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l. Introduction

Let, D be a domain in the extended complex plane C : C U {oo},
and let K : D * [, oo) be a measurable function. We shall assume that
ll/( ll- : ess suPo K is finite. A few further restrictions will be added later.

Definition. A homeomorphism /:D---C is K(z)-qunsi,con-

formal, ( K(z)-q.c.) if / is locally absolutely continuous on &.e. horizontal
and vertical line ( ACL ) in D and satisfi.es the dilatation condition

lf,@)l + lf,@)l

lf,@)l - lf,@)l

Since ll1{ll- ( oo, each K(z)-q.c. mapping is llKll--quasiconformal
according to the standard definitions (t2l). If a e D, we shall require that

"f(oo): m; otherwise/(D)c C if @#D. Thefamilyofallsuch K(z)-q.c.
mappings of D is denoted by Q(K , D), and {y'e abbreviate Q(K) :
Q6,c).

We shall pose some extremal problems concerned with the global
distortion of K(z)-q.c. mappings. Their resolution by variational methods
will provide weak fundamental solutions to the pprtial differential equations

(1.2) div (Kgrad Z) : 0 and div ((l I K) grad7) : 0 .

These equations are, of course, of basic importance in the theory of steady
state heat flow (fluid flow, electrostatics) in an inhomogeneous mefium.
Our methods will simultaneously yield the existence of fundamental
solutions for (1.2) and a representation for them in terms of K(z)-q.c.

(r.1) I
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mappings. It is the representation in terms of univalent functions that is
for us the principal attraction of the theory.

By weak solution of the equation div (K grad 7) : 0 we mean

a continuous function V t'hat admits locally a continuous conjugate U
in the sense that U and V are locally ACL and their first order partial
derivatives are locally in -L2 and satisfy the generalized Cauchy-Riemann
equations

fJ*- KYo, [Jy: -KV,
The theory of the system

fJr: KVr, (Jv v*
I
K

is well known in terms of q.c. mappings. For if we define F : U + i, V ,

then (f .4) is equivalent to the Beltrami equation

(1 .3)

(1.4)

(1 .5)

(r.6)

(1 .9)

Generalized solutions of (1.5) are well known (e.g. [2]) to be expressible as

the composition of a K(z)-q.c. mapping with any analytic function. On the
other hand, the system (f.3) is equivalent to the equation

K 1-
FE : I{ + LF,

It is a feature of the variational method that it leads to solutions of this
latter equation.

Very briefly, the variational method [, 3, 6, 7, 9] leads to the following
procedure: Let ylfl be a functional that admits the following asymptotic
formula

x,if + ehl - x,lfl + sRe Llh;fl + o(e),

linear functional of h , depending also on ,f . D*fine

LI(w;f): L

in many circumstances this will be an analytic function of w . If / is

an; e*tremal function for the problem of maximizing the functional X

overa competing family E of K(z)-q.c. mappings, then (under appropriate
conilitions on ll(w ; /) ) it satisfies the differential equation

(1.7)

where L is a

(1 .8)

F= _ /i - I 
k,' K + L-,

lr=r;rJ;
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a,nd

(r. 10)

fn order
shall use the

(2.t)

and

(2.2)

to measure the global
expressions

which are defined for z + C .We shall
but only at points where K satisfies

K is essentially continuous at zo

r (z) {u1*.;1 a*

Q(, , C; K ,f) :

distortion of K(")-q.c. mappings, we

tf@ -fst

tf@ - f(qtV(" , C; K ,f) - lz CltK(4 
+ K(c)ttz

define A and V alsowhen z_ C,
an additional condition.
if the essential modulus of continuity

lQ,l:I
satisfi.es the differential equation (1.6).

The variational formalism makes it evident that we will be particularly
successful in extremum problems for which tJ,(w ; f) will be the square
of some rational function of w . This is the same situation as in the theory
of conformal mapping. fn that theory numerous functionals of this char-
acter have been studied and have led to important inequalities. To study
the same functionals in the q.c. case is often impossible since the classical
functionals depend frequently on the values of the derivative of the mapping
function.

In the first sections of this pa,per, we shall introduce certain functionals
of a q.c. mapping, which will have the same functional derivative as the
derivative of an analytic function and can be used to reconstruct the
classical functionals for q.c. applications. Then we shall use these functionals
to obtain existence proofs, to characterize and estimate various Green's
functions, and, in particular, to generalize well-known inequalities of
Golusin from conformal to very general q.c. mappings.

Our results contain as very special cases some problems in the theory
of univalent analytic functions with J(-q.c. extensions.

2. Basic functionals

(2.3) 0)(r ; z,o , K) _ ess sup lK(z) K(")l
lz- zollr
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decreases to zero as r -+ 0 . We shall impose the additional (Dini) growth
restriction that

(2.4)
f

J @V,?o,K)lr)dr

for some ö > 0 . fn particular, (2.4) holds if K is just Hölder continuous
at zo,

Let A(r i zo , f) denote the area of f(lz - zol < r) . If K is essentially
continuous and satisfi.es p.$ ah ?s, we define

(2.5) @(zo,zstK,f): lim'!+Ary
and

(2.6) Y(zo,zg;K ,f) : l0(f(zo),f("r); K "f-',7-t17-xa')
n:lsw

The existence of a (finite) limit in (2.5) and a (possibly infinite) limit in
(2.6) will be a consequence of Lemma l.

The definitions of the functionals @ and P are motivated by the fact
that q.c. mappings &re bi-Hölder-continuous (t2l). X'or example, if
f e Q6, D) , then for oc : I I llKll-
(2.7) celz - elt" < lf@) -f(öl { c"lz - cl", 0<cn {c"<a,
uniformly on each compact subset E of D .

fn general, the limits

(2.8) ,r^,ffi and r^ffi
need not exist; however, if either does, it is easy to show that it agrees with
the corresponding functional (2.5) or (2.6). In a,ny case, (2.5) and (2.6)

distinguish limiting points of the quotients in (2.8), that behave well
(semicontinuously) as / varies.

3. Existence and semicontlnulty of @(zo , zo; K , /) antl Y(zo , zr; K , f)

L e m m a l. Suppose f is K(z)-q.c. in a nei,ghborhood, of zo anil K
satisfi,es (2.\ at zr. Then
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'[,s noni,ncreasi,ng a"s r->O. In particular,

limr-ztK(zJA? ;zo,f) : lim B(r ;zo, K,f)
r+O z+0

erists.
Proof. Let Jt: lf,l, - lfrl, be the Jacobian of f .Then we may

represent ([2])
r2n

A(r) : A(r ;zo,f) : I I tU", + Q"uo) qd,Td,p.

00

As a function of r , A(r) is absolutely continuous, and

for a.e. r. Since / is q.c., the length L(r) of f(lz - zol : r) is finite for
a.e. r, and

fI(r) I ld,f I

u!'^:'
for a.e. r. It follows from (l.l) that

ld,fl' < K J, (r d$)z ,

and so, by Schwarz' inequality,

B(r ;zo, K, f) : r-ztKko')A(r ;zo,f)u"n 
{z 

K@i-' I OW ;zs, K) t d dp]!

