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Introduction

The Riemann mapping function /: .E + B of a simply connected
region "B onto a standard region B sends a prime end 6 of Ä to a bound-
ary point of B. The classical boundary behavior problem is to find & more
quantitative description by providing asymptotic estimates of f(w) as
w ---, C. The estimates will involve the geometry of .B near { .

The problem originated with the question of extending the conformality
of the mapping f to a boundary point f . The early results dealt with the
behavior of f at & corner f , and with geometric conditions in a neighbor-
hood of f which ensure the existence of the derivative of f, both for
unrestricted approach to ö as well as approach in a Stoltzangle (',angular
derivative"). The study eventually evolved into the consideration of asymp-
totic estimates for / under more general boundary configurations.

The present paper is a contribution to this study. ft provides a number
of basic estimates, under quite general conditions, which yield new or
improved results when applied to special cases. Another aspect of tJre
present pa,per is the systematic use of extromal length techniques. It is
known that such techniques provide an efficient and powerful method of
proofin this subject [2], [ff], [13], [la]; it will be seen that they also provide
a useful framework in which necessa,ry and sufficient conditions can be
given for various analytic properties of f.

The convenient normalization of Ahlfors [l] will be used: S is a hori-
zontal parallel strip and f(q : + oo . Chapter f tueats the problem in the
abstract. This generality is needed because of the variety of special cases
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considered. in subsequent chapters. The basic viewpoint in Chapter I is to
assume that the approach w --- C is described in terms of a given set of
cross cuts { 7"} of -B . If the extremal distances between the cross cuts

satisfy certain conditions then estimates of /(a;) follow (Theorems I and 2).

In Chapter II these theorems are applied to the case that Ä is a strip
domain in the ID : 'tL * d o plane and. the given cross cuts {2"} arg the
Ahlfors cross cuts {4} : A number of theorems are obtained; one is a con-

dition for Re /(to) to behave like the Ahlfors integral [" d'ul$(u) (Theorem

3), and another is a condition for Ilrr-f(w) to be approximately linear on

t9* (Theorem 5). The former result leads to a short proof of a theorem of
B. G. Eke [3] (see our Theorem 4). In $ I the results from Chapter I are

applied to the angular derivative problem. The result is Theorem 6; it
provides necessary and sufficient conditions for the existence of an angular

derivative. Although the conditions are not strictly geometric (they involve
extremal length), the result seems to mark progress on this unsolved
problem.

chapter III is devoted to the proof of Theorem 8, an integral estimate

for extremal distance in a quadrilateral. This estimate is used repeatedly

in chapter IV as a tool for applying the results of chapter I to various

tgres of smooth domains -8. These applications lead to asymptotic esti-

mates that are new or more genelal than previously known ones (Theorems

8, 9, l0).
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I. General theorems

Section I describes the notations and basic assumptions for the abstract
situation mentioned in the fntroduction. It may be useful to mention hero
the specific cases covered by this abstraction. Riemann surfaces -R, rather
than plane regions, are needed only for $ 14. Cross cuts {2,} more general
than the Ahlfors vertical cross cuts {8,) are needed only in SS 14-15.
fn the case that -B is a plane region the general cross cuts {2"} of this
chapter could have been required to possess endpoints on ä4, although
no real simplifications result from doing so.

Sections 3 and 4 contain the main results of this chapter (Theorems I
and 2).

l. Definitions and notations. Throughout this paper -R wiil denote
a simply connected plane region or Riemann surface. B witl denote the
paral,l,el strip d,omai,n {"1 -oo< Rez{ +o,o, 0{fmz<l}. f is
a given one-to-one conformal map of -E onto B . 6 is the boundary point
or prime end of -E which corresponds under f to z : + co in B .

Let {%luo (s{ +oo} denote a family of disjoint cross cuts of
R; "cross cut" is used here in the generalized sense that Z" is an open
Jordan arc in .B such that ,B - Z" has two components. It is required
that every sequence {V"*}, where snV * oo, be a fundamental sequence

of cross cuts for determining the prime end f . fn case -B is a plane region
this requirement has the standard meaning from classical prime end theory.
In case -B is a stri,lt d,omain (Eig.2; see Section 5), the Ahlfors cross cuts

{t9"} satisfy this requirement. It would not be relevant for the purposes of
this paper to review the general theory of prime ends on simply connected
Riemann surfaces in order to make the requirement more explicit; the con-
sequences of it which we use in the remainder of this chapter are easily
verified for each of the specific applications that are treated in Sections
5-10, f3-f5. This viewpoint also applies to our use below of general
notions of "ideal boundary."

Let { H,l 0<t< 1} be afamilyof dislointarcson -R whichhave
their initial points on 7", , and which tend to 4 . Note that, each H,
intersects every 2".

A quad,ril,ateral, Qo is a Jordan region with four distinguished boundary
points called vertices. The vertices determine the four sides Tr, (i, :
1,2,3, a ) of 00. W" always a,ssume that a definite ordering of the sides
has been chosen. The ordering will be specified by the notation Qo :
Q(yt,Tzi ls,Ta). fnvariablywhenthis notation is used 2,, and y, will be
a pair of opposite sides of Qo. Let Qt : Q(fr,Frifs,F) be another
quadrilateral. By a quailritrateral, maplti,ng of Qo into Q, we me&n a I - I
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conformal mapping of the interiors of Qn and Qt such that the continuous
extension of the mapping to the closures sends lt. onto fn for
'i, : 1,2, 3, 4 .

There is a self-explanatory way to inficate the various quadri-
laterals determined by the arcs {V,} and {H,\. X'or example,

Q(V r, , V r"; Hr, , Hr,) is a quadrilateral whose four sides lie on
V",, Vr", Ht,, and Hr". (If there is more than one such quadrilateral,
additional specifications must be given so that it becomes uniquely
determined. Ilowever, in all the special cases treated in the present pa,per

each V, and H, intersect in exactly one point; this implies that the
notation determines a unique quadrilateral. X'or simplicity, we now add
this condition as a general requirement for {2,} and {Il,}. The quadri-
lateral notation therefore becomes unambiguous, and no further mention
of uniqueness will be made.) This notation also specifi.es the ordering of
the sides. We use a similar notation for quadrilaterals in the r , ! -plane;
for example,

Q@:a, r:b;U:c , y:d)

has the obvious interpretation.
We shall employ a self-explanatory notation for the extremal distance

between a pair of opposite sides of a quadrilateral. X'or example,
X(V",, V",i Hr,, Hr,) denoles the extremal length in

Qo : Q(Y,,, V"ui H,,, H,,)

of the family of arcs in Qo which join the sides of Qo that lie on V,,
and Y,,.

It will be convenient to extend the notation for quadrilaterals to certain
simply connected regions that need not be Jordan regions. Let -Bo be the
component of -B - 2," which is a neighbourhood of 6 . Its ideal boundary
consists of ö, 2"" , and two disjoint connected sets which we shall denote
by Eo and ä, . We choose the notation so that when / is extended to the
ideal boundary of Ro it maps .I1o onto some ray { z I z > ao } and it
maps HL onto a ray {z I Re z> r'o, Imz: I }. The symbol

Q(V,,,V,,iHo,är) denotes the simply connected subregion of -B whose
ideal boundary consists of 2., , V,,, part of Hs, and part of är. The
extremal length of all arcs in this subregion which join V,, to %, it
denoted ).(V,,, V,,; Ho, Hr) . The extremal length of all (open) arcs
in this subregion which separate the two sides lying on %, and %, is
denoted by ),(Ho, Hr; V,", V,,) . Variations of the notation, for example
l(Ho, Hr; V,,,Y"") or l(V,,,V,"i H,, Hr), &re self-explanatory. We
may also speak of "quadrilateral mappings" of such subregions.



Extremal length and behavior of conformal maps 47I

Figures I and 2 may be useful for keeping track of the symbols intro-
duced so far (in X'igure 2, ( is ut + co ).

