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ON QUADRATIC DIFFERENTIALS WITH CLOSED
TRAJECTORIES ON OPEN RIEMANN SURFACES

KURT STREBEL

1. Introduction

A holomorphic or meromorphic quadratic differential ¢ on a Riemann
surface R is represented by a system of holomorphic resp. meromorphic
function elements ¢,(z,) in the local parameters z, such that the ex-
pression ¢,(z,) dz? stays invariant under a conformal transformation of
the parameter. In the sequel we will always leave the index » away and
just write ¢(z)dz?. The horizontal trajectories of ¢ are the maximal
curves « on R along which ¢(z) dz? is real and positive. Thus zeroes and
poles are excluded by definition on a trajectory; but of course it can tend
to such a point in either direction. In this case the trajectory is called
critical, otherwise regular.

The closed trajectories of a quadratic differential ¢ (if there are any)
sweep out certain disjoint ringdomains R; of R which we call the char-
acteristic ringdomains of ¢ . On compact surfaces there are holomorphic
quadratic differentials with the property that all regular horizontal trajec-
tories are closed. The induced geometric structure on R can now be used
to characterize the quadratic differentials with closed trajectories (see first
part of Section 3).

It is the purpose of this paper to generalize these structure theorems
to open (i.e. non compact) Riemann surfaces. But now ¢ can have in-
finitely many characteristic ringdomains. It is then said to be of infinite,
otherwise of finite (topological) type. It is this last case we are going to deal
with. One can roughly say that everything what is true on compact surfaces
is also true, in the finite case, on arbitrary open surfaces.

This paper is closely related to the papers [1], [2], [3] of the author.
However, we only make use of the main existence theorem on compact
Riemann surfaces, which is proved in [1]. This theorem is then first gener-
alized, by the process of doubling, to compact bordered surfaces. The rest
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534 KURT STREBEL

is done by exhaustion. The case of compact surfaces with punctures is
contained in the general result to be proved, but now no branched covering
surfaces are needed. Also the quadratic differentials with second order
poles, where one has to work with reduced moduli, are treated in the same
way. For later generalizations, the extremal property of quadratic differ-
entials with closed trajectories (and finite norm) is proved for arbitrary

type.

2. Extremum properties of quadratic differentials with closed trajectories

Definition 1. A meromorphic quadratic differential ¢ on an
arbitrary Riemann surface R is said to have closed trajectories, if its non
closed trajectories cover a set of measure zero. (A point set is said to have
measure zero, if its intersection with every parameter neighbourhood has
area measure zero, in the respective parameter plane.)

A quadratic differential with closed trajectories cannot have poles of
higher order than two, and at every pole of order two the leading coef-
ficient must be negative.

The characteristic ringdomains R; of a quadratic differential are the
ringdomains swept out by its closed trajectories. If ¢ has closed trajec-
tories, its characteristic ringdomains fill out the surface up to a set of
measure zero.

Definition 2. A system of finitely or infinitely many Jordan
curves y; on a Riemann surface R is called admissible, if none of the
curves is homotopically trivial (homotope zero) and if, for ¢ = &k, », Ny,
= @ and y, ~ y,, where the symbol ~ means free homotopy.

If ¢ is holomorphic on R and if we pick a closed trajectory o; from
every characteristic ringdomain R; of ¢, we have an admissible curve
system {o;} . The same is true for a meromorphic ¢, if we puncture R
at the poles of ¢ .

Definition 3. Aringdomain R, on R is said to be of homotopy
type y, if a Jordan curve p,C R, which separates its two boundary
components is freely homotopic to y .

A system of non overlapping ringdomains R; C B is said to be of
homotopy type {y;,}, where {y,} is an admissible curve system, if every
R, is of homotopy type y, for exactly one ;. It is, however, not required
that to every 7, there really exist a ringdomain R, of this type. (If there
is no ringdomain, we sometimes say that it is degenerate and has modulus
zero, which allows us to take the same index for corresponding elements of
both sets.)

Finally, a holomorphic quadratic differential ¢ with closed trajectories
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is said to be of homotopy type {y,}, if its characteristic ringdomains are
of this type.