A'(r)- [t,rd,ot)

0

S 2n t lK@i + w(rizo,K)lJ rzd,8
JL

: 2n r lK(zr) * a(r ; zo , K)l A'(r)

for a.e. r . We use the isoperimetric inequality: 4 n A(r) < l(r),. Then

A'(r) , 2 _ 2 za(r;zs,K)
e1r1 t ,lK(rr) + ,O'J, K)l t X1^1, K%ru

and
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(t"* L-'"kot 
A(r) exp {'u'"'Y' f (r(q i?0, K) t donl] )'

for a.e. r. Consequently, B(r;zo, K ,f) is positive and nonincreasing as

r -> 0 . Therefore, its limit as r -+ 0 exists and clearly is the same a,s

lim"-o l"-zlxkö 41'y'1 .

R, e m a r k . Under the hypotheses of Lemma l, it follows that the
limit in (2.5) exists. Since /-1 is (K . f-t)(w)-q,."., it will also follow that
the (possibly infinite) limit in (2.6) exists, once we verify that' (2.4) holds for
a(r,f(zr),K"f-t). But this follows from the Hölder continuity of 1-t
(see (2.7)), since

(3.1)

(with a : I lll.Kll- and a: cE").
fn order to produce extremal functions for extremum problems that

follow, we shall need semicontinuity properties of @ and P:
Lem ma 2. Supgtose that K sati,sfies p.$ at zo e D . Then the func-

tional @(zo , zo; K , . ) as upper semicont'i,nuous anil the functi'onal
V(zo, zoi K,' ) i's luner semicontinuous uniler locilly unofurm canaergence

i,n Q(K , D) .

Proof . Suppose that f* , f e Q(K, D) and f**f uniformly on compact
subsetsof D as n-->@.Let e>0.Since

,l : lim r-zlK(z;,A(r izo,f) : lim B(r;zo, K ,l)
r+O /+0

exists by Lemma l, there is an ro > 0 such that

B(ro;zs,K,f) < lt+elz.
The q.c. mappings f* camy the circle l" - zrl - ro onto Jordan curyes
Cn, +,haL need not be rectifiable, but have zero area ([2]). Sinco /o +/
uniformly on lz - zol : ro , the a,reas A(ro i zo , f) converge to
Alrr; zs , f) as n -> oo . Therefore

B(ro;zs,K,f*) 1 B(ro;zo,K,l) + t | 2 < )" + e

for all zr, suffieiently large. Now the monotonicity of Lemma I implies

(3.2) Umr-?K(zorA!;zo,f,) : lim B(r;zo, K ,f*) I ). + e
t+O t+0

for all n sufficiently large. This proves the upper semicontinurf of
(D(zo,zr;K,.).

The lower semicontinuity of 17 will follow frorn a similar argument in
terms of the inverse mappings. n'or, if fr*f locally uniformly, then
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f;, ---f-, locally uniformly also. We observed in (3.1) that condition (2.4)

implies a similar condition for a(r ; I@o) , K 'f-') . In fact, since the Hölder
parameters cI and oc can be chosen uniformly for f;L at f*(z) , tlne

integrals 
t

i ,^* ; f*(zo) , K " f;r) I e) dp .

0

can be estimated uniformly in terms of Ji (ar(q ; zo , K) I d de ' Since the

areas .,4.(ro ;f*(zo),;l; still converge to A(rr;l@o) ,f-r'), we obtain

limr-ztK(z;)A(r;f,("r) ,l;1) < lim r-ztK(dA(r;f(zo) ,7-t) + e

t+O t+O

for all za sufficiently large, just as in (3.2). The lower semicontinuity of
V(zs,zoiK,' ) follows.

4. K(r)-Q,c. mappings for which @(zo ,

and V(zo,zo)K,g)

L e m m a, 3. Suppose that K satisfi'es (2.4)

eri,st f , ge Q6,D) such that

Q(*o,zsiK,f) and V(zo,zoiK,g)

Proof. Without loss of generality, we mey assume lhat' D : C and

zo : Q .Let ro be any (small) positive number. We shall construct examples

that are aonformal fot lzl ) ro .

Define

[Ko K(*)] for r I ro

for r 2ro

r K, äUil < K(z) for a.e. z . and

tä@{u(r;0,K) for rlro. Now

ä,@ -

urhere Ko: /{(0) .

f;6v) I r) dr
define

f(r):

lzl

?,lal(r/r')-' **P 
{ f Kt r lK, - å(')l

ä'91 Ar \ffil

zoiK,f)

at zoe D. Then there

for lrl { ro

I ess sup
J lzllr

lKo t

Then t
since 0

I 
z ro$tx exp {f

0

äv\ d' I

nrW;ät'iri ror l'l åro
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and

s(z):

z t"t*,-,^*n t I' + or| ror t"t l ro

z ro.,-, u*n { | + o,} ror tztå ro .

Since l/l is increasing as lzl increases and aryf : argz, it is evident
tinat f is a homeomorphism of C onto C. Not" th"t

d tr" - t1r1

arloelgl > 0.

Therefore lgl also increases as lzl increases and argg: argz. Con-

soquently, g is also a homeomorphism of C onto C. Oou easily verffies that

lf,@)l + lf,@l ls"@)l + ls,(z\t

lf,@)l - 6n: ffi: Ko-t'lzl) < K(z) &'e'

Therefore / and g belong to Q@). It is evident that

@(0,0;K,f) : V(0,0;K,9) : I.
By composing finitely many mappings of the form that we have con-

structed, the following becomes an immediate corollary:
Lemma 4. Suppose thdt K sati,sfi,es (2.4) at 21t...tz*eD.

Then there eri,st f , geQ(K,D) such that @(zo,zn;K,f)>o and,
V(2,, z*; K , g) I a for n: 1,..., Irr .