/"t
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Figure I

Q(Y,,,V,i

s- axls
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Figure 2

2. Lemmas. In this section we have collected together a number
of lemmas for later use.

Lemma l. Giaen a>0 and' es0,thereisa ör:öt@,t) ;>0
with the fol,lowing property. Let A 2 a and' I'et g be the qua'ilri'lateral mappi'ng
,f Qt : Q(r:Q,r:AtA:0,U:l) onto Q, : Q|t,TziA:0,A:l)
where y, anil y2 are d,i,sjoi,nt orcs which joi'n {y : 0} to 1y : t) . If

lReer[ Sör, lA Rezrl <ö1 @llz.eTt,zzeTz)(2.L)

then lg(z)-zl<e foral'l' 2eQt wi'th' lRez - (alz)l<o14.
Proof. Let G(z) : g(z) - z . Tf (2.1) holds then Re G is bounded

in absolute value by d, on the vertical sides of Qt . Since it has vanishing
normal derivative on the horizontal sides, it satisfies the maximum principle
in 8r, and hence lRe Gl ( ö, in

Q' : Q(r:O,r:a;A:O,y:I) C Qr.

Therefore, if the theorem were false for a particular a > 0 and e ) 0,
we could obtain a sequence {G") of analytic functions orl Q' such that
Im G* : g on tho horizontal sides of Q' , Re G, -> 0 in Q' , and

lG,(z)l>e for some z with lRez- (alz)l<alL; a contradiction.
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L
az@)

large

(2.2)

emma 2. Let s'
> s' u:ith tlr,e follous,ing property. If b

s" one ltas

lf(w) +C ,p(r.a)l < t

for all u e Q(Y,,VtiHo,Hr). Here y is the quad,ri,l,ateral ma,pping of
Q(V,',V,^; Ho,HL) onto the rectangle Q@:0,*:AiA:0,A:I)
where A : 1(V,' , V,"; Ho, Hr) ; C i,s a real, constant.

Proof. Let {s,} be an arbitrary sequence of real numbers which tend
to + oo . It suffices to prove that the lemma holds when s" is replaced
by 

", . Let tp,(w) be the quadrilateral mapping g when s" is replaced

by sn . X'or any s , let å" denote that component of R - V, which contains
f as a prime end.

(i) Suppose a' ) so is given. There exists a one-to-one conformal map
I of fr,,, onto the halfstrip

S, : {zt:frt*iytl rr.} 0,0<Ar.--Ilt
such that the continuous extension of I to V", sends Vr, onto
trr:0,0<g<I\. I ma,ps Q(V,,,V,n; Ho,Ht) onto a quadri-
lateral D, c Br.Given a)0,therectangle {0 {rr3a, 0 (y 

=I}will be contained in the closure of D* if n, is sufficiently large.
Let z, : g*@L) be the quadrilateral mapping of D* onto the rectangle

Pn inthe zr: nz *'i,y, plane, Pn : Q@r:0,rr: An;Az:0,Ar:l);
here A" : A(V", , Vrn; Ho, är) * * oo as n ---> 6. By reflection
across the lines {gr : 0) , iAt : l} , and then {r, - 0} , we c&n extend
g, to a one-to-one conformal map of a region Df onto the region Pf :
{ -A*112<A;, -1< Uz12 }. The extended functions E, allhave
the properties E*(,): d and V;Q,) > 0. Since A** +oo it follows from
the Carathdodory kernel theorem that lim,* * V*(21.) : zr uriformly on any
compact subset of { - @ .--rt ( oo, -1< y <2I.

Thus,given e)0 and a)0 thereisan -l[:ff(e,a) suchthat

(2.3) lv"@t) zl

0 <Rez, {u, 0 <Imy, 11, and n2N(e,u).
(ii) The function z : f(w) maps fr,, onto the component of

B - /(2",) which contains z : * oo . Let zr : h(z) map /(å",) one-to-
one and conformally onto the halfstrip B, : { nt} 0, 0 { y1 { I } so
that its continuous extension carries f(V,,) onto {rr.:0, 0 { At<l)
and z: t@ onto zt: I oo. Thus I(w) : h(f(*)). Since la is dif-

t
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ferentiable at z : * 6 there is a real constant C such that
lim,**. Lh(z) - zf : C, uniformly in {0 Sy < I }. Thus, given e } 0

there is an r(e) such that

lh(z) - " - C1 . i if Re z>r(e), 0 (Imz <l.

Now choose ez - ar(e) ) s' sothat Ref(w) > *(e) whenever u) eRo".
Then

(2.4) lh(f(*))-f(r)-Cl < + if weRo".

(iii) Finally, let a , b be given with ar(e) < q, <b . Choose oc ) 0

so that the image of Q(V",Vu;Hs,Ht) under I is contained in the
rectangle {0<-rr{a,01Ut.:-l}.If n2N(e,u) then by (2.3)

lp*@(*)) - Ft*lt < * (w eQ(v",vu ;Ho,Hr)),

or, since ,p*(w) : E*@(w)) and n(w) : h(f(.)) ,

(2.5) lrp,(w) - nfff*Dl < t (w eQ(V",VtiHo,Hr)).

X'rom (2.4) and (2.5) we obtain the desired conclusion,

lf@)+C-y"(w)l<e.
Lemma 3. G'i'aen e20,there'i,sa ö": ös(e) >0 withthefollowing

propertg. Let y be an arc'i,n a rectangle Q : Q@:0,r:A iA:O,U:l)
such tlmt y separates the uertical sid,es of Q . Let

1' )t(*:0,T ) A:0,A:l) and, )u" )"(y,r:A ;U:0,A:l).
If 1' + 1" >A - ö" then lRez - ).'l {e for all, zey.

Proaf. Reflect y and @ across the real axis to obtain I and, Q.
M?p 0 u 0 into theannulus {l<lwl<e"a) lty w: e".The closure
of 'w(y U y) is a continuum which separates the contours of the anlulus.
In this wa,y one can derive the lemma from Teichmiiller's lVlodulsatz [ 7,

p. 6ael.
Lemma 4. Let M),0 befi,red,.Toea,ch e70 thereisa ör:

dn(r) ) 0 with the follmti,ng property. If A < M, and, i,f y i,s an arc in
Q : Q@:0,r:A;U:O,y:l) whi,ch joi,ns the two aert,i,cal sid,es of
Q, and rl

(2.6)
1(y-o ,T ifr.-0,fr-A)

1(y-0 ,!/:L iffi:0,n-A)
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anil

(2.7)
A(y,U:L )fr:0,fr-A)

1(y-0 ,U:L in:0,n:A)
then lTmz-tl{e forall, zey.

Proof. We simplify the notation so that the left-hand terms in (2.6)

and (2.7) become l"l). and )"'l)..Thus A : il-L and M 1 > l. Without
loss of generality we assume M >2.

Given e)0, chooso öa1ög(el2M)12 where ö, isdeterminedby
Lemma 3.

Tf l"> I choose a positive integer n such that 2"-L<tr <2".Tf
1<L choose 7L: O. Reflect Q across {Rez : lll } to obtafur Q*,
and set Qr: Q U 0*.Reflect @, across {Rez :211} to obtain Qf ,

and set Qz: Qt U 0f . Continue in this way until

A : e@:0,*:2"1).iU:O,A:r)
is obtained. The images of y under these reflections piece together to form
an &rc i which joins the vertical sides of Q .

Map A onto Q' : Q(u:O,u:),12";a:O,a:l) by w:y(z):
i(l-2-'z)'). Then p(ir) separates Q' into two quafuilaterals withex-
tremal distances

A',
1(u-0, rp|) ; a-0, D- 1) : -y,

The hypotheses (2.6) and (2.7) yield 1' + 1" > 1 - 2.1dn . Since
2-" 1 < I this implies

Therefore, when we apply Lemma 3 to the two quadrilaterals in Q', we
obtain lRear - 2-" 1'l 3 el2 M for all w eV6). \4/hen this result is
transfenedbackto Q via ?-1 weobtain l2-t lIm.z - 2-'X'l { elzM
for zei,or

Zne t
:2M 1- 2

The subadditivity of extremal distance, 1' + 1" ( ,1, together with
(2.6) and (2.7), implies that l\'lX) - rl < dn. When combined with (2.9)

this gives

t,(vri) ,u: *, a-.o,a:r) : #

(2.8)

(2.9)
l1'
llmzl--*- 1

(z ei ).
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(2. r0)

(3. 2)

for ze y and,afortiori,for z

We may require, in additior,
{ s as desired.

llmz tl

e y . We originally chose ö4

that ö4 S ulz. Then the bound in (2.10) is

zzlzr€(J,?z€U]1.
b so that a,z<a {s <b. For suf-

(w € Q(V., Vu ) Ho , H") )

e
I tz

3. Behavior of Re,f . In this section we give a condition on the cross

cuts { %} which leads to an asymptotic estimate for the real part of the
strip mappng f .

