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REPRESENTATION OF FUNDAMENTAL SOLUTIONS

FOR GENERALIZED CAUCHY-RIEMANN EQUATIONS
BY QUASICONFORMAL MAPPINGS

M. SCHIFFER and G. SCHOBER

1. Introduction

Let D be a domain in the extended complex plane C = C U {0},
and let K : D—[1, o) be a measurable function. We shall assume that
[|K||, = esssupp K is finite. A few further restrictions will be added later.

Definition. A homeomorphism f: D — C is K (2)-quasicon-
formal ( K(z)-q.c.) if f is locally absolutely continuous on a.e. horizontal
and vertical line ( ACL ) in D and satisfies the dilatation condition

IR + 1)
(1.1) 1 < 7@ = L) < K(z) forae. zeD.

Since |[|K||, < oo, each K(z)-q.c. mapping is ||K||,-quasiconformal
according to the standard definitions ([2]). If oo € D , we shall require that
f(0) = oo ; otherwise f(D) c C if oo ¢ D . The family of all such K(z)-q.c.
mappings of D is denoted by @Q(K,D), and we abbreviate @Q(K) =

QK ,C).

We shall pose some extremal problems concerned with the global
distortion of K(z)-q.c. mappings. Their resolution by variational methods
will provide weak fundamental solutions to the partial differential equations

(1.2) div (K grad V) = 0 and div((1/K)grad V) = 0.

These equations are, of course, of basic importance in the theory of steady
state heat flow (fluid flow, electrostatics) in an inhomogeneous medium.
Our methods will simultaneously yield the existence of fundamental
solutions for (1.2) and a representation for them in terms of K(z)-q.c.
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mappings. It is the representation in terms of univalent functions that is
for us the principal attraction of the theory.

By weak solution of the equation div (K grad V) = 0 we mean
a continuous function ¥ that admits locally a continuous conjugate U
in the sense that U and V are locally ACL and their first order partial
derivatives are locally in 2 and satisfy the generalized Cauchy — Riemann
equations

(1.3) U, = KV, u, = -K7,.
The theory of the system

1
(1.4) v, =KV, U, = ——EVx

is well known in terms of q.c. mappings. For if we define F = U + ¢V,
then (1.4) is equivalent to the Beltrami equation
K -1

:" F: = .
(1.5) F K+ 1 .
Generalized solutions of (1.5) are well known (e.g. [2]) to be expressible as
the composition of a K(z)-q.c. mapping with any analytic function. On the
other hand, the system (1.3) is equivalent to the equation
1 P
( 6) i = K + 1 z*
It is a feature of the variational method that it leads to solutions of this
latter equation.

Very briefly, the variational method [1, 3, 6, 7, 9] leads to the following
procedure: Let y[f] be a functional that admits the following asymptotic
formula

(1.7) af +eh] = yIf] + eRe L[h;f] + ole),

where I, is a linear functional of % , depending also on f. Define

(1.8) Ww; f) = L[J—v—_l*w';f];

in many circumstances this will be an analytic function of w. If f is
an extremal function for the problem of maximizing the functional
over a competing family & of K(z)-q.c. mappings, then (under appropriate
conditions on W(w ;f)) it satisfies the differential equation

K(z) — 1 (f); /)] —
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and

(1.10) F) = f\/nTuﬁj dw

satisfies the differential equation (1.6).

The variational formalism makes it evident that we will be particularly
successful in extremum problems for which U(w ;f) will be the square
of some rational function of w . This is the same situation as in the theory
of conformal mapping. In that theory numerous functionals of this char-
acter have been studied and have led to important inequalities. To study
the same functionals in the q.c. case is often impossible since the classical
functionals depend frequently on the values of the derivative of the mapping
function.

In the first sections of this paper, we shall introduce certain functionals
of a q.c. mapping, which will have the same functional derivative as the
derivative of an analytic function and can be used to reconstruct the
classical functionals for q.c. applications. Then we shall use these functionals
to obtain existence proofs, to characterize and estimate various Green’s
functions, and, in particular, to generalize well-known inequalities of
Golusin from conformal to very general q.c. mappings.

Our results contain as very special cases some problems in the theory
of univalent analytic functions with K-q.c. extensions.

2. Basic functionals

In order to measure the global distortion of K(z)-q.c. mappings, we
shall use the expressions

[f(z) — f(2)]
(2.1) Pr,(;K.f) = e — C|REFUREIR
and

1fz) = f(D)
(2.2) Y(,(;K,f) = z — | R@ RO

which are defined for z %= (. We shall define @ and ¥ also when z = [,
but only at points where K satisfies an additional condition.
K is essentially continuous at z, if the essential modulus of continuity

(2.3) w(r;z,, K) = esssup |[K(z) — K(z,)]
la—2| <7
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decreases to zero as r — 0. We shall impose the additional (Dini) growth
restriction that
8

(2.4) (w(r;ze, K)[7)dr << o
/

for some 6 > 0. In particular, (2.4) holds if K is just Holder continuous

at z;.
Let A(r;z,,f) denote the area of f(|z — z)| < r).If K is essentially
continuous and satisfies (2.4) at z,, we define

(A(rs 2, f) | )"

(2.5) D(zy,20; K, f) = lin; UK
and
(2.6) V(zg,20; K, f) = [P(flz) , f(zg) ; K o f71, f1)]7H
R
= lim

- roo (AR 5 f(z) , f71) ] e i

The existence of a (finite) limit in (2.5) and a (possibly infinite) limit in
(2.6) will be a consequence of Lemma 1.

The definitions of the functionals @ and ¥ are motivated by the fact
that q.c. mappings are bi-Holder-continuous ([2]). For example, if
feQK ,D), then for o« = 1/|K||,

(2.7) cplz = LV < |fR) = fO)] £ Cplze =", 0<ep <Cp <,

uniformly on each compact subset E of D .
In general, the limits

W@ = o)l g i M) = Gl
2 = 2l TEE N = K

22

(2.8) lim
need not exist; however, if either does, it is easy to show that it agrees with
the corresponding functional (2.5) or (2.6). In any case, (2.5) and (2.6)
distinguish limiting points of the quotients in (2.8), that behave well
(semicontinuously) as f varies.