5. Existence and representatlon lor fundamental sotutlons

In this section we assume that D : C , thut, K(z) satisfies Q.a) ,at
zo eC, and that K(t I z) satisfies p.Q at the origin. Let QrW) rtia
Q*6) be those subclasses of Q$) consisting of functions normalized at
oo by the conditions

@(a,a;K,f):1 and V(o,o;K,f): l,
respectively. Here we define

@(a, a ;K,f) : I I A@,0 ;K(l I z),r lfQ I z)),

V(*, @ ; K,f) : t lv(o,0 ; K(r I "),r I fF I ")).
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Wo shall consider the problems

maxQ(zo,zoiK,f) and minV(zo,zoiK,f).
Qo6l QvG)

Lemma 5. There ex,i,st f eQrG) and, geQ"(K) such that

;K,f)_ max @(zo,?oiK,h) a,nd
heQ6 $)

g) - min Y(zo,?oiK,h)
heey K)

Proof. It follows from Lemma 3 that Qr(K) and Q*(K) are nonempty
and that the corresponding supremum and infimum &re not 0 and @,
respectively. To see that the maximum and minimum actually exist, let
f"eQr(K) and goeQ*(K) beextremumsequences.Since @ and V aro
invariant under translation, we may assume thab f,(zr) : gn(zt) : 0 for
a fixed point zr 7 zo. Then tho llKll.-q.c.families {f*} and {g*} a,re
normal on C - {zr\ in the spherical metric ([Z]). The normalization at
oo rules out tho convergenco of any subsequence of {f*) or {g,} to oo
on C - {"r}. Similarly, extremality of the sequence at zo rules out the
convergenceof anysubsequenceof {f*) ot {g*} toaconstanton C - {zr}.
Thereforo subsequences of {/"} and {S*} converge locally uniformly on
C to llKll.-q.c. mappings /, and gs , respectively. It follows from a rosult
of K. Strebel pOl that fo and go are actually K(z)-q.c.; hence

fs , llo e Q6). The semicontinuity of Lemma 2 implies that

0

V(zo t zo i K ,

(D(zo

Y (zo

0

,?o)K,fo)

,ZolK rgJ
he Qrp (K)

; K ,fi
Sinco fo I @@o , zo i K ,fr) e Qr(K) could only inmease the maximum
and go I V(zo , zo i K , go) e Q*6) could only decrease the minimum,
necessarily lo e Qr(K) and attains f.he maximum, and go e Qw(K) and
attains the minimum.

Theorem l. Supgtose that K:C-+[l ,oo) ,i,s measurahle anil
I l1{ll- ( oo . Assume that K(z) sati,sfi,es p.g at zo e C and, K(L I z)
sati,sfdes p.$ ot the ori,gi,n. Then there er'i,sts a K(z)-q.c. rnapping f su,ch that

(5.1) S(2, zo) : -log lf@) - f@o)l

'is a (u;eak) funda,mental solution of the differential equation

(5.2) div (K grad U) - 0

wi,th s'i,ngularities at z0 a,rLd oo . Moreoaer
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I
(5.3) s(z , zo) : B(z , zo) + Xt^llog lz - zol

has a li,mit a,s z --> zo , anil

I
(5.4) t(z,zl : B(, ,zo) * ft.ollog lzl

has a limi,t as z---> a. Similarly, there erists a K(z)-q.c. mnpping g such

that

(5.5) Z(z , zo) :. -log lg(z) - g(z)l

is a (weak) fund,amental soluti,on of the d'i'fferenti'al' eguation

(5.6) div((l lK)gradu) : o

with singularities at zo anil @ . Moreoaer,

(5.7) o(z,zo) : Z(z,zo) * K(z)loglz - zol

has a limit as z --> zo , anil

(5.8) t(z,zo) : E(z,zo) * K(oo) log lzl

has a limi,t as z--> e.
R, e m a r k s. The principal impact of Theorem I is that the differential

equations (5.2) and (5.6) have fundamental solutions representableinterms
of quasiconformal mappings. That is,

(5.9) f : f(zr)+e-ts+i7:t

where

(5.r0) *X: #, * uf : -#
and

(5.1I) g: g(zo)+e-Iz+ft1

where

aE ai' aE aI'(5.12) a. : u ,r' uy : -K an -

However, ihe K(z)-q.c. mappings / and g rrr'ay change as eo varies.
ff we view the plane as a nonhomogeneous dielectric medium with

dielectric coefficient K : K(z) ) I , then B(z , zl represents the elec-

trostatic potential at z of a point charge at, zo. It is called the dielectric
Green's function. (If the dielectric coefficient is between 0 and I , it can
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be represented by t I K(z), where K(z) > I ; in this case X(z , zu) is the
dielectric Green's function.)

X'or example, suppose C : U{:oD, where tho D* are disjoint domains,
which we think of as isotropic dielectric media with dielectric constants
K* > 1. Assume thab Do contains a neighborhood of oo . If zo e D, o

then B(a, zo) is a harmonic function of z in each D*, except a"t, zs, where
S(z,z) + (l / K")loglz - zol is continuous. Moreover, S(z,z) is con-
tinuous in C and S(z ,zo) + (l / lio)log lzl+ 0 as z--> oo . X'urthermore,
ff D* and Do have a smooth common boundary arc y with normal
n" at zey,trhen

oo
K* ai"ls(z , z) lr) - K* 

uo,W@ , zi lo) .

The caso Ko : | , Kt : Kz : ... - KN, was treated in l5]. fn this special
ca,se & univalent representation for B and .X was obtained by other me&ns.

Proof of Theorem I. Let / be the function from Lemma 5 that maxi-
mizes the functional @(zo , zo i K , . ) over Qr6). Consider q.c. variations
of /, as in [9, Chapter 13], of the form

5lI

(5.13) La*: w :f f a(u)

rrJ J ,--d**+o(t')'
C

where a has compact support in C - f(1" - zol < r) and m is Lebesgue
me&snre. Under this variation the normalization at oo is preserved and
the area

A(r Izo,f*)
: A(rizo,f)

It follows that

(D(zo,?oiK,f*)

: @(zo,zalK,f)

under variations of
variational method
ferential equation

f 
'(*)

That is, if

the form (5.13). Then the principel theorem of the

[9, Theorem 13.2] implies that f satisfies the dif-

-tf@ - f@o)l'

zrue2 If f f#rd**d**+o(u,)
tilz- zollr) C

e e(zo, ?a i K,/) R* : f ! ffi+ ok )

tf@ - f@ir f ,(") a.e.
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I
roef _f@d: s+,i,7,

then

(B + d r), : - #W + e rL *.u.

Consequently, S and T dätibfy lhe generalized Cauchy-Riomann
equations (5.f0), and B satisfies the differential equation (5.2).

A similar argument with the function g from Lemma 5 leads to the
differential equation

K_I(E+i,T),: K+16+i,T),
for

I
E+i,T:logg_g(z\).

Thus , and f satisfy the generalized Cauchy-Riemann equations
(5.12), and .D satisfies (5.6).

ft is evident from (5.1) and (5.5) that B and ^D have singularities at
zo and co . To see that they are of the form indicated in (5.3) - (5.a) and
(5.7) - (5.8), let us consider first the singularity of B at zo . Let / be

a disk of radius ö with center zo. Assumo z e / andlel /n be obtained
from / by deleting disks of radius g about zo and z . X'irst use (5.10)

and. Green's theorem (see, e.g., [2, p. fa8]) to evaluato

f f Kffsrade s(å , zo). srade los lz

aa

Simila"ly,

I "rtz

el dme : .f ,rr lz el d,r (e , zo)

öÅs

Cldf(C,zo) as q->0.

I
@

ÅQ
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f I K@o) grads s( C , zi. grade los lC zl it,m,

ao

: K(ziltrC,zid,aryg z)

öÅn

-> -2nK("JS(z,zo)+ K(zi I trC,zid,arg(C-z) as s->0.