Condition I. Giuen e>0 thereisan sr:sr(e)2so xnhthat
if sr) s ) sr 7 s, then

(3.1) X(V,,,V";Ho,Hr) -f ).1V,,V"";Hs,Ht) > )"(V,,,V,,; Ho,Ht) - "'
Theorem l. Assume Cand,iti,on I hold,s. Then there i,s a real consta,nt

C such that

lim [Re f(*) A(V,,, V, i Ha , Ht)] _ C
s->f co

weV"

Proof. Let e ) 0 be given. Determine ös : dg(e/4) according to
Lemma 3; determine sr : sr(da) according to Condition I; determine

az: aziu,l4) > s' : s, according to Lemma 2. we shall first show that if
s ) 6z then the horizontal oscillation of f(V,) is less than e ; the horizontal
oscillation of a set U is the quantity

Given
ficiently

(3.3)

sup { Re at Re

8 > 0z , choose a, and.

large s" ,

lf(w) + C ,p(r.a)l

by Lemma 2, where q, is the quadrilateral mapping of Q' :
Q(V,,,V,,iHs,Hy) onto Q" : Q@:0,r:A)A:0,A:l) ' Let
1' : 1(V",,V";Ho,Hr), )." : )'(V,,V,,,;Hs,Ht), and )' -
1(V,, , V"o; Hr, Hr) . Since a, ) sr(de) , Condition I implies that 1' + i"
) i - öu. Since V preserrres extremal distances, a corresponding

inequality holds for the components of Q" - y,(V,) . Lemma 3 therefore

implies lR"ey(w) - ),'l 1 ela for all w eV,. This inequality, together

with (3.3), implies that lRe/(ta) + C - 1'l I el2 for all w e V,.
Therefore the horizontal oscillation of /(7") is less than e.

Let S0 be the component of B - /(2".) whose boundary contains

+oo. Let B, : {zl 01Rea{ +oo, 0 <A<l}. Let g be the
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one-to-one conformal map of Bo onto B, which makes the upper and lower
edges of Bo correspond, respectively, to the upper ancl lower edges of B, .

Since g is differentiable at * oo , there is a real constant Co such that
g(z) - z ---> Co as z -> + oo . Therefore, since the horizontal oscillation of
/(2.) tends to zero &s 6--> * oo, the same is true for g(f(V")). Therefore

Reg(f(w)) - l(V,",V,;Ho,Hr) - 0 as s-> +@, w eV".
Therefore

B"ef(w) * Co - X(V,",V";Ho,Hr) - 0 as s-+ + 6, u) eV,.
This completes the proof of Theorem l.

Condition r is actually necess&ry and sufficient for (3.2). Both conditions
are related to the osci,l,latiotr,

ar(s) : sup { Re/(ur) - Ref(wr) I wr,w, e Y,} .

We have the
Corollary. The followi,ng statements are equiualent:
(i) The cross cuts {V,\ sati,sfu Cond,ition I.

(i1) The osci,llati,un a;(s) -+ 0 as s -> + oo .

(iri) There is a constant C such that Ery,ati,on (3.2) hold,s.
The proof of Theorem I shows that (i) implies (ii), and that (ii) implies

(iii). Clearly, (iii) implies (ii). To prove that (ii) implies (i) we pass to the
image quadrilaterals in S by means of / and verify the inequality that
corresponds to (3.I) there. This inequality is evident there because these
quadrilaterals differ from rectangles only by the horizontal oscillation of
their vertical sides, and these oscillations tend to zero.

4. Behavlor of I*"f . fn this section we give a condition which will
be useful for proving that H, is asymptotic to the level line

{weR I I*f(u)- t}.
Condition II. G,iuen 0 <t

a(t , e)

d(s) also depends on t and t , such th,q,t i,f I > srr then

l(Ho , Hr; V, , Votq)

1'8 CI,7L CT, :

s , uh,ere

(4.1)

(4.2)

and a(t , e)

Theor

1(Ho, Hri V* Vna)

1(H, , H, i V, , tr'ot )
l(Ho, Hri V,, Vop)

e m 2, Suppose Cond,it,ions

lvl(t).
I a,nd II ltol,d,. Suppose
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is a continlnous function, of

lim [Im f(*)
s-+ f oo

Proof. Let 0<t<l and e>0 begiven.UsetheM:M(t),given
by Condition II, in Lemma 4 to determine ön : ön@12). Now *pply
Conditionllfor 0 <, < I and ån ) 0 to determine a : a(t, ön), 8rr :
srr(t , ön), and d(s) . Determine ös : ös@14) from Lemma 3. Determine
s7 : sl(ås) from Condition I. Determine dr : ör(a , el2) fuom Lemma l.
By Theorem I we can choose o so large that for all w e Z, and all s > o

lRe f(*) C 1(V,,, V, , Ho , Hr)l < +
- m&x (s, , 8rr ,6) and choose 6t) oo so that

l(Vr,, Vr,i Ho , Hr)

s1 and s2. Let 0 <t< I .Then

tl- o, (r"u G V, n Hr)"

(4.3)

Let o'o

X(Vo,, Vo,i Ho , Hr) > al2 .

Weshallshowthat weV,Oä, implies llm/(rz) -tl<e forall sldr.
Suppose then that s) or and w e V". Choose, by the continuity

hypothesis, an sr ( s so that X(V,,, V,; Ho, Hr) : ul2; note that
sr ) do . Let Qo : Q(V,,, VoF,t; Ho , Ht) and note that A :
1(V,,,Vau,1;Hg,H) 2 a according to Condition II. Let V be the
quadrilateral map of Qa onto Qr: Q@:0,r:AiA:O,A:l).
Condition I supplies an extremal distance inequality for the components of
Qo - V", the inequality can be transferred to @, via y, and when Lemma
3 is applied in Qt one obtains

l*" ,p4r)

Now (4.I) and (4.2) hold when I and
inequalities can be transferred to Q,
obtain

(4.4)

(4.5)

for w € V,

[Im V,(u;) tl

e are replaced by sl and öa,; these

, and when Lemma 4 is applied we

forweV,nHt.

Consider g:f otp-', a quadrilateral map of Qt onto /(@o) . Equation
(a.3) implies that the horizontal oscillations of /(2",) and f(Vou,) are
no greater than ö, : dr(o , tl2) . We apply Lemma I to g - b, where
b : 1(V",, V,,i Ho, Hr) * C , and obtain

(4.6) l@@ b) zl

whenever lRe e ("lz)l < 014 .

al a
-l2l = 4'

t
:2
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From (4.4) it follows thab z in (4.6) can be replaced by ,p(w); this
gives lf(*) - rp(w) -bl < el2, and hence llmf(w) -Imy(w)l < elz.
When this last inequality is combined with (a.5) the desired result

llmf(u;)-tl < e isobtained.
An examination of the preceding proof leads to the following
R,em ark. If the parameters M , a, d'(s), and, s, i,n Canili'ti'an II

are ,i,nilepenil,ent of t then the conclusi,on of Theorem 2,

,}1[Im f(*) t] : o

Itold,s un'i,formlA fo, all t € (0 , 1) .

(w e V, n H,),

II. Appllcations to general strlp domains

Theorems I and 2 of Chapter I will now be applied to the special case

that n is a strip domain and {2"} are the Ahlfors cross cuts {0").
Theorems 3 and 4 concern the real part of / and the Ahlfors integral

I d,ul$(u). Theorem 5 gives a condition for the imaginary part of / to
behave approximately linearly on each 8*. It' is of interest to compare
these results with Theorem 8 in Chapter IV which deals with the Ahlfors
integral and linearity of Im / on 8u for strip domains with smooth bound-
aries. Theorem 6 is an application to the angular derivative problem.