3. Existence and semicontinuity of @(z,,z,; K ,f) and ¥(z,,z,; K ,f)

Lemma 1. Suppose [ is K(z)-q.c. in a neighborhood of z, and K
satisfies (2.4) at z, . Then
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14

B(ri;zy, K, f) = r 250 4(r 5 25, f) eXp{2K(zo)‘2f(w(9;zo,1{)/@) do
0

s monincreasing as r— 0. In particular,

lim r=2K@ A (r 52, f) = im B(r;2,, K, f)

r—>() r—0
exists.
Proof. Let J, = |f,]* — |f.]* be the Jacobian of f. Then we may
represent ([2])

r 2n

A0y = Avsz.f) = [ [+ 0l odidg.
0 0

As a function of r, A(r) is absolutely continuous, and

27
A'(r) = fJﬂdﬁ
0

for a.e. r. Since f is q.c., the length I(r) of f(]z — 2,] = r) is finite for

a.e. 7, and
) = f df|

la—zy| =7

for a.e. r. It follows from (1.1) that
dfr < K J,(r by,

and so, by Schwarz’ inequality,

2n 2n
2
Iy < <fVKJ,rd0> < 2anJf 2
0 0

< 2n/[K(zo) + o(r;zy, K)J r2dd
0

= 2a7r|K(zy) + o(r;z,, K)] A'(r)

for a.e. r. We use the isoperimetric inequality: 4 7z A(r) = I(r)*. Then

v

A'(r) 2 - 2 20(r; 2z, K)
A(r) = r[K(z) + o(r;zg, K)] = Kzo) 7 K(z)?r

and
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7

(log [ 2 () exp {2 K a2 f (0 ; 7 K)/e)de}:|> >0

for a.e. r. Consequently, B(r;z,, K ,f) is positive and nonincreasing as
r —> 0. Therefore, its limit as r— 0 exists and clearly is the same as
lim, , r=2%@ A(r) .

Remark. Under the hypotheses of Lemma 1, it follows that the
limit in (2.5) exists. Since f-1 is (K o f)(w)-q.c., it will also follow that
the (possibly infinite) limit in (2.6) exists, once we verify that (2.4) holds for
w(r, f(z,) , K of1). But this follows from the Holder continuity of f-*
(see (2.7)), since

(3.1) o(r;fzZ), Kofh) < wlar®;z,, K)

(with o« =1/ ||K||, and a = ¢cz*).

In order to produce extremal functions for extremum problems that
follow, we shall need semicontinuity properties of @ and ¥ :

Lemma 2. Suppose that K satisfies (2.4) at z, € D . Then the func-
tional  D(zy,29; K, ) is upper semicontinuous and the functional
Y(zy,20; K, ") ts lower semicontinuous under locally uniform convergence
n QK ,D).

Proof. Suppose that f,, f e Q(K , D) and f, —f uniformly on compact
subsets of D as n-—> oo . Let ¢ > 0. Since

A o= limr 2E@DA(r;2,,f) = lim B(r;z,, K, f)
r—0 r—>0

exists by Lemma 1, there is an 7, > 0 such that
Blro;z, K, f) < 2+¢f2.

The q.c. mappings f, carry the circle |z — z,| = r, onto Jordan curves
C,, that need not be rectifiable, but have zero area ([2]). Since f, — f
uniformly on |z — z)| = 7,, the areas A(ry;z,,f,) converge to
A(rgs29,f) as n -+ oo . Therefore

B(ryszy, K, f,) < Blro;z, K,f)+¢e[2 < A+
for all n sufficiently large. Now the monotonicity of Lemma 1 implies

(3.2) Hm r= 2K A (520, f) = limB(r;zy, K ,f) < A+ ¢
0 70
for all n sufficiently large. This proves the upper semicontinuity of
D(zg,29; K,+).
The lower semicontinuity of ¥ will follow from a similar argument in
terms of the inverse mappings. For, if f, — f locally uniformly, then



Fundamental solutions 507

fit—>f-1 locally uniformly also. We observed in (3.1) that condition (2.4)
implies a similar condition for w(r ; f(z,) , K ° f) . In fact, since the Holder
parameters « and « can be chosen uniformly for f Loat f.(z,), the
integrals

[ lesste K o1 o) de
0
can be estlmatea uniformly in terms of [j (w(o ;2,, K) [ @) dg . Since the
areas A(rg:f.(20) ,f;") still converge to A(r,; f(zy) , f7!), we obtain
lim T—Z/A(zo)A f .fn < lim »—2/K) 4 (7‘ ;f(z()) , f—l) + &

r—0 r—0

for all n sufficiently large, just as in (3.2). The lower semicontinuity of
Y(zy,20; K, ) follows.

4. K(z)-q.c. mappings for which @(z,,z2,; K ,f) >
and Y(z,,2,; K ,9) <

Lemma 3. Suppose thal K satisfies (2.4) at z, €D . Then there
exist f, g€ QK ,D) such that

D(zg,20: K,f) > 0 and W(q,%;K,9) < o©.

Proof. Without loss of generality, we may assume that D = C and
2z, = 0.Let 7, be any (small) positive number. We shall construct examples
that are conformal for |z| > 7, .

Define
[ esssup [K, — K(2)] for r << 7,
by = | M=
[ Ko — 1 for r =7,

where K, = K(0). Then 1 <K, — o(]z]) < K(z) for ae. z, and
[l (&(r) [r)dr < oo since 0 Za(r) <o(r;0,K) for r<r. Now

define
) dr
2 ll/’\u) 1(\x){/ ,(0 .( ”} S R
z| I ]&0 . m( 5] for |z <<,

7o

o(r) dr

z (UK=L axy { . . } o] > g
0 i: ]\” MK,, Z o] for |z] = r,

{
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and
12|
2 [ZIKn_l exp { — f a—)(r—) dfr} for Iz[ < "o
0
9(z) = 7%
zr,flexp { - /'“_’_(7;2 dr} for |z| z7,.
0

Since |f| is increasing as |z| increases and argf = argz, it is evident
that f is a homeomorphism of C onto C . Note that

d 1 Ky, — o(r) 0
7 loglgl = , > 0.
Therefore |[g| also increases as [z| increases and argg = argz. Con-
sequently, ¢ is also a homeomorphism of C onto C. One easily verifies that

I£.2)] + 1f:(2)]

 19.6)] + Ig:62)]
L& = 15e] T

0.0 — o] = Ko~ ol < K@) ae.
Therefore f and g belong to Q(K)

. It is evident that

D0,0;K,f) = P0,0;K,q) = 1.

By composing finitely many mappings of the form that we have con-

structed, the following becomes an immediate corollary
Lemma 4. Suppose that K

Then there exist f, g€ Q(K , D)

satisfies (2.4) at
V(,,2,; K,9) < oo for n=1

21,..,2y €D
such that D(z,,z,; K,f) >0 and
s N

5. Existence and representation for fundamental solutions

In this section we assume that D = C, that K (z) satisfies (2.4) at
zp €C, and that K(1/z) satisfies (2.4) at the origin. Let @Q4(K) and
Qu(K) be those subclasses of Q(K) consisting of functions normalized at
oo by the conditions

D(0,00;K,f) = and  Y(o,0;K,f) =

respectively. Here we define
D(o, 0;K,f) =
¥(o,0; K,f) =
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We shall consider the problems
max D(zy,zy; K,f) and minP(z,,2,; K,f).