Therefore

rr r r
s(z,zo) : *J B(4,20) itars([ - z) -r;E6J I ^rP - eld,r((,zo)

*nh'Pt
where

I(z) : [ [ WO - K(zi]grad6B(f ,ao) .grad,loe 
16 - zlitmr.

A

Evidently, s(. , zo) is continuous at zo if I is. X'irst, .I(zo) converges
since

tr (2.)t, 
= lf" I \# H{i?'fä:,il'

d

='iq+*)u,lw+#)
6ö'6ö"

=+[+-[te#d,R : #l+- I+dp < a
0000

where d. : I I llKll*. X'inally, we estimate

v@) - r (2,)r' 
= lp - ^t I" I ffi o*,7'

3 tz-",r f"f ##,r*,-:ilYtrf"lffi
( (constant).

A 2n 6' ztt

f f o\r) it$ d,r f f a@ R") d@ dRJlw!!w
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5 (constant')
dLn ö'2n

f f a(r) d,0 d,r f f @(e R") d@ dB

Jl ll r

dö'

f u(r) d,r f @(e R") dB
fl

J rlr'lz-zol-' Lf-atzJ RIR'lf@)-f@o) l-' l[t/z

@@

'^"'J tlp-Lf"'{ tlfr" tlt/z

Since a;(r) -+ 0 as r ---> 0, both of these integrals tend to 0 as z + 20 .

The continuity of t at' o, of o a,t zs, andof r at q followfrom
similar considerations.

6. A distortlon theorem for K(z)-q.c. mappings of C

fn this section we fix ,A/ points ?1 t...tz*eD:C, at which we

assume that K satisfies (2.4). We shall measure the mutual distortion
relative to these points of a K(z)-q.c. mapping / by the quadratic ex-
pressions

ölfl: ), **rnlogil(z*,z,iK,/) and
(6.1) n'n:L

,tlfl f, *-r*logY(z^, z*; K ,f)
ntn:L

where frr, ..., ** eR and )f;:t fr* : 0. By solving the problems

(6.2) max { and min g
QIK) Q6I

we shall obtain the following:
Theorem 2. Suppose that K: C-+[1,oo) i,s measurabl,e and'

ll1lll- { oo. Assumetlwtt- K(z) sati,sfiesQ.a)il ?1t...tzneC and, K(l lz)
sati,sfies Q.a) at the ori,gin. If f , C-->C i,s a K(z)-q.c. mnpping, then

ff* n*[ t"*
N

(6.3)

and

tfil, t4:L
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(6.4)
tnrll:7

lf@*) - f(z-)ln* nn[ t"*
lr* znltK('*) { K(z*)llz

for ang nL,...,r, eR subjecttotheconstra,i,nt Z|:rnn:0. Here s and,o
are the requl,ar parts (5.3) and, (5.7) of funil.amental soluti,ons to (5.2) and,
(5.6), respectiuely.

Of course, we interpret the qubtients in (6.3) and (6.a)for rm : n as
(D(z*,zo; K ,f) and V(z*,zni K,,f) , respectively.

Proof of Theorem 2. It follows from Lemma 4 t}lrat - oo < suporrr d
and infqlrl V< + oo. For rn+n it is obvious that (D(z*,2*;K,.)
and Y(z*,z,i K ,.) are continuous under locally uniform convergence.
Together with Lemma 2, this implies fhat $ and rp ere upper and lower
semicontinuous, respectively, on Q(K). Since the functionals f and 9
are invariant when replacing f by A f + B, it is sufficient to restrict
attention to the subset of Q@) for which 

"f(0) 
: 0 and /(1) : I . By

a theorem of K. Strebel [0], this subset is compact in the topology of
locall5r uniform convergence. Therefore f , g e Q(K) exist such that

Öffl : maxö
QW',1

and ,plgl _ min g
Q6)

We shall again employ variations of the form (5.13). Under this variation

lag@(z*,zoiK,f*)

- log Q(r*,?n;K,f) a(w) drn.

lo - f("*)l la - f(r.)l ) + o@')

and

(6.5) ölf*l : ölfl

It follows then from
[9, Theorem 13.2J that

[å, r+d]'n*-l+ ob')'

eRe {: f,f

the principal theorem on the variational method
f satisfies the differential equation

lå, 
nnltf@ - f("*"1'

f,@(6.6)

That'

(6.7)

then

-12
_ f("*)r 

J
is, if

I

Årr*l'ogf -f(z): 
r- u + iv,
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(6.8) E- - -#r,
An argument similar to that in the proof of Theorem I implies that,trlre

singularities of U are such that

u(z) + å^rru lz - z,l

has a limit as z--> a". Consequently,

w(z) : E(z) - f *-WP , zn) + i' T(2 ,2,)f
n:L

is continuous in the whole plane and satisfies

K-t-
W-- -K+Lwua.e.

fn addition, (5.4) and the fact that )f;:r n* : o imply that W has a finite
limitat oo,too. If W : u + io and la : {z: I lR<1, - zÅ<n},
then on the one hand,

1 [ xOlgradB(z ,z*).grad.u(z)itm, : I Ur",z-)d,a(z) --> o as -E-+co

ÅR öan

and, on the other hand,

I I K@)grad B(z , z-) ' srad u(z) itm,

/R

f: I u(") d,T(2, z*) - 2n lu(z*\ - a(o)l
J
ö/n

as -B-+ oo. That is, )!:r**u(z*): u(a)Z[:tr*:O. Consequently,

rf lf(a\-flz\l N I N

-L{-rntog#!## 
: 

å,*^l-or"-, *å:-ts(z*,2,) - s(z*,2)tJ

NNA': 2 **u(z*) - 2 **r*s(z*,2*) : - 2 y*r*s(z*,2,)
n:L n,n:L fr,fr:L

and

lNlv
ölfl: -; 2 **r*ls(z-,2*)*s(2,,2*)l: - 2 **rns(z*,zn)

o m,t:L n,n:l

in the extreme case. This completes the proof of (6.3).
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The proof of (6.a) is quite similar. The variational formula for rp is the
same as for S in (6.5). However, since we must maximoe - ,tt, the sign
in (6.6) and (6.3) changes. This has the effect of replacing K by L I K ,

and hence, s by o in the final result.
R,emark. The proof of Theorem 2 provides both existence and

a representation in terms of q.c. mappings for solutions of equations (5.2)

and (5.6) with singularities at finitely many points. For example, with
nL: -1 , tz: l, and N :2, we obtain K(z)-q.c, mappings f and' g
such that

is a fundamental solution of (5.2) with singularities

111
- K(?) log 

|4 - zLl and K@log lz - zrl

and

- lf@ -f(r,)rosirr"l au

- ls@) s(z)
ros 

ls@ - s@)

is a fundamental solution of (5.6) with singularities

11
- K(zr) log 

l" _ zrl and K(zr) log ,,2 _ z;

The following is an application of Theorem 2:

C o r o I I a r y l. Suppose f : C -->C is a homeomorph'i'sm thnt is
K-q.c. for l"l < R anil L-q.c. for lzl> R (K, L constants). Ior m:
l, ..., M anil, n: l, ..., N , let 'q* anil, e,* be any cornpl,er nambers uffih

l"-l < R anil lc*l > R , anil, I,et r* anil, y* be any real numbers with

Z[:rt* + )f:t U*:0. Then

( - f@*)l l - "r"*rRz

+ 2 .ä.ä.**y-u,sl1l

tf@*) - f(c)l
lo f 1216 +L)
lum 5nl

lf(c,) - f(c")l

Itrffi:l

Rrlx
- l-t

l-t

g
ry

T
I

tr*Log
''t lU Kttn 

I

(L_ K)[K(z+&r 

]

* 
", å, u, u*l"g IItrfI,:L

RUT

Rztw*t,]

tr r JILl5v 5nl
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X,I

H,ffi:t

MN
rc)\i\

lLt,/l Ll .1t
rn,:I n:L

N

) - f@*)l *r'*_RP

+
a r14:L

gx

IfG)
IC,

KL
I' L(K + L)

r*Logl
tK(K-L))lW *t']

f (",

1",

);
e

)l

'ln

)n,

L

?

G
,I

,l

lo

:

T
7
L,

zrn

l,abr* Yrlo
n

(/(+r) 
]

L(L-K)l1&*"']

)l
I

n
K

r
5

l('

I

1
T

-f
ftn

I

R'lt
Proof. For the first inequality, we need fundamental solutions S of

(5.2) with singularity - (I lL) log lzl at oo and with singularity
(L I K) log (l / lz - z*) at zffi or (r I L) log (t / lz - C,D at f,. Since

K and L are constants, B is to be otherwise harmonic, except for lzl : ft ,

where it is continuous. Since K@) aSlar : (I lr) (aTla$) has no discon-
tinuity on lzl : R, we must also have

asl aBlu;lr:R- 
" *!,:o*'

From these conditions, one verifies directly that

11LK
xlos l" - z_l+ x 1r + x) log

LK
KL_
for lrl

for lrl

log A

<R
4l

- urn 
II 

-.-trl
rylel

r - 
z%

tBz +

,S(, , ?*) -

and

s(r, en) -

112
zloslrl- K + Llog

11
Trog w - 4)

I o I

roslr ;\
I R',I

logll JlI z lnl

for lrl

for l"l

<R

are fundamental solutions. Substitution of the corresponding expressions

LK
+ X f 1og.B,

R2 I_--t
- t)rrl

ly ln I

2(L K\
C*l +ffilosic"l

LK
s(zp,z,*) - Ke+K) log

KLIs(i",e)- L6+L)loSit

s(z,o , Cn) + s(C* , zrr) - J{: 
L\2

KL(K+L) loglz*

into (6.3) leads to the first, inequality.
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The second inequality follows from (6.4) in an entirely analogous
fashion, with K and L replaced by their reciprocals.

R,emarks. A special case ofCorollary I appears in our earlier work
f8l. We leave it to the reader to test the special cases when K : L or when
alI y*: 0 and L--> a (cf. [S]).

The inequalities of Theorem 2 and Corollary I are, of course, sharp.
They are a significant generalization of the classical Golusin inequalities,
which are a valuable tool in studying conformal mappings.

ft is an interesting exercise to construct the K(z)-q.c. mappings /
and g from Theorem I that generate the fundamental solutions S and
),when K(z):K for l"l<R and. K(z):L for lzl>R.

7. Fundamental solutions of the first kintl

Let D be a domain that admits a harmonic Green's function. Assume
bhat K: D-> [,oo) satisfies (2.\at afixedfinitepoint zoeD.Asin
Section 5,leb Qr(K, D) and Qr(K , D) consist of all functions / e Q( K , D)
that are normalized by (D(zo,zo;K,f): t and V(zo,zs;K,f): l,
respectively.

If f e Q(K , D), then a : f@) also admits a harmonic Green's
function G, . That is, as a function of w ,

(l) G,(w, f) is harmonic in !2 - {(},
- G,(r,u , C) + log lut Cl is harmonic at C , and

0 as u)-->AQ
is symmetric: G,(r,u , C) - G/C , LU)

l,(w , w) . By considering the problems

min yrff@i) and max y/f(zoD ,

Q o6, D) Q,y(K,D)

we shall obtain the following representation theorem:
T h e o r e m 3. Let D be a ilomai'n that ad'mits a harmonic Green's

function. Bupposethat K: D--> p, oo) ismeasurable,'i'sessent'i'al'lybound,ed,,

and, satisfdes Q.Q at zo e D . Then there er'ists a K(z)-q.c. nappi,ng f of D
such that

(7 .2) S(, , zo , D) : G,(f (z) ,f @o)) ,

where G, is the harmon'i,c Green's functiun of f(D) , is a (wealc) fund'amentul,
solution of the d,ifferential, equation

(7.3) div (K grad U) : e

in D , with si,ngul,ari,ty at zn and, zerobound,ary aal,ues. Furthermore,

(2) T,(u: , C)

(3) G,(u: , C)

fn addition Gt

Let y t(w) -
(7.1)
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(7.4) s(z ,zr; D) : elf@ , f("r)) . åbg P - z,l

has a l,i,mi,t a,s z ---> z, . Bimilarly, there eui,sts a K(z)-7.c. mappi,ng g of D
such that

(7.5) Z(z,zo; D) : Gr@(z) ,g(zi) ,

where G, 'is the harmonic Green's funct'ion of g(D) ,'i's a (weak) fund,amental
solution of the d,i,fferenti,al equati,on

(7.6) div ((l I K) grad U) : 0

'i,n D, wi,th si,ngulari,ty at zo anil zero butndary aalues. Iurthermore,

(7 .7) o(z , zo ; D) : Gr@(z) , g(zoD * K(zo) log lz - zol

has a limit as z ---> zo .

Proof. Existence of extremal functions / and g for the problems
(7.1) presents no difficulty (cf. Lemma 5). We normalize the variations
(5.f3) so that the points a, f(z), and the normalization at f(z) &re

preserved. That is, if wo : f@o) , then

w**(w) : W*(w) - w*(wif lw*'(w) + wo

is the desired variation, where u* is given in (5.13). Under this variation

Gr**(w** ,*ff*) : Gr(w* ,wt)

:G,(w,wo) *""{; I [ 
^,rP',(a;u;)P',(a;w,)d,m.] 

* r1ry

C

(see [a]) where P,(w; f) is an analytic completion (as a function of w)
of the Green's function G,(w , C). That is,

I ID u)orosiffi
: R"{:f f *rr)p'1@;a)p',(u,wo)d,*,| +o(e) .

C

Let w -> wo ) then

ry.(ws) - y,(wi : Re \: I I a@) lPi@;wilz d'*,] + o@) .