We are now going to prove the basic extremal property of quadratic
differentials with closed trajectories and finite norm. For its formulation
we need a few notations. We will consider systems of non overlapping
ringdomains f:’j such that the system {y,}, where ; is a Jordan curve in
173 which separates its boundary components, is admissible. We denote by
a; the infimum of the lengths (in the metric lo(z 2)|Y% |dz| ) of all closed
curves on [@ which are freely homotoplc to y;. For the characteristic

ringdomains £, we have a; = Ia lp(z)| |dz| with o, any closed

horizontal trajectory in R, . M and M, are the moduli of R and R,
respectively. The following inequalities hold: 0 < a, < o0, 0 < M ; < o0,
0 <M, < .

Theorem 1. Let ¢ be a holomorphic quadratic differential with
closed trajectories and finite norm

il = [ [ 1w deay

on a Riemann surface R . Assume thal the curves ;/j are freely homotopic
to (some of ) the curves o; or vice versa. Then

(1) Zan'MJ' < gl = > aM,,

7
where the sum on the left hand side goes over all values j with a; > 0 . Equality
holds if and only if the two systems of ringdomains are identical.

Proof. Let ]%- be a ringdomain with a;, > 0. We map it conformally,
first on an annulus, then, after cutting it along a radius, onto a horizontal
rectangle in the z-plane (the concentric circles going into horizontal straight

segments) of base a, and height 7), (< o0).

A horizontal interval corresponds to a closed curve which is homotopic

to y; and therefore has g-length > a;. If we denote the representation

of ¢ in terms of the parameter z by ¢(z), we have
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(2) a; < / lp(x + 1 9) |2 dx .

Integration with respect to y and subsequent application of the Schwarz
inequality yield

(3) @b, < f/ p(2) | do dy
&

and

(4) a b, <

[ [ wedzay.,
R;
hereby showing that b, < oo .

Summing over the 1ndlces J, with a b = af /a = a; Mj we get

o 2a¢d < 2 [ [y - f f 9(e)] de dy
< gl = 2, a0,

which establishes the inequality (1). We have not made use, so far, of the
homotopy assumptions.

Assume now that equality holds. In the first case, every y; is freely
homotopic to a certain closed trajectory o;, and we can use the same index.
We must have equality in (2) for almost all, hence for all % . Therefore the
horizontals are going into closed trajectories of R,, which means that
I}i is a subring of R, swept out by closed trajectories. If I:‘ft were not
identical with R;, an open subring of positive g-area would be missing,
which is impossible. The same argument shows that to every R, there must
be an }?i .

In the second case, for every «; there is a p; and by the same argument,

R, is a subring of R, swept out by horizontal trajectories. Let ﬁ] be a

3

remaining ringdomain, which does not correspond to an «.. The horizontals

of the rectangle in the z-plane which corresponds to R;- must go over into
closed geodesics on the surface, in order to have equality in (2). Moreover,

Rj must have points in common with some R, . But if the closed geodesics

in R would not be horizontal, it would intersect Rt , which is impossible.
On the other hand they cannot be horizontal, otherwise y; ~ y, contrary to

assumption. Hence there cannot be any R left over. But then M must
be equal to M, because of (5), hence R, = R, forall 7.
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The next extremal property is a consequence of theorem one, but not
equivalent to it. It has, however, the remarkable feature that it can be
formulated without making use of the ¢@-metric.

Theorem 2. Let ¢ and {I~3j} be as before. If there are curves «,
to which there is no corresponding R, , we say that this ringdomain is degenerate

and has modulus M . = 0, and similarly for the curves y,. We then use the
same index for both sets. With this convention we have

(6) inf {;5—} <1,

3

and equality holds if and only if ]~%1 = R, forall i.

Proof. Assume first that the set of free homotopy classes of the curves
«; contains the corresponding set for the curves y,. We then have because
of Theorem 1

(7) Sa M, < > alM,
and hence
(8) Sat (M, - M) < 0

with @, > 0 for all i. Hence inf{M, — M;} < 0, and since M, > 0
for every 4, inf {Mi/ﬂ[i} < 1. Let equality hold. Then J;[i > M,.
Thus equality must hold in (7) and we conclude from Theorem 1 that
R, = R, for all i.

Let now the set of homotopy classes of the curves o; be a subset of the
set of homotopy classes of the curves y,. We can now write (1) in the form

9) SaM;+ > a M, < >adM,,
1 h 7

where the sum >, goes over the additional ringdomains R;. We conclude
that

>ai (M, — M) < 0,
hence inf {JNIL | M.} <1 and a fortiori inf{ﬂNIj | M;} < 1. Let equality
hold. Then
SaM; = > al M,

and by Theorem 1 again R; = R, for all ¢; in particular, there cannot

be any additional ringdomains R, .
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3. Existence proof for compact, bordered surfaces

The rest of the paper is based on the following existence and uniqueness
theorem (see [1]):

Let {y,} be an admissible curve system on a compact surface R . Let
{m;} be a system of positive numbers. Then there exists a holomorphic quadratic
differential @ with closed trajectories such that its characteristic ringdomains
R, are of homotopy type {y,} and have moduli M; = A -m,, for some
A> 0. The differential @ s determined up to a positive factor. It is called
the solution of the modulus problem for the curves yp, with weights m, .