Qg (K) Qw (K)
Lemma 5. There exist feQuK) and ¢ge@Qu(K) such that
0 < D(zy,2;K,f) = max D(zy,7; K,h) and

heQgp (K)

V(zg,2; K,9) = min ¥Y(zy,2; K,h) < .
heQy (K)

Proof. 1t follows from Lemma 3 that @,(K) and @,(K) are nonempty
and that the corresponding supremum and infimum are not 0 and oo,
respectively. To see that the maximum and minimum actually exist, let
fo€ Qu(K) and g, € Qy(K) be extremum sequences. Since @ and ¥ are
invariant under translation, we may assume that f,(z,) = g,(,) = 0 for
a fixed point z; # z,. Then the |[|K||,-q.c. families {f,} and {g,} are
normal on € — {z;} in the spherical metric ([2]). The normalization at
oo rules out the convergence of any subsequence of {f,} or {g,} to oo
on C — {z;}. Similarly, extremality of the sequence at z, rules out the
convergence of any subsequence of {f,} or {g,} toa constant on C — {z,}.
Therefore subsequences of {f,} and {g,} converge locally uniformly on
C to ||K||,-q.c. mappings f, and g, , respectively. It follows from a result
of K. Strebel [10] that f, and g, are actually K(z2)-q.c.; hence
fos 90 € Q(K). The semicontinuity of Lemma 2 implies that

D(zy,20: K, f)) = sup DP(zy,2;K,h),

heQg (K)
Vi(zg,20; K,90) < inf WY(zy,2%;K,h)
heQy (K)
0 < P(co,0; K,f) <1, 1 £ ¥ (wo,w;K,q,) < 0.

Since fy | DP(2y,2; K , f,) € Qp(K) could only increase the maximum
and g,/ ¥(2,2 ;K ,q,) € Qu(K) could only decrease the minimum,
necessarily f, € @4(K) and attains the maximum, and g, € Qu(K) and
attains the minimum. _

Theorem 1. Suppose that K: C-—[1, ®) is measurable and
[|K|l, < o0. Assume that K(z) satisfies (2.4) at z,€C and K(1|2)
satisfies (2.4) at the origin. Then there exists @ K(z)-q.c. mapping f such that

(5.1) S(z,2) = —log |f(z) — f(z)]
is a (weak) fundamental solution of the differential equation
(5.2) div (K grad U) = 0

with singularities at z, and oo . Moreover,
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1
(5.3) s(z,2y) = Sz,2) + m log |z — 2,
has a limit as z— z, , and

1
(5.4) Hz,2y) = S(z,2) + K(0) log |7|

has a limit as z— oo . Similarly, there exists a K(z)-q.c. mapping g such
that

(5.5) 2(z,2) = —loglg(z) — g(z)]
is a (weak) fundamental solution of the differential equation
(5.6) div ((1/K)grad U) = 0

with singularities at z, and oo . Moreover,

(5.7) o(z,2) = Z(z,2) + K(z) log [z — 2,
has a limit as z — 2, , and

(5.8) (2,2) = 2(z,2) + K(0) log |2|

has a limit as z-> oo .

Remarks. The principal impact of Theorem 1 is that the differential
equations (5.2) and (5.6) have fundamental solutions representable in terms
of quasiconformal mappings. That is,

(5.9) [ = flzg) + e
where

. KaS T KaS T
(5.10) w - w Yy T T m
and
(5.11) g = glz) + e =]
where

. oy % ol oX % ol
(5.12) w =K T ha

However, the K(z)-q.c. mappings f and ¢ may change as z, varies.
If we view the plane as a nonhomogeneous dielectric medium with
dielectric coefficient K = K(z) > 1, then S(z,z,) represents the elec-
trostatic potential at z of a point charge at z,. It is called the dielectric
Green’s function. (If the dielectric coefficient is between 0 and 1, it can
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be represented by 1/ K(z), where K(z) = 1; in this case X(z,z,) is the
dielectric Green’s function .) o

For example, suppose C = UY_, D, where the D, are disjoint domains,
which we think of as isotropic dielectric media with dielectric constants
K, = 1. Assume that D, contains a neighborhood of o . If 2z,eD,,
then 8(z,z,) is a harmonic function of z in each D, , except at z,, where
S(z,2) + (1] K,)log |z — 2,| is continuous. Moreover, S(z,z,) is con-
tinuous in € and S(z, 7)) + (1] K,) log |z| — 0 as z-— oo . Furthermore,
if D, and D, have a smooth common boundary arc y with normal
n, at z ey, then

0 1%
K, 5772 [S(z, 2) lp,] = K, "agz [S(z,2) Ip,] -

The case Ky =1, K; = K, = ... = Ky, was treated in [5]. In this special
case a univalent representation for § and X was obtained by other means.

Proof of Theorem 1. Let f be the function from Lemma 5 that maxi-
mizes the functional @(z,,z,; K, - ) over @4(K). Consider q.c. variations
of f,asin [9, Chapter 13], of the form

(5.13) w¥ = w — ;szwa_(_w)wdmw + 0(&?),
c

where a has compact support in C — f(|z — z,| =r) and m is Lebesgue
measure. Under this variation the normalization at oo is preserved and
the area

A(r;zy, [#)
= A(r;zy,f ——ZRe_ ff /f dm dm,, + O(&?) .
(0 — w)?
f(lz—Zo|<f) C
It follows that
D(zy 525 K, f*)
a(w) dm
= D(zy, 20 K,f) —eP(zy,2; K. fRe—ff[( - ]2+0(82)
- ~0

under variations of the form (5.13). Then the principal theorem of the
variational method [9, Theorem 13.2] implies that f satisfies the dif-
ferential equation

K@) -1 —[f) - f( JTom
f5(~) = K(z) +1 : lf‘ _ ]2 fz

That is, if
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1
logf_f(zo) =8+:T,
then
. K—l—.-———«
S+:T), = — K+1(S+1,T)z a.e.

Consequently, S and 7T satisfy the generalized Cauchy— Riemann
equations (5.10), and S satisfies the differential equation (5.2).

A similar argument with the function ¢ from Lemma 5 leads to the
differential equation

K -1
K +1

Z+111), = (Z+¢T),

for

T+ logg_g(z()).
Thus 2 and I satisfy the generalized Cauchy—Riemann equations
(5.12), and X satisfies (5.6).