5. Strip domains. The general situation described in Section I applies
when .R is a strip domain. This means that R is a simply connected region
in the w : u * 'i, a plane, and that there is an open arc r r-> w(r) ,

A<t (*m, in -B with lim"*+-Rew(r): +m;thisarcdetermines
the prime end 6 . It is known (Ahlfors [1]) that one can then choose a
family {ilu}u>n" of cross cuts of -B with the following properties: (i) each

fl lies on a vertical line with real part u , (ii) each 8u separates I from
the prime end Co : f-'(- o) , (iii) if uo {ur <u, lhen d," separates
8*, from f , and (iv) if 8(z) is the Euclidean length of 8u then d(z)
is a measurable function of u (note that we allow O(u) : + oo ). The
cross cuts {8u)*2u, qualify as a special case of the general cross cuts {7J,>".
of Section I (cf. X'igure 2). A strip d,arnai'n consists of such an R together
with the associated quantities Co, C , {fiu}ur_u".

The integral ! d,ul$(u) played an inporbant role in Ahlfors []. It is
well known that this integral provides a lower bound for the extremal
distance between 4, and 4, (see, for example,l2,p.56] or [f, p. 665]):
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(5.r) I ffi s 1(8u,,8*,; Hs, H) .

Define the error turi n1u, , uz) hthis estimate by
u,

(5.2) ).(8*,,8*,;Hs,H) : I ffi. E(ur,ur) (utluz).

Note that E(u, , uz) 20 . In ä".tiorr, 6 and 7 we investigate the con-
sequences that follow w}nen E(u, , ur) is unformly bounded.

6. Boundedness of E(u, , ur) . Let n be a strip domain. Suppose

that E(u1,ur) in Equation (5.2) is bounded for all u1)uo. It
follows that E(ur, uz) - 0 as ut+ * q . Indeed, since extremal
distanceissubadditive(i.e.,}'(8*,,8*iHo,Ht)+^(8",8u,;Hg,Ht)<
1(8*, , 8*,; Ho , E r) ), (5.2) shows E(ut , un) is subadditiver

fr(ur,, u) + E(u , uz)

Therefore E(u1, a) is an increasing function of u;let
A : 

_!hU("r, 
u) .

Let u -> +oo in (6.1) and obtain ,{ 1lim,,*-E(u,uz) {/. Thereforo

(6.2) lim E(u , ur) : 0 (u < ur)

as assorted.
Now consider Condition I of Section 3. Equations (5.2) and (6.2) show

immediately that Condition f is satisfied in this case. Therefore Theorem I
can be applied; the result can be stated as follows:

T h e o r e m 3. Let R be a strip d'ornain. Supgtose the error function
E(ur,ur) of Equati,on (5.2) i's uni,forml'y bm'n'il,eil, forall ur) %0. Then

for all u 2 uo and, all, w e 8u we tha,ue

(6.1)

(6.3)

u

Ref(w) - f d" + c + E(u)J s@)

where C i,s a real canstant and, limu-**.E(u) : g .

Theorem 3 yields a short proof of a theorem of B. G. Eke [3, Theorem 2].

Let

r(u) : 
T:t_Ref(w), 

V(") : 
n1,;P,,ef('u)
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We shall prove:
The ore m 4 (Eke [3]). Let R be a strip d,orna,i,n. Then the quanti,ti,es

(6.4) r(u\ f t 
a,nd,' J 8(u)

r(u) d,u

s(")I
tend, to a cornnl,on limit p a,s,tr, --> * a, where -oo { f < *oo .

Proof. Ahlfors' Distortion Theorem [l] states that if uz> ut> uo
and f,id,ulS(u)>z then r(url-r(ur) >fftd,ulfu(u)-4. An im-
mediate consequence is that the two quantities in (6.4) are either simul-
taneously bounded or else tend simultaneously to + oo as u --> + a .

The second alternative corresponds to B : + oo in Theorem 4. Ifthe first
alternative holds, let M be a bound for the two quantities. Then

U,"idu
Js@

r- 
u2 

r r 
tL1

:Lr,",) - f #1 lr,*,) - I#1 fdu
+ J s'@)

< zM. I #
ur

which shows that E(u, , u2) of (5.2) is uniformly bounded by 2 M .

Therefore Theorem 3 can be applied; it shows that the quantities (5.6) have
a common finite limit C.

7. Approximately linear behavior of I-"f , We have seen (Theorem
3) that the boundedness of E(ur,ur) implies that Ref(w) behaves
approximately like li"d,ul$(u) * const. (w e8,). Can conclusions be
drawn concerning the behavior of Imf(w) under this hypothesis? The
simplest behavior would be for Ilanf(u + i u) to be "approximately
linear" in o along 8* . That is, if h,(u) denotes the ordinate of the point
on 8u which divides 8u into segments of lengths th(u) and (l-t)8(u),
the length of the lower segment being t$(u), where 0 < t < t, then we
say I^f is approximately linear on 8" if Imf(u + ih,(u)) -> f as
u---> +@.

To provide a background for the next theorem we now describe an
example in which E(u1 , ur) is bounded (and so Re f(u * i a) : const. +
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!i"d,ul$(u) + o(l) ) and yet Im/ is not approximately linear on 8*.
Let R' betheparallelstrip {u | -co ( Reeo { +oo, 0 < Im w <l).
Let {b*)*:r,r,... be a sequence of positive numbers such that 2b, < * .

For each n : 1,2, ... consider the isosceles triangle with vertices at
n * 2d, tu - b* + i, and n + b, -f i,. Let Tn be the interior of this
triangle together with its horizontal base. Let R : R' U ULr T*, arrd
consider -E as a strip domain with eo : - a, u,o : Q (see Section 5).

We have

u2

(z.r) I # I A(0*,,8,,; Hs, Ht) I u, - ", : I #. frpr,u"1
&t &1

where
'tLr

shown

(7 .2)

E(ur. , uz) _ [|,:tt O(u)-t) du
. Therefore E(u, , uz) of (5.2)
that for each fixed 0 < t

is uniformly bounded for uz )
is uniformly bounded. It will be

lim fm f(" + i,t) - t
u-->{ oo

From (7.2) it follows that Im/ is not approximately linear on 0u.
Note that (7.f) implies )"(8,,,8*";Hs,Ht) - lnz - u, + o(l) where

o(f )-+ 0 as urlur-? + oo. fn Theorem 6 we shall see thatthiscondition
implies (7.2). (It is also possible to prove (7.2) directly by means of the
Poisson formula.)

8. Uniformly continuous boundary. The above example suggests
that the hypothesis of bounded E(ur,ur) may imply that Im/ is ap-
proximately linear ort 8u in a sense of mean convergence rather than the
pointwise sense. We shall not pursue that direction here; instead we present
a condition on .B which, together with the boundedness of E(u, , ur) ,

does imply approximately linear behavior in the strict sense.
Let g* and g* be continuous real valued functions of arealvariable,

each with domain (- .o , oo) . Assume g+ ) E-.Let .E be the strip domain
bounded by the graphs of g+ and g- . Tf V+ and V_ are uniformly
continuous we shall say that -B is a strip domain with uniformly con-
tinuous boundary. fn that case define

(8.r) H, : {w:,tr + t,al p: tE*@) + (l-r) p_(u)} (0< r< r ).
Note that ä, satisfies the requirements of Section l. The approximately
linear behavior of fm f on 8* can now be expressed by (S.2) below.