Let now R be a compact, bordered surface, with boundary curves
Iy, j=1,..,q9. Let {y},_, , denote an admissible curve system on
R, with weights m; > 0. The mirror image of R is denoted by R*;

R = RUR* isthe double, with corresponding boundary points identified.
The symmetric image of y, is denoted by . Whenever y; is homotopic
to some I}, we have yp ~ I'* = I';. We therefore disregard y in this
case (and may of course replace y;, by Ij). R

The remaining curve system y,, p* is admissible on R. We have to
show that », ~ 9, for i+ k, and that y, ~ y* forall ¢ and k (if
there is a ;).

Let v, ~9,, i # k. Let D be a ringdomain bounded by the two
curves. ) must have points in common with R* , otherwise y;, and v,
would be homotopic on R . But as the boundary y, Uy, of D isin R,
D contains all of R*. R* must be a subannulus of D, bounded by two
curves Iy, [,. Then R is an annulus (the symmetric image of R*),
hence y, ~ v, on R, a contradiction.

Let v, ~ 9. Again, let D be the ringdomain bounded by v, and
y&. D contains points of R as well as of R*, hence a boundary curve
I'; . This curve cannot be homotopic to zero and must therefore be homotopic
to both boundary curves of D. We have y, ~ I';. But then pf was left
out, hence i = k. As y, ~ ¥, y¥ ~ ¥, we conclude y; ~ y, , an impos-
sibility.

We now assign weights to the curves of our system: y; — m, as before,
unless y;, ~ I;, in which case we set y,—2m,;, and yf—>m;. Let ¢

be the solution of the modulus problem with these weights. Let R,, R¥
be the corresponding ringdomains. The symmetry 7' of R takes the system
of curves and weights into itself, hence also the system of ringdomains.

Let R; be the ringdomain associated with y,. First assume y, ~ I’
for all j. We want to show that then R,c R. Let R, N R* = 0. If
R;c R*, pick a closed trajectory o, C R;. As it does not meet y,, it
bounds, together with y,, a ringdomain D, which, in its turn evidently
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must contain a boundary curve I . Thus y; ~ I, in contradiction to the
hypothesis. So let R, contain points of R and of R*, hence a boundary
point P . The symmetry 7 leaves P invariant and takes R; into R} .
Therefore R, N R¥ -+ O, an impossibility. We conclude: For every curve
v, which is not homotopic to a boundary curve [}, the corresponding
ringdomain R; lies on R .

Assume now y, ~ I;. Then R, must be symmetric (invariant under
T'). It therefore contains a boundary curve [} which must be a line of
symmetry. The ringdomain R, N R has modulus m,;. We therefore have
solved the modulus problem for the original surface R with the given
curves y; and weights m, .

Let P € I';. If P isin one of the ringdomains on R, it lies on a trajec-
tory (line of symmetry of some R, ). Otherwise it lies on the boundary of
one of the ringdomains, hence on a trajectory or else it is a zero of ¢, the
restriction of ¢ to R .

4. Existence and uniqueness for arbitrary Riemann surfaces

We proceed to prove the existence theorem for arbitrary Riemann
surfaces with finite admissible curve systems. The proof is valid, in par-
ticular, for compact surfaces with finitely many distinguished points. As
a corollary we find that every surface, except for the sphere with less than
four boundary points, carries holomorphic quadratic differentials with
finite norm. Another corollary is that ringdomains with maximal moduli
are uniquely determined, if the moduli are finite.

Let {y;};—; .., be an admissible curve system on an arbitrary Riemann
surface R and let m; > 0 be the weights. Moreover, assume that the
supremum M (y;) of the moduli of all the ringdomains on R which are
of homotopy type v, is finite for every i . We put

M=max{My,)| 1 <i<p;i.