It is evident from (5.1) and (5.5) that S and 2 have singularities at
2z, and oo . To see that they are of the form indicated in (5.3) —(5.4) and
(5.7)—(5.8), let us consider first the singularity of S at z,. Let 4 be
a disk of radius 6 with center z,. Assume z € 4 and let 4, be obtained
from A by deleting disks of radius ¢ about z, and z. First use (5.10)
and Green’s theorem (see, e.g., [2, p. 148]) to evaluate

ff,K(C) grad, S(¢, z,) - grad; log [z — {|dm, = f]og |z — | dT(C, %)

4, 04,

— 2nlog|z—zol+/log[z—C[dT(C,z0) as p—0.
s

Similarly,
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ff K(zy) grad, S({ , zp) - grad, log | — z| dm,
a4

— K(z) f S(Z, 2) darg (¢ — 2)

o4,
— =27 K(zy) S(z, 7)) + K(2) f S(,z)darg ({ —2z) as p—0.

Therefore

1 1 3
s(z, zy) = é;fS(C , %) darg (& — z) — 57 K(oy) j log |z — | dT(C, 2,)

1
t 2 Kz 1®)

where

ff [K() — K(z)] grad, S(C, z,) - grad, log |£ — z| dm, .

Evidently, s(-,z) is continuous at z, if I is. First, I(z,) converges
since

v <[ [0 ]
()

F) 57

4 n2 w(r) w(a R*) i 472 [ow(r) (o)
< dr 3 dr do < o
o r i 3 0
0 0

0 0

where o = 1/||K||, . Finally, we estimate

(z) — I(z)2 I:lz*zolfflé—zollclé——zod !lzlg 8 IS ]

& — 2]) dm, o8 — 2p]) ||df(L)]|* dm,
e = al? ff[@—zO|21:—zl2— /f € = 2" I/() = fe)P
< (constant) -
é 2n 6 27

//‘ r) dd dr f/ w(a R*) dO dR
!re‘oz——z‘1~1[2°‘ R|(C —27)(z — 7)™t =1

IA
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< (constant) -
é 2n & 2n

e e

< (constant)
5

/ o(r) dr f w(a R*) dR
iz =z 2 — 1R ) R[R[f(2) — flz) |2 — 112

0

0

< (constant) f
0

w(iz—zolt)dtf @ |f(z) = fe) ) dt

t|e2 — 1|1—a/2 t |t2/°‘ — 1|1/2
0

Since w(r) — 0 as r— 0, both of these integrals tend to 0 as z-—z,.
The continuity of ¢ at oo, of ¢ at z,, and of 7 at co follow from
similar considerations.

6. A distortion theorem for K(z)-q.c. mappings of C

In this section we fix N points z,,..,2y €D = C, at which we
assume that K satisfies (2.4). We shall measure the mutual distortion
relative to these points of a K(z)-q.c. mapping f by the quadratic ex-
pressions

N
Pf1 = > w,x,log D, ,z2,; K,f) and
(6.1) el
N
’/’I—.ﬂ = Z xmxnlog'f’( m > “n z,; K, f
m,n=1
where ,,...,xy €R and >} ,x, = 0. By solving the problems
(6.2) max ¢ and miny
Q(K) Q(K)

we shall obtain the following:

Theorem 2. Suppose that K: C—[1,0) is measurable and
||K||, < co.Assumethat K(z) satisfies (2.4)at 2y, ...,2,€C and K(1[z)
satisfies (2.4) at the origin. If f: C—C is a K(2)-q.c. mapping, then

N 1f(z) — f(z4)
(6.3) 2w, I:log Iz, — z,|BKCn HIURGI + 82 zn):|

m,n=1

A
o

and



3
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N 2, — f(z

(6.4) z x, T, l:log 2 I_{.(zmi)[K(zm{S;L{n e+ o(z,, , z"):l =0
m,n=1 m n

Jorany x,, .., %y €R subject to the constraint > _, x, = 0. Here s and o

are the reqular parts (5.3) and (5.7) of fundamental solutions to (5.2) and

(5.6), respectively.

Of course, we interpret the quotients in (6.3) and (6.4) for m = n as
D(z,,2,; K,f) and ¥(z,,z2,; K,f), respectively.

Proof of Theorem 2. It follows from Lemma 4 that — oo < supy, ¢
and infyg ¢ < +c0. For m s n it is obvious that &(z,,z,; K, -)
and ¥(z,,2,; K,) are continuous under locally uniform convergence.
Together with Lemma 2, this implies that ¢ and y are upper and lower
semicontinuous, respectively, on @(K). Since the functionals ¢ and v
are invariant when replacing f by A f + B, it is sufficient to restrict
attention to the subset of @Q(K) for which f(0) = 0 and f(1) = 1. By
a theorem of K. Strebel [10], this subset is compact in the topology of
locally uniform convergence. Therefore f, g € Q(K) exist such that

é[f] = max$d and y[g] = miny.
Q(K) O(K)

We shall again employ variations of the form (5.13). Under this variation

log @(z, ,z,; K, %)

= log Ofeu 2 K o) = oo - f/[w— Z(mJ?Z'—ﬂ 5l 0w

and

65)  $If*) = 417] — cRe |- f faw] 3 (z”)]zdmw} + 0.

It follows then from the principal theorem on the variational method
[9, Theorem 13.2] that f satisfies the differential equation

2

N

n= 1

2 ' 2f
@O+t [Saiue f.l

n=1 —

(6.6) fs(z) = K

That is, if
(6.7) =1 =U+:1V,

then
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6.8 F K=1ly
(6:8) P T K+ 1

An argument similar to that in the proof of Theorem 1 implies that the
singularities of U are such that

Uz) + log |z — 2,

xn
K(z,)
has a limit as z— z, . Consequently,
N
W) = Fz) = 2 2,[8(,2) + i T(z, 2,)]
n=1

is continuous in the whole plane and satisfies

K—lW
W, = — K11 V. 2o

In addition, (5.4) and the fact that > ,x, = 0 imply that W hasa finite
limitat oo, too. If W = u + 4v and 4 = {z: 1 /R < |z —2,| <R},
then on the one hand,

f/K(z)gradS(z,zm) cgrad u(z)dm, = fS(z,zm) dv(z) — 0 as R-—>o0

odp

and, on the other hand,

ff K(z) grad S(z, z,,) - grad u(z) dm,
4R

= f w(z)dT(z , z,) — 2n[u(z,) — u(o0)]
Y

as R-—>oo. That is, >} _;x,u(z,) = u(w0) N _ =z, =0. Consequently,

N N
2 Ty, loglf(z—'n)zlm(“zn)— Zl { Ulew) + 2,2, [8(2 %) = S(Zm,zn)]}

m,n=1 lZ "
N N
- > @,ulz,) — z By @y 8 s 2,) = — 2 %, %,8(2,,2,)
m=1 m,n=1 m,n=1
and
1 N
B = =5 2 e 2) + S mal] = - le 5 7)
m,n

in the extreme case. This completes the proof of (6.3).
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The proof of (6.4) is quite similar. The variational formula for y is the
same as for ¢ in (6.5). However, since we must maximize — v, the sign
in (6.6) and (6.8) changes. This has the effect of replacing K by 1/ K,
and hence, s by o in the final result.

