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1. Introduction

A holomorphic or meromorphic quadratic differential g orl a Riemann
surface .B is represented by a system of holomorphic resp. meromorphic
function elements q,(",) in the local parameters zt such that the ex-
pression g,@,) ilzf; stays invariant under a conformal transformation of
the parameter. fn the sequel we will always leave the index r away and
just write g@) d,22. The horizontal trajectories of g are the maximal
curves a on .B along which E@) d'zz is real and positive. Thus zeroes and
poles are excluded by definition on & trajectory; but of course it can tend
to such a point in either direction. In this case the trajectory is called
critical, otherwise regular.

The closed trajectories of a quadratic differential p (if there are any)
sweep out certain disjoint ringdomains .Rn of ,B which we call the char-
acteristic ringdomains of g . On compact surfaces there are holomorphic
quadratic differentials with the property that all regular horizontal trajec-
tories are closed. The induced geometric structure on -E can now be used

to characterize the quadratic differentials with closed trajectories (see first
part of Section 3).

It is the purpose of this paper to generalize these structure theorems
to open (i.e. non compact) Riemann surfaces. But now g can have in-
finitely meny characteristic ringdomains. It is then said to be of infinite,
otherwise of finite (topological) tlTe. It is this last case we a,re going to deal
with. One can roughly say that everything what is true on compact surfaces
is also true, in the finite case, on arbitrary open surfaces.

This paper is closely related to the papers [f], [2], [3] of the author.
However, we only make use of the main existence theorem on compact
Riemann surfaces, which is proved in [1]. This theorem is then first gener-
alized, by the process of doubling, to compact bordered surfaces. The rest

koskenoj
Typewritten text
doi:10.5186/aasfm.1976.0233



534 I(unt Srntrsnr,

is done by exhaustion. The case of compact surfaces with punctures is
contained in the general result to be proved, but now no branched covering
surfaces aro needecl. Also the quadratic differentials with second order
poles, where one has to work with reduced moduli, are treated in the same

way. X'or later generalizations, the extremal property of quadratic differ-
entials with closed trajectories (and finite norm) is proved for arbitrary
type.

2. Extremum properties of quadratic differentials with closed trajectories

Definition l. A meromorphic quadratic differential V on an
arbitrary Riemann surface Ä is said to have closed trajectories, if its non
closed trajectories cover a set of me&sure zero. (A point set is said to have
measure zero, if its intersection with eyery pa,rameter neighbourhood has
area me&sure zero, in the respective parameter plane.)

A quadratic differential with closed trajectories cannot have poles of
higher order than two, and at every pole of order two the leading coef-
ficient must, be negative.

The characteristic ringdomains 1?, of a quadratic differential are the
ringdomains swept out by its closed trajectories. If q has closed trajec-
tories, its characteristic ringdomains fill out the surface up to a set of
measure zero,

Def inition 2. A system of finitely or infinitely ma,ny Jordan
curves Tr on a Riemann surface -E is called admissible, if none of the
curr'es is homotopically trivial (homotope zero) and if, for i, + h , yr 0 Tn
: A and Tr, * Tn, where the symbol - means free homotopv.

If g is holomorphic on l? and if we pick a closed trajectory a, from
every characteristic ringdomain Rn of V t rtl have an admissible curve
system {ocr} . The same is true for a meromorphic A , if we puncture -E

at the poles of g.
Definition 3. Aringdomain -Bo on.R issaidtobeofhomotopy

type y, if a Jordan curye /0 c -Bo which separates its two boundary
components is freely homotopic to y .

A system of non overlapping ringdomains ,8, c.B is said to be of
homotopy type {2,} , where {Zr} is an admissible curve system, if every
-8, is of homotopy type y, for exactly one yd. ft is, however, not required
that to every yi there really exist a ringdomain Ro of this type. (If there

'is no ringdomain, we sometimes say that it is degenerato and has modulus
zero, which allows us to take the same index for corresponding elements of
both sets.)

Finally, a holomorphic quadratic differential g with closed trajectories



On quadratic differentials with closed trajectories on open R,iemann surfacos 535

is said to be of homotopy tWe {y}, if its characteristic ringdomains are
of this type.

We are now going to prove the basic extremal property of quadratic
differentials with closed. trajectories and finite no m. X'or its formulation
we need a few notations. We will consider systems of non overlapping
ringd.omains .å, such that the system {77} , wh"r" i, is aJordan curve in
-8, which separates its boundary components, is admissible. We denote by
a, llne infimum of the lengths (in the metric lq(z)lLtz ldzl ) of all closed
curves on .B which are freely homotopic to ii . For the characteristic
ringdomains 4' we have o: : [onlE@)l ld,zl with d.i any closed

horizontal trajectory in -Bn . fr, and. Mn are the mod.uli of fr, _and -8,

respectively. Thefollowinginequalitieshold: 0 <q,j< @, 01M,< a,
0 1M, ( oo.

