic on {|w—a, <r}. Therefore flu + (1—0)17) —
fw + 04) — (1 — 26)¢ as w— + oo . Therefore, since 0 << Im f(w) < 1,

0 < limsupImf(u + 67) < 26,

u—>-+4 o
1-2¢0 < liminfImf(u + (1-0)2) < 1.
#U—> -+ oo
This shows that the bounded harmonic function p(w) = Im f(w) —
Im w satisfies
limsup [p(w + 64)] < 6 and limsup [puw + (1-0)7)] < §.
#U—> -+ o0 %U—> 4 o0
Hence lim sup |p(w)] <6 for weR; and Rew-—> + oo . Choose ¢
so that 0< ¢ < 6. Then limsup|pw) <06 for weR; and
Re w — + oo . Since 6’ is arbitrary, p(w) — 0 for w e Ry, Rew — + 0 .
This proves (9.3b), and completes the proof of Theorem 5.

10. An angular derivative criterion. Theorem 6 reduces the angular
derivative problem to one of estimating extremal distances. As an illustra-
tion we present the following example.

Let {w}, {v;}, {v;} be sequences of real numbers such that u, 7 + oo
and v; < 1/2 <v). Define
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L = {w+iv|v=v}, L= {wy+iv|v=)}

and let P be the strip domain C — U; (L; U L;-). We shall make use
of the parameters

O, = min (v,

’
;i i1 Uj) — max (v;_q, Uj) > dj = U — Uy

J

,9, Hy,Hy), (m <mn). Write P =

to give a lower bound for 2(4, ¥, ;
P({0;},{d;}) to indicate that P is a domain with these parameters.
The lower bound will be obtained by calculating the appropriate lengths

and areas with a special metric g(w) |dw| . Let T'; be the rectangle

{u+div] u_y < w < w, max (v;_y,9) —d; <0 < min (v;_y,v;) + d; }.

Set pw) =1 in U, 7;, and p(w) = 0 elsewhere. Any arc in P
which joins @, to #, has g-length at least Dtmin ;= U, — U,
The g-area is >7_,., (0;d; + 2d;) . Therefore

(10.1)

A9, 0, 5 Hy, Hy) > —— " — Uy — Uy — €

' > (0;d; + 2 d?)
j=m+1
where ¢ = em,n) = >'_,.,[(0,—1)d; + 2d7]. We shall use the
lower bound (10.1) to prove the following statement, which can also be
obtained from a theorem of J. Lelong —Ferrand [12, Théoréme (VI. 19c¢)
p. 214]:
Let Ryc Rc P = P({0,},{d}) be strip domains. Suppose R, has
an angular derivative at + oo . If the series

"

18
8

(10.2) ©@-1)d; and > d

J

Il
-
<.

li
—

converge then R has an angular derivative at 4+ co.
Proof. By Theorem 6 and the comparison principle for extremal length
we obtain the upper estimate

(10.3)  Ag(®y, O s Hy , Hy) < Ag (9, 9 s Hy, Hy) = u” — ' + o(1)

W' s

where 0(1) — 0 as u” > u’ —> + c0. To obtain a similar lower estimate for
Ap of the form «'" — u' + o(1) we use

(104) )‘R(ﬁu' ’ ?914” 5 HO ) Hl) - (u”'_u,)
= 20, B Hy Hy) — (' —u) = B, "),

and show that K ,u”’) =o(l) as u" >u — +00.
Tet ¢> 0. There is an 5 > 0 such that 0 <wu” — « <n implies
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|[Ew' ,u")] <e for all u' > u,. We may therefore assume that "’ — '
= n and then prove H(u',u'’)> —e for sufficiently large u’. Let
[y, , w,] be the largest interval, formed from the sequence {u;}, which
is contained in [w',w']. If w’ is sufficiently large then m £ n and the
term e = e(m ,n) in (10.1) will satisfy |e] << /2. Therefore the term
e[ (u,,—u,+e) in (10.1) will be positive and can be omitted. The resulting
(10.1) and the comparison principle yield

E(u/ ?u”) g (um_un) - (u”_u,) — € g _dm - d"+1 — €.