Remark. The proof of Theorem 2 provides both existence and
a representation in terms of q.c. mappings for solutions of equations (5.2)
and (5.6) with singularities at finitely many points. For example, with

= —1, 2y =1,and N = 2, we obtain K(z)-q.c. mappings f and g
such that
Io fz) — f(z1)
*l7G) - fe

is a fundamental solution of (5.2) with singularities

1 ! d ! 1 !
TK@e) Bz MY K Bl -zl
and
o 9(z) — 9(z1)
) = gz

is a fundamental solution of (5.6) with singularities

1

|z — 2]

and  K(z,) log

— K(z) log

|z — 2o

The following is an application of Theorem 2:

Corollary 1. Suppose f: C—C is a homeomorphism that is
K-q.c. for |z| <R and L-q.c. for |z| >R (K, L constants). For m =

WM and n=1,..,N,let z, and , be any complex numbers with
lz,,| <R and |{,| > R, and let x, and y, be any real numbers with

z%=1 xm + Zil\,:l yn = O . Tke’ﬂ

/. zﬂ%; (L—K)/[K(L+K)]
[ [l/K RlK , - R2 ‘
[f(z) — F(C,)]
2 Z1 z1x o IOg[I ¢ PEFD RAEAD)
N [f — fz,)l : En (K —L)/[L(K +L)]
+ Z_lyv yn IC C IllL Rl/L - 2

=0 =
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1f(z,) — flz,)] 2, 2y | EKE=DVKAD)
+ 2 Z Z x,, 1, log l:i |f(z,,) t_zsz(/C;)JrlL R2KL/(K+L)]

m=1 n=1

v TIAE) = fE) Ll Gk
Zyvynloglt—‘]z-v___cnlL RL]I— R2

vn=1
Proof. For the first inequality, we need fundamental solutions S of
(5.2) with singularity —(1/L)log |2 at oo and with singularity
1/K)log(1/|z —z2,]) at z, or (1/L)log(l1/|z— ¢,]) at {,. Since
K and L are constants, S is to be otherwise harmonic, except for |z| = R,

[L(LAK)]/(L+K):]

where it is continuous. Since K(z) aS/er = (1 [ r) (¢7/29) has no discon-
tinuity on |z| = R, we must also have
oS | as |
K — = L - o
or | r=gr- or |r=r

From these conditions, one verifies directly that

11 1 L - K oo 1 22, L—K] »
K ®L_2 | TKTL+ K) %8 rR T RL 8
S(Z ’ zm) = for [Z[ g R
1 o 1 2 | ll 2y . P
Bl TK+ L% T or [¢] >
and
[ log|1 : \ fi R
— <
. 1 1 1 K _ L { og c | or |z
8.6 = pls Y L+ D) B
logl 1 - ;‘E‘n for |z] > R
are fundamental solutions. Substitution of the corresponding expressions
L — K o ' % z,| L -— KI »
.5(4/; ) 4111) = ]{ (L + K) R2 KL Og v,
K - \ 2
$(C, 5 ) LK+ L)e 2
(K — L) P —

8(2771 2 Cﬂ) + S(Cn ’ zm) = k_»L_(k:—L—)

into (6.3) leads to the first inequality.
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The second inequality follows from (6.4) in an entirely analogous
fashion, with K and I replaced by their reciprocals.

Remarks. A special case of Corollary 1 appears in our earlier work
[8]. We leave it to the reader to test the special cases when K = I or when
all 4, =0 and L-— oo (cf. [8]).

The inequalities of Theorem 2 and Corollary 1 are, of course, sharp.
They are a significant generalization of the classical Golusin inequalities,
which are a valuable tool in studying conformal mappings.

It is an interesting exercise to construct the K(z)-q.c. mappings f
and g from Theorem 1 that generate the fundamental solutions § and
Y, when K(z) = K for |z| < R and K(z) = L for |z| > R.

7. Fundamental solutions of the first kind

Let D be a domain that admits a harmonic Green’s function. Assume
that K: D—[1, o) satisfies (2.4) at a fixed finite point z, € D . As in
Section 5, let @4(K , D) and Q,.(K , D) consist of all functions fe Q( K, D)
that are normalized by @(zy,7y; K,f) =1 and ¥(z,,2,; K,f) =1,
respectively.

If feQK,D), then 9 = f(D) also admits a harmonic Green's
function . That is, as a function of w,

(1) Gy(w, ) is harmonic in 2 — {(},

(2) I;(w,§) = Gyw, ) + log |w — £| is harmonic at {, and
3) Gyw, ) — 0 as w— 02,

In addition @, is symmetric: G (w, ) = G({, w).
Let y,w) = I'(w,w) . By considering the problems

(7.1) min y,(f(z)) and max y(f(z)) »

Qa(K, D) Qy(K,D)

we shall obtain the following representation theorem:

Theorem 3. Let D be a domain that admits a harmonic Green's
Sfunction. Supposethat K : D —[1, c0) s measurable, s essentially bounded,
and satisfies (2.4) at z, € D . Then there exists a K(z)-q.c. mapping f of D
such that

(7.2) S(z,2y; D) = G{(f(z) (=)

where G is the harmonic Green's function of f(D) , is a (weak) fundamental
solution of the differential equation

(7.3) div (K grad U) = 0

i D, with singularity at z, and zero boundary values. Furthermore,



520 M. SCHIFFER and G. SCHOBER

1
(7.4) s(z,29; D) = G(f(2), [(z)) + m]og 2 — 7]

has a limit as z — z, . Similarly, there exists ¢ K(z)-q.c. mapping g of D
such that

(7.5) X(z,2; D) = G,(9(2), 9(z)) ,

where G, is the harmonic Green's function of ¢(D) , is a (weak) fundamental
solution of the differential equation

(7.6) div (1 / K) grad U) = 0
i D, with singularity at z, and zero boundary values. Furthermore,
(7.7) o(z,2y; D) = G,l9(2) , 9(z)) + K(z) log [z — 7]

has a limit as z — z; .