T h e o r e m l. Let g be a hol,omorphi,c quailratic d,i,fferential with
closed, trajector'i,es anil, finite norm

llsil lp@)l dr dy

ovt, a Riemcnnn su,rface

to (some ,f) the curaes

(r)

Assume that the cLLraes

or a'ice ?)ersa. Then
a,re freely ltomotopic

curve which is homotopic
denote the representation
have

: f.f

"7 
fu,

R
a"d

j

Ti

llslt : 2 "? 
Mn ,

where the surt qtL the left hanil, sid,e goes oaer all aal,ues j with ei ) 0 . Equal.ity
holils if anil, onlg if the two systems of ri,ngd,oma,ins are id,entical.

Proof . Let R, be a ringdomain with oi ) 0. We map it conformally,
first on an annulus, then, after cutting it along a radius, onto a horizontal
rectangle in the z-plane (the concentric circles going into horizontal straight
segments) of base an and. height 1, ( . * ).

Z: fi + l,A

bi

cri

A horrzontal interval corresponds to a, closed
to yi and therefore has g-length
of V in terms of the parameter z by V@), wo
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(2) a,j

Integration with respect to y and subsequent application of the Schwarz
inequality yield

(3)

and

o,6i

F.

o,6,

Fj

6j

indices j

4[f
Rj

lv@)l't' dr dA

(4)

hereby showing that
Summirg over the

\<

(5)
j

Iv@)l d* dy ,

, with l") we get

lv@)l dr dy : lv@)l d,r d,y

i

which establishes the inequality (t). We have not madeuse, so far, of the
homotopy assumptions.

Assume now that equality holds. fn the first case, every 77 is freely
homotopic to a certain closed trajectory o{; , &rd we c&n use the same index.
We must have equality in (2) for almost all, hence for all gr. Therefore the
horizontals are going into closed trajectories of Rn, which means that
E, ir u subring of R, swept out by closed trajectories. tt fr, were not
identical with -8, , an open subring of positive q-area would be missing,
which is impossible. The sa,me argument shows that to every Ä, there must
be an .Br.

In the second case, for eyery 0l, there is a in andby the same argument,
.fr, is " subring of .Rn swept out by horizontal trajectories. Let å, b" 

^remaining ringdomain, which does not correspond to an a,. The horizontals
of the rectangle in the z-plane which corresponds to fr' must go over into
closed geodesics on the surface, in order to have equality in (2). Moreover,

-8, must have points in common with some ,8, . But if the closed geodesics

in ,8, would not be horizontal, it would intersect dn , which is impossible.
On the other hand they cannot be horizontal, otherwise T, - in contrary to
assumption. Hence there cannot be any E, left, over. But then -frn must
be equal to Mn because of (5), hence frr : Rn for all d .

- oTMiaf @j

ft
U F'jr

o,ir:
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The next extremal property is a consequence of theorem one, but not
equivalent to it. It has, however, the remarkable feature that it can be
formulated without making use of the p-metric.

Thoorem 2. Let E anil,_{R} beasbefore. If there&recuraes d.d

to whi,ch there,i,s no correspand,i,ng Ro , we sa,A that thi,s ri'ngd'arnain'i,s d,egenerate

and, has mod,ul'us fu, : 0 , anil, similarl'y for the curues l, . W" then use the

same ind,er for both sets. With this conaenti,on we haue

(6)

(7)

and hence

(8)

with ar ) 0

for every 'i ,

Thus equality

hence inf {M n I It n}

hold. Then

and by Theorem

be any additional

inf 
{#,1

and, equality hold,s i,f and, attl,y if R, : R, for all i' .

Proof . Assume first that the set of free homotopy classes of the curves
an contains the corresponding set for the curves ii . We then have because

of Theorem I

L

Z"? (Mo Mo)

for all i. Ilence inf {fr o M n}

inf {fun I M;
must, hold in (7) and we conclude from Theorem t that

2"? flrn
i

Rr: Rt for all tl.
Let now the set of homotopy classes of the curves or, be a subset of the

set of homotopy classes of the curyes i, . Wt can now write (l) in the form

(e) 2"? fu, + Z"?fr, < 2o7 Mn,
ihi

where the sum )o goes over the additional ringdomain* -fr. W" conclude
that

(fun M,)2"?
i

Let equality

s,/.L1
i

Mi

Rd

frj

2"?
i

a? Mn

1 aga,in ILi :
ringdomains

for all i, ; in particular, there oannot
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3. Existence proot tor compact, bordered surfaces