This shows that H(u',u") = —e if «' is taken sufficiently large.
These upper and lower estimates prove that (9, ,d,.; H,, H;) =

'’ — 4 + o(l). Theorem 6 shows that R has an angular derivative
at +o0.

III. Estimates of extremal distance

In this chapter we return to the general situation of §1. We require
that the grid lines {V.}, {H,} be given explicitly as the image under
a differentiable mapping of a rectangular coordinate grid in the plane.
In this case there is a useful method (Theorem 7) for estimating the extremal
distances AV , V, ; H,, H,). This method will be used in Chapter IV
in order to apply Theorems 1 and 2 to special regions.

11. Definitions and notations. The notations R, {V >, , {H}o<i<:
have the meanings of § 1. We now impose further special conditions.

Assume R is a plane region. Assume that H, and H, aresmooth
curves on the border of R . Assume that each cross cut V, can be extended
so that it possesses endpoints on H, and H,; from now on V, will denote
the extended cross cut. Assume that ¢ = ¢(s,t) is a homeomorphic mapping
of the closed half-strip

{s+tt] s <s<< 4w, 0t <13
into R U H,U H,;. Assume that ¢ maps each vertical segment
{s+it]| sfixed, 0 <t <1}
onto V,, and each horizontal ray
{s+1t] s9=s<< +00, ¢ fixed}

onto H,. Then each V_ can be parametrized by ¢+ c¢(s,¢), and each
H, can be parametrized by s+ c(s,t). For simplicity we require that
c(s, t) be continuously differentiable and that its Jacobian determinant
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J(s ,t) be positive for s, < s < + o, 0 <t <1. For later reference we
summarize all these conditions by:

(11.1) Vit V() = cs,t), 0 <t<1,
(11.2) H,: s+ Hfs) = c(s,l), s =s< +0,
(11.3) J(s,t) > 0 (Sg<s< 400, 0<<t<1).

12. An extremal distance estimate. Let R be a region as described
in §11. The following theorem provides upper and lower estimates for
extremal distances in the quadrilaterals determined by {V.;} and {H} .

Theorem 7. Assume that c(s,t) is a mapping with the properties
(11.1) — (11.3). For sy < s; <8y and 0 <t; <ty =<1 define

ty
o 2
(12.1) k(s) = fJ'l(s,t)\Ec(s,t) dt
t
and
Sy 0 o
(12.2) ut)y = fJ’l(s,t) —Egc(s,t) ds .
Then
) s - ds ., e t’dt}—l
(1 : ) m = (Vsli Vs27 ty 2 tg) = {fl(t) .

5 f
Proof. Let H, be the portion of H, which lies between V  and
V, . Let I" = {H},_,_,. An elementary property of extremal length
gives AV, ,V,;H, ,H) = AI"). Theorem 14 of [14] provides
a formula for calculating the extremal length of a one-parameter family
of arcs. When applied to this case the formula gives

1 ; dt
(12.4) aIry fZ(t)’

where [(t) is given by (12.2).
Let V. be the portion of V  between H, and H,. Let I =
{V;}S1 <s<ss ¢ Then

NV, Vs H, H) = MH, H 5V V) = M)

Theorem 14 [14] applied to I gives
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(12.5) ! = —C-Z-S« ,
Wy J k)

Si

where k(s) is given by (12.1). When (12.4) and (12.5) are combined, (12.3)
is obtained.
For future reference we note the corollary

Sa

(12.6) o, vn,m) £ o [
k(s) (ty—1t1)?

sy 1

which follows from (12.3) by applying the Schwarz inequality.

IV. Applications to domains with smooth boundaries

In this chapter we consider several explicit choices for the grid lines
{Vs}, {H,}. In each case they can be parametrized by a differentiable
mapping ¢(s, t) asin (11.1)—(11.3). Theorem 7 provides a tool for checking
Conditions I and II. In this way Theorems 1 and 2 may be applied to yield
asymptotic estimates for the mapping function f.

This method may be compared with that of [9], [13], [15], [16], [18]. In
comparing different asymptotic estimates, no questions of sharpness can arise
because the error terms have always been estimated merely as o(1). The
only criterion for comparison is the nature of the hypotheses under which
the asymptotic expansion is valid. It will be seen that the methods of this
chapter often lead to hypotheses that are less restrictive than those previous-
ly known.

