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1. Introduction

1.1. We let Udenote the unit disc, lzl=1, and gtheusualclass of univalent
functions, i.e., those functions f(z) which are analytic and univalent in U with

"f(0):0, f'(O):t. A function F(z) is called a Bieberbach-Eilenberg function if it
is analytic in U, zero at z:0, so tåat it has a series development of the form

(1.1) F(z): brzIbzzzl...,
and is such that
(r.2) F(2,) F(z) * 1

for any 21, z2€U. In this paper we will be concerned only with the subclass of
these functions which are univalent in U and we will denote this class of uniualent
Bieb erbach-Eilenb er g functions by E .

Two functions, F and G, are called a pair if they are analytic in U, F(0):
:G(0):0, and such that

' (1.3) F(z)G(z) + 1.

for any zr, z2(.U. We will use the term pair only in this sense in 1fuis paper. Note
that if F€8, then {F, F) is a univalent pair.

1.2. The class d was introduced by Bieberbach [7] as an aid in solving the
problem of maximizing the diameter of the boundary of the image of the comple-
ment of a disc (or equivalently any simply connected domain cortaining -) under
all conformal maps which carry € to - and have derivative I at -. He showed
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that the extremal function maps onto the exterior of a line segment by proving

that if F(8, then
(1.4) lbLl = t,

with equality if and only if F(z):si"7, a real. The crucial part of his argument

was the observation that the function w*llw has a single valued inverse in the

exterior of a continuum passing through X2. It therefore defines a univalent

mapping fron any domain in the w.plane having the property (1.2) onto the exterior

of such a continuum
Eilenberg [9] introduced the full class of (not necessarily univalent) functions

satisfying (1.1) and (1.2). He showed that (1.4) held in this class with the help of a
topological theorem and the subordination principle. Our use of E to denöte the

wdualent class is therefore somewhat misleading, but we do not want to pause con-

fusion with the standard class of bounded functions'

Rogosinski [28] simplified Eilenberg's results considerably and extended the

subordination principle. Using his methods as found lrrB9l' many results obtained

in E canbe extended to the full class. Some care is required however. See for example

tåe discussion in $ 9 of [20].
In [28], Rogosinski conjectured that all l4l=1. This was proved by Lebedev

and Milin B3l, later Aharonov [3] and Nehari [25] independently proved that lå"1=

=t-tlz1y'fl for all n; where 7 is the Euler constant.

1.3. Many major results concerning Bieberbach-Eilenberg functions were

proved by Jenkins in a series of three papers [18, 19, 20]. He studied several extremal

problems by considering appropriate module problems and using symmetrization.

This allowed him to obtain an explicit upper bound for lf(r)l for FQE and r fixed;

and implicit solutions of several other problems. He also used area methods in [20]

to prove some inequalities of Grunsky type'

1.4. The class d appeared in an unexpected fashion when Garabedian and

Schiffer made a systematic search for extremal problems in I which would have a

simple solution by variational methods. This search is described in [33]. This led

to a class of inequalities of Grunsky type which in turn led to a proof of the local

Bieberbach conjecture [11]. Some of the inequalities they found could be interpreted

asinequalitiesforfunctionsin E,because of acloseconnectionbetween I andE.
lf f(z)€?, with Llu$f(U), then

(1 .5)
7,.. 1-tl - uf(z)lLtz
L \L) - 1+[1 uf (z)]Ltz

is in d. This can be inverted, grving f(z): F(z)l{r'(0)[1 * F(z)]z], F'(0):v14, tho*-
ing how ,Fnear the identity in d corresponds to/near the Koebe function. It was

this fact which was important in the proof of the local Bieberbach conjecture in [ 1]

and which indicates the potential importance of studying the class E.
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1.5.'The concept of pairs was introduced by Aharonov n 1969 in [1]. In some

respects, this concept is equivalent to considering functions / and g which have

aisjoint ranges with 71:pi analytic and g (:tlG) meromorphic in U. Functions

with disjoint ranges had been studied by several authors earlier, for example [5, 6,

14,20t, 221. In particular, see the supplements to u4'. However, Aharonov's class

seems to be the correct one to consider as a generali zation of Bieberbach-Eilenberg

functions, as is evident from some of the results of the present paper.

The main previously known results about pairs are found in 11,2,16, 211. Some

of these are discussed in the following sections.

1.6. Variational methods are powerful tools in the study of univalent functions'

They offer one of the most systematic and widely applicable methods of attacking

extremal problems. The variational method in the class I introduced in [31] has

been generalized considerably, and systematic methods of using this and similar

variations have been found. See for example the discussion in [32].

The development of variational methods for special classes depends on finding

a method of varying the image domain so as to preserve the desired property' In

particular, it does not seeri immediately obvious how to do this in the case of the

class d.
D.'J. Nelson, in his thesis [26], obtained a variation in the class d by using

(1.5) to map F€E to f€9. The well-known variation [31] of I was used onl
and the resulting varied function was mapped back to S by (1.5) again. The extra

parameter a which had to be introduced could be eliminated so that he was able

io obtain the differential equation satisfied by the extremal function for some specific

problems. Some of the observations he made for these problems are generalized

and appear in Theorem 4.2 below.In particular, Nelson obtained the differential

,q.rutioo (4.3) for the FQE maximizing Reån, and studied the specific problem of

maximizing Re å2, obtaining some bounds on the maximum value.

tJ.In Sections 2 and 3 of this paper, we obtain variational methods for the

class d and for univalent pairs. In Sections 4 and 5 we show how to apply these

variations to quite general types of extremal problems. The remainder of tle paper

is devoted to studying a representative set of extremal problems.

An extremal function for such a problem is found to satisfy a differential equa-

tion of the form Q(w)d.w2:R(z)dzz where Q and l? are typically rational func-

tions which unfortunately involve unknown parameters. Each side of this equation

is a quadratic differential, and we obtain information about the solution by con-

sidering the trajectories of these quadratic differentials. A simple discussion of the

structure of such trajectories may be found, for example, in [4]' Here we will review

some elementary facts about such trajectories'

A trajectory of the quadratic differential flQ2:Q(w)dw2 where Q(w) is a
rational function is a path w:w(t), a<'t<b along which dQ?>0. An orthogonal

trajectory is a path on which d.Q2<0. Ä critical point is a point at which Q(w)
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has a zero or pole. If wo is not a critical point, then o:ll@@dw is analytic
and univalent in a neighborhood of wo and hence there öxiits a unique trajectory
through wo (and similarly a unique orthogonal trajectory). Two trajectories can
meet only at a cntical point. A trajectory can be continued indefinitely unless it
closes or reaches a critical point.

The structure of trajectories near a critical point can be complicated, but we
will need only two special cases in this paper. rf e@) has a simple pole at'wr, then
exactly one trajectory of dQz leaves wo. rf e@) has a simple zero at wr, then three
trajectories leave w,. These make equal angles with one another.

2- A method of variation for Bieberbach-Eilenberg functions

2.1. To use the known formulas for the variation of the Green's function to
obtain a variation of the mapping function, we must have a method of varying a
domain so as to stay within the desired class. Define a Bieberbach-Eilenberg domain
to be the image of a function in E,that is, a simply connected domain containing
the origin which is such that if w is in the domain, then llw is not.

Theorem 2.1. Let D be a Bieberbach-Eilenberg domain. Let Ä be a domain
whose closure does not contain 0 or *, which contains the boundary of D, and which
is symmetric with respect to the mapping w*llw (i.e., weA if llw(/). Let
A@) b9 analytic in Z and satisfy

Q.r) 1D(w): -o(tlw)
for all w€/.

Then for all t, sufficiently near 0, the function

(2.2) w* (w) - *reiD(w)

is uniualent in Å ond maps the boundary
Eilenberg domain.

Proof. Introduce the function

of D otrto the boundary of a Bieberbach-

v(w,ot):ffi w*or
: ifr'(w) w:0).

This Y is defined, analytic, and uniformly bounded in the compact set zxz.
Suppose w*(w) were not univalent in Å. Then there would exist wr+w, in

/ such that w*(w):w*(wz). That is, w1-wr:1,yrfl-exp ft,(wr-wr)V1wr,iryy1.
Now for any ,r, l1-e"l=lslel"l, so this implies

Ir r- w rl = lel . lwr (w, - w ) Y (w r,wr) l exp {le (wr - wr) v (w 1, w )l}.
Divide through by lwr-wrl. The stated conditions on / then gwe a contradiction
for all sufficiently small lel.
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since w*(w) is univalent in /, it maps the boundary of D onto the boundary

of a simply connected domain D*.It remains to show that D* is a Bieberbach-

Eilenberg domain for all sufficiently small lel.

This property is equivalent to asserting that D* and Df:{w: l/u€D*} do

not intersect. Suppose to the contrary that they do. Then they must in fact inter-

sect at points arbitrarily close to the boundary of D* and we can therefore assume

that there exist u, and w, in ÅnD such that w*(w1)w*(w):1, i'e', that

wLwzexp{e[@(wj+o(w)]]:1'Using(2'1)thisisequivalentto

(wr-wtt) : wr[l - exp {e(w1- w;L)v (wr,w;t)I'

Since w1, w2€D, w1*w2t, and we may proceed exactly as before to obtain a con-

tradiction as lel*0. This proves the theorem

2.2. Weuse this theorem to find a variational formula for functions in d using

the variational formula for the Greenos function [31]. The form we use is described

in [32]. Let D be a domain and D* a varied domain obtained from D by the mapping

w*:w+El(w)+o\e) defined and univalent near the boundary in D. If p(w,at)

and p* (w, a) are the analytic completions of the Green's functions of D and D*, then

p*(w, a) : p(w, a)+eqt(w, ar)+o(e)

where qr(w, ar) is an analytic function of rv such that

(2.3)

and f is a curve system in D bounding a subdomain of D containing w and rtt.

Let F map U onto D and F* map (J onto D* with F(0):px1g;:0. If E and

E* are the inverse functions of F and F*, then p(w,O):-logE(w), p*(w,0):

- -log E*(w) and hence E*(w) :E(w)-ry(w)q1(w,0)+o(e). Then, as in 1321, it
follows that

Q.4) F*(r): p(z)aezF'(z)q'(F(z),0)+o(e)'

Notice that the derivative at 0 is not normalized in this class'

Let wo€D and let a be any real number. Set

R. tqr(r, ,)) - Re {* { u'U, w)p'(t, r,t)ug1 atl

(2.s)

This @ satisfi.es (2.1). The remaining hypotheses of Theorem 2.1 hotd and hence

the variation *x-r"eiD(wl-wIewA@)*o(e) preserves the class. We need only

compute qr(w,O) using u(w): wA(w).

2.3. Let g be the inverse function of -F. Then

p (t, w) : -tog ([e (t) - E@)1111' - E@E@))
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and hence from (2.3) we have

Re {41(w,0)}

: - *" {# ! l#% - iy6,%l t#l't* - J*1,+
: Re 

{r'" +
.woe' (n o),

E(wo)lE@)- a(wo)l

* eio
wo(p'(wo)'A@)

E(w)[l - E@)E@)]
Herewecalculatedtheresidues at t:w and t:wo. Thereisno singularityat t:0.