For a subdomain of the sphere this rules out domains with less than
four boundary points, for then the boundary components would have to
be points, and any non trivial Jordan curve y would bound a punctured
disk, hence M(y) = oo . On the other hand, let R be a subdomain of the
Riemann sphere with at least four boundary points. Then either the
boundary contains a continuum or we have a non trivial curve y which
does not bound a puctured disk. For surfaces of positive genus we can pick
a curve which does not disect the surface. Then its maximal modulus is
finite, as it would otherwise be the boundary of a puctured disk on R,
hence clearly disect the surface. This proves the first corollary.



540 KURT STREBEL

To prove uniqueness, let ¢ and ¢ be two solutions, with ringdomains
R; and E; of homotopy type {y,}, and moduli M; and M, respectively.
Then the extremal property of Theorem 2, applied to both ¢ and ¢,

immediately shows that R, = 1%, for all ¢. As the trajectories are the
same in R, , the quotient ¢ /¢ must be real and positive, hence a positive

constant. Because of the normalization |¢|| = ||| = 1, we must have
Y =@.

The existence of a solution is shown by a limiting process. Consider an
exhaustion of R by compact bordered surfaces R™, n =1,2,.... We

can assume, without loss of generality, that the curves p, are in R®™
for all n. We can therefore solve the modulus problem for the curve system
{y;} and the weights m;, on R™ . Let ¢,, with norm |, = 1, be the
solution. The ringdomains, moduli etc. are denoted by R,,, M, =
b, | @, etc. I claim that the sequence (g,) tends in norm (hence locally
uniformly) towards a quadratic differential ¢ on R with closed trajec-
tories, the characteristic ringdomains R; of which solve the modulus
problem with curves y; and weights m,; for R .

Proof. Asthe norm of the ¢, is one, we can clearly select, by a diagonal
process, a locally uniformly convergent subsequence, which we again denote
by (¢,). Its limit ¢ is a holomorphic quadratic differential on R with
norm |lg|| < 1. We have M, = 1,m,;. As the system of ringdomains
R,, satisfies the homotopy conditions on R"*1

Min{M, | M;,,;,| 1 <i<p} <1,

hence A, < 4,,,. On the other hand, M,, = 4, - m; < M forall ¢ and
n, hence A, < M [m, with m = Max{m, |1 <4 < p}. We conclude
that the coefficients 1, converge to their supremum 2, moreover M,,
—M; = Am; forall ¢. This is of course true for the original sequence.

For fixed ¢ the function g¢,, = exp (2ni/a,,) @,(P) with @, =
| (9,(z))"*dz is a 1—1 conformal mapping of R, onto a circular annulus
in the z-plane. By choosing the sign of @, and the integration constant
properly, we can assume that the orientation induced by 7, (the Jordan
curves y; are supposed to be oriented) is taken into the positive orientation
of the z-plane and the “outer” boundary component of R, goes into
|z| = 1. (This only determines the imaginary part of the integration
constant, the real part still being free. The mapping g¢,, is determined up
to a rotation.) The inverse f,, = g;,' is a 1—1 conformal mapping of r,, <
lz| <1, M,, = (1/2n)log (1/r,), onto R,, .

By passing, if necessary, to a subsequence, we may assume that the
mappings f;,, n — oo, tend locally uniformly to a 1— 1 conformal mapping

fitr<l|gl<1—>R,.
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Consider a neighbourhood of a point z,, 7, < |z] <1. We may
introduce 2z as a parameter in this neighbourhood (in fact in all of R,).
The mapping f; becomes, in terms of this parameter, the identity. Moreover
9:x(2) — 2 uniformly in U(z,) . Let z, = ¢,,(z) . Then the following equa-
tions hold:

278
z, = exp — D (z),

m

2mi
logz, = — D,(2),
a/in
1 dz, 2,
=t = — iy,
zn Z a’in

) - -G e

n

As, for n— o0, 2,2z, 2,1, a,—>a, (taking a subsequence again,

o= () &

Thus, for dz = ¢ -z, we have ¢(z)dz?* = (a; ] 2n)?dz? > 0. The circles
|z| = const are closed trajectories of ¢ . Moreover

2 [ [ wenasay = 2 e,

if necessary), we have

1\

1 = el

3

= lim Z a, M, = 1.