13. Strip domains bounded by smooth graphs. In this section
we consider regions R which are bounded by the graphs of two con-
tinuously differentiable functions ¢, > ¢_:

(13.1) R ={w=ut+iv|] —o<u<+0, g_(u)<v<g,.(u];}.

Let { be the prime end of R determined by limg, .., w. Thus f is
a one-to-one conformal map of R onto

S ={z=ax+iy| —o<zr<+w, 0<y<1}

which satisfies Re f(w) —> + o0 as Rew— + 0.
Choose {V,} and {H,} as follows. V, is the Ahlfors cross cut

{w=u+iv|u=s, p_(s) <v <¢,(s)}. H, is the arc

{w=u+rv|v=te, (u) + (1—t)p_(u)}.
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Here 0 <t <1 and s is any sufficiently large real number, say s = s, .
These choices can be put in the form (11.1)—(11.2) by defining

(13.2) c(s,t) = (uw,v) = (s,t@(s) + (1-t) @_(s)) -

The corresponding quantities of Theorem 7 are:

J(s ) t) = (p+(8) - <P-(3) )

fy JEPURRY'S

Il

k(s)

j’l + (bgl + (L—t) gl )?
P —P_

ds .

1(t)

Il

S1

Define 9(s) = ¢, (s) — ¢_(s). The left-hand term of (12.6) is

(ty—ty) f H1(s) ds

The right-hand term is

fy S
d dt 1 to' 1—t) g )2
8 f/(<p++( ) p_) ds di
(ty—1,)? tz—tl)2 9(s)
ty 5

ty S

Sa

1 ds e(sy, 8g)
= + s
to—1ty 9(s) to—1ty

S1

where

+ o=
(13.3) 0 < efs,,s) </¢+ e

Therefore (12.6) can be written, in the present case, as

1 Fds WV, Vi H, H) = 1 " ds e(sy, S,)
—_— < —— + it
ty—1y (s) ==ty ) D) T -ty

Sy S1

(13.4)

It follows easily from (13.4) that if
(13.5) e(sy,8) — 0 as §;— 4+ (8, <s8y)

then Conditions I and II of Chapter 1 hold. Indeed, from (13.4) we obtain,
for sy <83 <8 <8y,
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}”(Vs,7 Vs,§H0 s Hy) — ;I'(Vsl’ Vi Hy, Hy) — AV, VSZ;HO , Hy)

g 6(81 ’ 82)
which verifies Condition I. Next consider Condition II. Define d(s) by the
the condition AV, V,; H,,H;) = 1; this is possible because
MVy, Ve Hy, Hy) is a continuous function of s (see §8). The left-
hand inequality in (13.4) yields [@*ds/[d(s) <1, and then the right-
hand inequality gives

t2—t1 t2—'t1

2'(-Elt‘ ) Iit2 > Vs ) Vd(s)) g d(s)

;ﬂ‘; + s, d(s))

Therefore

e(s , d(s))
MH, H, Vi, V) — (e—t) = — 1 e(s, d(s)
which verifies Condition 1I; note that the parameters ¢ and M of Con-
dition II are independent of ¢, a =M = 1.

Remark. In subsequent sections we oblain inequalities similar (o
(13.4). The reasoning in the preceding paragraph will be referred to in order
to conclude that Condition I and Condition 11 (uniform in ) are salisfied
provided the error terms are o(1) as in (13.5).

Assume (13.5) holds. Then Theorems 1 and 2 and the Remark to Theorem
2 may be applied. Theorem 1 yields

Ref(u +iv) = AV, ,V,;Hy, Hy) + C + o1)

w

W o
:.[¢4@—¢4w*‘ o).

So

Theorem 2 and the Remark following it yield
Im f(u + iv) = ¢ + o(1) (u +tveH,))
v — p_(u)

g, () — g_(u)

+ o(1) (u+1vekR).

We have proved:

Theorem 8. Let R = {w=wu+iv| g_(u)<v-<qg,(u)] and
suppose
r "2(s) + (s
(13.6) f P8 9o o
P4(8) — _(s)
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Let f be a one-to-one conformal map of R onto a parallel strip region
S = {z| 0<Imz< 1} suchthat Re f(w) — + oo as Rew — + oo . Then

uw

18) fo+io) = [ - e S T
. U+ i) = — + 1+ Bu
P4(8) — ¢_(3) pi(u) — @_(u)

where C s a real constant and lim,  , , E(u) = 0.