We may conjugate the final term inside the real part. The resulting function is
analytic in w and may be identified wrth qr(w,0). Replacin g w by F(z), wsby F(zo)
and so on, (2.4) gives

Theorem 2.2. Let F(z)(8, let a be any real number, and let zo(U. Then for
all sfficiently small, e>O there exists afunction F*(4eA such that

l

zF'(z)
,7- t7zt Lo

In the calculation of q1(w,0) we found a residue at rro since w0 was assumed
in D. There was none at llwo since D was a Bieberbach-Eilenberg domain. Sup_
pose neither w0 nor lfw, were in D. Then the only residue would be at tl. Thus
we have

Theorem 2.3. Let F(")ea. Let a be any .rear number. suppose wo is such
that neither wonor Tlwo is in the closure of F(u). Th:enfor all sfficrewly small e>0
there exists a function F*(")€A such thqt

Q.7)

3. A method of variation for pairs

3,1. Let {Fr(z),Fr(4I be a univalent pair. Set D1:4((I), Dr:Fr(U), D;::{w: llw€D2}. suppose /o is an open set which contains the boundaries of D,
and Di, and that @(w) is analytic in the closure of /0. Then one easily verifies thai

(3.1) w*(w) - w*e@(w)
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is univalent in /o for all sufficiently small e. This will induce a variation of D, to
Df and hence of Frto F{. At the same time (3.1) induces a variation of Dito D['
and hence of D, to DI and of F, to .F] so that {Ff, .Ff} will be a new uni-
valent pair.

As in g 2.2, we have

(3.2) F{(z): Fr(z)*ezFi(z)qr(rrQ),0)+oG)

where 4r(w, 0) is an analytic function of u, satisfying

(3.3) R. {q,(vy, o)} - Re {* [ pi4,w) p'r(r, 0) O (t) Orl

the quantities being defined as in g 2.2.

To find the variation of D, induced by (3.1), let co: llw. Then o*:aie@(a)
and hence rry* : 1 I a* - a- rl + & kD) I @l-r - 67 - t[ I - e o (a) I c\ | o (e) : p - 612 a 0 fu) +
*o(e). Hence

(3.4) FiQ): F,(z)+ezF{(z)q,(F,(z),O)+o(e)

where 4, is determined as before by

(3.5) Re {4r(w, o)} : -ne{ 
^ t 

p'r(t, w)piQ, o)tro(Ut) d4.

3.2. Let wo be any point which is neither on the boundary of D, nor in the
closure of Di. Let a be real and set

(3.6) a1w1: -!.ww-wo

Then we may let /o:{w: lw-wnl>ö} for some sufficiently small ä. Note that

(3.7) -wzh!lw): - ='to" .
I -wow

Together, (3.6) and (3.7) make up the variation used in 2.3. Thus we have
split the variation for the class d into separate variations for each member of the pair.

There are two possibilities for uo in order to satisfy the stated requirements.
we may have wo: Fr(z) fot some ze€ (1, or wo may lie in the interior of the com-
plement of DrvDi, (if this set has an interior). In the latter case @(w) is analytic
in Dr.In either case -p2 AQlw) is analytic in Dr.

Proceeding as in Section 2, one easily calculates the integrals in (3.3) and (3.5),
and proves

Theorem 3.1. Let {Fr.(z), Fr(z)} be any uniualent pair. Let a be any real num-
ber and let zs€U. Thten for all sfficiently small e>0 there exists a uniualent pair
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{rJ Q), e{ Q)} such that
Fr(r)F{(r)- FtQ)+teioffi

If there exists a wo such that wo is not in the closure of Fr(U) and wf,L is not in
the closure of Fr(U), then for all real u and all sfficiently small e>0 there exists a

uniualent pair {F{(z), p{(t)} such that

(3.10) Ff (z): F,(z)+wtu7ffi+o4)

(3.11) F{(z): F,(z)-rcin #6*o(e).
We remark that {d, fr} it u univalent pair if and only if {Fr,,F1} is also. Hence

the roles of .F, and F, may be reversed in the above theorem.

(3.8)

(3.e)

(4.1)

for real 6.

Another useful

onto [/ less a short
[/ onto the exterior

4. General extremal problems in the class E

4.1. The usual class I of univalent functions is normalized by the requirement

that /(0):0 and /'(0):1 for any f€9. Similar normalaations are impossible

in d since the addition of a constant or multiplication by a constant may spoil the

Bieberbach-Eilenberg property of a domain. Indeed, there are only two elementary

transformations of the image domain which are available in the class. If F(r)Ce,
then so are -F(z) and.F@. These correspond to symmetries of the Bieberbach-
Eilenberg property and are often useful.

Transformations can however be made freely in the z-plane. lf g(z) is univalent
in'U, g(0):0, and s(U)c(J, then F(z)es implies n(g@))<s. In particular,

F(ei"z)€E for any reala. Thus we can assume .F'(0)>0 if this seems like a useful

normalization in a particular problem.
By letting q be near zero, this last transformation can be viewed as a variation

in,the class E.Thatis,if F(z)(E, then so is F*(z) where

F* (r) - F(ei'z) - F(r)*iezF' (r)*o(e)

variation is the slit uariation obtained by letting S Q) map U
slit. Let k,(r)-zl(L*e-'"t)' be the Koebe function mapping
of the radial slit from e*14 to oo. Let 6=0, and define SQ)
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by k"(g(z)):k,(z)lQ+e). This is equivalent to (1+e)(z-1+2e-id+e-zidz)-
(l I g +2e-i. + e-'i" g) and hence g (z) : z * tg"(z) * o (e) where

go(r):-+:#
Thus, if F€E and a is any real number, F*(t)(.8 also where

(4.2) F*(z): r(s@)) : F(z)-ezF'@)ffi+o(e)

and e>0. These two well-known variations will be usefull in what follows.

4.2. ln considering extremal problems in E, one must be careful since the class

d is not compact. One easily sees that any sequence of functions in d has a sub-
sequence which converges either to a function in E or to the constant zero. The
functions {tl"}|:, show that the last possibility can occur. Often, the fact that no
extremal function exists in E is not obvious. For example, if we wish to maximize

lbrlbrl where F(z):6t216222*..., we find that no maximum exists. The func-
tions mapping U onto U slit from -lln to -1 will give lbrlbrl*2, but the
uniqueness of the Koebe function maximizing arin I shows there is no F€d with

lbrlbrl:2'
In most of the problems we consider, the existence of an extremal function will

be obvious. For example, consider the maximum absolute value of b,, the n-th
coefficient of F(8. We can always assume ån=0 and so look for,Fmaximizing
Reån. A sequence of functions whose z-th coefficient converged to the supremum
of such values could not tend to zero, and hence the extremal .F must exist. It is

instructive to see what the variation of Theorem 2.2 implies in this case.

For every a and zo we must have Reåf =n" b, for the extremal F. Since the
real part is unchanged if we conjugate the term containing e-in in (2.6), the terms
of order e must have an r-th coefficient which vanishes. One easily sees that this
implies that any extremal .F must satisfy the differential equation

(4.3)

(+*)' i br. " (åF + F (4k) : ä: 9+"" +,u. + \' (n - k) 6, - o zk

where the b!) arc defined by F(z)k:)7obf)r".
This is exactly the differential equation which Nelson obtained in his thesis [26]

for the same problem.

4.3. We now look at more general extremal problems, following the methods
of [32]. Let Y be a continuous functional defined over E. We assume that Y has a
continuous Fr€chet (or more generally Gäteaux) derivative L. That is, for any F(E
and any analytic G,

(4.4) V(F+IG) : Y(F)+'L(F; Qlo(s\

11
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Here L(F; G) will be a continuous linear functional of G for each fixed F. Since

F will remain fixed, we will usually suppress the dependence on F and write merely

L(G).
Define

D(w): t(;+); Era: \ffi)'
(4.5)

A(w) : D(w)+L(F)+D(tlw); B(0 : E(O+t(rr'@))+E(tl().

Observe that

(4.6) _y*:"r,k)+ffi
and hence the variation of Theorem 2.2 implies

y (r) : y (F) * ee," ft; n 1, 1"o1) - r",, ft S 
(ffi)' u r"r,

WFz F
L-wF ^'w F-Ilw)

- te- io

or

(4:7) Re Y(.F*) : Re Y(F)*,""7ffi{ A@Qn))-(;9t-r,r;'rpSl*o61.

We are interested in problems of the type: maximize Re V(,F) among all FQE'

Such a problem may or may not have a solution, but if it does, we can use (4.7)

to characterize this solution. We will say that F€E is (locally) extremalfor Re Y(f)
if ReV(F*)=ReV(F) for all (nearby) F*€E' Here, "nearby" is in the sense

of convergence on compact subsets of U. Using (4.7) we therefore can prove:

Theorem 4.1. Let the functional V, defined ouer E, haue a continuous linear

Fröchet deriuatiue L(F; G) as defined in @.\. Let A(w) and B(O be defined as in @.5)-

suppose F€E is locally extremal for Re Y (F). Then F satisfi.es the dffitential
equation

(4.8) /

or equiuolently

(4.9)

Further, L(F; zF'() is real, B(z) is real and non-positiue for lzl:1, and if A(F(z))
is analytic in some annulus Q-lzl=|, then F maps U onto a domain whose bound-

ary is made up of analytic arcs (or is an analytic curue) which are trajectories of
A(w)dwzlwz.
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Proof. The fact that F satisfies tåe differential equation (4.8) or (4.9) follows

immediately from (4.7) since a is arbitrary, and r' makes Re Y a local maximum.

Using the rotational variation (4.1) gives Re Y(F*):Re Y(F) *e Re iL(zF'(z))+
*o(e). Since e can be positive or negative, L(zF'() must be real. If l(l:1, then

(4.5) shows B(0 is real. Let (:ei'. Then the slit variation (4'2) gives

Re Y(F*) : Re Y(.F)-eReI (zn'@) fi)+"Al
Since e>0, this implies ReLQF'(z)((+z)l(:z))=0. However, l(l:1 and since

(( + z) I (C - z) - - 1 -2( | (z -O t
B(A: Re,B(0 : L(zF'(z))+2ReE($

I f-Lz\: - Re z 
lzF'(z) ö) = o.

ff A(fQ)) is analytic in p<.lzl<|, then the reflection principle shows

fzF'(z)lF(z)]'zA(F(z))is analytic up to isolated poles on lzl:1. For z:ei',d'zlz:idt
and from (4.S) the boundary of U. must be a trajectory of A(w)dwzlwz.

Theorem 4.2. Let V and F be as in the preoious theorern. Then A(w)dwzlwz

is inuarimtt under the mapping w-llw. Suppose A(w) is analytic up to isolated

poles and is not identically zero. If wo and wot are not in D:F(U), then at least

one is on the boundary of D, The points I and -l are on the boundary of D.