The rest of the pa,per is based on the following eristence anil, uniqueness
theorem (see [f]):

Let {yr\ be an ad,m,i,ssible curae system on a canxpuct surface R . Let

{m} be a system of gtosi,ti,ae numbers. Then there eri,sts a holomorphi,c quailrati,c
ilifferenti,al g wi,th closed, trajectories such that its characteri,stic r'i,ngilomains
Ri are of homotogtg type {y} anil haae moiluli, M; : l. .ma, for some

).> 0. The ilifferenti,al g is d,eterm,ined, ugt to a positiue factor. It i,s call,eil,

the solution of the moil,ulus probl,em for the curues yn with weights mo .

Let now .B be a compact, bordered surface, with bound&ry currres
fj, i :1,...,4. Let {y}n:t,...,p denote an admissible curve system on
.8, with weights mt)O. The mirror imago of -E is denotedby .B*;
å : äU ,B* is the double, with corresponding boundary points identified.
The symmetric image of 7n is denoted by yf . Whenever 7, is homotopic
to some \ , we have yf - lf : 4 . Wu therefore disregard yf in this
case (and may of course replace y, by \).  

The remaining curve system T;, Tf is admissible on -B . We have to
showthat lt,eTn for i,+k, andthat heTI forall a and k (it
there is a yf ).

Let y, - Th, i, + k . Let D be a ringdomain bounded by the two
curves. D must have points in common with -B* , otherwise y, and yo

would be homotopic on .8. But as the boundary hU Tn of D is in .R ,

D contains all of -B* . ,E* must be a subannulus of D, bounded by two
curves lr, ,1, . Then -E is an annulus (the symmetric image of -B* ),
hence Ti - Tn on R, a contradiction.

Let y, - yf . Again, Iet D be the ringdomain bounded by 7, and
y{ . D contains points of ,R as well as of -B* , hence a boundary curve

{. . This curve ca,nnot be homotopic to zero and must therefore be homotopic
to both boundary curves of D . We have
out, hence i + k As Tt, ,\,, yf , yf /\,, yf ,

,\, fi . But then yf was left
conclude Tt ,\, Tn , an impos-

Te

we
sibility.

We now assign weights to the curves of our system: Tr+ mt as before,
unless l; - li, in which c&se we set' yr-->2mr, and yf -mt. Let g
be the solution of the modulus problem with these weights. Let Rn, Rf
be the corresponding ringdomains. The symmetry T of å takes the system
of curves and weights into itself, hence also the system of ringdomains.

Let Ro be the ringdomain associated wilh yo. X'irst assume h * li
for all r. We want to show that then -8, c R. Let Rrn R* + CI . If
Rnc R*, pick a closed trajectory anC Ro. As it does not rneet yo, it
fuognds, together wilh yr, a ringdomain D, which, in its turn evidently
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must contain a boundary curve {. . Thus Tt - li, in contradiction to the
hypothesis. So let Ao contain points of -B and of -B* , hence a boundary
point P. The symmetry ? leaves P invariant and takes Ro nto Rf '
Therefore 4 n Rf * A , an impossibility. We conclude: For every curve

7, which is not homotopic to a boundary crrrve 1,, tt'e corresponding
ringdomain -8, Iies on -R .

Assume r'ow yi - li. Then -8, must be symmetric (invariant under
T ). It therefore contains a boundary curve { which must be a line of
symmetry. The ringdomain Ro O -B has modulus mn. We therefore have
solved the modulus problem for the original surface -B with the given
curves y, and weights zan .

Let P e f, . If P is in one ofthe ringdomain. on -å, it lies on a trajec-
tory (line of symmetry of some .8, ). Otherwise it lies on the boundary of
one of the ringdomains, hence on a trajectory or else it is a zero of g , the
restriction of p to -B .

4. Existence and uniqueness l0r arbitrary Riemann surfaces

We proceed to prove the existence theorem for arbitrary Riemann
surfaces with finite admissible curve systems. The proof is valid, in par-
ticular, for compact surfaces with finitely many distinguished points. As
a corollary we find that every sutface, except for the sphere with less than
four boundary points, carries holomorphic quadratic differentials with
finite norm. Another corollary is that ringdomains with maximal moduli
are uniquely determined, if the moduli are finite.