T h e o r e m 5. Assume (i,) E is a stri,lt d,omain with uni,formly con-
tinuous bound,ary, (ii,) there are positiae constants c , L such that c < 8(u) < L
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for all suffi,ciently large u , and, (idi,)L &nA one of the conil,itions i,n the Corollarg
to Theorem 7 hold,s. Let 0 < t < | . Then

(8.2) lim[Im/(zo) -4:0 (weH,nL*).
#++@

Proof. The first step of the proof will be to verify that Condition II
of Section 4 is satisfied for .B wlnen H, is defined by (s.l) and {7,} are
theAhlforscrosscuts {8*}.Let 0<r<l and e}0.Choose 4>O
so that

ct c(l-t\ tc(s.3) q <2, ,1

Choose do) 0 so that do < I and

(8.4) lE*(u) - E*@')l I 11 whenever lu-u'l{do.
Define d,(u) by d(") : u+do. Choose srr so that hypothesis (ii) of the
theorem holds for u ) srr. With these choices we shall show that ( .f)
and $.2) of Condition II hold. X'or z ) s' define

?t* : min lt E+(u') + (l -r) V_@')l - max p_(u') .
*<u ld(u) u3u'3d(u)

Then t9* 2 tfl^ro-11 2 tc-q 2 O,'where

d-io : mtn{8(u')l u {u'til'(u)).
We can therefore estimate 1(8u ,8d@; Hs , H,) from above by inscribing a
rectangle of width t9* ; we can estimate )"(8*,8a@) i Hs, Ht) from below
by the usual lower bound (5.f). These estimates lead to

(8.5)

(8.6)

where 8^u* : max { S(u,')

a,nd (8.6) to obtain

I(Ho,Hri8u,$nwl)
1(II, , H,'/il rtr@)

r This will be the
(see Theorem 3).

d(u)

<- -t
J 8(u) 8-u*

xL' J Orur, . Clearly (d-*, 8-i,,) I 8^^*

l8^u*. We use this together with (8.5)

1(r9*,80,,) ) Ho , Hr)

lu
S d*i,,

>t d*io

0^^*
4\

t g^i^/

(' *)
case if, for example, E(ut, uz) in (5.2) is uniformly bounded
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Therefore (4.1) is satisfied. In the same way (4.2) can be verified. To com-
plete the verification of Condition If the bounds a(t , e) and Jlf(f) must
be exhibited. The upper bound M(t) : 2lc can be obtained in the same
way that (8.5) was derived,

).(8*,Ld@)iHo,Ht) 
= I ='^,- c-q - c'

the last inequality resulting from our choices do t I and 11 { cl2 . The
lower bound a(t , e) : doll > 0 follows directly from (8.6). The verification
of Condition II is now complete.

Hypothesis (iii) of the present theorem implies that Condition I is
satisfied (see the Corollary of Theorem f ). We have already proved that
Condition II is satisfied. In order to apply Theorem 2 it only remains to
prove t'hat ).(8*,,0u"iHo,är) is continuous in z, and in ur. Although
this continuity property need not hold for an arbitrary strip domain, it
does hold for a strip domain bounded by the graphs of continuous functions.
In this latter case the property amounts to the convergence of a suitably
normalized family of conformal mappings onto rectangles, and can be
proved by the Carathdodory kernel theorem. We shall omit the details of
the proof. The conclusion (8.2) of the present, theorem now follows im-
mediately from Theorem 2.

R, e m a r k . An eramination of the proof showsthat (8.2)hold"suniformlg

for al,l, t wi,th W - rl2l ( const. < ll2 (cf. the Remark fotrlu:ing Theorem
2).

9. An application
a strip domain in the
C,8u,,S, f introduced
The angular derivative

to the angular derivative problern. Let B be
ID : u + i u plarre. fn addition to the notations
in Sections I and 5, also defi.ne g - f-L : /S --> n .

C at C mey be defined as

,låk-s@)t:c
d4yq1-d

providedthe limit existsforevery 0< ö< lf2,and C *a.
The angul,ar tleriaati,ue probl,em is to find geometric properties of .B which

&re necessary and sufficient for the existence of an angular derivative
ab C . Frogress on this famous problem has been made by numerous mathe-
maticians (see lf 2l for a survey of results prior to 1955; subsequent work
has been done in [4], [5], [6], [r0], [9], [20]) but it still remains unsolved.

Another standard, and essentially equivalent, definition of the angular
derivative will be more. useful for our purposes. By performing a vertical
translation of -B one can require that' C be real. Then, since fm g@) - A
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->0 in {ö<y<I-ö} as n->+@, itfollowsthat R must
contain a half strip

(9.1) Ra:{wlu2Uo,ö<a<l-d}
for each 0 < ö < ll2. { must be the prime end at * oo which is acces-
sible along the ray {u 2Uu, o: ll2}. Furthermore, there is a uo

such that fl intersects the line {o : ll2} for all u 2uo. X'rom nowon
we adopt the following definition of angular derivative:

Definition. A stri,gt d,ornain R i,n the w-plane i,s said, to gtossess

an angular d,eriuat'i,ue C at C proa'id,ed,, for eaery 0 < ö < ll2 ,

(5.2) R conta'i,ns a half-strip Ra of the form (9.1),

anil

(e.3) lim lf(.) - wl : C + +@ (w eBo).
Re @++@

Note that C in (9.3) is necessarily real. Condition (9.3) is often replaced
by the pair of conditions:

(9.3a) lim fRef(w) -Reral : C++a (weHu)
Re p++@

(9.3b) lim lln'f(w) - Imwl : 0 (w e Ro) .
Re @++@

Condition (9.3b) is traditionally referred to as semiconformali,ty a,t C .

fn Theorem 6 we present an extremal length property of -rB which is
necessery and sufficient for the existence of an angular derivative at C.
This result should not be considered as a solution to the classical angular
derivative problem because extremal length is not a geometric property in
the classical (Euclidean) sense. The result does indicate, however, that, extremal
length may be a fruitful tool for future progress on the problem.

T h e o r e m 6 r. Let R be a strip ilomain. The followi,ng prolterties are
necesscr,rA and, sufficient for the eri,stence of an angular d,er'i,aati,ae at ( :

(i) R contains a hnl,f-stri,1t Ro of the form (9.1) for euery 0 < ö < ll2 ,

(ii) ).(8",,8o,) Ho , Hr) : %z - %t * E(u, , ur) where E(u, , ur) --> o

a,s ,.tL---> + oo ( ut l uz).
Proof. Suppose the angular derivative exists. Then (i) holds. It is well

known (for example, Warschawski [9, Theorem lb and Theorem 2)) thaf
the semiconformality implies

r(u) : sup { lRe/(u) - F.lef(w)l I w elu) ---> 0

1K. Oikawa has inforrned us that he and J. Jenkins have independently obtained
this samo thoorem in joint work in progress.
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as 1L -> * oo . This
the segment {r-
large QLL with rLL

Q@- ur*C+t,n

Therefore

fact, together with (9.3a) shows that f(0") "rpproaches"
'tL + C,0 <A
+ t1lLz t,

- uz*c-e;y*Q ,u:t) c Qff@",) ,f(8u,);a-0 ,u:L)
C Q@- ut*C-t,n- uz*C+e;A-0,U:l).

: fm f(*)

i)t

'1"L2 'lI L 2

If 'tLL + e 2u,
still hold. Thus (ii) holds.

Conversely, suppose (i) and (ii) hold. Condition I of Section 3 follows
at once from (ii). Thus Theorem I is applicable and it yields (a stronger
version of) (9.3a). ft follows from (9.3a) that f'(w)-->l a,s u--> +@,
uniformly in any Ao, as can be easily seen from the representation

f'@) : + I Ref(w) #4 (@-aot <r)
lw - aol:r

which is an immediate consequence of Schwarz's formula and is valid as
soon as / is analytic on {lw-aol {r}. Therefore f(" + (1-ö)d) -
f(" + öd) -+ (L - 2 d)rl as u--> * oo.Therefore,since 0 <Imf(w) < l,

o < lTf:pImf(u + öi) < 2ö,

I - 2ö < lim+inflmf(u + (1-ö)d) < ]-

t

: 1(8u,,$u,i Ho , Hr) < 'tnz 'tLL + 2 t .

'trz 'tLL 2 e < 0 and these last inequalities

This shows that the bounded harmonic function p(w)
Im w satisfies

lim sup lp(u + ö ,)l < ö and lim sup lp(u + (1 - ö)
u-->l a u-->l a

Hence limsup lp@)l S ö for w eBo and Rear-> +oo. Choose ö'
so that 0<d'<ö. Then limsuplp(w)l<ö' for we&o and
Reto--> + oo . Since ö' isarbitrary, p(w)-> 0 for w e Ro, P,ew-> + oo .