Proof. Existence of extremal functions f and g for the problems
(7.1) presents no difficulty (cf. Lemma 5). We normalize the variations
(5.13) so that the points oo, f(z,), and the normalization at f(z,) are
preserved. That is, if w, = f(z,) , then

w¥w) = [wH(w) — w*(wy)] [ w*(wy) + wy
is the desired variation, where w* is given in (5.13). Under this variation

Grua(W** wi*) = G (w* , wy)

= G(w, wy) + Re{ ff a(m) P}(co ;W) dmw} + o(e)

(see [4]) where Pjw; () is an analytic completion (as a function of w)
of the Green’s function G/ (w , (). That is,

w—wo

log + Tpa(w** , wi™*) — F(w , wy)

w** — w

= Re{ f/ w) Pi(w ; w) P(w ; w,) dmm} + o(e) .

Let w— w,; then

Yyuulity) = yi{ng) = Re{ f f o) [Pj(o ; wy)]? dm, }+o<s>.

As in the proof of Theorem 1, the principal theorem of the variational
method ([9]) implies that the extremal function f for the problem
ming_  py ¥,(f(z)) satisfies the differential equation
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Kz -1

[PASG) s Sl = = oy 51 L@ 5 fE

As before, this is equivalent to the statement that G (f(2),f(2)) =
Re P(f(z) ; f(zy)) is a solution of (7.3). Since

1
Gf(f(z) , fz9)) = log |f—} 0) + v(f(z)) + o(1) as z—z,

the proof that (7.4) has a limit as z-—>z, isidentical to the proof in
Theorem 1.

Similarly, the extremal function ¢ for the problem maxg,,x, p) 7,(/(29))
satisfies the differential equation

—

K(z) —

[P0e) s gl = iy P03 9@

which implies that G, (g(z), g9(2)) = Re P,(g(2);g(z,) is a solution of
(7.6). The continuity of (7.7) follows as before.

If © is a domain that contains a neighborhood of oo , then a harmonic
Green’s function for @ with singularity at oo is a harmonic function
G(w) = G(w, c©) in 2 that vanishes on 92 and has the property that
I'(w) = Gw) — log |w| has a limit as w-> oo . Note that d = ¢ "®
is the transfinite diameter of . An entirely analogous development yields:

Theorem 4. Let D be a domain that contains a neighborhood of oo
and admits a harmonic Green's function with singularity at oo . Suppose
K: D—[1, o) is measurable, ||K||, < oo, and K(1]z) satisfies (2.4)
at the origin. Then there exists a K (z)-q.c. mapping f of D suchthat G(f(z)) ,
where G, is the harmonic Green's function of f(D) with singularity at oo,
is a fundamental solution of (7.3) with zero boundary values, and G (f(z)) —

1/ K(0))log |z| has a limit as z— co . Svmalarly, there exists a K(z)-q.c.
mapping g of D such that G, (g(z)), where G, is the harmonic Green’s
Sfunction of g(D) with singularity at oo, is a fundamental solution of (7.6)
with zero boundary values, and @, (g(z)) — K(co)log [z| has a limit as
Z—> 0.

8. A distortion theorem for K(z)-q.c. mappings of D

Let D be a domain bounded by a finite number of Jordan curves, and
assume that K : D —[1, c0) satisfies (2.4) at fixed points z,, ... ,zy e D .
As a measure of distortion for f e Q(K , D) we shall consider the functionals
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N

m,n=1
and
N
(8.2)  ulf] = Z_lxmxn [log ¥(2, ,2,; K, f) — I)(f(z,) , fz))]

where I is the regular part of the harmonic Green’s function for f(D) .
We shall solve the problems
(8.3) max A and miny:
Q(K, D) Q(K, D)
Theorem 5. Let D be a domain bounded by a finite number of
rectifiable Jordan curves, and assume that K : D —[1, c0) s measurable,

18 essentially bounded, and satisfies (2.4) at fized points zy,..,zy €D .
If fe@(K, D), then

B 3 am [l e — D) Se)
+ 8(2,,, 2 D)] <0
and
(8.5) m,;z\;xm , l:log iz If(zz,:){u;z,‘,{)‘(fzf)(fzn)}/é = I'(f(z,) , f(z,))
o203 D) | 2 0
forany x, ..., 2y eR satisfying >N _,x, = 0. Here I, is the regular part
of the harmonic Green's function for f(D) and s and o are the reqular parts

(7.4) and (7.7) of fundamental solutions to (7.3) and (7.6) in D with zero
boundary values.

Proof. The proof parallels the proof of Theorem 2. The existence of
extremal functions for the problems (8.3) follows in the same fashion.
Under the variation (5.13) one has ([4])

AL = Af] = Z &, @, [Gu(F*(2,) 5 [*(2,) = Gi(f(z) > [(2,))]
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Therefore the extremal function f for the problem max, ;) 4 has the
property that >V_, @, G/(f(2), f(z,)) satisfies the differential equation (7.3).
Consequently,

N

(8.6) 2. % [G(f()  fz) — Sz, 2,; D)] = 0

n=1
for z = 2y, ..., 2y, just as in the proof of Theorem 2. The restriction of
oD to a rectifiable curve system was made to permit a boundary integration
in verifying (8.6). Now (8.6) is equivalent to

=z

@, [log D(z,, , 2,5 K, f) = I'(f(z,), ) + s(z,,2,;D)] = 0

n=1

Il

for all m , from which (8.4) follows.
The proof of (8.5) is similar.

9, Fundamental solutions of the second kind

The harmonic Neumann’s function N(w, () of a domain 2 bounded
by a finite number of Jordan curves with a continuously turning tangent
has the properties that, as a function of w,

(1) N(w, ¢) is harmonic in 2 — {(},
(2) N(w, ) + log |w — | is harmonic at

oN(w, ¢) 2n )
) ——— = A where L is the length of 22, and

anl@
(4) fN(w, f)ds, =0
o0

It is a consequence of Green’s theorem that N is symmetric: N(w , () =
N(¢,w). Let H(w; ¢) be an (multivalued) analytic completion as a func-
tion of w (so that N = Re IT).

We shall also use the related functions:

(9.1) Hw:;C,n) = Hw; ) — Mw;n),

(9.2) Nw,C,n) = Rell(w; {,n) = N@w, ) — Nw.n),
(9.3) Hw,w;l,n) = Dw; C,n) — Hw; T,n),

(94)  N(w,o,C,n) =Relw,0:l,n) = Nuw,&,n) — N, ).