Let' {y}i:r,...,, b" an admissible curve system on &n arbitrary Riemann
surface -B and let mo) O be the weights. Moreover, &ssume that the
supremum M(7n) of the moduli of all the ringdomains on -B which are

ofhomotopytype y, isfiniteforevery i. Weput

M:max{M(y) I r<i<p}.
For a subdomain of the sphere this rules out dornains with less than
four boundary points, for then the boundary components would have to
be points, and anSr non trivial Jordan curve / would bound a punctured
disk, hence ItI(y) : co . On the other hand, let Ä be a subdomain of the
Riemann sphere with at least, four boundary points. Then either the
boundary contains a continuum or we have a non trivial curYe 7,, which
does not bound a puctured disk. X'or surfaces of positive genus we can pick
& curve which does not disect the surface. Then its maximal modulus is
finite, as it would otherwise be the boundarSr of a puctured disk on R ,

hence clearly disect the surface. This proves the first corollary.
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To prove uniqueness, let g and fr be two solutions, with ringdomains

-R, and fr,, of homotopy tWt {yr}, and moduli Mo and,.frn respectively.
Then the extremal property of Theorem 2, applied to both g and 6 ,

immediately shows that R, : fr, for all i . As the trajectories are the
same in .8, , the quotient $ | p must be real and positive, hence a positive
constLnt. Because of the normalization llqll : llfrll : I , we must have

ö:E.
The existence of a solution is shown by a limiting process. Consider an

exhaustion of -B by compact bordered surfaces 3(n), n:1,2,.... We
can assume, without loss of generality, that the curves T; are in ,-B(')

for all n . We can therefore solve the modulus problem for the curve system

{7n} and the weights rmd on ntul . Let g*, with norm llg"ll : I , be the
solution. The ringdomains, moduli etc. are denoted by R4n, M4n :
br, I arn etc. I claim that the sequence (g,) tends in norm (hence locally
uniformly) towards a quadratic differential g on R with closed trajec-
tories, the characteristic ringdomains -8, of which solve the mod.ulus
problem with curves yn and weights mn for R.

Proof . As the norm of the g, is one, we ca,n clearly select, by a diagonal
process, a locally uniformly convergent subsequence, which we again denote
by (V*). fts fmit g is a holomorphic quadratic differential on .B with
norm llgll < I . We have Mr, : lnm;. As the system of ringdomains
-8,, satisfies the homotopy conditions on l?(tr+l) ,

Ml;a{Mi,lME*+ttl r <i,<gt} <1,

hence 1*< X**r. Ontheotherhand, M*- j\n m;3M forall d and
za, henco 1o < M Im, witn' m :Max{ryll < d <p}. We conclude
that the coefficients 1* converge to their supremum l, moreover Mr,
* Mt : )" rmi for all d . This is of course true for the original sequence.

For fixed i, the function g.* : axp Qni I an*) @*(P) with Q* :
I @*@Dtl' d,z is a I - I conformal mapping of Rr* onto a circular annulus
in the z-plane. By choosing the sign of (Dn and the integration constant
properly, we can assume that the örientation induced by h (the Jordan
curves yö are supposed to be oriented) is taken into the positive orientation
of the z-plane and the "outer" bound.ary component of Rr* goes into
lzl : L. (This only determines the imaginary part of the integration
constant, the real part still being free. The mapping gi* is determined up
to a rotation.) The inverse fn : gt*L is a I - I conformal mapping of rnn 1
lzl < I , M,*: (l / 2n)log(l lrr*), ott!,o Rr,.

By passing, if necessary, to a subsequence, we may a,ssume that the
mappings fa, n--> oo, tendlocallyuniformlyto a I - I oonformal mapping

f,: r <- lrl < t -Ri.
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U (z,o)

Consider a neighbourhood of a point zo, rn < lzol < I . We may
introduce z as a parameter in this neighbourhood (in fact in all of -R, ).
The mapping /, becomes, in terms of this parameter, the identity. Moreover
gu(z) * z uniformly n U(z) . Let zn : ga@). Then the following equa-
tions hold:

zn: exp T @*(z) ,

rogzn: T @*@) ,

I dr* Zni .

,i _ 
,r" Q*(z) )

e)' : (Z)'v*@)

, z;-+ I , ain + or (taking a subsequence again,As, for n+ @, zn+z
if necessary), we have

q(z): -(*)';
Thus, for ilz:i,.2, we have p(")ilor:(arl2n)zd,zz;0. The circles

Izl : const are closed t'rajectories of g. Moreover

r > usr = >, I I tq@)t d,r d,y : 
7, 

al M,
Rd

: lim ZoaMu : r.
fr+6 i

The set .B r U Ä, has measure zero. Hence g has closed trajectories and
the -8, are the ringdomains of g . They obviously belong to the curve
system {7,}.
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The sequence (p*) is locally bounded (i.e. E"@) in terms of a fixed
local parameter z is a locally bounded sequence of holomorphic function
elements). Therefore, by the Cauchy representation formula, the same is
true for the derivatives E!,@). The sequence is therefore equicontinuous,
and any convergent subsequence donverges locally uniformly. If the original
sequence (V") would not converge towards q at some point P, t'here
would be a subsequence with a limit lim,,- V"@) + g(z) . Starting out with
this sequence we would arrive at some quadratic differential 6 + V which
is a solution of the same modulus problem, contradicting the uniqueness of
the solution.