C

As in the proof of Theorem l, the principal theorem of the variational
method (l9l) implies that the extremal function f for the problem

^inQrrr.,ot 
y/f(zi) satisfies the differential equation
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lP,(f (z) ; f (zo))1, :

As before, this is equivalent
Re Pr (f (") ; f (zo)) is a solution

K(z) I
K@) + LIP'('f(z)

to the statement
of (7.3). Since

I

; f (za))1, .

that G,(f (z) ,f@o)) -

crff@ , f@oD : log 
Vt"l _ fW + y,(f(zr)) + o(l) as z --> z0 ,

the proof that Q.Q has a limit as z-->zo isidentical to the proof in
Theorem l.

Similarly, the extremal function g for the problem maxe,y1x,o1y/f(2il)
satisfies the differentiai equation

K(z) I
LPr@@);s(z;)lE : K@. L

lP r@@) ; s(zo))J, ,

which implies that Gr@@),g(zoD : Re Pr(t@);g(zr)) is a solution of
(7.6). The continuity of (7.7) follows as before.

If l? is a domain that contains a neighborhood of oo , then a harmonic
Green's function for 12 with singularity at co is a harmonic function
G(w) : G(w , m) in o tjnat vanishes on 0 Q and has the property that
l(w): G(w) - log lrul has a limit as 'tt)-->@. Note that il': s-r1*7

is the transfinite diameter of rz . An entirely analogous development yields:
T h e o r e m 4. Let D be a d,omni'n that contains a nei'ghborhood, of a

and, ad,mi,ts a harmonic Green's functi'on with si,ngularity at oo . Suppose

K: D --- [, oo) is measurable, llif ll. { oo, and, K(l lz) sati'sfi'es p.a)
at the ori,gin. Then there erists a K (z)-q.c. mappi,rry f of D such that G,(f (z)),
where G, i,s the harmsnic Green's function of f(D) with si'ngul'arity at m ,

i,s a funil,amental soluti,on of (7.3) wi,th zero bounilary ualues, and, Glf@)) -
(t I K(a)) log lzl has a,li,mit as z---> a . Si'mi'larlg, there etists a K(z)-q.c.
mappi,ng S of D such that Gr@@)) , where Ge is the harmqnic Green's

faycti,an of g(D) with si,ngularity at a , is a fund,amentatr sol'uti'on af (7.6)

w'i,tk zero bound,arg aal,ues, anil, Gu@@)) - K(oo)log lzl has a I'imi't as

z--> @,

8. A distortion theorem ior K(z)-q.c. mappings of D

Let D be a domain bounded by a finite number of Jordan curves, and
assume that K: D---> ll , oo) satisfies Q.\al fixedpoints zt,...,2* eD.
As a measure of distortion for f e Q6 , D) we shall consider the functionals
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N(8.r) lrfl :
and

(8'2) Plfl _ 
*ä:r** 

nn[og Y (z*

where q is the regular part of the
We shall solve the problems

, zn ; K, f) l,(f(z*), f(2.))l

, ?* ; K , f) l,(f (z*) , f ("-))l ,

harmonic Green's funct'ion for f(D)

(8.3) max l, and min p :

Q6, D) Q(K, DI

T h e o r e m 5. Let D be a ilomain bouniled, by a fi,ni,te number of
rectifiable Jord,an clrrr)es, anil, assume that K : D ---> [l , oo) 'i,s measurable,
is essentially bound,eil,, and, satisfies p.\ at fi,red, points ?L , ... , z* e D .

If f eQ(K,D),then

a,nd

(8.5)

(8.4) 
*Lr**ffnlt"* l,(f(z*) , f (r"))

+ s(?r, , ?*. ,)]

T,(f(z*) , f(2")). L:*nn[t"*//1,, t4:L

lf@*) - f("")l
lz* z*llK('*) a KQ")llz

* o(z*,",r41> 0

for any frI, ..., r, eR satisfging 2I:r** : 0. Here l, i,s the regular ytart
of the harmonic Green's functi,on for f(D) and, s and, o are the regular parts
(7.4) and, (7.7) of fund,amental solutions to (7.3) and, (7.6) i,n D with zero
boundnrg aalues.

Proof. The proof parallels the proof of Theorem 2. The existence of
extremal functions for the problems (8.3) follows in the same fashion.
Under the variation (5.13) one has ([4])

llf*l - Alfl : ), **r,lGr(f*(z*) ,f*(2,)) - Glf@*) ,f(z*))l
lft 114 :L
ln* n

Irr

14:1

= nulj
ln

ly r(f* (z*)) - y /f(z-))l

I ! a(a) tå **p;(*;f(",))]'
e

o*-] + o(e)
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Therefore the extremal function / for the problem ma,xe6,D).X has the
property that )f;:r r* Gyff@) , f (z*)) satisfies the differential equation (7.3).

Consequently,

(8.6)
N

T'L:L

fot z: ?1t...t27,7, just as in the proof of Theorem 2. The restriction of
0D to a rectifiable curve system was made to permit a boundary integra-tion
in verifying (3.6). Now (3.6) is equivalent to

JV

\ r,llog@(z*,zn;K,f) - l,(f(z*),f("")) t s(z*,z,iD)f : 0
N:L

for all m , from which (8.4) follows.
The proof of (8.5) is similar.

9. Fundamental solutions of the second kind

The harmonic Neumann's function N@ ,0 of a domain !2 bounded

by a finite number of Jordan curves with a continuously turning tangent
has the properties that, as a function of w,

(t) -l[(trl, f) ir harmonic in o - {(} ,

(2) N(w,6) + log W - el is harmonic at C,

aI{ (w , C) 2n
, where L is the length of a I , and

o%*

f(4) IN(w,C)d,s,:s.J
öo

ft is a consequence of Green's theorem that .l[ is symmetric: N(w , C) :
N(C,w). Let II(w; () be an (multivalued) analytic completion as a func-
tion of rr '(so that .l[ : Re Z ).

We shall also use the related functions:

(9.r) II(w; C , tt) : II(w; C) - n@; rt)

(9.2) N(w,e ,rt) : ReII(w;C,rt) : N(w,e) - I{(*,rt),
(9.3) II(w,o;C,rt) : II(w;C,n) - II(r;e ,rt),

(9.4) N(w,a,C,T):F,eII(w,@;C,rt) : N(w,C,T) - N(a,C,4),

It is elementary to verify the addition formulae r '

(3) L
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(9.5) If(w,a;e ,ril : II(w,a;e ,il + n(w,at;€,yt)
(9.6) il'(w; e ,ri : II'(w; C,t) + If'(*;E ,rt),
where the derivative will always be with respect to the first variable. The
symmetry relation

(9.7) N(w,a, C,tt) : Jf(6 ,\.,u,@)
follows from that of N(w,6).A* a consequence, one has the limit values

(9.S) N(w,a,e ,C) : N(C,€,u,@) : 0.