Thefunction G(z):p1"1allF(z) is uniualent in U and maps (J onto a domain D1

(containing -) whose closure is the entire complex sphere.

Proof. we remark that these observations were made by Nelson [26] for the

case of the particular extremal problems he considered.

The first result is immediate from the definition of A(w) in (4.5). The second

follows from the fact that if wo and wo 1 were exterior to D, Theorem 2.3 would

apply and

(4.10) Y (F'r) - V (F) + wi"A(nuo) * o(e).

Taking the real part, this implies A(wr):g' However, this would then have to

hold in an entire neighborhood of ws, giving a contradiction.

Since 1 and -1 are such that wo:w;l, both points must be on\D'
Finally w*Lfw has a two-valued inverse, the values being w and llw. Hence

the Bieberbach-Eilenberg property of D makes w*|lw univalent on D. Any
point exterior to Drwould have to arise from a we exterior to D such that wo-l was

also exterior to D. This completes the proof.

4.4. The following theorem is useful in many applications.

Theorem 4.3: LetY beacomplex aaluedfunctional ooer E hauing a continuous

Fr\chet deriaatiue L as in the hypotheses of Theorem4'I. Let 7:{Y(F): FeE}

13
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and suppose FQE is such that Y (F) is on the boundary of T. If E(() is not constant,
then there exists a complex ). with lll:l such that F satisfies Theorems 4.7 and 4.2
as if it were locally extremal for Re,lY(,F).

Proof. The proof follows the argument found on pages 495, 496 of [30], but
we sketch it here since there are some differences in this case. The variation of Theo-
rem 2.2 gives

Y (F*) : V (F) * eei, U - ee-iuv* o (e),

where
rt : A (F (z )) | F k I - (F (z o) I z o F', (z o))2 E (z ) | F (z r),

y : (tr (z ) I z o 
p' k J), . lL (z F' (z)) + E (t I z o)l I F (z o),

these quantities being computed from (4.5). Now s:eetug-r"-idZ is a linear
transformation of the real and imaginary parts of eeio to the real and imaginary
parts of s. Hence as e and a vary, a full neighborhood of s:0 will be covered unless

the rank of the transformation is less than 2. Since V(,F) is assumed to be a bound-
ary point of Z, this rank must be less than 2 and ei" (J - e-i"V has constant argument
for all real u. That is, there exists a ).with l,tl:l so that Re {ei").{.1-e-i"1vl:
:Reei"{1U-X4:0. Hence )"(I:X.V. Then ,F satisfies the differential equation

^z 
fD # : l)"E (z) + x.ftF' @) + xEU4l 4 .

Next, we show tlat AL(zF'(z))is real and B{O:)"8(O+).L(zF'(z))+-l4tlercO
for l(l:1. First, consider a combination of variations (4.1) and Q.6).Let -l=u=I,
-l<a=l and set Fr(z):p7ri""z). Apply variation Q.6) to Fr with e replaced

by eu, Since 4:F*O(e), we find

Y (F*) : v (F) * eul,ei6 (Jt - e- iqvl + o (e)

: Y (F) + iwL(z F' (z)) + eufei" g - s- in v l+ o (b)

: V(F)*eW(u,a)+o(e).

Here, ).W(u, u):ui).kF'(z))+uletu).tt-e-i"XUl+o(e):ui),L(zF'(r))+Zuilm {etul.U).
Again, since a neighborhood of 0 cannot be covered, we must have ),L(zF'(z))
real. The exception would be if U:0. But then V:0. and hence E(llZo) would
be constant. Hence )"L(zF'(z)) is real and so is -Br($ if l(l:1.

In an exactly similar way we may combine the variation (4.2) with (2.6). Then
for( with l(l:1, Y(F*):y1p1*ew1(u,u)*o(e), where e>0, 0=u<1, -l=o<1,
and )'wr(u,u)=-il.L(zF'(z)((+z)l(/z))+2uirm{iek).u|. Again,'rm{et").tl) is
not identically zero. Hence, if the real part of ).L(zF'(z)((+z)lG-z)) took on
different signs for two (, then this combination of variations would cover a neigh-
borhood of F (fl . Hence B 

^(O 
: -Fie l),L(z F' (") (( + z) l G -z))] cannot change sign.

When we chose l, above, we could have equally well chosen -,1. Hence by
proper choice we can assure that B^(O=0 for all ( with l(l:1. Finally, the proof
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of Theorem 4.2 holds with only minor changes. If (4.10) holds, then Y(F*) will
again cover a neighborhood of Y(F), leading to a contradiction.

4.5. Letting z*0 in (a.8) will gtve a Marty relation for the given extremal
problem. This can also be obtained quite simply directly from (2.6).

Theorem 4.4. Let V and L be as in Theorem 4.1. Suppose F(z):fir216222*...
...€.8 is locally extremal for maxRe Y(F). Then F satisfies the Marty relation

b,L(F; t-F(z)\: L(F; F'())-E@; z'44).
Proof. Put zo:0 in (2.6). This relation follows easily.

5. General extremal problems for pairs

5.1. The pair property has one useful symmetry. If {F,G} is a pair, then so is

JfS4,eg41. Although the pair property is quite restrictive, there is a wide class

of transformations available for special normalization. In particular, if {4 G} is
a pair and a*0, then {aF, a-L G} is also a pair. If gr(z) and, gr(z) are any univalent
functions mapping U into U with gr(0):gz(0):0, and {F, G} is a univalent pair,
then {F(gr(z)), C(srk} will be a univalent pair.

Specifically, if {4 G} is a univalent pair and Q>0, do, q,r, q,z are any real num-
bers, then

(5.1) {qeinoF(etu'z), p-ae-iooG(ekrz))

is also a univalent pair. Observe that by proper choice of a,s, qt, and ur, we can
use (5.1) to make any coefficient of .F and any two coefficients of G real and positive.

We also observe that the rotational and slit variations of (a.1) and (4.2) can be
applied independently to each member of a univalent pair.

5.2. The class of univalent pairs is not compact, but it does have some com-
pactness properties. Suppose {F,, G,) is a sequence of univalent pairs. Then by
extracting subsequences as necessary we can assume F"(z)lFi@)*f(z)€9,
G,(z)lc:(0)*g(z)(9, F:(O)*b, and Gi(0)* c. If b and c are both finite non-zero
complex numbers, then the pairs {.(, G,} converge uniformly on compact subsets

of U to the univalent paft {bf(z), cCQ)).
If b:-, then quarter theorem and the pair property show that G,(U)c

c{w: lwl=4llf;(0)l} and hence c:0. In this case Fo(z)*- (in the sense that it
converges to - uniformly in compact subsets of U-{0}) and G,(z)*g (uniformly
in compact subsets of U).

If å:0, then F,(z)*Q. However, G,(z) may converge to -, 0, or some
univalent G(z). This is easily seen by considering examples of F,(z) which map U
onto Vn:{w: lwl=lln}, or onto VnvW(lln2,n), or onto VovW(llnz,4) where
W(6, R):{w: 0=Re w=R, llrr wl=ä}.

15
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If å is finite and non-zero, then the Fn(z) converge to some univalent lr. The

G,may converge to a univalent G,in which case {F, G} is a pair, or the G, may.con-
verge to 0.

Individual extremal problems must be considered carefully to see whether an

extremal univalent pair does indeed exist. For example, (lå11+ lclD is easily seen

to have no maximum in the set of all pairs.

5.3. Let V (4, F2) be a continuous complex valued functional defined over

all univalent pairs {4, fr}. We assume thatY has a Fröchet derivative at {F , Fr}.

That is,

(s.2)
v(Fr+eHr, F2*eH) - Y(Fr, F2)*,L1(F1, Fr; H)*eLr(Fr, Fr; H)*o(e)

where Z, and Lrare continuous linear functionals of ä, and I1r, respectively. We

will usually suppress the dependence on .F1 amd F, and write these simply as Lt(Ht)
and Lr(Hr). We will say that a univalent pair {Fl,F,} i, (locally) extremal for
ReY(Ft, Fz) if ReY(Ff,Ff)=neY(FL,F) for all (nearby) univalent pairs

{fi, FJ}. Here "nearby" is in the sense of convergence on compact subsets of U.

Suppose that the univalent pair {F ,Fr} is locally extremal for ReV(FL,F).
From Theorem 3.1 and (5.2) we. must therefore have

(5.3)

ne 
"* {r, (__4_) _ r,(åÅ _ (#*)v,(#) _,w)J 

} = o

for any zs€U and any real a. Here ws:F1(zr) and we conjugated the term con-
taining e-t" in (3.10).

Define

(5.4)

(

I
J
)
I

t

Proceeding almost exactly as in the proof Theorems 4. I and 4.2, noting that the roles

of F, and F, can be interchanged in Theorem3.l, one easily verifies:

Theorem 5.1. Let Y(&, F) be a continuous complex ualuedfunctional defined

ouer all uniualent pairs, hauing a continuous linear Fr€chet deriaatiue defined as in
(5.2). Let Ar, Az, 81, and 82be fufined as in (5.4). Supps5, the uniualent pair {F , F"}
is locally extremalfor Re V(F1, F). Then Lt(zFiQ)) and LrQF[(z)) are real; B1(z)

D,(w)-L{#)
E,(o -1,(w)
Ar(w) - DL(w)+ Lr(Fr)*Dr(llw)
B,(O- Et(O+W)+ffi1

D,(w)-Lr{#)

Er(o

Ar(w) - Dz(w)+ Lr(Fr)*Dr(1lw)

B,(o- Ez(o+WD+ffi}.
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and B2Q) are real and non-positioe for lzl:l; and F, and .F, satisfy the dffirential
equations

(5.5)

If either Ar(w) or Ar(w) is analytic up to isolated singularities and not identically zero,

then there is no ws exterior.to Fr(U) with wf,t simultaneously exterior to Fr(a).

We remark that the last conclusion of theorem is equivalent to saying that the

closure of []t(U)l v[Fr(U)]' is the entire complex sphere, where we denote

3'- {w: llw€B}.

5.4. In most extremal problems, Ar., Ar, Br, and. B, are analytic up to isolated

poles (and not identically zero). Since dzzf z2<0 on lzl:1, it follows that the

Loundaries of 4(U) an d Fz(U) lie on the trajectories

Ar@)4=0, Ar@){=g,

respectively. These boundaries must consist of a simple closed curve plus some

possible slits and must be made up of analytic curves and arcs. Any branching can

occur only at the critical points of ,4, and ,42. Since w*llw carries the outer bound-

ary of F (U) to the outer boundary of Fr(A, we must bave Ar(w)lA2Qlw) teal

and positive for p on the analytic arcs making up the outer boundary of F (U).

In practice, we find for most simple problems that after suitable normalization

At(w):11111*1.

5.5. The obvious analog of Theorem 4.3 will hold for pairs. The proof is essen-

tially the same.