5. The ringdomalns ol a given homotopy type

Let {y}ia,...,, b. a finite admissible curve system, with finite maximal
moduli M(yr) (: supremum of the moduli of all ringdomains of homotopy
Lype y, on -B ), on &n arbitrary Riemann surface -B . We are looking at
the p-tuples of moduli of all p-tuples of non overlapping ringdomains of
homotopy tlTe {Zr}. It is obviously enough to consider, in each direction
{m,\ , the extremal system. To achieve compactness we now allow some of
the m, to be zero.

Let fr' : (mr, ffiz, ..., mo) bean arbitraryunitvectorwithnonnegative
coordinates mr2 0, ,i, :1,...,p. Let {-8,} be the extremal system of
ringdomains of homotopy type {y} in the direction fr,. This means that
{An} is the system of characteristic ringdomains of a holomorphic quadratic
differential V with closed trajectories and that M r : l mt for all d ,

whichweabbrevialeb rt: ).fr,. Of course, Mi:0 meansthatthereis
no ringdomain (no closed trajectory) of homotopy type yt .

Theorem B. The mod,uli, aector rt : (Mr, M2,..., Mp) d,epenils

continuously on ,its d,i,rection fr, .

Proof. The proof is given in two steps. First we consider an arbitrary se-
quence of normalized holomorphic quadratic differentials V* (llV*ll: I ) ,

rvith closed trajectories and of homotopy type {yo}. We can pick a locally
uniformly convergent subsequence, which wo again denote by (g") . Leb
q : lim,-* Vn . We claim that liE" - pll-+ 0 , that g has closed trajec-
tories, that it is of type {y}, that, Mn*-Mn for ull i, :1,...,g, and
finally thal ann --> a, for all i . (The latter follows in the course of the proof
for those indices i , for which Mr) 0; it will later be shown that it is truo
for all d .)

As M^ < M(yr), i : 1,...,F, TL :1,2,... we canpickasubsequence
for whibh the sequences of moduli M nn converge for all d . We denote all
snbsequences by (E") and will later show that it is in fact true for the
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original sequence. Let Mt : lim*** Mno. We put i : k for Mo: 0 ,

,i,: h for Mr) 0. X'or all la we sot

2ni,
gu*(P) : exP 

^@"1f1 
'

the imaginary constant of @*(P) in R^, being chosen in such a way that
the outer radius of the image annulus is equal to one, the inner radius is
equal to rho,with Mr,: (t | 2n) log (t / ro). Let fu*: 90,t. X'or a prop-

erly chosen subsequence the mappings f1,* converge locally uniformly to
some l-l conformal mappings fu: r, < l"l < 1 -, Rr, rh : Iim*,*r1,;n,
of the limit annuli onto disjoint ringdomains Ar . Rh is evidently of
homotopy type yr.

By means of the mapping fn we can introduce the parameter z in R, .

Then, (gu*) becomes a, sequence of mappings which tends locally uniformly
in ru l lzl < I towards the identity. We have

2ni
gn,(z) : exp ^ @,(z) ,

wh*

2ni
log go,@) : 

a*@"121

and for the derivative with respect to z

s;@) 2ni,
"#ÅA : 

;(D*(z).
Taking squares and going to the limit we get, as g'r*12) --- t ,

v@)

(Here it follows that au: lim,*- ao, exists.)
From this we easily recognize that the circles lrl : "ott*t 

are closed

trajectories of V . Hence .8, is a subring of a characteristic ringdomain of
g, swept out by closed trajectories. The qJength ofthese trajectories is

obviously a^, andthe q area of ,Ro is aTMn,Since g is the locally
uniformlimitof the E*,llq*ll: l,wehave l[9ll < l. Weget

I Mh: jg2o7-Mr,,

Therefore llEll : ) aTMn: t. The ringdomains -8, cover .B up to a set

of measure zero. Therefore q has closed trajectories and is of type {y} .

Obviously M*-M, for all 'i,:1,...,p, and e'tm'-->a,h (fot M^>0).
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An easy argument shows that llg" - qll - 0 , as gn+ g locally uniformly
and llq,ll :llqll :t.