The function (9.2) has boundary valueg of type -lI in the sense of [4].
That is, under an interior variation of the form

(9.9) ,tD* : ** ""ot'u-uo'

the representation

lV* (r.o* , oJ* , C* , rJ*) - I{(w , @ , C , rl)

aD(€, C,rt): * Il.(€ 'w 'a,)
DG,C,rlffioru

ont

where the integral is extended over ap * { lE - wol : dt), and

D(w, C,T) : N*(w*(w), f*(C) ,q*(d) - N(w, e ,rt),

has the property that the integral over ?O vanishes. By evaluating the
integral over the small circle I€ - wol : \t;, as in [4], one obtains the
variational formula

(e. r0) lV{<(u* ,@* , C* ,rlor) N(r.,:,cD t C,q)
_ Ru{eei$ Ir'(woiu,or)n'\no;C,dt + o(e)o

We wish to extend the variational formula (9.10) to more general
domains !2. The key will be to use the fact ihat X(w; t,ril - s!@'t,nt
is single valued and maps o conformally onto a domain bounded by rad_ial
slits. ft is normalized so that w : t corresponds to oo and 6 - 11 to
the origin.

Any domain h bounded by finitely many nondegenerate continua
admitsradialslitmapping" fp;C,rt) taking C to o and 11 to 0.
The mappings are determined by this normalization up to a multiplicative
constant, so that for smoothly bounded domains

(e.rr) fr@; C ,rt) : bsfp; e ,ql
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differs from II (rp ; C , ril
However,

(9.12) n@,@i

by at most a constant (depending on C and rl ).

C,rl) : n@ ; C,ri fi@ ; C,rt)

C*,rl*) IV(u;*,C,rl)J

and II'(*; C ,rt); are uniquely determined and agree with their con-

terparts in case a6 is smooth. At the same time, fr1*,., e ,T) -
Re frp ,a;8,4) is uniquely determined., and

(9.13) fr@,C,ri:Refr1w;C,ril - log6@;e ,rt)|,

(9.I4) i(* , e ,rl) : fr(* , C, ?) + loglffiI
are determined up to an additive constant (depending on f and 4 ).

^ 
By Carathdodory's theorem on domain convergence, the functions

lT(w,o;€,q) and II'(w,e ,rl) are thelimitsof functions fl,(w,a;e ,q)
and II'*(. ; C, d corresponding to mappings X*(w ; C, ril of a smoothly

bounded exhaustion {Q,\ of .Ö . Consequently, the variational formula (9.l0)

carries over to the functionak -f and fr' for Ö. X'or the same reason,

the identities (9.5)- (9.S) also carry over in terms of fi and .f .

Now fix points uL, ... ,un fu a domain ^Ö bounded by a finitenumber
of nondegenerate continua, and let fi!,...,fi00 €R with )ff:rr*: O.
Substitute u : u* into the extended form of (9.10) and sum:

(9.15)
M^

2 ** ptr* (*f, ,

: nul
t

It follows from t
independent of a)

and sum; then

(9.16)å,*-',[,o*ffi+a*p1,wff,4*)_i(**,**,,)f

: Re {r"'tlär**fr'(*o;w*,4)]'} n ,,", ,

where for m:n the quotient l(w*-*)l(.f"-*I)l is lllw*'(w*)1 .

Since ZX=t**:0, the expressions in (9.r5) and (9.16) are independent

of which mapping -f is used. to generate -f , i , and fi' . Io addition,
because of (9.5) and (9.6), both sides of (9.16) are independent of rl , a,rrd,

we ma,y write the right side as

e eiT fi'@o ; C, 

^7f* 
ft'Qr,, t w*, r) 

) + o(e) .

he addition formula (9.6) that the last sum in (9.f5) is
. Therefore, we may as well let @ _ vl . I{ow let C : lun
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R" 
{ 
, eo8l2':*fi'(,,s.)w*,, wu)]'} + o(e) .

Assume now that, D is a domain bounded by finitely
degenerate continua and that K : D --> lI , oo) satisfies (2.

points ?L, ..., ?M e D . For f e Q6 , D), define

(9.17) X,lfl _ y, n* ffinFog @(** , ?n; K , f) t,,tf t"*) , f (2,) ,
?ll,r/1,:L

ma,ny non-
4) at fixed

vl)l

and
M

(9.18) xffi : Z *_r*llogY(z*,zni K ,f) - i,(fl"*) ,f(2,) ,ril,
n,fr:l

where i, is the regular part (9.Ia) of any function (9.f 3)for tt : ftO) .

Since )ff:Ln* :0, y and z are independent of which normalization is

used in the mapping -fr . ftt addition, because of (9.5) both functionals are
independent of 11 .

We shall consider the problems

(9.19) ma,x X and min x.
Q(K,D) Q6,D)

Existence of extremal functions for these problems follows as before (cf.
Theorems 2 and 5). Using (9.16), we find that an extremal function / for
the problem rri'axeo.,D) 1( satisfies

K-t-
H- - - K+LH'

for
M^M-l

H(z) - / r^Illf@),f(z*), T) : I r*Il,(f(z),f(z*), f("*)) .
m:l xt:l

Similarly, an extremal function g for the problem ming(",r) z satisfies

, -K-l7u' : K + lu"
where

Ät! _ M-l
J(z) : 2 r*frr@@), g("*),ri : \ r*iir(t@), g(z*), g(zvD .

rn:I n:l

(e.20) xlf*l : xlfl - *" {, ,,ol\:-fr'@,;f(z*),f@-D7'} * o(e)

under a variation of the form (9.9). A similar formula arises from the
variation (5.13). Consequently, the principal theorem of the variational
method (see [9, Corollary I3.3]) leads to the differential equation
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ft ako follows, as in the proof of Theorem l, that Re f/ has singularities
of the form (r* | K(z*)) log (t / lz - z*) and Re./ has singularities of
the form r*K(z*) log (1 / lz - z-0, trl : I,..., M .

Thespecialc&se #1:I, fiz: -I, M:2 oftheprecedingdiscus-
sion is already of interest. Let us summarize it using the notation

3p,"r,zz)D) + ifip 1?11?2tD) : iltt"lrf@L),f(zz))
tog i,{f(") ; f (zL) , .f (zzD - log g(z ; z, , zr) ,

z(2, zr, zzi D) + i fp 1 ?1 2 ?2 ; D) : ti r{tt4 t s@L),s@z))

: log frr@{") ; g(zL) , g(zz)) : log @(z ) zr , zz) .