Similarly, Marty relations will hold for an extremal pair. Putting zo:0 in
Theorem 3.1 gives

,F1 (o) IZ, (1) - L,(Fill : r,(ri Q)) - @{1"y,
F ; (o) tL,(t) - L,(F I)1 : L,(F ; (z)) - tp r ; 1z-y.

Again these Marty relations are interesting but do not seem to be generally useful.

5.6. It is useful to demonstrate the use of Theorem 5.1 in a very simple case.

Let F1(z):$rslbzz2*..., Fr(z):c1z*czz2*... and consider the problem of
maximizing lårcr[ among all univalent pairs. Here the solution lblcrl<-l is well

known [1] and is sharp, for example for the pair Fr(z):F2(z):2' However, let us

analyze the problem using the methods of this section.

From (5.1) we may assume år>0 and c1>0, and hence set V(F',F):
:xt(F)xz(Fz), where )6(H(z)) represents the coefficient of z'in the series expansion
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of H(z). Let a:supRe {fr(4)Xr(Fr\: {fi, fr} is a univalent pair}. There exists

a sequenoe of pairs {Fr,,, Fr,o) with Xr(Fr,,):|, Xt(F2,,)*a. The quarter theorem
shows that the Fr,n are bounded, hence a is finite. Since a>0, the Fr,, do not con-
verge to 0. Hence an extremal pair exists for this Y. Observe that the important
fact here is that Y is invariant under {\, F2}*{aF1,a-LF2}.

For Y(ft,F):yr(F)Xr(Fr), one easily verifies that Lr(H1):qp(H),
L2(H)=b1y1(I/) where F1(z):fir7tr... and Fr(z):hz*.... Then fron (5.4)

A{w):tr'r7*1:Br(z):Bz(z):-b(t and hence the extremal pair satisfy

(#)':, (#)':,
Thus Fr(z):brz, Fr(z):c12, and the relationship of the boundaries of Fr((I)
and Fr(U) requires lctl:lllbtl i.e., u:lbrcrl:brcr:1 for the extremal pair.

6. The value sets for F € I

6.1. In 1954 Jenkins showed [18] that if F(E and lrol:r, then l,lr(zo)l=

=rl(l-r2)1t2, with the maximum being achieved at zo-ie-ior by the function

(6.1)

This function maps U onto the interior of a circle centered on the imaginary axis
and passing through the points f 1. Such a circle is invariant under the mapping
w*llw and hence F,,aQ.E.

In this section we study the set of possible values of a Bieberbach-Eilenberg
functions at a fixed point in U. Define, for any r with 0=r<1

(6.2) V(r) : {F(r) : F€ 8}.

lf F(z)(8, then so is F(peinz) for 0<g<1 and any real a. Hence V(r):
:{F(re'): FeS}:{F(z): F(E and 0<lzl=r}. If F<8, then so are -F(z) and,

-F121. 
Hence V(r) is symmetric with respect to reflection in the real and imaginary

axes. It thus suffices to study V(r)in the first quadrant. The points 0, +1, -l are
never in any V(r), but each V(r), 0<r<1, contains a punctured neighborhood
of 0. Each V (r) is bounded (from the Jenkins result or using the fact that F(z)lF'(0)
isn 9 and lF'(0)l=1 so lF(r)l<rlQ-rz)). Thus Z(r)u{O} is compact. It is
easy to construct sxamFles of Bieberbach-Eilenberg domains with boundaries
made up of circular arcs containing any preassiped b#0, +1, -1. Thus, each
such å is in sorne V(r).If F(r):b, then F maps a neighborhood of r onto a neigh-
borhood of å. Hence å is an interior point of V(r) for any r'>r. That is, the do-
mains Z(r)u{0} are strictlymonotoneincreasingand ro:i1f {r: b€Z(r)} is such
that bQ|V(rr\
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6,2, Let b * 0, I be a boundary point of V (r) in the first quadrant (i.e., 0< arg å =
=nl2). Then log å lies on the boundary of the set of log F(r) and from Theorem4.3,
if F<E with f1r;:b, then F.will be locally extremal for Re )"logF(r) for some

,t with lr.l:1. (It is not essential to take the logarithm here, but it offers a minor con-

venience to do so.) Tbus we consider Y(F):Itog F(r). Then Z(ä):AH(r)lF(r).
If F is locally extremal for Re ),log F(r), then from Theorem 4.1, F satisfies

1(l - bz) dwz ),c (l rz) d zz
) w=F(z), z((J,

4.L shows Ac is real, and since

Ä:I corresponds to maximizin'g

w(b-14l)(1 - bw) z(r- z)(I-rz)

where b- F(r) and c:rF'Q)lF(r). Theorem

B (l) : - Ac (I - r') l(1 - ,)', Ac >0. Observe that

lf(r)l for F€8. ,

6.3. Set

(6.4) 0-Q(w)- lw(b-14,)(1 - b*)l-ttz dw.

t9

(6.3)

(6.5)

This an elliptic integral and hence

critical points are 0, b, b-L, and @.

0 to b along the line joining these

the inverse of a doubly
One period, 26r, will be

points. Setting w-bt',

t(l - t')0 -bz()l-ttz 67

periodic function. The

twice the integral from
we find

{
0

öt:, i
: zx(b)

where K(å) is the normal complete elliptic integral of the first kind (in Jacobi's

form). This is uniquely defined for any b*0, I in the first quadrant if we specify

that its real part is positive to fix the sign 9f the root and define it by continuity for
å real and greatet than l. We remark that in the last case there is no canonical path

of integration. Passing above or below å-1 results in complex conjugate determina-

tions of K(å). We choose the determination resulting from passing above.

A second period of (6.a) is 26r, equal to twice the integral along the circular

arc from b to b-t through 1. This integral is twice the integral from å to I along

this path since dO is invariant under the mapping w-llw. Set åt:(1-b)l(l+b)
and w:(1 -brt)l(l+årr). Then

^, 
: ffi/ tt, -ult, - bltz)1-rtz 4,

A,;: iT K(b')'

Landen's (or Gauss') transformation gives 2K((l-b)l{l+å)):(l +b)KQtT=o-2):
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-(1 +blK'(b) where K'(b)
example. Thus

(6.6)

is the associated cornplete elliptic integral. See t8l for

6z : 2iK'(b)'

Other pairs of periods of (6.4) will be related to ö, and 6, by unimodular
transformations and will correspond to integration over homotopically different
paths in the plane less the critical points 0, b, b-r.

The line segment joining 0 to 6, in the O-plane corresponds to a path fl joining
0 to å in the w-plane, along which dQ has a constant argument, and which is homo-
topic to the line segment joining 0 to b. (All homotopies are relative to C - {0, b, b-'\.)
Similarly the line joining ö, to 6rf (U2)62 in the Q-plane corresponds to a path

f, joining å to 1 in the w-plane, along which dQ has a constant argument, and which
is homotopic to the line segment joining b to'l. Let fi, and fii be the images of f,
md f, under the mapping w*Ilw. Then fr+?r+r;+ri is a path from 0 to -
through b,l, andb-1 along each separate arc of which dQ is constant. (6.4) defines
a univalent mapping of the complement of this path onto tåe parallelogram with
vertices f61, +ö1+d,2, in which å corresponds to tör, 1 to XöL+Olz)Az,
b-t to *a1la2, and - to 6r.

This parallelogram is half of the entire period parallelogram. Starting on the
"other side" of fr, we see that (6.4) also maps the same split plane univalently
onto the other half of the period parallelogram. Finally, observe that the mapping
w-Uw corresponds to symmetry with respect to 6t*(ll2)62 or d'L+(32)d,2,
modulo the two periods.

6.4. ln a similar way we can consider the mapping

(6.7) t: i lrtr-z)(t-rz)l-ttz4r.
0

Here 0<r<1 and this is a much simpler integral. Much as in g6.3 we find that
(6.7) maps the interior of the unit circle slit from 0 to 1 along the real axis univalently
onto the interior of the rectangle with vertices X2K(r) and t2K(r\+X'(r).
This is one fourth of the entire period parallelogram. Here z:r cotresponds to
X2K(r) and z:1 corresponds to t2K(r)+ifg1. z:-l corresponds to il((r).

6.5. Suppose w:F(z) is analytic and univalent in U and satisfies (6.3) for
some /, )", and c with ),.c>0, F(r):$, and with 1 on the boundary of F(U). Since
å is interior to F(U), the boundary of .f'(U) is a trajectory of the left-hand side of
(6.3) and hence a simple closed analytic curve which we denote by 1lr. We know
1 lies on 7s and since (6.3) is invariant under w-l fw, the same is true of ys. There-
fore F(8.

Let yrbe the image of the segment [0, r] under the mapping w:F(z) and let
y, be the image of [r, 1]. Then y' is a trajectory of the left-hand side of (6.3) joining
O to b while y, is an orthogonal trajectory joining å to some point w6€73.
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The mappin s 6.q carries y1 to a line segment I joining 0 to some point ro1

which will be the same as ö, modulo the period parallelogram. That is, a1:n161*
+nzdz where n, is the same odd integer andn2 is some even integer. ?2 maps to a
line segment /r, orthogonalto h,joining crr, to some point co1*crr'. .ya maps to a
line segment Is, parallel to [, from 'g|,1*as to -crr1*rrrs. Thus (6.3) maps the

interior of yu less the slit !t*!z to the interior of the rectangle Ä with vertices

t(I,1, Xia,1*coo. The line segment /, must contain a point oi which is the image

of 1 under (6.4). That is, ai:6tt(ll2)az+2kdt+2j62' It follows that there

exists an r.o, such that a[:@ft(rl2)ou and ar:n"6t+na6, where n, is some

even integer and na is some odd integer. The pair 2a1, 2ot2 is a pair of periods for
the inverse of (6.a).

The above mapping can be reflected in /r. The exterior of y, slit from w;1 to ;
along the image of lt*Tz under w-l lw wrllmap to a rectangle congruent to Ä.
and having a subsegment of /s in common on the boundary. It follows that the area

of R is one quarter of the area of the primitive period parallelogram and hence

2a1,2co2 is a primitive pair of periods. That is

2l

(6.8)

(6.9)

I ar: ltLör* ftz6z /tt, Yt; odd integers

| ,r: ltsör* na,6z ltzr Tts even integers

I n fla- Tt2lts : l.

Here nlna-nrnr# - I since the mappings involved are all conformal. The trans-

formation (6.8) thus belongs to the congruence subgroup modulo 2 of the full set

of unimodular transformations.
Since w:F(z) satisfies (6.3), we must have ll(l-6nrtz9:l)"c(l-r\lttzz.

Set p:l),(l-b2)Jt/2 Q:p,c(l-rz)jLtz. Then Bar:2CK(r) and 3(art+aro):
:c(2K(r)+iK',(r)). Combining these, Brrro: icK'(r). Since 1c>0, C>o (choosing

the proper root). Multiplication of O by B therefore rotates the rectangle R so that

the image of I lies on ttre real axis, and the image of /s is parallel to the real axis.