It is elementary to verify the addition formulae:
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(9.5) Hw,w;l,n) = Dw,w;,8) + Hw,w;&,n)
(9.6) Hw;t,n) = I'w; ,8 + IT'w; &,7),

where the derivative will always be with respect to the first variable. The
symmetry relation

(9.7) Nw,w,l,n) = N(C,n,w, o)
follows from that of N(w, ). As a consequence, one has the limit values
(9.8) Nw,w,(,l) = NC,L,w,0) = 0.

The function (9.2) has boundary values of type N in the sense of [4].
That is, under an interior variation of the form
e ew
(9.9) w¥ = w + -,

the representation

N*(w*,w*,C*,n*)“N(W,CO,C,W)

/[NS w, ) 2DE f ) D(E,C,ﬁ)M:ldss

o
where the integral is extended over 9@ + { |& — w,| = Ve }, and
Dw, ¢,n) = N*w*w), %) . n*#n)) — Nw, ,n),

has the property that the integral over &2 vanishes. By evaluating the

integral over the small circle |& — wy| = Ve, as in [4], one obtains the
variational formula

(9.10) N¥w* , w*, 0%, 9% — Nw,w,,n)
= Re{e e I'(wy ;s w, ) IT'(wy 3 £, 1)} + ofe) .

We wish to extend the variational formula (9.10) to more general
domains 2. The key will be to use the fact that F(w; ¢, n) = @&
is single valued and maps @ conformally onto a domain bounded by radial
slits. It is normalized so that w = { corresponds to oo and w =% to
the origin.

Any domain & bounded by finitely many nondegenerate continua
admits radial slit mappings ﬁ(w; {,n) taking ¢ to oo and 5 to 0.
The mappings are determined by this normalization up to a multiplicative
constant, so that for smoothly bounded domains

(9.11) fw; ¢, n) = log Fw; ¢, )
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differs from IT(w; {,n) by at most a constant (depending on ¢ and 7).
However,

(9.12) Hw,w;¢,n) = Hw; ¢, — ;1)

and IAI "(w; ¢, n); are uniquely determined and agree with their con-

terparts in case 20 is smooth. At the same time, JV(w,w, L, =

Re 1T (w,w; ,n) is uniquely determined, and

(9.13) N@w,C,n) = Rellw;¢,n) = log |F‘<w;c,n>|,

— Ci
-7

(9.14) Yw, ) = Nw, ¢, n)+10g

are determined up to an additive constant (depending on ¢ and 7).

By Carathéodory’s theorem on domain convergence, the functions
ﬁ(w, w; ¢,n) and ﬁ'(w, ¢, n) are the limits of functions I7,(w,w ; {, n)
and JI (w; (,n) corresponding to mappings F, (w; ,n) of a smoothly
bounded exhaustion {Q2,} of 2. Consequently, the variational formula (9.10)
carries over to the functionals N and I’ for ©. For the same reason,
the identities (9.5)—(9.8) also carry over in terms of 11 and N .

Now fix points w; , ..., w,, in a domain 2 bounded by a finite number
of nondegenerate continua, and let z,,..,x, e R with > o, =0.
Substitute w = w,, into the extended form of (9.10) and sum:

(9.15) z_x [N, 0%, n*) = Nw,, , £, )]

R Mo
= Re{semﬂ’(wo : C,n)meH’(wO;wm,w)} + o(e) .
m=1
It follows from the addition formula (9.6) that the last sum in (9.15) is
independent of w . Therefore, we may as well let o = 5. Now let ¢ = w,

and sum; then

M w,, — "
(9.16) > w,, |:10gI — 1| + VEwk, wk, ) — V(u)m’wn’n):l

m,n=1

. A 2
= Re{eeﬂi)[zxmn’(’wo;wm’n)] } + 0(8):
m=1

where for m = n the quotient |(w, — w,)/ (w} — w})| is 1/ [w¥(w,)] .

Since z = 0, the expressions in (9. lo) and (9.16) are independent
of which mapping F s used to generate N, v, and . In addition,
because of (9.5) and (9.6), both sides of (9.16) are independent of # , and
we may write the right side as

m=1 m
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M-1 " 2
Re {ee’ﬁl: D H’(wﬂ;wm,wM)] } + o(e) .

m=1

Assume now that D is a domain bounded by finitely many non-
degenerate continua and that K: D-—[1, co) satisfies (2.4) at fixed
points zy, ...,z,, €D . For fe @K, D), define

M
(9.17)  4lf] = 2 @, 2, [log D, .2, K, f) = v(f(z,) . fz) 1)

m,n=1
and
M A
(9.18)  =[f] = > T T [log ¥(z,, ,z,; K ,f) — v([f(z,), (), 0],
where 3, is the regular part (9.14) of any function (9.13) for 2 = f(D).
Since >M 2, =0, y and x are independent of which normalization is

used in the mapping F . In addition, because of (9.5) both functionals are
independent of # .

We shall consider the problems
(9.19) max y and min x.

Q(K, D) O(K, D)

Existence of extremal functions for these problems follows as before (cf.
Theorems 2 and 5). Using (9.16), we find that an extremal function f for
the problem maxg p) 4 satisfies

. M:l B 2
0200 lf*) = 21f) - Refe [ 3w, i) Se) || + o

under a variation of the form (9.9). A similar formula arises from the
variation (5.13). Consequently, the principal theorem of the variationai
method (see [9, Corollary 13.3]) leads to the differential equation

K -1

HE = - ﬁ Hz
for
M " M—1 A
H(z) = mzlxm H/(f(Z) =) ,m) = mzlwm Hf(f(z) s f(z,) ’f(zM)) .
Similarly, an extremal function ¢ for the problem min, ,, » satisfies
K -1
o= ke
where
ar N M—1
J@) = 2 0, 9=), 9(z,)  n) = 2 @, 1,9z), 9z 9(=y) -

m=1 m =1
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It also follows, as in the proof of Theorem 1, that Re H has singularities
of the form (z,/K(z,))log(1/]z — 2,|) and ReJ has singularities of
the form =, K(z,)log(1/|z —2z,)), m=1,.., M.

The special case 2, =1, xy, = —1, M = 2 of the preceding discus-
sion is already of interest. Let us summarize it using the notation

Sz,21,2; D) + i Tz, 2y, 2 D) = I(f@); f) , f(z2))

= log F(f(2) ; f(21) , f(25)) = log F(z 521, 2),
Sz, 7 D)+ iz, 2,2 D) = e ;g , 9(z)
= log Py(g(2) 5 9(21) , 9(z0)) = log B(z ;2 , 2,) .