The ore m 6. Let D be a dama,i,n bound,ed, bg a linite number of non-
d,egenerate continua, and, assume that K: D -+ [1 , oo) is measurable, ,i,s

essenti,al,ly bound,ed,, and, sati,sfdes Q.\ at ?1 t 22 e D . Then there eri,sts a
K(z)-q.c. mapgttng $(z;zr,zr) of D onto the erteniled, pl,ane tni,th rad,ial
sl'i,ts, su,ch that

51" , ", , 
zz i D) - log l$(z ; z, , zr)l

i,s a (weak) fundamental solution of the di,fferenti,al, equation

(9,21) div (K grad U) : 6

in D with si,ngulari,ties at z, and, zr. Eurtherm.ore,

(s.22)

i(r,zL,zz)D): 3@,zL

has a, Iimit as

ma,pp,i,ng @(";
tlla,t

#los lz zzl

z -> zr and as z --> zz . Simi,larlA, there erists a K(r)-!1.c.
21 , zs) ,f D onLto the emtendeil plane witlt, ra,dli,al sl'i,ts, such

i(" , ?L , zz , D) - log l@@ i zt ,zr)l

is a (wealc) fund,amental soluti,an of the il,ifferential equation

(e.23) div((l lK)gradU) : 0

in D wi,tlt singulari,ties at z, and, zr. nurthermore,

(9.24) å1z,zr,zzlD)
ir-: 2\p,21,22;D) + K(zr)loglz - zrl - K(zr)Ioglz - zrl

has a li,mi,t a,s z ---> z, anil, a,s z ---> zz ,

The functions ,3 and Z are fundamental solutions of the second kind
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in the sense that their conjugates T and i are constant on each boundary
component of D .

We may now solve the problems (9.19) in terms of the fundamental
solutions ,S and i . W" omit the rest of the proof because of its similarity
to the proof of Theorem 5.

T h e o r e m 7. Let D be a d,omninbound,eilby afi,nite number of Jord,an
curues udth a conti,nuauslg turni,ng tangent. Assume that K: D-> ll , oo)

is measurable, is essential,l,g boundnd,, anil, satisfi,es Q.\ at z1t...tz* e D.
If f eQ(K,D) then

lil'r?l:l

g f, lf@*) - f("")l
Lrn* 

nn 
Ltog

i,tf{"*) ,f(z*l ,nlf
znlLU 

K(2il +LlK(z illlZ

+ ) r*r,li(z*,zn2zn4;D)-i1z*,2*,zr.tiD)l < 0
frtfi:L

and,

*t:,**.,|'u ffi,* - i,(f("*), f("-), n)l
fr'fi:L

M-7
+

fr,n:L

for ang fiI, ..., nM €R satisfying ZY:rfr* : 0. Here i, i,s the regul,ar part

@la) of any functian fl,lr, e ,rt) fo, f(D) and, i anit 6 are the regular
parts (9.22) and, (9.2Q of fund,amental solutions of the seconil kinil for (9.2L)
and, (9.23).

10. Mapping theorems

Many extremum problems lead to existence theorems for canonical
mappings by means of K(z)-q.c. mappings. A characteristic example is
already provided by Theorem 6. fn this section we add two further results
of this nature.

Let D be a domain which possesses a harmonic Green's function, and
assume that K: D -+ll , oo) satisfies Q.Q at zoeD. Then, on the
basis of Theorem 3, we can assert the existence of a K(z)-q.c. mapping I
of D onto a domain a : f@) such that the combined function

a@) : G,(f("),f(zi),

where G, is the harmonic Green's function of Q , satisfies the differential
equation

div (K grad tl) : 0



Fundamental solutions 529

Moreover, if Pr(w ; wi is any (multivalued) analybic completion of
G,(w ,wo) (as a function of w ) , then the function

2I(z) : Pll@ ; f(zoD : U(z) + i' V(z)

generates a function 7, conjugate to U by the generalized Cauchy-
Riemann equations, which can be combined into

(10. 1)

( I 0.2)

K I-
uz : I{+L'I{"

If D is simply connected, then so is !?, and exp{-P,(w;aro)} is
single valued and maps !2 conformally onto the unit disk with wo cor-
responding to the origin. Consequently, exp { - U} is univalent and maps D
onto the unit disk with zo corresponding to the origin.

In the s&me manner, the K(z)-q.c. mapping g of Theorem 3 leads to
a solution

S(z) : Pr@@);s(zo))

of the generalized Cauchy-Riemann equations

K 1-
8r : K+LE,,

such that exp { - E} has similar mapping properties. We thus have the
following generalization of the Riemann mapping theorem:

T h e o r e m 8. Let D be si,mply connecteil, and,hnue atleast twobm,nd,ary
points. Assume that K : D --> [1 , oo) ,is measurabl,e, ,i,s essentiall,y bound,ed,,

anil satisfi,es p.Q at zo e D . Then there eri,st funct'ions W and, E that satisfy
the general,i,zed, Cauchy - R'i,emann equat'ions (I0.1) anil (r0.2), respecti,uely,

su,ch that exp{ -U} and, exp { - E} are uniaalent mappi,ngs of D onto the

uni,t di,sk wi,th zo aarrespoqld,i,ng to tlle origdn.
A similar result can be obtained in the case of a multiply connected

domain D . We introduce for this purpose the modified harmonic Green's

function d1w , a1 of a domain o with proper continua Cs , Ct , ... , C*
as boundaries. ft is defined as follows:

1l) i(u:,ar) is harmonic in a - {*) (as a function of w).

p) d@ , @) + log lw - col is harmonic at o .

@) ä@, ar) is constant on all C,; in particular, ä1w,.1 : 0 on %.

$) I 
t*: tu* : o on all smooth curves homotopic to C, in

P - {r} , u : I,...,n.
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f aG(w , a)
Ol I *_ d,s* : 2n on all smooth curves homotopic to Co in

a - {*}'
This modified Green's function can be constructed directly from the ordinary
Green's function of o and the harmonic measures of Ct , ... , C* .

Tf FQn;ar) is an analytic completion of d1w, a-l) (as a function of w),
then exp 1-F@;ar)) maps g onto the unit disk slit along concentric
circular arcs, such that Co corresponds to the unit, circumference and a-r

to the origin.
The modified Green's function also satisfies the condition -l[ of [4],

used before, and thus has, under a variation (9.9) of the domain,
the asymptotic behavior

fi*1,*, ar*) : dp ,a) * Re {e en[ F'1wo;w1F'1wo;ar)} + o(e) .

Usrng again the extremal problems for ält|l , f@oD which led to Theorem 3.

we arrive at the following:
T h e o r e m 9. Let D be a d,omain bound'ed' by a fini'te number of prolter

continua. Assumethut K : D --> ll , oo) is measurabl,e,'i,s essent'i,allybound'ed',

and, sati,sfies Q.a) at zo e D . Then there er'ist funct'i'ons 2I and, E that
sati,sfu the general,i,zeil, Cauchy-R'i,emann equat'i'ons (10.1) and, (1O.2), respec-

ti,ael,y, such that exp{-Qll and, exp{-E} are un'i'ualent mappingsof D
onto the uni,t d,i,slc sl,i,t along concentri,c circul,ar arcs, w'ith a prescr'i,bed' bounilnry
corresponil,'i,ng to the uni,t c'i,rcumference and, zo to the ori'gin.

Many analogous canonical mapping theorems can be established in the
same way. The method always relies on finding an extremum problem for
an appropriate functional with a convenient variational formula.
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