H—>00 1

The set B\ U R; has measure zero. Hence ¢ has closed trajectories and
the R; are the ringdomains of ¢ . They obviously belong to the curve

system {y,} .
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The sequence (p,) is locally bounded (i.e. ¢,(z) in terms of a fixed
local parameter z is a locally bounded sequence of holomorphic funection
elements). Therefore, by the Cauchy representation formula, the same is
true for the derivatives ¢,(z) . The sequence is therefore equicontinuous,
and any convergent subsequence converges locally uniformly. If the original
sequence (p,) would not converge towards ¢ at some point P, there
would be a subsequence with a limit lim,  ¢,(2) # @(z). Starting out with
this sequence we would arrive at some quadratic differential ¢ # ¢ which
is a solution of the same modulus problem, contradicting the uniqueness of
the solution.

5. The ringdomains of a given homotopy type

Let {y;};_y,.., be a finite admissible curve system, with finite maximal
moduli M (y;) (= supremum of the moduli of all ringdomains of homotopy
type y; on R), on an arbitrary Riemann surface R . We are looking at
the p-tuples of moduli of all p-tuples of non overlapping ringdomains of
homotopy type {y,}. It is obviously enough to consider, in each direction
{m,} , the extremal system. To achieve compactness we now allow some of
the m; to be zero.

Let m = (my,my, ..., m ») be an arbitrary unitvector with non negative
coordinates m; > 0, ¢ = 1,...,p. Let {R;} be the extremal system of
ringdomains of homotopy type {y,} in the direction # . This means that
{R,} isthe system of characteristic ringdomains of a holomorphic quadratic
differential ¢ with closed trajectories and that M, = Am; for all ¢,
which we abbreviate to M = A . Of course, M, = 0 means that there is
no ringdomain (no closed trajectory) of homotopy type 7y, .

Theorem 3. The moduli vector M = (M, M,, ..., M,) depends
continuously on its direction m .

Proof. The proof is given in two steps. First we consider an arbitrary se-
quence of normalized holomorphic quadratic differentials ¢, (llg,] = 1),
with closed trajectories and of homotopy type {y;}. We can pick a locally
uniformly convergent subsequence, which we again denote by (¢,). Let
¢ = lim,  ¢,. We claim that |, — ¢/|— 0, that ¢ has closed trajec-
tories, that it is of type {y,}, that M, — M, for all ¢ =1, .., p, and
finally that a,, — a; for all 7. (The latter follows in the course of the proof
for those indices ¢, for which M, > 0 ; it will later be shown that it is true
for all 7 .)

As M, < M(y,), i+ =1,..,p, n = 1,2, ... we can pick a subsequence
for which the sequences of moduli 3 ,, converge for all ¢. We denote all
subsequences by (¢,) and will later show that it is in fact true for the



On quadratic differentials with closed trajectories on open Riemann surfaces 543

original sequence. Let M; = lim, , M, . We put ¢ =k for M, =0,
it =h for M;> 0. For all A we set

2m R
Gin(P) = exp P ?,(P),
the imaginary constant of @,(P) in R,, being chosen in such a way that
the outer radius of the image annulus is equal to one, the inner radius is
equal to 7, , with M,, = (1/2z)log (1/r,,). Let f,, = g5, . For a prop-
erly chosen subsequence the mappings f,, converge locally uniformly to
some 1—1 conformal mappings f,: r, < [2| <1—R,, r, = lim, 1, ,
of the limit annuli onto disjoint ringdomains R,. R, is evidently of
homotopy type 7y, .
By means of the mapping f, we can introduce the parameter z in R, .
Then, (g,,) becomes a sequence of mappings which tends locally uniformly
in r, < |2| <1 towards the identity. We have

271
ghn(z’) = eXp o ¢n(z) )

ahn

27
log g,,,(2) . D,(2)

and for the derivative with respect to z

(2 2711
Il 2 e,
ghn(z) alm

Taking squares and going to the limit we get, as g;,(z) — 1,

1 <2n>2
2~ ~\q p(z) -

(Here it follows that @, = lim, a,, exists.)

From this we easily recognize that the circles |z| = const are closed
trajectories of ¢ . Hence R, is a subring of a characteristic ringdomain of
¢, swept out by closed trajectories. The ¢-length of these trajectories is
obviously a,, and the ¢ area of R, is a; M,. Since ¢ is the locally

uniform limit of the ¢, , @, = 1, wehave g < 1. We get
Lz ol 2 SaiM, = lim>ad, M, < lim>a, M, = 1.
h #-—>00 % —>00

Therefore |lg|| = > aj M, = 1. The ringdomains R, cover K up to a set
of measure zero. Therefore ¢ has closed trajectories and is of type {y;} .
Obviously M, M, for all + =1,..,p, and a,,-—>a, (for M, > 0).
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An easy argument shows that |lg, — ¢|| —~ 0, as ¢, — ¢ locally uniformly
and |lg,|| = [lgl = 1.