Theorem 6. Let D be a domain bounded by a finite number of non-
degenerate continua, and assume that K : D->[1, 00) is measurable, is
essentially bounded, and satisfies (2.4) at z,,z, € D . Then there exists o
K(z)-q.c. mapping F(z;2,,2) of D onto the extended plane with radial
slits, such that

S(z,21,255 D) = log [F(2; 2y, 2)]

s a (weak) fundamental solution of the differential equation

(9.21) div (K grad U) = 0

m D owith singularities at z, and z, . Furthermore,

(9.22)

- ~ 1 1

$(z,21,20; D) = S(z,2,,29; D) + Kz log |z — 24| — ——1log |z — 2]

K (z,)

has a limit as z-—z; and as z->z,. Stmilarly, there exists a K(z)-q.c.

mapping &(z;z,,2,) of D onlo the extended plane with radial slits, such
that

Z(z J21. 205 D) = log |G(z; 2, 7))
18 a (weak) fundamental solution of the differential equation
(9.23) div (1 / K) grad U) = 0
m D with singularities at z, and z, . Furthermore,
(9.24) 02,2y, 295 D)
= 2~(z,z1 y 255 D) + K(z) log |z — 2] — K(2,) log |2 — 2]

has a limit as z -z, and as z -z, .

The functions § and X are fundamental solutions of the second kind
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in the sense that their conjugates T and 7 are constant on each boundary
component of D .
We may now solve the problems (9.19) in terms of the fundamental

solutions § and X . We omit the rest of the proof because of its similarity
to the proof of Theorem 5.

Theorem 7. Let D be a domain bounded by a finite number of Jordan
curves with a continuously turning tangent. Assume that K : D —[1, o)
18 measurable, is essentially bounded, and satisfies (2.4) at z,, ...,z € D .
If feQK ,6 D) then

¥ 1f(z,) — [(2)] N
. ”Z:lxm Z, [:log Iz, — Zn|[1/K(zm)+1/K(zn)]/2 - "’f(f(zm) J(=,), 7})1

-1
+ Z xmxn[g(zm?zn’ZM;D)_S(ZM’Zn’ZM;D)] éo
m,n=1

and
u f(z,) — f(zn)l .
Z_ x x I:log IZ o | (zn,]/z - vf(f(zm) 1f(zn) ’ 77)
M—1 N
z mxn[o-(zm’ n’ZM’D)~U(zAl’ n’zM’D);} go
m,n=1
for any xy,..,2, €R satwfymg >, =0. Here vv, 18 the regular part

(9.14) of any function N w,C,m) for f(D) and s and & are the regular
parts (9.22) and (9.24) of fundamental solutzons of the second kind for (9.21)
and (9.23).

10. Mapping theorems

Many extremum problems lead to existence theorems for canonical
mappings by means of K(z)-q.c. mappings. A characteristic example is
already provided by Theorem 6. In this section we add two further results
of this nature.

Let D be a domain which possesses a harmonic Green’s function, and
assume that K : D —[1, co0) satisfies (2.4) at 2z, €D . Then, on the
basis of Theorem 3, we can assert the existence of a K(z)-q.c. mapping f
of D onto a domain 2 = f(D) such that the combined function

URR) = G(f(z),[(z)),

where @, is the harmonic Green’s function of @, satisfies the differential
equation

div (K grad U) = 0,
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Moreover, if Py w;w, is any (multivalued) analytic completion of
G(w , wy) (as a function of w ), then the function

AR) = P(f(2); fz) = Ul) + i V(z)
generates a function V, conjugate to U by the generalized Cauchy —

Riemann equations, which can be combined into

K—1_
(10.1) U= -7 7%

If D is simply connected, then so is 2, and exp{—P (w;w,)} is
single valued and maps £ conformally onto the unit disk with w, cor-
responding to the origin. Consequently, exp { — %} is univalent and maps D
onto the unit disk with z, corresponding to the origin.

In the same manner, the K(z)-q.c. mapping g of Theorem 3 leads tc
a solution

Bz) = P,9() ;5 9(2))
of the generalized Cauchy —Riemann equations

K —1__
K+1§BZ’

(10.2) B, =

such that exp {—B} has similar mapping properties. We thus have the
following generalization of the Riemann mapping theorem:

Theorem 8. Let D be simply connected and have at least two boundary
points. Assume that K : D —[1, o0) s measurable, is essentially bounded,
and satisfies (2.4) at zy € D . Then there exist functions W and B that satisfy
the generalized Cauchy— Riemann equations (10.1) and (10.2), respectively,
such that exp{—A} and exp{— B} are univalent mappings of D onlo the
unit disk with z, corresponding to the origin.

A similar result can be obtained in the case of a multiply connected
domain D . We introduce for this purpose the modified harmonic Green’s

function é(w ,w) of a domain £ with proper continua C,, Cy, .., C
as boundaries. It is defined as follows:

(1) @
2) G

n

Y, ) is harmonic in 2 — {w} (as a function of w ).

/—\,-\

w, o) + log |w — | is harmonic at o .
(3) (w,w) is constant on all € ; in particular, @(w,m) = 0 on C,.

6

= 0 on all smooth curves homotopic to C, in

——{w},v:l
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oGw , o) .
) —~ds, = 2x on all smooth curves homotopic to C; in

an‘l(’) v
2 — {w}.
This modified Green’s function can be constructed directly from the ordinary
Green’s function of 2 and the harmonic measures of C;, ..., 0, .

If ﬁ(w ;o) is an analytic completion of GT(w , ) (as a function of w ),

then exp {—P(w;w)} maps 2 onto the unit disk slit along concentric
circular arcs, such that C, corresponds to the unit circumference and o
to the origin.

The modified Green’s function also satisfies the condition N of [4],
used before, and thus has, under a variation (9.9) of the domain,
the asymptotic behavior

GHw* , %) = Gw,w) + Re (e e® P'(w,; w) P'(wy; 0)} + ofe) .

Using again the extremal problems for éf( f(z), f(z,)) which led to Theorem 3,
we arrive at the following:

Theorem 9. Let D be a domain bounded by a finite number of proper
continua. Assume that K : D —[1, o) is measurable, is essentially bounded,
and satisfies (2.4) at z, € D . Then there exist functions U and B that
satisfy the generalized Cauchy — Riemann equations (10.1) and (10.2), respec-
tively, such that exp {—A} and exp {—B} are univalent mappings of D
onto the unit disk slit along concentric circular arcs, with a prescribed boundary
corresponding to the unit circumference and z, to the origin.

Many analogous canonical mapping theorems can be established in the
same way. The method always relies on finding an extremum problem for
an appropriate functional with a convenient variational formula.
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