This proves (9.3b), and completes the proof of Theorem 5.

10. An angular derlvative criterion. Theorem 6 reduces the angular
derivative problem to one of estimating extremal distances. As an illustra-
tion we present the following example.

Let {u} , {a} , {a',) be sequences of real numbers such that uj V + a
and a7 < ll2 < uj. . Define
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Lj _ {ui + iul u lri
and let' P be the st'rip domain
of the paramet'ers

@i: minlaj-1 ,u') -m&x(a1-1 ,a), di:ui-ui-t

to give a lower bound for l(8u*,0u*iHo,Hr), (m<n ). Write P:
P({@i\ , {d}) to indicate that P is a domain with these parameters.

The lower bound will be obtained by calculating the appropriate lengths

and areas with a special metric q(w) ld'wl . Let T1 be the rectangle

{u + iul ui*t I u t'tt'j, ma,x(u,-r,u) - di So ( min 1ui-t,a'1) + Q} -

Set q(ru) : r in l)k*rTi, and p(w) :0 elsewhere' Aoy arc in P
which joins r9"* to 8'*n hu,s gJength at least Z?:**rdi : %* -'ttft.
The q-area is )i:^+r(@jil,j + 2S).Thercfore

(10.1)

A(Ou* ,ilrn) Ha , Ht)

}, L;:
c uj(Lj

{ui + 't,al u 2u}}
U t,). We shall make use

e2
: 'LLrtu 'lfir, e +r' Irln- un+ e

(u*- un)z

2 d?)

where e : e(rm,rL) : 2i:**rl(@i'l)di + z#il. We shall use the
lower bound, (10.1) to prove the following statement, which can also be

obtained from a theorem of J. Lelong-Ferrand [12, Thdoröme (vI. t9c)

p. 2t4l:
Let R, c -B c P : P({@j) , {dj\) be stri,p d'oma'i,ns. Buppose Ro has

an angul,ar d,eriaatiae at + a . If the series

(r0.2) i t",-t1o and, 2ol
j:L j:l

conaerge then R has an angular d,eri,aat'i'ue at * oo.

Proof . By Theorem 6 and the comparison principle for extremal length

we obtain the upper estimate

(10.3) 1o(8,,,8*,,;Hs,Ht) ! 1*"(8,,,8u,';Ho,Hr) : 'tr," -'tL' + o(l)

where o(1) + 0 as It" > ,tL' -> + oo . To obtain a similar lower estimate for
i^ of the form lt" - 'u,' + o(1) we use

(10.4) ).R(8*, , r1*,, ; Ho , Hr) - (u" -u')
2 1r(0*, ,Or.; Ho, Hr) - (u" -u') : E(u' ,u") ,

and show that D(u' , u") > o(1) as 't'1" > 'tt'-+ + co

Let e>0.Thereisan 4>0 suchtha,b 0<u"-'t'r,'<4 implies

i:rn*l
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IE(u' ,u")l <e for all u') uo. Wemaythereforeassume that u" - u'
) ry and then prove E(u' , u") > - " for sufficiently large Qr,' . Let
?u* , u,f be the largest interval, formed from the sequence {zi} , which
is contained in lu' , u"f . If u' is sufficiently large then rru + % and the
term e : e(m,n) in (10.1) will satisfy lel <rtlz. Therefore the term
e2l(u*-u**e) in (f0.1) will be positive and can be omitted.Theresulting
(fO.f) and the comparison principle yield

E(u',u") 2 (u*-u*) - (u"-u') - e 2 -il* - d,+t - e.

This shows that E(u' ,%") 2 -e if z' is taken sufficiently large.
These upper and lower estimates prove thai tr,R(8*, ,8*- i Hs, H1) :

,1r," - ,tL' + o(r) . Theorem 6 shows that n has an angular derivative
at +oo.

III. Estimates of extremal distance

In this chapter we return to the general situation of $ f . We require
that the grid lines {V"}, {H,\ be given explicitly as the image under
a differentiable mapping of a rectangular coordinate grid. in the plane.
In this case there is a useful method (Theorem 7) for estimating the extremal
distances X(V,,,V,"iH,,,H,"). This method will be used in Chapter IV
in order to apply Theorems I and 2 to special regions.

11. Deflnitions and notatlons. The notations A, {2"}">"", {Hr)o<,<t
have the meanings of $ f . We now impose further special conditions.

Assume -B is a plane region. Assume t'hat' Ho and ,F1, are smooth
curves on the border of -R . Assume that each cross cut Z" can be extended
so that it possesses endpoints on Eo and ä, ; from now on 7. will denote
the extended cross cut. Assume thdt c : c(s ,l) is a homeomorphic mapping
of the closed half-strip

{s +rill so 5s{ *oo, 0 (t <l}
into -B U f/o U ä, . Assume that c ma,ps each vertical segment

{s+zflsfixed,0<r<f}
onto 2", and each horizontal ray

{s + il I so<s( *oo, f fixed}

onto ä, . Then each V, can be parametrized by f r> c(s , l) , and each
H, can be parametrized by s r> c(s , l) . X'or simplicity we require that
c(s , t) be continuously differentiable and that its Jacobian determinant



488

\

Buntox Roprx and S. E. WaRscHAwsKr

J(s,t) bepositivefor so<s< +oo, 0 <t< l. X'or later referencewe

summarize all these conditions by:

(11.1) V,:tr>V,(t): c(s,l) , 0 <t<L,

(11.2) Hr: srt ä,(s) : c(s,t), so (s{ f@,

(11.3) "I(s,f)>0 (so(s(*@,0<r<f).

12. An extremal distance estimate. Let R be a region as described

in s ll. The following theorem provides upper and lower estimates for
extremal distances in the quadrilaterals determined by {Z"} and {f/,}.

Theorem 7. Assume that c(s,t)'i's a mappi,ng wåth the properties

(11.1) - (11.3). Xor so { sr { s, anil, 0 1tr <-t, ! I d'efine

(12.1)

A,,nd

(L2.2)

Then

(,28) i#

k(s) : I t-,(s, r) \+c(s ,a\'a,
tr

t(t): f ,'(s, r)
a lz

ar"(r,') I ds'

I i- d,t

nfl) : J t0'

S1

Proof. Leb H', be the portion of H, which lies between %, and

V,". Let, f' : {H'r}t,<r<h. An elementary property of extremal length
gives ).(V,,, V,,i Hr,, H,,) < ),9') . Theorem 14 of [14] provides

a formula for calculating the extremal length of a one-parameter family
of arcs. When applied to this case the formula gives

(L2.4)

tL

where l(f) is given by (12.2).

Let V', be the portion of V, between H,, and H,", Let l" :
{71}",4"4"". Then

L-t(V",, Vr,; Hr,, Hr") : X(Hr,, Hr,; V,,, V,,) < 1(T") .

Theorem 14 [4] applied to .l-" gives



Extremal length and behavior of conformal maps 489

(r2.5) l_: f ds

^n ! fr(') '

where k(s) is given by (12. 1). When (12.4) and
is obtained.

X'or future reference we note the corollary

(I2.5) are combined, (L2.3)

I(t) dt(12.6) f
tL

i Ik(s) 
\ r1 ' J2 / t'L ' '2r (tr-tr),

which follows from (L2.3) by applying the Schwarz inequality.

IV. Applications to domains with smooth boundaries

In this chapter we consider several explicit choices for the grid lines
{V,}, {Hr}. fn each case they can be parametrized by a differentiable
mapping c(s , t) as in (f f .l)- (11.3). Theorem 7 provides a tool for checking
Conditions f and IL In this way Theorems I and 2 rr;ray be applied to yield
asymptotic estimates for the mapping function /.

This method may be compared with that of l9l, [r3], lr5l, [16], [f8].In
comparing different asymptotic estimates, no questions of sharpness can arise
because the emor terms have always been estimated merely as o(f). The
only criterion for comparison is the nature of the hypotheses under which
the asymptotic expansion is valid. It will be seen that the methods of this
chapter often lead to hypotheses that are less restrictive than those previous-
ly known.