We started with a sequence (g,) which converges locally uniformly
towards ¢ . Then there exists a subsequence (p,,) with |lg, — ¢ —0.
If this were not true for the original sequence we could find a subsequence
with a limit ¢ # ¢ . But a subsequence of this would again tend to ¢,
a contradiction. Therefore |lp, — ¢||— 0. Moreover, as ¢ determines
its characteristic ringdomains, M,,— M;, a,,—>a, for all i resp. for
all h with positive M, .

The second step of the continuity proof is short. Let m, — m . Assume
M P M . Then we can pick a convergent subsequence, which we denote
againby (M,) , suchthat M, —> 1, m = M, # M . Let ¢, bethe quadratic
differential, associated with the system {y,} and weight #i, . A subsequence
of this sequence converges towards a quadratic differential ¢, of homotopy
type {y,} with moduli vector M, o - But M is supposed to be the moduli
vector in the direction m , and because of the uniqueness JIZ)O =M,
a contradiction. The continuity is proved.

The surface which is described by M as a function of the unit vector
m is called the surface of moduli associated with {y}: We denote it by
M= M{»}) - .

Convexity, tangent plane of M . Let M, be an arbitrary point of It .
Let ¢, be the holomorphic quadratic differential with the moduli vector
My, gl = 1. We put @y = (a3, , ..., a3,) , with a,; the infinum of the
lengths of all closed curves which are homotopic to y,, in the g-metric.
Then the following can easily be proved:

(1) The plane (a,,% — M) = 0 has only the point M, in common with
M. Forlet M e M. The corresponding ringdomains are of homotopy type
{y;} , hence

(dg, M) < (dy, M,)
with equality only for M= o - We conclude
(o, M — My) < 0
unless M = M, o - The entire surface 9 , hence also the set bounded by M

e

and the coordinate planes, lie to the left (*) of the plane (a,,x — M,) = 0.

(2) The plane (a,,x — Jﬁo) = 0 s the tangent plane. This is easily
proved for interior points of M (i.e. M, > 0 for all ). For at such a
point the vector @ is continuous: M e M, o = @, —a, . We have the two
inequalities

(*) I.e. the same side as the origin.
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B
=,
)
A

-
—

(dy , M)
(;in ) Mn) 5

=
IA

hence, with

(ao ’ —én) < ’
(an s —én) = (aO ’ en) + (Zin - aO ) —én) > 0
— - -

We conclude: — (@, — d,, ¢,) < (@y,%,) < 0, consequently lim, _ (d,,
= 0.

At interior points MM therefore has a continuously changing tangent plane
with normal vector a . N

To prove the same at a boundary point, let M, be a boundary vector.

Let M,, >0, M,, = 0. We have

o 2
- Z (a%n - a}%o) “Chy — Z (akn - aI%O) ™
h k

€n)

2,
= Zaio ey < 0.
2

For arbitrary index ¢ we have lim, a, < a:
This is easily seen, for, let y; be an arbitrary element of its homotopy class.

Then
@, < f ()2 |dz| — f Ip(z)| 2 |dz]
Vi Vi

The last expression becomes smaller than a, + ¢, ¢ > 0, for properly
chosen vy, .
Now, for all indices &, a,, — a,,. For the indices &k we have

Mkn - Mko
€y = _,4‘77,
]Mkn - MkO\

For given ¢ > 0 we can find N such that for » > N and all & resp. k

hence 0 <e,, < 1.

!a%n - a%ol |ehn| < €,
(a%n - a%O) < &

and therefore also (a}, — af)) e,, < &¢. The left hand side of the above
inequality then becomes > — pe. We have proved
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lim (@,,¢,) = 0

n—>a0

also for all boundary points of M. This surface therefore has a normal
vector at each point, namely @ = (a}, a5, ..., a}) .

It is also immediately seen, from the above inequality, that a, — a,
it M o is approached in a fixed direction. For then, the unit vector ¢ does
not depend on n. We have

2 2
z (@}, — aj,) e, + Z (@i, — aip)e, = 0.
h k

Assuming e, > 0, lim, _ a,, < a,, would lead to a contradiction.