Hence Im {Bcoo}:I6 {,Ac,ri1=1- {B' (l l2)a4l:Im {CiK'(r)}:CK'(r)' Hence we

have shown that the following two relations hold:

ll1 - b')lttz s)t - l),c(l - rz)7Lt,2K(r) 2 0,

K'(r):-
K(r)

6.6. We now state the main theorem.

Theorem 6.1. Let bl\,l with O=argb=np be ghsen. Let K(b) and K(b)
be the normal and associated complete elliptic integrals of the first kind, with sign

determinations made so that ReK(å)=0 and Re{I<b)lK(b)}>0, andwith K(b)

defined by continuity for b real and greater than l. Then there exists a uniEte ru with

'*t#l
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O<16<1, a unique ),6 with Wul:|, a unique c6*0, and a function F.Q)€E such
that Fu(ru):b and

lluT -br)l't? K(b) = 0,

)tcn= 0,

Vu Q - b')l't 2 K(b) : fLt cu(l - r\llt' K (r u).

(6.10)

(6.1 1)

(6.12)

(6. 13)

K'(ru)
K(ru) )

Furthermore, w:F6(z) satisfies the dffirential equation (6.3) with )o:)"6, t:r6,
c:cu:rop[(yu)lFu?). The giuen b is on the boundary of l/(r) ond F6is the unique

function in E with F(r):[ unless b is real and greater than l, in which case there is
exactly one more, the functionffi.

Proof. Sinse' X'1r11X1r'1 is strictly monotone decreasing from - to 0 as r in-
creases from 0 to 1, there is a unique 1', O<ru<l, satisfying (6.10). Then there is
a unique r.ä with llrl:l satisflng (6.11), and a unique cu satisfying (6i.12) and.
(6. l3).

Let f, be the unique trajectory of the left-hand side of (6.3), with ),:),t, through
w:1. This is a simple closed analytic curve, invariant under the mapping w*llw,
.whose image by (6.a) is the line segment joining tör*6r12. The values which have
been chosen are such that(6.4),(6.7), and, U.6(1-6z11trzg:l),uc6(l-rfyltrzt togfither
define a univalent mapping w:Ft(z) of u ilit from 0 to 1 along the real axis to
the interior of f, slit bV fir+ti wherc fi is an orthogonal trajectory of the left-
hand side of (6.3) joining å to some point of fs. This function is easily seen to be
analytic at each point of the segment [0, 1) and hence can be continued to be univalent
in all of U. Since f, is invariant under w*llw, Fr€8. The method of construction
insures that F6Qu):å. Letting z-r ]n (6.3) gives 'ct:rtFi!)lFuQ).

Next we show that be|V(r). We know b€|V(r) for some r and since
Fu?)*b,
(6.t4) f617.

If be\V(r), then there exists an F€E with F(r):g satisfying (6.3) and
with the boundary of F(u) passing through 1. From the discussion of g 6.5, there
must exist a pair of primitive periods 2o)1, 2a2, such that (6.8) and (6.9) hold. set
r : a2l co1, x b: 6zf 6L- tK' (b) | K(b). Then

T-(6.15)

with nr, frz, fts, and nL as in (6.8).

ttaTu* ns
TrTlzTut ftt

Now ru:/('(DlK(b) lies in the region Im r>0, O=Re r=1, lr-ll2l=112, as
is shown, for example, in [10]. It is known (see [15] for example) that this is part of the
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fundamental domain of the congruence subgroup, but we can verify this easily and

obtain information on uniqueness at the same time.

From (6.15), Imz:Im 4flnrro*n112. Set ru:xfry. Then lt6-ll2l=ll2 is

equivalent to x2-xIyz>0. But then lnrt6*n112:nf,(x2-x]-y2)+(h+n)2x*
+nl(l-x)>x*(1-x):1 since n1, being odd, is non-zero and n1*n2 is similarly

ooo-".ro.Therefore, Imr<Imr, withstrictinequalityholdingexceptwhen flt:xt,
flz:Q, or when nr: tI, n2:12, ftu-ll2l:U2.

In the first case, or:för and from (6'9), )':)'6' It follows that 'F(U) is

bounded by 9r, the unique trajectory of the left-hand side of (6.3) through w:1,
and that ?r:fr. Hence F(z):Pu1").

In the second case, å€(1; -), llr:x6tT26r' The two sign choices give the

same h and yr, hence only one F(z).It is easily seen that this transformation cor-

,rrponå, to taking the path of integration in computing K(b) "below" llb, and

F(z):pffi is the unique function giving the mapping'

In every other case K'(r)lK(r):Imt=Im h:K'(rb)lK(r)' This implies r=ro

which contradicts (6.14). This completes the proof of the theorem'

6.7.Ifå is given, (6.10) determines the r so that b€[v(r). Similarly, if r is

given, (6.10) determines the set of å which lie on \V(r). In both cases tables such

as tlQl are useful. It is only if ,t and r are given, that there is some difficulty. The

conditions of Theorem 6.1 in theory will determine å but in practice this may be

impossible. However, in a few special case$ something can be done'

If A:I, corresponding to the problem of maximizing lf(r)lt then (6.11)

requires

(6. 16)

Here we are computing the weighted average of a set of complex numbers along, a

curve. The values of (1-år)/(1 -bztz).lie on the circular arc from (l-å'z) to 1

which, if continued, would pass through 0. Thus if å2 is not real, then the values of

L0-br)l(l-bztz)fil2 lie entirely in one half plane and (6.16) can hold only if å2 is

real. That is, only if å is positive or pure imaginary. Further, å positive and greater

than 1 wotld also make (6.16) impossible.

Suppose å is real with 0<å=1. Then (6.10) requires rb:b, (6111) shows

.16>0, and the unique F6@):7.
Suppose $:iP, B>0. Then using the imaginary modulus transformatio." 

"11
the reciprocal modulus transformation (see [8], for example), K(b):y1iB1:fiiK(fr)
and K'(b) : K({TTF):K(Up): pitK(p)+iKt(p)1: pilK'(fi)+iJ((B)l where

PL:PI/TTF and P'!:lll/TTF. Hence (6.10) requires K'(r)lK(r):I((f)l K(P)
s1 r:yr:Br. This is equivalent to P:rl/T=:F. Since f >rinthis case, this gives

the maximum for ,F(r) and we have Jenkin's result.

I
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6.8. It is interesting to look at what can be said about rufor b real and greater
tåan 1. Here the transformations glve K(b):(Ub)IK(Ub)+iK(Ub)l and K (b):
: K(i lB - t) : (t I b) K(1/F=I I b) : (U b) K' (t I b). Hence (6. I 0) requires r : ra where

K'(r) o

w:15",
As å increases from I to -, o increases from 01s e, &Ird ol(I*oz) increases from
0 to a maximum of 1/2 when o:1 and then decreases to 0 again. If ro is such that
I((ro\lK(ro):112, then for r<to, Z(r) does not intersect (1, -). For r:ro, V(r)
will have the single point å: fi i" common with (1, -), and for r>ro, TV(r)
will intersect (1, -) in exactly two points. Since K'(ft):2K(k) when k:3-2{2,
ro: 2 (312 - 4)il' : 0.98517 ... .

Finally, if b:eio, then K(å):(ll2)e-nrzlX(cos (0/2))+a('(cos @12))l and
K'(b):s-iet2K'(cos (0/2)). Henca r6:v where

K'(r)
K(r)

From this one easilyverifiesthat Y(r)iscontainedinside theunit discif r-rr:1F2f2.
lf r:rt, Y(r) is tangent to the unit circle at ti. ff rr<r<1, |Y(r) intersects
the unit circle at precisely one point in each quadrant.

6.9. Figure I shows the boundaries of Z(r) for the two critical r mentioned
above. Only tåe portion in the first quadrant is shown. The full set is symmetric
with respect to reflection in both axes.

The inner curve defines V(r), rr:11212. The boundary appears nearly vertical
near the real axis, but its real part reaches a maximum near b:0.7077+i0.13.

K',(tlb)u-wf

2q K'(cos Al2)

l*Q'' Y K(cos0l2)

Figure I
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The outer. curve defines V(r), ,o:2(3{2-4)t/z. This boundary is tangent to
the real axis at b:P. The very small loop that the boundary makes around the

poiut I could not be determined very accurately because of the coarseness of the
tables [10] used to find these boundary points.

7. T\e value sets for pairs

7.1. In 1969, Aharonov [] proved that if {F , Fr} is a pair and lzrl:rr,lzrl:rr,
rL,rz<1, then lFr(z)Fr(zr)l=rrrr(l-r\-Lt\(l-rf,1-ttz, this being sharp if rt:rz.
In 1972, Jenkins [21] proved that lF{z)FzQ)l=[p-1(v(r)+v(r))]-t where

v(r) and p(R) are the modules of suitably defined doubly-connected domains.

This result is sharp.
In this section we will study the more general problem of finding the boundary of

(7.1) V(rr,rr): {fr(rJfr(rr): {F , fr} is a univalent pair},

for any 11, fr<|.
From (5.1) we see that if l"rl:rt,ltrl:rr, then V(rr, rr): {F Q) F2Q): {fi, F2}

is a univalent pair). Much as in g 6.1 one easily sees that 0, I are never in any V(rr, rr)
but every other complex number is in one; each V(r1, r) u{0} is compact; V(r1, rr)
is symmetric with respect to reflection in the real axis; and the sets T(rr,rr)v{0)
are monotone strictly increasing with respect to either variable.

7.2. Agun, it is a slight convenience to look at log Ft(rr) Fr(r), so we introduce
the functional
(7.2) V (Fr, Fr) - log li(rJ *log Fr(rr).

Suppose u is any complex number other than 0 or 1 and u(0V(r1, rr) for some

rr, rr. It suffices to assume Im o>0. Let a:bz with å in the first quadrant. Then
there must exist a 2 with l,1l:l and a univalent pair {F , Fr} extremal for
Re,t{(Fr, Fr) such that F1Q)Fr(r):$2. One easily computes ).A1(w):
: ), (r - b J z) w I (b, - w) (l - b rw) and )"A r(w) : )" (L - b ft )w | (b, - w) (l - å, w), where

F1(r1):b1, Fr(r2):b2, brbr:62. The pair {(bzlb)112F1, (brlb)rtzFz} is extremal

for the same problem, hence we may assume without loss of generality that br:
:bz:b. That is, d and Fz must satisfy

A(l - b') dwz lct(l-r?) dzz

(7.3)
w (b - 14,) (1 - bw) z(rt- z)(1 - rF)

A(l - b') dwz Acr(I - r?) d zz

w - Ft(t)

w - Fr(z): 
z?z- z)Q -rzz)

where ct: rrFi@)l F (rr), cz: rrFiQr)l F (rr), and Acr>O, Acr>O.
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7.3. The mappings (6.4) and (6.7) were studied in $ 6.3 of the last section. The
arguments of those paragraphs apply equally well here, and we have the same fun-
damental periods, zd.b 2d,2 of (6.4), 6Li2K(b), 6z:2iK (b). Let Bz:).(l-bz),
so BzdQz is the quadratic differential on the left-hand side of (7.3).