13. Strip domains bounded by smooth graphs. In this section
we consider regions R which are bounded by the graphs of two con-
tinuously differentiable functions g+ > g_ :

(13.1) R : {,u):,tr, + ial -oo < u< +qo, g_(u)<a <E+(u)}.
Let ö be the prime end of -B determinedby limn",*a*rl. Thus ,/ is
a one-to-one conformal map of .B onto

S _ {z- n + iy | -co 1n
which satisfies Re f(u) + +

Choose { Z,} and {H,}

{w- u + iul u:s, p-(s)

{w - u + ,i, u 
I

@ as Reru->*oo.
as follows. V, is the Ahlfors cross cut

! a { V*(s) } . Ht is the arc
,l

a-t V*(u) + (1 - t) V_(u) ) .
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Here 0 <t<l and s isanysufficientlylargerealnumber,say s)so.
These choices can be put in the form (ll.t)-(11.2) by defining

(13.2) c(s,l) : (u,a): (s,f9*(s)+(l-4E-(s)) .

The corresponding quantities of Theorom 7 are:

J(s ,t) : 9*(s) - g_(s) ,

L^ -- \2

ft(s) : I Ydt : (tz-tr)(s+(s) - E-(s)),J 9+-9-
h

rft\ :'ft + Qv'* + (t-t)v'-)z *.J 9+-9-

Define d(s) : p.(; - E-(s) . The left-hand. term of (12.6) is

(t,-t,,)-t jt ,-u, u, .

sr

The right-hand term is

t i:i:arat L f i|rn+G-t)q-)z
(t,-t,),J I Ed* 1,,-,*l I - a;-"u'

lr sr fr sr

t j: at e(sr, sr)
, _ _L_- tr-t, J s(s) ' tr-t, ',

sl

where
st

(r3.3) o ( e(sil sz) ( iq'i-rt rE: 
* .

,{

Therefore (12.6) can be rvritten, in the present case, as

I 'i at I i: a. e(s, , sr)
(13.4) tr_h J ,tq < x(v",,v,,;H,,,H,,) s ,r_rrJ ,tq+ 1ft'

sr sr

It follows easily from (I3.4) that if
(13.5) e(s, , sr) -+ 0 as s1-> + co ( st < s, )

then Conditions I and II of Chapter I hold, fndeed, from (f 3.4) we obtain,
for sn<s1<s(s?,
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X(Vr,, Vr,i Ho, Hr) - X(V,,, Y, ; Ho, Hr) - ).(V,, V,,; Hn, H)
( e(s, , sn)

which verifi.es Condition f. Next consider Condition ff. Define d(s) by the
the condition 1(V,, Vd@ i Ho, H) : I ; this is possible because
1(V,, V,' i Ho, Hr) is a cont'inuous function of s' (see $ 8). The left-
hand inequality in (13.a) yields Ji;ds/r9(s) < l, and then the right-
hand inequality gives

tr- tt tr-tt
1 + e(s , d(s))

l(Hr,,Ht, lV*Vo(r)) >

Theorem 2 and the Remark

We have proveel:
Theorem 8.

s'uppose

(13.6)

d(s)

fdsI + + e(s,d(r))J r9(s)

Therefore

e(s , d(s))
1(H r,, Ir r,, V r, V o$)) - (tr- tr)

1 + e(s , d(s))

which verifies Condition II; note that the parameters a and M of Con-
dition fI are independent of t, a, - M - | .

R, e m a r k. In subsequent sections we obtain inequaliti,es similar to
(13.4). The reasoning in the preceil,i,ng paragraph wi,ll be referced, toinord,er
to canclud,e that Cond,i,tian I and, Cond,i,tion II (uni,formi,n t) aresati,sfied,
proui,d,ed, the error terms are o(I) as in (L3.5).

Assume (13.5) holds. Then Theorems I and 2 and the Remark to Theorem
2 may be applied. Theorem I yields

Ref(u + ir) _ 
^(V,,,Vu

iHo,Hr) + O +o(1)

ds

e+ (s) p- (s)

wing it yield

+c+o(1)

fmf(" +ir): t +o(1) (u + 'i a e H,)

+'iu €A)

Let R - {w-1,(, + i,u l v-fu) {u

v'|@) + v':@)

{
follo

+ o(1) ( u

f
so

ds
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Let f bea one-to-one

S : {"|0<fmz1t
conformal map "f h
) such that Re f(w) ->

onto a parallel striry region

*oo a,s Retp-+*@. Then

ds
(r3.7) f(u + ia) +C+ i + fr(u)

where C is a real coicetant anil lim*-** E(u) : g .

Theorem 8 represents a strengthening of a result in [8], p. 296 and
p. 323. fn order to obtain (13.7) it is assumed there, i,n ailili,tion lo (13.6),

that .B is an Z-strip of boundary inclination 0 which, in particular,
implies that g'*(s) -+ 0 as I -> + co . Theorem 8 shows that this additional
condition is not needod.

14. Domains and surfaces generated by a smooth curve. fn this
section we consider regions .B which can be swept out by a line segment
of varying length moving along, and normal to, a given curve.

Let s + lY(s) e C be an infinite arc parametrized by arc length
s, - oo < s ( * oo . Let N(s) be the left-hand unit normal vector. Let
/(s) be a positive function; it will be the width of .B as measured along
the normal N(s) . Assume W to be of class C2 and, / of class C1 . We
define .E to be the image of the mapping

(r4.1) (s , ") F> w(s , r) : W(t) + r Å(s) N(s)

:I

(-oo<s<+oo,0<z<l).

We require this mapping to have positive Jacobian determinant. If the
mapping is not globally one-to-one .B must be considered as the multi-
sheeted image of tho mapping, a Riemann surface spread over the ar-plane.

Let 6 be the prime end of -B determined by the arc w(s,ll2) a,s

s-> +oo.
We choose V, to be the image under (la.l) of tho vertical segment

{(s,z) ls fixed, 0 {r (.l}.We shall consider two possibilities for
choosing tho family {H,)o<r<r. The simplest choice would be to define fl,
as the a,rc sr>w(s,f) , so ( s ( +oo. In the notation of (If .f)-(11.2)
this amounts to defining c(s , f) to be w(s , t) .

Let T : W' be the unit tangent vector. The curvature z satisfies
N' : x ?. The quantities J , k(s) , l(t) of Theorem 7 can be calculated
as follows:

c(s , f) : W(t) + t /(s) l'l(s) ,

o

ut 
c(s,t) : W' + t A' N ?(t AT - (\-tx /)T + t 4' N 1
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alz
a, c(s , r) 

[

J(s , t)
la a

la c x E"
t.
r / dt

k(s) : J r_ttn
tr

r(t): f v

I:
-24

tx/)2 + t2/'2

We have assumed J > 0. We now make the stronger assumption
J >å >0 forsomeconstant ö.Thus

(14.2) (t-x/)/ > ö > 0.

fn additior,

( r 4.3) lxl ds and /'2 d,s conYerge.

Then we obtain

assume

@
.l

J I

(L4.4)

where e(sr , sz) -+ 0 as sz

I f d,s r e(sr,sz)

tr-rLJ z -i- 
tr-E

* oo . 
'*rrr.u

I

t21r: : I t(t)dt
(tr- tr)' J

tr

if%

r-l
/ %J if o

/

t

t
{

t

81 ->

I
-?4 tr- t,

I
tn-tt

. I trn/
log 

L - trr" /

we also have

(r4.b) f d'-

/ ft(s) t,- t,

where ä $r, sz) -> 0 as sz ) sr +
the present form of (12.6) is

f d,s , z(sr , sz)

JZ -r tr-h'

; * . From (I4.4) -(14.5) we see that
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I
tr- tL

fdsI__J/ + ä(sr,sz) - A(v,,,v,,;Ht,,H,,)
tr-tt

I
tz- tt

, €(sr , sz)

tr-tt
fdsJÅ

As in Section 13 (see the Remark precoding Theorem 8), this inequality
leads to an asymptotic estimate for f . The result is:

Theorem 9. Let R bethei,mageof themapgti,ng (14.1). If thehypo'
theses (14.2) - (14.3) are satisJied' then

( I 4.6)

(L4.7) t -

where C 'i,s a real, constant and, Iimr-*-.O(s) : 0 .

fn the above theorem the term J:" /-1(s) ds may be replaced with

.fi. -[r/log(1 -x/)]ils. Thus this asymptotic expression for Re/ is

the same as that in Theorem l0 below.
Now we consider a different choice for the family {fl,} . Recall that

Ht should asymptotically approach the level line { Im/ : 61 in E .