6. Quadratic differentials with second order poles. Extremal property

Let ¢ be a holomorphic quadratic differential with closed trajectories
which is of finite topological type on an arbitrary Riemann surface I .
We assume that ¢ has infinite norm. Then at least one of the characteristic
ringdomains of ¢ must have infinite modulus. We exclude the twice
punctured sphere, which means that every ringdomain R; with infinite
modulus can be mapped conformally onto a punctured disk. We can then
add the puncture as a point @, to the surface R, and consequently in-
troduce a conformal parameter z; near ¢);, such that €, corresponds to
z; = 0. The quadratic differential ¢ has a second order pole at z; = 0
with a real, negative leading coefficient — 4, which is independent of the
choice of the parameter. Let J; be the reduced modulus of E; with
respect to the parameter z; (i.e. M; = (1/2n)logr;, where 7, is the
mapping radius with respect to z;). We denote by R, the characteristic
ringdomains of ¢ with finite modulus M, and use the index 7 for the
characteristic ringdomains of ¢ without distinction. As before, a; is the
length of any closed trajectory o, of ¢ in R,:

4 = fw(z)r”z dz] .

Now let {R-} be a system of nonoverlapping ringdomains on R of
homotopy type {«}. For every j, R, is to be a punctured disk, with
reduced modulus M; taken with respect to the same parameter z,. We

allow ﬁk to be degenerate (=missing), but not ]’éj Then

(10 @M, < Sa:M, (= reducednorm of ¢)
- 1 1 - 1 1 ¢

with equality holding if and only if R, = R, for all 7.
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Proof. Let {; be the distinguished parameter for the quadratic dif-
ferential ¢ near the second order pole ;. The representation of ¢ in
terms of this parameter is

A,
p(z) d&2* = — 5 d
5

with @, = 27 A® thelength of the closed trajectories of R;. The inequality
itself can be shown by cutting out circular holes (in terms of the distinguished
parameters) around the points Q]: and then applying the inequality for
quadratic differentials of finite norm. Letting the radii of the holes tend to
zero we arrive at (10). However, in order to discuss the equality sign, we

have to be more accurate. So let the domains }~i’]- be mapped onto punctured
disks 0 < [{;| < p; by schlicht functions {;(£;) with

5

@) = 1.

2 @)
The moduli of the ringdomains ]Sj(g) = ]N?]- N ]E]| <p} and Rfo) =
RN { [ <o} for sufficiently small posNitive o are denoted by Jf[j(g)
and M (¢) respectively. Evidently M) = (1 / 2n) log (éj /o), and
Mi(o) + (1/2m)logoe ~>]ﬂj~, Mio) + (1/2n)logo— M; as o—0.
We cut the annulus o < [{;]| < 5} along a radius and map it onto a hori-

zontal rectangle with sides a;, b(o) = a; - M;(0) = (a; | 27) log (o, / o)

in the z = & + ¢y -plane. As usual, we have

o = / lp(x + i y)|"* da
and by the Schwarz inequality

o < [lotw+igidr

Assume that for some j one of the circles JEj| = const is not a trajectory
of ¢ . Then there are positive numbers ¢ and o such that

g +e s [lpte+in)de

for all ¥ in the d-neighbourhood of some ¥,. We get by integrating

wijo) + e < [ [loeardy

l?j(e)

and by summing over the j and k
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DA M) + D ai M, +ed < > ai M) + > azM,.
] 7 7 F
Adding > a? - (1 /2n)log g to both sides (here we need that there is an
R, for every j) and letting ¢ — 0 we arrive at a contradiction. (The
inequality itself is proved by just dropping the term ¢ d .)

Now we know that the circles |{;| = o are actually trajectories of ¢ .

From the equality
;@M+;@Mk:§g%+éﬁMk
we conclude, subtracting > a? (1/2n)logo,
> dife) + Y a i, = St o) + X,

The right hand side is equal to the norm of ¢ over the truncated surface

R(g) = R\ U, { IE]-] <o}, because ¢ is a quadratic differential with
closed trajectories on R(p) and the R(o), R, are its characteristic

ringdomains. But then by the earlier theorem ]~i’j(9) = R (o), I}k = R,

J

for all j, k. Hence also I%j = R, for all j. We have proved
Theorem 4. Let ¢ be a quadratic differential with closed trajectories
and a finite number of characteristic ringdomains on a Riemann surface I .
We denote by R; the punctured disks (ringdomains with infinite modulus)
and by R, the ringdomains with finite modulus. There should be at least one

R

o
a system of non overlapping disks and ringdomains, with an R; for every
R, Q eifj. Then, with the wsual notation, but M, Jl~lj the reduced
moduli with respect to the same parameters near the second order poles @;,
the inequalities