Suppose {Fr, Frl' is a univalent pair wåich satisfies (7.3) for some /1, rr, )., cr,
c, with ).cr>Q, Ac2>0, F1(r1):b, F2(rr):fi. Then d maps the line segment (0, rr)
onto the unique trajectory of BzdQz which joins 0 to å. Since,t is the same, F, maps
(0, rr) onto the same trajectory. Therefore, just as in $ 6.5, we must have some crr,

satisfying (6.8) such that

(7.4) l,t (1 - br)lttz @t - lhcl (1 - r?)JLt22K(rr)

: p,cr(l-r|11trzr*rrr) = 0.

The boundaries of d(U) and F2((I) are analytic curves which are also tra-
jectorieiof B2dQ2. These need not pass through 1, but if we assume (as in the con-

clusion of Theorem 5.1) that these trajectories are mapped into one another by
w*llw, then they are mapped by (6,4) onto lines which are parallel to and equi-

distantfromthelinethrough Xal*Ql2)ar, wherecrrrissuchthat2ar,2a2isapair
of primitive periods satisfying (6.8). Looking at the composed mappings defined by
(7.4),wemustthushave[,1c1(1 -rz\'itrrzU'rrrI[),cr(l-rfi]Ilzx'(rr):Im[,1(1-b')f't'ar.
Using (7.4), this implies

(7s) t*{#} :
7.4. We now state

1 K'(rt) , 1 K'(rr)
ZW-Z NV)'

o^[K'(b)]_ I K'(rt) r1 K'(rr)
^'"[ K(b)J- 2 K(r) ' 2 K(rr) )

Theorem 7.1. Let b*0,1 with 0<-argb=nl2 be giuen. Let K(b) and K'(b)
beasinthestatementofTheorem6.l.Lettl,0-<r1<l besuchthat Rs{K'(b)lK(b)}>'
>(112) K'(r)lK(rr). Then there exists a unique rrwith 0=rr=1, A with lll:1, c1

and cr*O, and a uniualent pair {Fr, F2} with Fr(r):pr1vz):b such that

(7.6)

(7.7) l Q-br)l'tzK(b) = 0,

1"c, = 0, Acr= 0,
and

U. Q - 6a1y r z y (b) : [],c r(L - r?)1t r z * rr, : p"c r(l - rz)lL t 2 x Q ).

Further, F1 and Fr'satisfy the dffirential equations (7.3) with ct:rrFi\r)lFr(rr),
cz:rzFiQ)l Fr(rr). The complex number bz is on the boundary of V(rt, rr) and {F , Fr\
is the unique uniualent pair with Fr(rr):F2Qr):S unless b is real and greater than l,
in which case there is exactly one more pair, {Fffi,-FrC4}.
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The proof of this theorem is omitted since it follows the proof of Theorem 6.1

quite closely

7.5. Comparing Theorems 6.1 and 7.1, we easily prove:

Theorem 7.2. Let {Fr,Fr]- be a uniualent pair and let zr,z2€U. Then there

exists a real r betwe€t/x rr:lzrl and rr:lzvl and qn F(E such that K'(r)lK(r):
: (l I 2) K' (r ) | K (r ) + (U 2) K' (r ) | K (r,) and' F (r)z : F1@ ) F r(z ).

Another theorem whose proof is immediate is

Theorem 7.3. Let 0<r<1, lzrl=r, lrrl=r. If {F ,Fr} is any uniualent pair,
then Fr(zrl1Fr(zr)Ir2 except when lztl:ltrl:r, F (z):g171tr)z, F2(z):c-L(r|zr)z,
qnd cl0 is arbitrary.

Since {,F(er"'z), F(etu,2)} is a univalent pair for any F€8, Theorem 7.3 gen-

eralizes the result of Grunsky [3], that F(z)F(zr)*rz for any F€E and zr, z,
in U with l"rl=r,lz2l=r.

Maximizing lFr(rr)Fr(rr)l is the same as maximizing Relog Fr(r)Fr(rr). The
extremal pair must satisfy (7.3) with A:7, and hence (6.16) must hold. That is,

å is real, 0=b<1, or is pure imaginary.
In the first case, Theorem 7.1 shows that lF1Q1)Fr(rr)l:ryrr. However, putting

Fr(z): pr1"7:F,,,n/z(z), the Jenkins function of (6.1) glves F1Q)Fr(rr):
:rtrzl(l-rrrr)>rrrr. Hence å must be imaginary.

. lf b isimaginary,say b:iB, then justasin$ 6.7, lFr(r)Fr(rr)l:Bz:vz1(1-r')
where r satisfies K'(r)lK(r):(ll2)K'(rr)lK(r')+(112)K'(rr)lK(rr). This is equivalent
to the result of Jenkins mentioned in $ 7.1.

8. The maximum of lårl n E(lbLl)

8.1. For any P,0=f=1, letE(B) denotethe set of all F€E suchthat lbrl:f,
where as in (1.1), F(z):$r246222*.... E(P) is compact for each /].We wish to
find the maximum of lårl tor F(E(f) fbr each fixed B.

Jenkins has solved this problem [20] in the sense that he has implicifly defined
(in terms of their mappings) a one parameter family of functions which achieve the

maxima. Here we shall duplicate most of his results using variational techniques

and carry the analysis further to obtain the actual bounds in a more explicit form.
For B=0.827... these bounds are extremely simple.

We may assume år=0 and look for the maximum lbrl with å, fixed. The

extrenoal F<E(b;) exists and is locally extremal in E for Re V(F) where

(8.1) V (F) - Alog br*logb*
Here,1 is a Lagrange multiplier. For this Y, L(F;G):lXr(G)lbt*Xz(G)lbz where

X"(G) is the v-th coefficient of G. Then L(zF'):)a2. Hence from Theorem4.l,
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.l is real. Computing A(w) and,B(w) we find that the extremal ,Fwill satisfy

(8.2)

for lzl=1. Here we have changed the sign and the right-hand side of (8.2) will
therefore be negative for lzl:1.

Let (:s-ia and consider the slit variation of @.2). Since e>0, we find
Re [(,1 + 2) + Qbrl br)(-'J=O for each ( with l(l : 1. This implies ). +2> 2lb] bzl>t
since lårl=21årl for any F(8. That is, 1>-1.

Make the simple change of variable (:(lbrll6r)z and put

[rr*,)+ EU.*)] ry :[** z) +*+.E,Jg

(8.3)
1

2W - w*L,
w

22: ft+

- (1 *rZ) dzz
A-Y r-zz

Then w:,F'(z) defines W as a univalent funstion of Z, mapping the exterior of the
Iine segment [ - 1, 1] onto the exterior of a continuum l- containing the points W= t l,
and having no interior (Theorem4.2). Since l4/2-l:(w-llw)214, dwzfwz:
:dWzl(lYz-l) and hence from (8.2.), W and Z satisfy

(9.4)

where

(1 + oW) dwz

o:=?=b? . !: -?!'.,- n:):12b2(1+l)' lbzlw+z)'" ,t+1

We see q and r are real, q>1, O<r= 1. The last since the right-hand side of
(8.a) is real and non-negative for Z€[-1, 1]. If t=1, then the right-hand side of
(8.4) has a zero at -llr and hence the continuum f will not contain the critical
point s: -llo. If z:1, then f must contain s.

8.2. We now analyze the continuum ,f more carefully. We see that f contains
f l, and may or may not contain s. Except for these points it must consist of analytic
arcs which are trajectories of dQ2.:(l+ow)dwrl!-Wr).

If o:tl, 7322 simFlifies. Taking o:1, for example, dQ2:dlT2l(l-W).
The unique trajectory of this through -l is the infinite interval (--, *1) of
the real axis. Hence.l'consists of a segmentfx, l], --<x€-1, and F maps (I
onto U less a slit I-l,o,J, -1<q=0. Then, just as in the derivation of (4.2),
FIQ-p7z:6"21(l-z)2. Comparing coefficients we find bz:2b{l-b). This is
exactly the familiar Pick bound for the second coefficient of a bounded function
[27]. As we shall see, this is not the extreme value. The case o: - 1 is similar and
gives the same bound for lårl. Notice that in these cases lol:1, r:1 and hence

T _W2

br:llQ.
Hence we assurne o # t 1. Then dQz has three finite

exactly one trajectory leaves. At ^r - -llo, exactly three
critical points. At t 1,

leave at equal angles.
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Thus f consists of either: (r<1) the points +1 and a silgle analytic arc not
passing through s, or: (r:l) the points tl, s, an atcjoining -l to,t, an arc
joinin! * 1 to s, and possibly a segment of a third arc leaving s.

Suppose 7, and y, are two distinct arcs meeting at s and lying on the trajectories

of dQz. Then / dQ on Tt*!z is real and is equal to the integral on yi+y,+yi
where 7i and yi are subarcs of 71 and 7r, respectively, lying outside a small circle

of radius a centered at s, and 7" is the smaller of the two arcs of this circle joining 7i
and yi. This, and indeed any path, can be altered homotopically in C-{s, l, -l}
without changing the integral of dQ.

Next we show that if "r is the line segment [-1, 1], then either I dA over

,I is real, or there are two disjoint subintervals of ,I for which / dQ is real.

First, suppose ?<1. Then either.f is homotopic (in C-{", 1, -lD to "r,
or the three trajectories leaving s must cross -I. The above assertion therefore holds.

On the other hand, if r:1, then the pair of trajectories from *1 to s make up

a single path homotopic to "I or else these, together with an arc of the third trajectory

from s to some point of 
"I, 

make up two paths homotopic to disjoint segments of ,I.
Again the conclusion follows.

f 
"r, 

xr€J and sin'gr:rsr, sinlr:xr, then Iiiaa:.1|' [1+osin 01trzOU.

This is the weighted mean value of complex numbers on a segment of an hyperbola
passing through 1. Two such disjoint integrals could be real only if o were real.

If I dA is real over .r, then so is

o)trz1 do.

The square of the last integrand is 2*2(l - oz sin2 0)trz. t o' is not real, this integral

is the weighted mean of values on an arc lying entirely in one half plane except for
the end point (0:0) which lies on the real axis. Since the integral is real, we con-

clude that o2 must be real. We have therefore shown that in any case o is either
pure real or pure imaginary.

8.3. Suppose o is real. If lol=1, then the segment J:1-1,11 is the only
trajectory joining tl. Hence l:J and F(a):U' Since br>O, F(2):z and

br:|, bz-\. This function however does not belong to the class E(B) with f<1.
If o is real and lo1>1, say o>0, then s: -llo lies on "I. The only trajectory

fron I is the segment (s, 1) and the only trajectory from - 1 is the infinite segment

(.--, -l). Hence no bounded I can satisfy the requirements, and this case cannot

occur. The case of o=0 is similal.
If o:tl, we have already seen that F maps U onto U less a radial slit and

lbrl:2b'(l-br)'
If o:ilt is imaginary, the situation is more complicated.lt F(z) is extremal,

then so is F@ and hence we may assume p>0. One trajectory of dQz:
:(L*ipW)dW2lG-Wz) is the ray from s:iltrt to - along the imaginary axis.