By way of motivation, consider tho approximate behavior of Im/ along
a fixed" tr1 . To be definite assume ,(s) < 0. Approximate the boundary
of -R at W(s) by the osculating circle. If its radius is now increased by
/(s) the resulting circle might be an approximation to the boundary of -B

at W(s) + /(s) N(s),atleastif Å isnearlyconstant.Since Z, isarafius
of the annular region between these circles, we might approximate Im/
on tr" by the values of the harmonic meåsure of the annulus there. Thus
at tho point rrl(s, z) the value f of Im/ would be approximately

log (1 r % /) I (1 %/f
, SO T :7.

log (1 % Å)

X'or these reasorrn we now choose H, to be the arc

sr+zu(s, p - (l- * l)tl I x Å) .

In the notation of (11.1) - (11.2) this choice for { 7"} and {ä,} amounts
to defining c(s , f) by

( I 4.8)

where

(14.9)

f(*(s,r)) - f ot=+ C + ir+ E(s)-J/@l'\/'v

r(s,t): å tt (t- x(s) t(rD'J
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Let T : W' be the unit tangent vector. The curvature z satisfios
N': - xT .Wenowassume x eCL.Thequantities J, k, tr of Theorem
7 can be calculated as follows:

W' +rrN+rN'_ (1-r%)T +rrN,
o

atc:
la lz

l-cl:las I

a
--=C:
at

(1- r %)z

frN ,

ss

S1

+r?

a

at"
Iz

I

.d'rs: (1 - %/)'-t 
{,

I
rt: -;(1 -%Å)'

r(s,t): lå"x *'

I: (l-r%)rt: ;
log (1- x A)

fr(s) : (tr-tr)L

log(1 -24Å),

I t(l -r x) T + r, Nl Xrtlf I

l(t-r%)r,T Xlf + r,rtNxNl

(1- xÅ)å'log(1- %/),

,

S2t(t):|ffi+f&
sr

Note that J(s,t) will be positivo if and only if 1 - x / > 0. This in-
equality holds because the Jacobian determinant of w(s, z) from (la.l) is
(l - x /) / , and, this was required to be positive in the definition of -B .

Theorem 7 holds for unramified multisheeted coverings of plane regions
as well as for plane regions. We 

"pply 
this theorem, or rather its corollary

(f 2.6), and obtain

S1

(r4'ro) 
'.|r,t @;*A t 7(v,,'v""iH,"H,")

st

I f -nils
tr-ttJ log(1-%/)

s1

e(sr,szrtrrtr)
tz- tt
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where

(14.f1) e(sr,sz,tr,tz)

(L4.11)

{,

[ ,'' /3 ils
J

(L4.Lz) I # o'

The integrand in

€,

0
-log(l-,,4/)/ (1 -xlYA

[12 l',z
:/

(, /)' (t -% /)+ 2 x'2 ^/3

Assume now that lim in{*+oo (t - x(s) /(s))
above is (/', I /) OQ) + x'2 /3 O(L) . Thus
sz ) sl -> * oo , uniformly for 0 ! t, l tz

: t +o(l)
tog (1 r x /)

Iog(I-n /) '

-x /

e(sr,sz,tt,tz)-+0 as
provided

lim inf (1- x /) > 0.
s-+ f oo

As in Section 13, the inequalities (14.10) and the uniform behavior of
e(s1, s2,\, tz)-> 0 show that Theorems l, 2 and the Remark following it
can be applied (see tho Remark preceding Theorem 8). Theorem t yields

Re/(zu(s, ")) 
: i -;:g- + C + o1t1, as s -> + oo .

! tog (I-x /)

Theorem 2 and the

fm .f(w(s , r))

Remark followirg it yield

(if w(s , r) e H,)

+ o(l) (all us(s , r) € A )log (1 % t)

(see (L4.7)). We have proved:
Theorem 10. Let n bethe

hypotheses ( 14.12 ) are sati,sfied then
'öma,ge "f the mapping ( 14.1) . If the
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f(*(s , r)) -x,d.,s ^ .

rog(r-" /) + c + n
log (l - r x /)
log (l - % /)

+ E(t)

where O 'i,s a real, constant anil, lim,-*- -E(s) : 9.
When /(s): const. : I , Theorem l0 yields a result of Stroöik [l5],

which he proved by use of the Teichmiiller-Wittich-Belinsky Theorem.
In this paper the strip ,E is defined (using our notation) by the mapping
(s,z)r>w(s,r):W(u) *zN, -ll2<t<ll2; thus W(s) is the
"center" curve of -B rather than the "lower" boundary. An elementary
calculation shows that his hS4potheses, in terms of our quantities, require
that Jfl Max (r'',lx'l)il,s < a, and that for some ö, 0 < ö <
l, - 2(l-ö)/ ö < x <L-ö. These conditions &re more restrictive than
ours (in particular we do not need. the convergence of lf lx'l d,s ) .

Theorems 9 and 10 may also be compared with Theorem IX of [18].
Despite some similarity in the form of the asymptotic expansion of f(w) ,

it is easily seen that the result in [1S] neither contains nor is contained in
our present theorems.

15. Symmetric strip domains. fn this section we mention a special
case of the situation treated in Section 13; namely, the case that g- : -g+ .

This situation was treated in Gol'dberg - Stroöik [9] by a method based

on the Teichmiiller-Wittich-Belinsky Theorem.
The results of [9] can also be obtained by the methods of this chapter.

This is dono by defining c(s , t) as follows (we write g for g* ):

(15.1)

where

c(s , t) - (P(s) + r(s) cos r(s , t) , r(s) sin r(s , t))

(r5.2) P(s) :'-#' r(s) : ffi{ ur''.n '

r(s ,t) : (2t- l)arctan g'(s) .

Geometricall5z, P(s) is the center of a circle of radius r(s) which is
orthogonal to the boundary of R at the points (s, tg(s)) . The cross cut
Z" is an arc of this circle, and, H, divides Z, into two arcs whose lengths
have the ratio t: (l-f).

We assume that g is twice continuously differentiable. Then the
condition

tt
9V

:!

( I 5.3) lim inf
s-+f oo (1+ e'\ (1 + dt*n

ensures that the mapping (s , å) + c(s , t) is one-to-one and that "/ ) 0



498 Buntox RoorN and S. E. 'WanscuawsKr

Thus, given rD : ,tr, + i, u e.B there exists a unique pair (s , l) satisfying
(15.r).

When the techniques of this chapter are applied, we obtain (we omit
the details of the calculations):

ST ST SI

(tz-t) f :L > [ --! 
q'-, *: I e' min(o '8") o,'' ! k(u) - ! Zparctanq' 2 ! arctan p' ltqr'z1g + {t+E\

St St S1

and

*fn o'
.l

.f ,'tu *u j'1 w"t _, e(q"),\ ,'tu
- J 2garctanE' J l1t+E'1't' ' 1l1r''1') arctang"

St 3r

where M is a positive constant. Thus

SgI { t --!i:-- - 21r,, ",;} 1 t(v,,, v,";8,,, H,,)tz-trlJ 2EarctanE'

s*ti 4#fu+e1s,,s,))
where

0 <Z(s'sr): O{ 

[W
and

s! sl

0 < e(sr, sz) : 9[ [ -lv"l,-^a, + [ -v@"|.'..6r\ .tJ r+v'z ! r+ls'15 )

X'ollowing an argument similar to that in Section 13 we obtain:
Theorem ll. (Gol'dberg-Stroöik l9l.) If i,naild,itionto(15.3), p

satisfies the conilitions

f lv"l o,J L+g'z J t+lv'lu

then
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f(c(s,t)) - f , ''ot- ,+ it+ c +J'(s)" 
/ 

2garctang'

where C d,s a real constant and, limr-,** Z'(t) : 0 .
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