We started with a sequence (p*) which converges locally uniformly
towards g . Then thero exists a subsequence (g,,) with llq,, - qll * 0 .

rf this were not true for the original sequence we could find a subsequence
withalimit fr *g.F'ut a subsequenceof thiswouldagaintend to g,
a contradiction. Therefore llg" - qll * 0 . Moreover, as g deterrnines
its characteristic ringdomains, Mu-M47 &1,,->a1, for all ,i resp. for
all å with positive Jly'u.

The second step of the continuity proof is short. Let fr,*---, fr, . Assume
fu - +- fr . ttt"tr we c&n pick a convergent subsequence, which we d.enote

againby (rt*) ,suchthat fr,- tofr : fro + rt . Let gn bethequadratic
differential, associated with the system {7r} and weight fr.*. A subsequence
of this sequence converges towards a quadratic differential go of homotopy
type {Zr} with moduli vector rto. }lut, ltZ i* *opposed to be the moduli
vector in the direction fr, , and, because of the uniqueness rto : rt ,

a contradiction. The continuity is proved.
The surface which is described bV rt as a function of the unit vector

fi is called the surface of moduli associated. with {7r} : We denote it by
slft: {lt({y}) .

Conuerity, tangent pl.ane of IJI . Let Mo be an arbitrary point of IJt .

Let gs be the holomorphic quadratic differential with the moduli vector
fu., lpoll: I . We put äo : @3r,, ... , o?w), with aon the infinum of the
lengths of all closed curves which are homotopic to T;, in the g-metric.
Then the following can easily be proved:

(l) Theptane (å,r,O - rtr):0 hasonl.ythepoi,nt fro,i,ncommonwith
SJt . X'or let, fr e [Jl . The corresponding ringdomains are of homotopy type
{yr} , hence

(åo, rt)
with equality only for fr : fuo. We conclude

(å.,rt - fur) < o

unless fr : rto. The entire surface IJö , hence also the set bounded by SJt

and the coordinate planes, lie to the left (*) of the plane (äo ,i - ilo\ : O .

(2) The ltlane (åo,i - fuo): 0 is the tangent gtl,ane. This is easily
proved for interior points of IJt (i.e. Mo, > 0 for all r; ). For at such a
point the vector ä is contin:uour, frnu rto = ån*äo . We have the two
inequalities

(*) I.e. the same side as the origin.
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(do, fr,)

(ä,, fir)
hence, with

+ fu,-fu.Q': 
@--furr'

(åo,i*)

(å,,,2*) : (å0,i,) + (A* - å,0,2,)

We conclude: -(d,, - åo,i*) . (å0,i,) < o, consequently lim,*- (å0,i,)
_n

At interior po'i,nts s!!l therefore has a cont'i,nuously changing tangent pl,ane
wi,th normal, aector å .

To prove the same at a boundary point, let, ifo be a bound.ary vector.
Let Moo)0, Mno:0. Wehave

- l@7," - a\o) .€h, - )(a?" - a?o) .eo*

For arbitrary index d we have lim,-- a,i* 
= 

q,io:
This is easily seen, for, let 7n be an arbitrary element of its homotopy class.

Then

au 3 | Iv-{41,,, lirzl --> | WelTtz ld,zl .

Yi Yi

The last expressionbecomes smaller than an*e, e)0, forproperly
chosen yr.

Now, for all indices h , &n, ---> crno. X'or the indices fr we have

Mon - Muo
€ho : 

rrt*- rtrrr'
hence 0lenn<I.

X'orgiven e)0 wecanfind -l[ suchthatfor n>N andall å resp. ft

1o7,, - alol ler,l < e,

(o?,-o%) <,
and therefore also (o7, - a?o) en* ( e . The left hand side of the above
inequality then becomes > - p e . We have proved
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)im (åo,Z*) : o

also for all boundary points of IJt . This surface therefore has a nornal
vector at each point, namely å : (a?, af , ... , al) .

ft is also immediately seen, from the above inequality, that å,*-->åo

if i[o is approached in a fixed direction. X'or then, the unit vector ? does
not depend oL n . We have

(o'r* o\il e, + (o7* a|o) eo

would lead to a contradict,ion.Assumirg ek Limn_.* &kn I ano

6. Quadratic differentials with second order poles. Extremal property

Let p be a holomorphic quadratic differential with closed trajectories
which is of finite topological type on an arbitrary Riemann surface -B .