1r/2 rclz

f tr*osingF/LdA - f t(l+osin 0)trz+(1 -osin
-nlz
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Thus l- consists of an analytic arc joining tl which is homotopic to "I, or arcs
from I to s, from - I to s, and possibly a segment of the imaginary axis extending
upward from s. The second case occurs only when r:1.

8.4. Suppose r< 1. Then from (8.4) the integral of dQ around f in the W-plane
will equal the integral around [-1, l] in the Z'plane. Therefore we must have

(8.5) q(p) : {pp(")

where, since f is homotopic to J,

1 nl2

q(p): / nt+ ipw)lQ-w)lLtzdw: I tt+tpsinlfLtzd0
-1 -n/2

(8.6) 
nn

: ',/, I l0* tr,sin2 0)1/2+ 1|rzou.

Here we took the real part of the integrand, since the integral q(p) is real. Sim-
ilarly,

7fr
(s.7) p(r) : 

_{ n, +r4lQ - qz1|tz o, : 
uf 

(l + z cos 0)rtz or.

This is only one relation among three unknowns. However, from the definition,

lolrl:trtlr:qbr. Hence

(8.8) p: Qtb1.

A third relation is obtained from (8.4) with the help of the observation that
Z--l/z corresponds to W:ilp. Thus, the integral of dQ nthe Z-plane along
thelinesegnrlent 1:l-llr, -ll mustequaltheintegral of dQinl\sll-planealong
L, the image of /. Since / lies along an orthogonal trajectory, Z must be the line
segment from ilp, to the point iY atwhichf crosses the imaginary axis. This integral
is pure imaginary, while the integral along any part of .l- is real. Hence

(8.9)

where

(8.10)

r(p) - {d'k)

s (z) - Im j' ,rL * rz)lQ - zzIlLlz dz
-Ur

Llt 1 t(r

i' | 1 - nr1L/2-Jtäl dt
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and

(9.1 1)

iltt

r(p) - t* 
_{ 

dQ -
i/tt

!da

lffil'''0,

t^ 
_{ 

dQ+rm

fnl2

!-Im tl - l,rz sin 01ttz d0 +

lffiJ'' o, - # !' t( 1 + pz sinz o)tr z - trt z o, -

Possible ambiguity of the sign of the last integral can be resolved easily since r(,u)

must be zero when ilp is on f .

8.5. One easily verifies that p'(r)<O and hence p(t) is decreasing. We find
p(O):n, p(l):2Q. Actually, p(r) is a simple elliptic integral which can be calculated

with the help of [8], for example, to be p(r):21/T+r E'(k), kz:(l-")lQ*r) where

E' is the associated complete elliptic integral of the second kind.
Similarly, s'(r)<Q and hence s(t) is a descreasing function of r with s(0):-,

s(1):9. Again one can compute s(x):2\/T+r lK(k)-E(k)f, kz:(I -r)lQ +r).
The first integral of the last line of (8.11) is a decreasing function of p which

is infinite at 0 and tends toward zero as ltr* *. The second integral is an increasing

function, zero at 0 and tending toward @ as tr,l+ 6. Hence r(p) is a decreasing func-
tion of p which is infinite at p:g and which decreases to 0 at some unique po.

The po for which r(pro):0 was found, with the help of numerical calculations, to be

(8.12) Fo : 1.1622005 ... .

Thefunction q(p)isclearlyincreasing.Wehaveq(O):n,q(po):qo:3.3519319...,
the last value being found with the help of numerical calculations.

8.6. Let z, 0<r=1, be given. From (8.5) and (8.9), sk)lpk):r(p)lqfu).
The right-hand expression is a decreasing function of p and hence this equation
determines a unique;.r between 0 and po. Then (8.5) or (8.9) determines e.(8.8)
determines å, . Finally, from the definitions of g, o, and r we fin d lbrl:26t11 lr)(I - U q)

and hence lårl is determined. That is, each r with 0<r<1 determines a unique å.
and lårl.

8.7. Supposa r:1. Then.l-passes through ilp andhencewemusthave F:Fo.
Then bt:&olQ, lbzl:2br\-brlpJ. When t:1, d8:p(l-Z)-rtz6t in the

Z-plane. This is regular at Z:-1, sb the boundary slit, [-1,1] in the Z-plane
has an "open end" at Z - - 1, i.e., dQ changes sign if we change directions at

that point. The integral of dQ around this slit, starting at this end, will be the same

as the integral of dQ around f in the w-plane, starting at the "open end" which
will be ilp or the tip of the slit extending upward along the imaginary axis. That is,

2qs*2a:4{n, where u>0 is the integral of dQ from the tip of the slit to ilp.
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This implies g=q318 with equality only if the extra slit is of zero length. We have
therefore proved most of

Theorem 8.1. Let F(z):$ts16rz2*...€E be locally extremal .for
Re {,1log br+logbr} with b1 and A real, 0=år= l, *l=}.. Let Q:().+2)lQ,+l).
Then one of the following three holds:

(8.13)

(8. tr4)

(8.15)

lbrl - 2br(1 - b), u, - *,

Ib,l - 2b,,[r - H, b,

tb,t- 2b,+(t_.H, b,

-Fo, Q=4:a' \i 8 )

:+, ttt:+, Q=#t

where in (8.15) p, r, and q satisfy (8.5) and (8.9).

Proof.It only remains to show that q<qf,p in the case (8.15) when r=1.
Using the formulas of $ 8.5 and the well-known formulas for the derivatives of
the complete elliptic integrals (see, for example, 710.00-710.05 in [8]), we find

d flq.| : 4(krk',\(KE' 4 v's - KK')IE'2.ElPd): E\NIN '\"
The derivativ e of KE'+ K' E- KK' is easily found to be zero and since I((E-K) *0
as ft*0, this factor is the constant nl2. Hence

(8.16)

Since dklfu=O, we conclude that sk)lp!) is a strictly decreasing function of r.
Hence as r increases from 0 to 1, the p satisfyinl s&)lpG):rQDlqQD increases

from 0 to po, and e:qjD'lpk)z increases from 1 to qfi18.

8.8. How does the theorem apply to the problem of finding the maximum of
lbrl n S(lb!l) for a fixed år? Figure2 shows the results of some numerical calcula-

tions. The dashed curve is a plot of the parabola of (8.13). lt q>q318 in (8.14),

then br=81tolq3:0.82752416.... The arrow points to this value of år and the
portion of the upper curve in Figure 2 to the left of this arrow is the parabola of
(8.14). Numerical computations of (8.15) gave b, as a decreasing function of z and
resulted in the portion of the curve to the right of 8polqf,.

Analytic proofs of the facts that (8.15) determines å1 as a decreasing function
of z and that (8.13) gives lårl lying below the values determined by (8.1{ and (8.15)

can be avoided by using the result of Jenkins in [20]. There he shows the existence

of a one-parameter family of functions Fp€E which achieve the maximum lbrl
in the corresponding E(P). Theorem8'l must hold for each such fp. His descrip-
tion -of the mappings shows that they belong to our class with o imaginaryo and
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hence (8.13) does not hold. They are therefore exactly the mappingB grving rise to
(8.14) and (8.15). We conclude that for F€8, lbrl=A(lbL) wtrere Ö(lårl) is the

function determined by (8.1a) If lb'l=8polq| uod by (8.15) if lhl=8polq\.
We remark that the extremal functions determined in this way are unique up

to the transformati on F@, because of the uniqueness of the solution of the dif-
ferential equations. This one ambiguity arises because we had to choose p positive

or negative. Since o is imaginary, the trajectories of dO are symmetric with respect

to reflection in the imaginary axis and -F(-z):FC4.

8.9. Let us consider the two special cases when A:O and )':1.

Theorem 8.2. Let F(z):firs16222I...<8. Then lbrl=pol2:0.5811002... .

This is sharp.

Proof. The extremal .F must satisfy Theorem 8.1 with .l:0 and hence g-2.
If (S.15) were to hold, q=qll8:1.4}4$.... Hence (S'14) holds with år:1år1:
_,, la
- Pol L.

This bound may be compared with the best previously published bound, lårl=

=e-tt2-0.7493... , due to Nehari pal and Aharonov [3].

The o rem 8.3. Let F (z) : $t7 a 6zz2 * .'. QE' Then lbrb2l=8pf,:0'4002103 "''
This is sharp.

Proof. Here .l:1 in (s'1) and Q:312' Again (8'15) cannot hold and hence

bt:2pol3. Then lå21:4pol9 and the theorem follows.
Figure 3 shows the image domain F(U) for one of the two extremal functions

of Theorem 8.2 (with år=0). This was obtained by setting the left-hand side of
(8.2) positive and numerically integrating to find the trajectory through 1. The

length of the slit is found as discussed in $ 8.7 by computing the integral u required

33
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to make Qo*ts:/8[. fne function of Theorem 8.3, or ior that matter, any of the
functions of (8.14), map to the same domain with different slit lengths.

8.10. As a fi:ral remark in this section, we observe that we could easily treat
the problem of maximizing Re bramongall F€E with a fixed real år. This cor-
responds to V(n:b2*Ab1. Methods similar to those of this section lead to

rydwz_r,u{?;?)o*
where IAi:-(b2*Ab1)12b1, Zo:-Q,b2*1b)l2t and Zo is real, Zo=-1.

Figure 3

An analysis of the trajectories in this case leads to the conclusionthat Wo:-1
and the extremal functions map U onto U less a radial slit from - 1 to -brl4.
That is, lf F<E and 0=år=1, then Rebr=2br(l-br).

9. The coefficient set of (år, cr, cr) for pairs

9.1. Let {F, GI be a univalent pair with F(21:btz-f... , G(z):612 a czzz*... .

We wish to determine the set € of all possible triples (br, cr, c2). We can reduce the
study of this six dimensional set to that of a two dimensional set.

Let 6rbe the set of all (q, c) such that {F, G} is a univalent pair with år:1,
c1>0, and c, >0. Given (br, 

"r, 
cr)(6, there exists a new pair obtained by the trans-

formations (5.1) so that (1, lbrcrl,lbrcrl)€6, i.e., so that (lbrcrl,lbrcrl)€6r. Simi-

such that x=0, 0r, 0r, 0" arc real and (y, 
")€6r.For any univalent pair lbrcrl=|, [1], and lblcrl<2e-vll3, pl, where y is

the Euler constant. Further, since G is univalent, lc2lcrl-2. Q8, d.oes not contain
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the origin 0, but we therefore see that Grv{O) is compact. We study 61by fixing
c1 and finding the maximum c22 ot. what is equivalent, finding the maximum Re ötc,

for all univalent pairs {flG} with frxed brcr>0 and ä1>0. If {F,G} is extremal

for this problem, it wiU be locally extremal for Re Y (F, q where

(9.1) Y(F,q - )u[rsr{b(2

and,l is the Lagrange multiplier.