Theorem 8 represents a strengthening of a result in [18], p. 296 and
p- 323. In order to obtain (13.7) it is assumed there, in addition to (13.6),
that R is an L-strip of boundary inclination 0 which, in particular,
implies that ¢ (s) — 0 as s— 4 co . Theorem 8 shows that this additional

condition is not needed.

14. Domains and surfaces generated by a smooth curve. In this
section we consider regions R which can be swept out by a line segment
of varying length moving along, and normal to, a given curve.

Let s+>W(s)eC be an infinite arc parametrized by arc length
s, —o0 <8< 4+w.Let N(s) be the left-hand unit normal vector. Let
A(s) be a positive function; it will be the width of R as measured along
the normal N(s). Assume W to be of class C? and 4 of class C1. We
define R to be the image of the mapping

(14.1) (s,7) = w(s, ) = W(s)+ 7 4(s) N(s)
(—o<s< +0, 0<<r<<1).

We require this mapping to have positive Jacobian determinant. If the
mapping is not globally one-to-one R must be considered as the multi-
sheeted image of the mapping, a Riemann surface spread over the w-plane.

Let ¢ be the prime end of R determined by the arc w(s, 1/2) as
§—> +00.

We choose V, to be the image under (14.1) of the vertical segment
{(s,7)] s fixed, 0 <7 <1}. We shall consider two possibilities for
choosing the family {H,},<,<;. The simplest choice would be to define H,
as the arc s+ w(s,1?), ;0 ‘< s < + 0. In the notation of (11.1)—(11.2)
this amounts to defining c(s,t) to be w(s,t).

Let T = W’ be the unit tangent vector. The curvature x satisfies
N’ = % T . The quantities J, k(s), /(t) of Theorem 7 can be calculated

as follows:
c(s,t) = W(s) + t A(s) N(s),
0

oCls ) = W+t AN —utdT = (1—tx )T + 14N,
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2
a—ic(s,t) = (1 —txd)?+ (td4)?, —aa?C(S,t) =4N,
0 7
J(s,t) = —E;CX 'JC = (1 —txd)4,
fy ta
k(s) = f——A—C—l.t——= _lqlog(l-txd)
1 —txd — X Pht

b

S

(1 —txd)?+ 247
m)z,/ A —txd ™

S1

We have assumed J > 0. We now make the stronger assumption
J =06 > 0 for some constant J. Thus

(14.2) A —nd)d =06 > 0.

In addition, assume
e}

(14.3) /]ulds and /A’%ls converge.
0

0

Then we obtain

ty s

(14.4) ! /detg L [ ds o5
(t2~t1)2 t2—_t1 A tz_tl
2

1 S1

where e(s;, 8,) —0 as s, > s, — + 00 . Since

L if 0
E | ty—ty 4 o=
1 1 —lynd = 1 1
g 7
1 —t,24 I:——-—:l it 0 <xd 1
1 t—t, L4 % 1 Sxd <<
we also have
Sy Sy ~
(14.5) ds. > 1 [ e_ﬁsl’sz),
k(s) — ty—t, A ty—1,

Sy S1

where € (s;,8,) —0 as s, > 8§, — +00. From (14.4)—(14.5) we see that
the present form of (12.6) is
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S2
1 ds e(sy,s
‘_+_(Lﬂ_)

£ =1, 4 ty—t,

S1

N

Z‘(Vs, > VsZ 5 Ht, > Htg)

S,

1 2ds e(sy, s
L s

lIA

b=t 4l
As in Section 13 (see the Remark preceding Theorem 8), this inequality
leads to an asymptotic estimate for f. The result is:

Theorem 9. Let R be the image of the mapping (14.1). If the hypo-
theses (14.2) — (14.3) are satisfied then

s

(14.6) flw(s, 7)) = -—d—s— +C + i1+ Hs)
A(s)

where C s a real constant and limg_  , H(s) = 0.