(I) SaEM +>aM, < SaM; + 3 a M,
7 k 7 k

and the doubly punctured sphere is of course excluded. Let ﬁj , I~ik be

(equality if and only if ]~€j =R, ]}k =R, forall j and k) and, as an
easy consequence

(I1) Min {M, — M} < 0

i=j, k
(equality if and only if R, = R, for all i) hold.
7. Existence and uniqueness of the solution of the moduli problem

We treat only the special case where all the ringdomains are punctured
disks.
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Theorem 5. Let {y}_,. ., be an admissible system of Jordan
curves on a hyperbolic Riemann surface R , with maximal moduly M(y;) = oo
forall j. Let m; be arbitrary real numbers, normalized such that > ;m; = 0.
Then there is a holomorphic quadratic differential ¢ on R with closed trajec-
tories, of homotopy type {y;}, and such that the reduced moduli M; of its
punctured disks satisfy the equalities

M i = m;+c
for some ¢ independent of j. ¢ s uniquely determined up to a positive
constant factor.

To prove uniqueness, let ¢ and ¢ be two solutions, with M ;=m; +c,

M; =m; + ¢ for all j. As the system R; belongs to a quadratic dif-

ferential, it satisfies (II) when compared with the system R; of ¢ :
Min{M; — M} = ¢—c < 0.
P

Similarly, starting with ¢, we get ¢ — ¢ < 0. Therefore ¢ = ¢, hence

R; = R; for all j. The consequence @ = const : ¢ is immediate.

The existence is easily established by means of the previous existence
theorem. We first notice that there are disjoint punctured disks R; with
reduced moduli M, = m; + ¢’ for some ¢’. We now make ¢’ as large as
we can. By a normal family argument there exists a maximal system E;.
We choose the conformal mappings of the R; onto punctured disks 0 <
[L;| <o, with (d{;/dz;)(0) = 1, z; the given parameters near the points
Q; , as local homeomorphisms. Let 0 <o <<pg; for all j and denote by
R(o) the ringdomains corresponding to the annuli ¢ < |{;| <pg; on R,
with moduli M(¢) . This system is extremal, on the truncated surface
R(p), in the direction (M ,(0), My(0) , ..., M(¢)), in the sense of the
earlier existence theorem. For otherwise we would have a system M J' (0)
with M(e) = (1 + &) M(¢) for some &> 0. Adding the disks |{;| < ¢
to the ringdomains R/(¢) we would get a system of punctured disks R;
with

, , 1 1
M; = M) + P logo > M) + Eglog o= M;.
Therefore the system R (o) is associated with a quadratic differential ¢, .
Its trajectories are the circles |{;| = const which are independent of o .
But then the ¢, are just the restrictions of a quadratic differential ¢ on
R with the R; as characteristic punctured disks.

As before, we can now introduce the surfaces of moduli. The following

facts can easily be established along the same lines as in the earlier proof.
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“““““““““ —— M(y;) = maximal reduced modulus for y;

/

QU

&
\

a) Continuity. The vector of (reduced) moduli M = (My, ..., M,)
is a continuous function of the vector 7 of parameters m; , Z m; = 0.
In fact, for m — m, (m;— mj ) the quadratic differentials ¢ converge
to @, , if properly normalized, in the sense that |jgp — ¢g| — 0.

b) Conwvexity. Tangent plane. The plane

Sai(X;— M) = @,X - M) =0,
J

with @ = (a}, ..., a}) , is a plane of support, with only the point M itself
in common with the surface of moduli. It is in fact the tangent plane at
this point, and the normal vector @ varies continuously with 7 .

¢) Euatremal length problem. The range of directions of the normal vector
a is the full open quadrant, i.e. @/ |a| is an arbitrary positive unit vector.
We can place a tangent plane with this normal at some well determined

point M of the surface of moduli and then multiply the quadratic dif-
ferential by an appropriate factor such that the lengths of its trajectories
are the given numbers a; . The resulting quadratic differential is the solution
of the extremal length problem of minimizing the reduced norm with lengths
> a; inthe classes y; ( |p(2)|"* |dz| is the extremal metric). As the leading
coefficients of ¢ at the @; in terms of any parameter z; are —A4; =
—(a;/27)*, this shows that these coefficients can be arbitrarily given
negative numbers. Then there is exactly one quadratic differential ¢ with
closed trajectories the characteristic ringdomains of which are the E; and
for which a; = fa]_ lp(z) |2 |dz|
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