9.2. We apply Theorem5.l to (9.1) with F:,Fl, G:Fr- We find Lr(H):
:().ca*c)y1(H), Lz(H):)"brxr(H)*brxr(H).Then ar(w)- -$b1cr*b1cr*b1clwl,
A2(w): -l)'bp1*b1cr+fuclwl, B1(z) : -$brcr*b(zf, and Br(z) : -l),brcr*
{2brcr*brcrz{bprlzl, where we use the.fact that brct, Lr(zFi):Ab{t*b(z;
and Lr(zFi):1b{r*2btcz ate all reat.

We can assume that the extremal pair have br:I, ct>O, c240. Since Bt(z)=O
and Br(z)=0 for lzl:1, 1c1*c2?0 and )'c1*2cz=-2cr. Since crlcr=2, this

means that )" is real and gteater than -2. If ).c1*c2:0, then p:Fr(z) would

satisfy A(w)dw2fw2:0, which is impossible. Hence )'q*cr>O.
We can therefore write the differential equations of Theorem 5.1 as

(e.2)

(9.3)

where
['* #)#-q['* +('-+)] 5,

(1 +a"w)#:9, w-FrQ),

?\ Äcr* c2
{

I(s.4) {
I

t

oci
\rr4r)

/vC1t C2

o=0,
2u

l/a-.. 
QT'

w - Fr(z),

i- 2ct
e - 7c1* c2'

The last three relations in (9.4) are obtained from the first three by solving fot c1,

cr, and )..

9.3. We now study the solutions of (9.2) and (9.3). First, (9.2) can be integated

immediately. Using the boundary conditions w(0):9, w'(0):Sr-1, we find that

w:4(z) satisfies

(1 + aw)ttz-t
(9.5) 2(l* aw)1t'+log - 2*log +, w - Ft(4.

(1 + uw)rtz*,

since the right-hand side of (9.2) has no zeros or poles in u except at

0, -llu{Fr(u). It may be on the boundary or be exterior; -a will correspondingly

bq on the boundary or interior to Fr(U), and z:1 or z=1, respectively.

Suppose 0=t<1. Then lr,the boundary of Fr(U) will be an analytic curve,

an orthogonal trajectory of the left-hand side of (9.3). Dividing by 2ni and integrating
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around the unit circle, we find from (9.3) that

# {[1 
+?cos nYhd0: * !u*alw]Lt'dw- 

1.

Hence

(9.6) {ep(') - n

wherep(r) is defined in (8.7). Given t, this determines a unique q with 1=q=
=*'k 

0<o<l be such that 2-c(o-to-r)-0. Then the right-hand side of
(9.3) has a zeto at -o. The segment (-1, o) is a trajectory of this quadratic
differential and corresponds to a segment (-F, -o) in the w-plane. Here .-f(1,
and f >0. Integrating along these trajectories,

-o -q
lfa I l+t"eXz*tl)1ttz4t1t : I [t+alw]ttzitwlw..

-1 -F
Using the substitution z*1,[z--2t, the left-hand integral is found to be the
negative of s(r) of (8.10). The right-hand integral is 2,8*log (l-B)lG*B) where
A:G-al\llz. This also is negative. Since -f eåFr(U), -Upe|FL(U) and hence
from (9.5), -ld s?):2+1og(-azrl4) where z, is some point with lrri:1. sinc"
this is real, zt:-l and
(s.7) a : 4e-z .exp{- /är(")}.

From tåis c, and cz can be determined.

9.4. Tf r:I so that -lla€|Fr(U), then the situation is much simpler. In
this case -ae}Fr(U), and from (9.5),

(9.8) t 
-oa:+e o,

and then from (9.4), c1 and cs will be determined as a function of q.

In this case (9.6) need not hold. Three orthogonal trajectories of the left-hand
side of (9.3) meet at equal angles at -lf u. One lies along the line from this point
toward 0. The boundary of Fr(U) will consist of a simple closed curve fr, analytic
except at -1/a plus a slit f, from -lfa toward 0. f1 may be of zero tgngth.
Integrating around lzl:t we find

8,,,{,(t + z) it z I zrt' : * { rr + aw)Lt 2 dw t * + * ! Q + aw1'r 2 itw I w

or lQ pQ)ln: I *s where s>0. Here all integrals are positive. We start at z: -l
rnthe z"plane and at the tip of the slit in the w-plane. Thus, if t:1, we find e=n218;
and hence ct:8e-21Q364fn2e2. It follows that, if c1>64fn2e2:0.8775891... ,

then only the r<I case occurs.
If r=1, then c1:8n-2s-zo?)'"-'exp{-zs(r)lp@}.With the help of

(8.16), the formula for p(r) of g 8.5, and the formulas for the derivatives of the
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elliptic integrals, one easily shows that (dldr)logcr:4-t"-r(l *r)-t 6t -z1ttz -48' K'\,
kz : (t -.t) I Q f z). Howeve 4 (d I dk) E K : {E + k' K) (E - k' I9 I kk' 2 and (d I dk) (E - k' K) :
:-(I-k')(E-nkk'>0. Hence it follows that EK is an increasing function of
k whose minimum at k:0 (and hence the minimum of E'I() is n214. Therefore ct

is a strictly decreasing function of t.
As z*0, k*1, k'-0, E-1, E'-n12, p(r)*n. Also r:k'2lQ-k''). Hence

8..
l"i$ 

", 
: Aa lry p &)' Q - k'') exp {- 1n 1 z'1 (x - n + Q l n) E' lo g k))

16 -.: 1| lim exp {- (n I E ) (K -log G I k') - E + log 4 *los k' QE'l") - 1)}.

However, K-log ( lk')*g and log k'(2E'ln-l)*0 (see 112'01and 900'07 in [8D'

Hence cr+l 3g x+S.

Figure 4

As r*1, sk)lpk)*O, and, pQ)*2tp. Therefore cL+64fn2e2. Putting these

facts together, we have proved:

Theorem 9.1. Let {Fr,Fr\ be a uniualent pair with F1Q):2tr6rz2*...,
F2(z):c1z!czzz*.--, cr=0, cr>O, Thenfor any cr, 0<cr<1, we haae

cz =- 2cr(r - ezclS) if % € 64f nz ez

= (2c1lr)(I - | I d if cr > 64f nz e2

is the unique real number 0= r <I such that

(e.e)

where t

',:##*n{-"#},
and Q:lf lp(02. The functions pk) and s(r) are defined in (8.7) and (8.10). These

inequalities are sharp for each cr.
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We remark that with the help of the'expansion of -E' near k' :1 (900.07 in [8])
one can easily show that cr-Q as c1+1 in (9.9). Some numerical computations
were made and Figure 4 shows the bound of (9.9). The arrow points to the "joint"
between the regions, i.e., at h:641n2e2-0.8775891... . At this point cz:
: 128 (22- 8) f na e2 :0.33248428...

9.5. The pair which maximizes lårcrl must be extremal for Re {b*r\.That is,
it will be one of the functions found above with L:0 or g:2. This belongs to
the z:1 case and the extremal value will be the highest point of the parabolic
part of (9.9). That is,

Theorem 9.2. If {Fr,Fr} is any uniaalent pair with F1(z):firs:r... and
F2(z): c1z I czzz*..., then

lbP'l = 4"-z'

Figure 5

I

F2 (u)
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This result is sharp with the maximum occuring for a pair satisfying (9.2), (9.3) and

(9.4) with Q:2, r=!, and a:4e-2- In this case brcr:fircz:4e-2'

This bound, 4e-2:0.5413411... , may be compared with Aharonov's bound [2]

2e-11fr:0.6483l76..., or with the bound for Bieberbach-Eilenberg functions

lbrbzl=8p3127 :0.4O02103... (Theorem 8.3).

9.6. Figure 5 shows the typical images of u by the mappings Ft(z) and Fr(z)

which are extremal for Theorem 9.2 with r:1. The particular pair shown has

.Fi(0):å1:1, hence -u:-0.541341.1... lies on the boundary of Ft(U). The

båundaries and the length of the slit were obtained by numerical integration.

All extremal pairs of Theorem 9.1 in the case r: I (ct=64ln2e) will map onto

similar domains but with slits of different lengths.

10. Än inequalitY of Golusin tYPe

10.1. The methods of this paper can be used to give a simple proof of an inequality

of Golusin type for Bieberbach-Eilenberg functions. This is closely related to

inequalities of Grunsky type proved by Jenkins [20] and Garabedian and Schiffer

[11], and to the inequalities proved by Nehari inlz{l.In fact, it is shown in [17]

that inequalities of Golusin and Grunsky type are essentially equivalent. We include

the following theorem, however, since it illustrates the reduction which occurs when

the A(w) in Theorem4.l is a perfect square

Theorem l}.L Let F(z)€r. Let zr,zz,...,zn be distinct points of U and

let x1,xz,...,xy be complex constants such that

(10.1)

Then

(10.2) 
N N

Re å åxnxr,los

Im Z *n - 0.
!:0

?

(tn- zr)U - F(zo1rQ)J

Remarks. ambiguities in the choice of branches of the logarithms disappear

because o/(10.1). The requiremmt that the z" be distinct can be relaxed by taking appro-

priate limits.,Ilhm F:v in the teft-hand sum of (I0.2),we letlF(2"\-F(z*)ll(2"-z):
:F'(z). The right-hand side of (10-2) is always real'

Proof. We apply Theorem4.l with

^INY(F) - Z ) *"xulos
v:1 F:L

Z ) x"xu\og(l - z,zp).
v:1 lt:t

Fn- Fu

(zn- zt)U - Fn Ftj
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where we denote F(r")- Fo. We find with some computation that

A (w) - - *' 2 2 +(1 - F"') (r --ti)
Er tFt lF

(10.3)

: w2[å""6#&E]:
The extremal F maps u onto the interior of an anarytic curve r- through * 1 sat-
isfying A(w)dw2lw2>0. In this case we can take the square root and integrate.
We find that for w€f

n" jx"logJ-F"w : constant.
v:l I r-W

Since w: - 1 is on .l-, this constant is zero and

n"j *"'*ffiffi:o ir lzl:1.

Then, for lzl:1 we have

R.åxnlog

- -Re å r,"log (t - zoz)

since ) i"log(-llz) is pure imaginary for lzl:1 because of (10.1).
Both sides of (10.3) are the real parts of functions which aie analytic in the

closure of U- Hence equality holds in all of U and

iv(10.4) fir"tffi:-"{x,rog(l -z,z)+ik

where ft is some real constant.
set z:zr in (10.4), murtipry by xu, and add the resurting rerations for all p.

Then i Z *uk is pure imaginary and hence

1V 1Vn"j 2*"*,ror.-J!!-$t)=. ,u rv

n-:1 p71 ' F -o (2"-zu)[l-F(2")F(z): -"ä u4rr'*rlog(l-2"2)'
Thus, the extremal function gives equality in (10.2) and the inequality must hold
for all F€8.
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