In the above theorem the term [; A47%(s)ds may be replaced with
[s, =% [ log (1—# 4)] ds . Thus this asymptotic expression for Ref is
the same as that in Theorem 10 below.

Now we consider a different choice for the family {H,}. Recall that
H, should asymptotically approach the level line {Imf=1¢} in R.
By way of motivation, consider the approximate behavior of Im f along
a fixed V. To be definite assume x(s) << 0. Approximate the boundary
of R at W(s) by the osculating circle. If its radius is now increased by
A(s) the resulting circle might be an approximation to the boundary of R
at W(s) + A(s) N(s), at least if 4 is nearly constant. Since V is a radius
of the annular region between these circles, we might approximate Im f
on ¥V, by the values of the harmonic measure of the annulus there. Thus
at the point w(s, v) the value ¢ of Im f would be approximately

log (1 — 7% 4) 1 — (1 —2xd)

14.7 = — g S
(14.7) ' log (1 — s 4) o % A

o]

For these reasons we now choose H, to be the arc
st>w(s, [1 — (1= xd4)]]=A4).

In the notation of (11.1) — (11.2) this choice for {V } and {H,} amounts
to defining c(s,?) by

(14.8) c(s,l) = W(s) + r(s,t) N(s) (—w <s < 4+w, 0=t =1)

where

I
(14.9) e 0) = g 1= (== A(s))] -
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Let T = W’ be the unit tangent vector. The curvature s satisfies
N’ = — % T . Wenow assume x» € C'. The quantities J, k, [/ of Theorem
7 can be calculated as follows:

d
% © = W +r N+rN = (1-rx)T + 7, N,
l'a 2
’_a“ = (I-rx) + 17,
d o 2 )
=N e =
%I
r, = (l—nA)‘_l{tA'+;2—[l — (1= A — (l—t)xd]},
1
r, = —;(l—xA)’log(l—%A),
d | ,
J(s,t) = -a—cxa—tcl [[(L=r2x)T + r, N]X7,N |

= |(I1=rx)r,TXN + r,7, NXN|

1
(I=rz)r, = = ~(1- x A log (1— = 4),

ks) = (%—h)M ,

—%
—xds /‘2 > ds
log (1—x 4) (L—x A)r

$1

Note that J(s,t) will be positive if and only if 1 — % 4 > 0. This in-
equality holds because the Jacobian determinant of w(s, 7) from (14.1) is
(1 — % 4) 4, and this was required to be positive in the definition of Z .

Theorem 7 holds for unramified multisheeted coverings of plane regions
as well as for plane regions. We apply this theorem, or rather its corollary
(12.6), and obtain

(14.10) f —HdSs vl V. H, L H)
ty—t,J log (1—x 4) T )

—xds e(sl’szstlat)
f—t1 log (1—x A) t—1,

l’f\
|2
|
}
)
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where
ty  Sg
r2ds di
14.11 e(sy, Sy, b1, 1) — ff
(14.11) (515 800t o “51 .
The integrand in (14.11) is
’ 2
2 {tA'—i——-[l—(l —x A~ (l—t)xA]}
< . -
vz (1—2 A) r, . Azlog(l—%d)
(I—x A ————
1 — (=3 A} — (l—t)xd:r
_2an 1 ) g (% 4): (1—x A)
Sa o g (l-wd) ke log (1—x 4)
(1= 4) —x A4 —x A4

Assume now that lim inf, | _ (1—2x(s) 4(s)) > 0. Then the last term
above is (42 A4)O(1) + x2 A 0(1). Thus e(s;,s,,l,t)—>0 as
8y > 8y — + o0 , uniformly for 0 < ¢, < t, <1, provided

oo >}

’2
(14.12) f%ds < w, /%’2A3ds < 0, liminf (1—% 4) > 0.
; b §—>+4 00
As in Section 13, the inequalities (14.10) and the uniform behavior of
(81, 85,1, ) = 0 show that Theorems 1, 2 and the Remark following it
can be applied (see the Remark precedmg Theorem 8). Theorem 1 yields

s

Re f(w(s, 7)) = /ﬁ-}—O—k o(l)y, as s->+o0.