We assume lhat E has infinite norm. Then at least one of the characteristic
ringdomains of g must have infinite modulus. We exclude the twice
punctured sphere, which means that every ringdomain A7 with infinite
modulus can be mapped conformally onto a punctured disk. We can then
add the puncture as a point Q1 to the surface -R , and consequently in-
troduce a conformal parameter zj r,ear 07, such that Q, corresponds to
zi:0. The quadratic differential g has a second'order pole al z,:0
with a real, negative leading coefficient -.4, which is independent of the
choice of the paqameter. Let M, be the reduced modulus of Ä, with
respect to the parameter zi $.e. Mt: (r / 2n)logr7, where r, is the
mapping radius with respectto z, ). We denote by Ru the characteristic
ringdomains of g with finite modulus Jl[u and use the index 'd for the
characteristic ringdomains of g without distinction. As before, au is the
length ofany closed trajectory un of g in Rn:

ai : I p{41'," lo"l .

di

Now let {h} be a system of nonoverlapping ringdomains on ,R of
homotopy type {o} . For every j , Ri is to be a punctured disk, with
reduced modulus [[, fuk"n with respect to the same parameter 2,. We

allow -äo tu be degenerate (:missing), but not nr. fftu"

a? Mn a? Mn ( - reduced norm of V )

4
0,

(10)
ii

if Rdwith equality holding if and only : Ri for a,ll i
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Proof. Let Cj be the distinguished parameter for the quadratic dif-
ferential g r,car the second order pole Q. The representation of g in
terms of this parameter is

p(z) dzz -

with a, : 2n Altz the length of the closed trajectories of R, . The inequality
itself can be shown by cutting out circular holes (in terms of the distinguished
parameters) around the points A; and then applying the inequality for
quadratic differentials of finite norm. Letting the radii of the holes tend to
zero we arrive at (r0). However, in order to discuss the equality sign, we

have to be more accurate. So let the domain* å, fu mapped onto punctured

disks 0 . lt,l < ö fy schlicht functions |(er) *ittt

(Q):r

The moduli of the ringdomains A7(C) : A7r{ lf;l < e} and nlq:
A;\ { tirt < e } for sufficiently small positive I are denoted by fulnl
and frI (e) respectively. Evidently fulnl : Q l2n)loet1i"i I il , and

fi|d + I lzn)logq---[[,, Mld + Q l2n)logp--> M, &s Q-+0.
We cut the annulus I < lfrl < ö llong a radius and map it onto a hori-
zontal rectangle with sides a,, b1k) : a,j . Mld : @, | 2n) log (öi / e)
in the ? : n * i y -plane. As usual, we have

lv@ + iy)l't'd*

and by the Schwarz inequality

lv@ + iY)ld*

A,
idcT5j

aCi

6,C i

A,j

cI' j

t

Assume that for some
of V . Then there are

for all y in the ö-neighbourhood

o,6,@) + t.ö

j one of the circles ICjl - const is not a trajectory
positive numbers t and ö such that

a'j + lv@ + iy)ld*

of some Uo . We get by integrating

s f I w(z)t d,r dy

firtel

an'd. by summitg over the j and k
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Z"? tyrls) +
I

Adding 2i"? . (L l2n) logg to both sides (here we need that there is an
.8, for every j ) and letting g - 0 we arrive at a contradiction. (The
inequality itself is proved by just dropping the term e d .)

Now we know that the circles l|,l : p are actually trajectories of E .

X'rom the equality

+ 2"? ttrh
h

2"?fro + e ö

2"? rtj + Z"3Mo : 2"7 Mi
iki

: 2"? a,k) + Z"?Mk

we conclude, subtracting I ai G I

Z "7 
fuln) + 2 "? 

iru

The right hand side is equal to the norm of g over the truncated surface

Ä(e) : Är Ur{ l4.l < g }, because V is a quadratic differential with
closed trajectories on A(g) and the Rt(e) , Ro_ are its characteristic
ringdomains. But then by the earlier theorem i?j(A) : R,(d , Rn : Rn

forall j, k. Henceaho Sr. : Ri forall j. Wehaveproved.
T h e o r e m 4. Let g be a quailratic dffirenti,ul with closeil trajector'i,es

and, a fi,nite number of characteri,sti,c ringilornains on d, Riemann surface R .

We il,enote by Ri the punctureil, il,islcs (ringilomains wi,th i,nfinite moil,ulus)
anil by Ro the r'ingilomains with fi,ni,te mod,ul,us. There shoul,il be at least one

Rr, and, the d,oubl,y grunctureil spthere is of course ercl'uil,eil,. n"t_fr, , ho b"

a system of non ouerl,a,pping d,islcs anil, ri,ngil,omains, w'ith an R, for euery

Rj, Q1efr,. Then, wi,th the usu,al notation, but Mi, [[i the reiluceil,

mod,uli with respect to the same parameters near the secsnil oril,er pol,es Qi ,

the inequalities

(r) 2*7 Mi + Z"?Mh

-- Rh fo, ell j q,nd k ) q,nd, cr,s &n

2n) log Q ,

+ Z"i firu
h

hj: Rj, ho

2"? frjj

(equality if a,nd, only ,f
easy consequence

(r)

(equa,Iity i,f anil only if

Min {fun M;
i:i, h

fro: Ri f" q'tt i ) hold.