Theorem 2 and the Remark following it yield

Im fw(s , 7)) = t + o(1) (if w(s, ) eH,)
log (1 — 7x4)
= Tog (I —may T (@l u(s, ) eR)

(see (14.7)). We have proved:
Theorem 10. Let R be the image of the mapping (14.1). If the
hypotheses (14.12) are satisfied then
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S

B —x ds dog (1 —7 3 A)
fluls , ) = JW-%C’—FzW—l—E(s)

where C is a real constant and limg_ , , H(s) = 0.

When A(s) = const. = 1, Theorem 10 yields a result of Strodik [15],
which he proved by use of the Teichmiiller — Wittich — Belinsky Theorem.
In this paper the strip R is defined (using our notation) by the mapping
(s,T)r>w(s, 1) =WEs)+ TN, —1/2<t<<1/2; thus W(s) 1is the
“center” curve of R rather than the “lower” boundary. An elementary
calculation shows that his hypotheses, in terms of our quantities, require
that [ Max (%2, [«'|)ds << oo, and that for some 46, 0 <<d<
1, —2(1-08)/0d <x<1-0. These conditions are more restrictive than
ours (in particular we do not need the convergence of [¢° || ds ) .

Theorems 9 and 10 may also be compared with Theorem IX of [18].
Despite some similarity in the form of the asymptotic expansion of f(w),
it is easily seen that the result in [18] neither contains nor is contained in
our present theorems.

15. Symmetric strip domains. In this section we mention a special
case of the situation treated in Section 13; namely, the case that ¢_ = —¢_ .
This situation was treated in Gol’dberg —Strod¢ik [9] by a method based
on the Teichmiiller — Wittich — Belinsky Theorem.

The results of [9] can also be obtained by the methods of this chapter.
This is done by defining c(s , t) as follows (we write ¢ for ¢, ):

(15.1) c(s,t) = (P(s) + r(s) cos t(s, t), r(s) sin 7(s , 1))
where

@(s) @(s) ERPNTYI
(15.2) P(s) = s — g r(s) = m\/ 1+¢"%(s) ,

(s ,t) = (2t—1)arctan ¢'(s) .

Geometrically, P(s) is the center of a circle of radius 7(s) which is
orthogonal to the boundary of R at the points (s, +¢(s)) . The cross cut
V¢ is an arc of this circle, and H, divides V into two arcs whose lengths
have the ratio ¢: (1—t).

We assume that ¢ is twice continuously differentiable. Then the
condition

(p (pll
(15.3) lim inf —— > -
s—>+ (]- +¢,2) (1 + 1 +(P’2)

ensures that the mapping (s, )+ c(s, ) is one-to-one and that J > 0.

1
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Thus, given w = u + 1 v € R there exists a unique pair (s, f) satisfying
(15.1).

When the techniques of this chapter are applied, we obtain (we omit
the details of the calculations):

S Sa S

(ty—ty) _digf_j&g +if ¢ min (0,¢") 4
k(s) 2parctang’ 2 J arctan ¢’ (14¢2) (1 + V1 +¢?)

S1 S1 S1

ty
1
f I(t) dt
ty—ty
tl

¢ ’” 118 -
_S_.f gds Mf { "] N P(p") } @ ds
2 g arctan ¢’ (L+¢23? ° (1+¢")3) arctan ¢’

Sy S1

where M is a positive constant. Thus

Sz

: {f : o _2(81382)} = Z-(Vsl, VSg;fo’th)
b —1y 2 ¢ arctan ¢’

] prTS—
S 9 g arctan ¢’ T 1> %)

where

0 < e(sy,s) = 0{ Jii-lif—}
t+¢
and

S S

0 < e(sy, 8y) = O{fl—li%AzdS-l- fl(plﬁ;,)%ds}.

Sy S1

I

Following an argument similar to that in Section 13 we obtain:
Theorem 11. (Gol’dberg—Stro¢ik [9].) If in addition to (15.3), ¢
satisfies the conditions

r’ 112
/ I(’vlds<oo and f_q)((p )_ds< o0
L+¢™ 1+ " [°

Sy So

then
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fle(s, 1) = —‘E—(ﬁ-ﬂ; + it + C + E(s)
2 @ arctan ¢

So

where O is a real constant and Lim ., H(s) = 0.
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