7. Existence and uniqueness of the solution of the modull problem

We treat only the special case where all the ringdomains are punctured
disks.
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T h e o r e m 5. Let {y}t:r,...,p be an ad,mi,ssi,ble system of Jord,an
curaes on ahyperbolic R'i,emann surface R, wi,thmarimq,l moil,ul,i M(y) : @

for all j . Let m, be arb,i,trarg real numbers, normal,'i,zeil such that 2t mt : 0 .

Then there is a holomorgthic qua,ilrati,,o d,i,fterential g on R wi,tlt, closed, trajea-
tori,es, of h,omotolty tgpe {yi\ , and such that the reiluced mod,uli M, of i,ts
punctureil ili,sks satisfy the equali,ties

fo, some c indepenilent ,f j
constant factor.

e To prove uniqueness, let g
Mj: rnj + Z for all j. As

ferential, it, satisfies (II) when

Mj - rnj + c

. (p is uniquely d,etermineil up to a, pos'ttiae

and. ,p be two solutions, with M j : rni + c ,

the system nj belongs to a quadratic dif-
compared with the system fri of V :

Mi\: ö cMin {fu,
i

Similarly,startingwith fr,weget c-Z <0. Therefore 6:c, hence

Ri : Ri for all j . The consequence fi : const 'g is immediate.
The existence is easily established by means of the previous existenco

theorem. We first notice that there are disjoint punctured. disks Arl ryitft
roduced. moduli M; : m, + c' for some c' . We now make c' as large as

we can. By a normal family argument there exists a maximal system .8, .

We choose the conformal mappings of the -8, onto punctured disks 0 (
lfil < Qt, with @'e,ld,z)(o) : I, zi the given parameters nearthepoints
Qi , as local homeomorphisms. Let 0 < g < Q; for all j and denote by
nld tho ringdomains corresponding to the annuli e < l6jl < A, on .B ,
with moduli Mld. This system is extremal, on tho truncated. swface
.B(g) , in the direction (IVIr(p),Mr(d ,..,,M,k)I, in the senso of tho
earlier existence theorem. For otherwise we would have a system Jl[rl(g)

wrttt Ml(e):(r +e)Mik) forsome e)0.Addingthedisks l6il <p
to the ringdomains Arl(e) we would get a system of punctured disks .Bj
with

ll
nI, 2 u|(d + *rogn ; a,k) + *log Q : Mi.

Therefore the system Ar(e) is associated with a quadratic differential gn .

Its trajectories are the circles l4il : const which are independent of q.
But then the gn are just the restrictions of a quadratic differential g on
-B with the -8, as characteristic punctured disks.

As before, we c&n now introduce the surfaces of moduli. The following
facts can easily be established along the samo lines as in the earlier proof.



,bbt, I(unT STREBEI,

ll[(y) : maximal reduced modulus for Ti

a) Conti,nui,tg. The vector of (reduced) moduli M : (Mt,..., Mo)
isacontinuousfunctionof thevector fr' of parameters rnj, )mi:0.
fn fact, for fr, --- fr' ( mt - m'o) the quadratic differentials g converge
to Es , if properly normalized, in the sense that llq - qoll -- 0 .

b) Conuerity. Tangent plane. The plane

with ä : (a! , ... , o7), is a plane of support, with only the point M itself
in common with the surface of moduli. It is in fact the tangent plane at
this point, and the normal vector ä varies continuously witln fr, .

c) Ertremal length problem. The range of directions of the normal vector
ä is the full open quadrant, i.e. å, I läl is an arbitrary positive unit vector.
We can place a tangent plane with this normal at some well determined

point Z of the surface of moduli and then multiply the quadratic dif-
ferential by an appropriate factor such that the lengths of its trajectories
are the given numbers ar. . The resulting quadratic differential is the solution
of the extremal length problem of minimizing the reduced norm with lengths
> a, inthe classes yi ( lE@)lLt' lilzl istheextremal metric). As theleading
coefficients of g at the Qt in terms of any parameter zj are - At :
- (a1 | Zn)z , this shows that these coefficients can be arbitrarily given
negative numbers. Then there is exactly one quadratic differential g with
closed trajectories the characteristic ringdomains of which are the R", and
for which ai : Iotlg@)l1tz ldzl .

4
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