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VARIATIONAL METHODS FOR
BIEBERBACH—EILENBERG FUNCTIONS
AND FOR PAIRS

J. A. HUMMEL and M. M. SCHIFFER*

1. Introduction

1.1. We let U denote the unit disc, |z|<1, and & the usual class of univalent
functions, i.e., those functions f(z) which are analytic and univalent in U with
f(0)=0, f(0)=1. A function F(z) is called a Bieberbach—Eilenberg function if it
is analytic in U, zero at z=0, so that it has a series development of the form

(1.1) F(z) = byz+by22+ ...,
and is such that
(1.2) F(z;) F(z) # 1

for any z,,z,€U. In this paper we will be concerned only with the subclass of
these functions which are univalent in U and we will denote this class of univalent
Bieberbach—FEilenberg functions by &.

Two functions, F and G, are called a pair if they are analytic in U, F(0)=
=G (0)=0, and such that
(1.3) F(z)G(z,) # 1

for any z;, z,€ U. We will use the term pair only in this sense in this paper. Note
that if FE&, then {F, F} is a univalent pair.

1.2. The class & was introduced by Bieberbach [7] as an aid in solving the
problem of maximizing the diameter of the boundary of the image of the comple-
ment of a disc (or equivalently any simply connected domain containing <o) under
all conformal maps which carry = to = and have derivative 1 at . He showed
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that the extremal function maps onto the exterior of a line segment by proving
that if FE&, then
(1.4) |by| =1,

with equality if and only if F(z)=e""z, « real. The crucial part of his argument
was the observation that the function w-1/w has a single valued inverse in the
exterior of a continuum passing through =+2. It therefore defines a univalent
mapping from any domain in the w-plane having the property (1.2) onto the exterior
of such a continuum.

Eilenberg [9] introduced the full class of (not necessarily univalent) functions
satisfying (1.1) and (1.2). He showed that (1.4) held in this class with the help of a
topological theorem and the subordination principle. Our use of & to denote the
univalent class is therefore somewhat misleading, but we do not want to cause con-
fusion with the standard class of bounded functions.

Rogosinski [28] simplified Eilenberg’s results considerably and extended the
subordination principle. Using his methods as found in [29], many results obtained
in & can be extended to the full class. Some care is required however. See for example
the discussion in § 9 of [20].

In [28], Rogosinski conjectured that all [b,|=1. This was proved by Lebedev
and Milin [23], later Aharonov [3] and Nehari[25]independently proved that |b,|=
=e~"2/y/n—1 for all n, where y is the Euler constant.

1.3. Many major results concerning Bieberbach—Eilenberg functions were
proved by Jenkins in a series of three papers [18, 19, 20]. He studied several extremal
problems by considering appropriate module problems and using symmetrization.
This allowed him to obtain an explicit upper bound for |F(r)| for FE& and r fixed,
and implicit solutions of several other problems. He also used area methods in [20]
to prove some inequalities of Grunsky type.

1.4. The class & appeared in an unexpected fashion when Garabedian and
Schiffer made a systematic search for extremal problems in & which would have a
simple solution by variational methods. This search is described in [33]. This led
to a class of inequalities of Grunsky type which in turn led to a proof of the local
Bieberbach conjecture [11]. Some of the inequalities they found could be interpreted
as inequalities for functions in &, because of a close connection between & and &'.

If f(z)€%, with 1/u¢f(U), then

1—[1—uf(2)]"

(1.5) F(z) = T+ — uf ()]

is in &. This can be inverted, giving f(z)=F(z)/{F'(0)[1+ F(2)]*}, F'(0)=u/4, show-
ing how F near the identity in & corresponds to f near the Koebe function. It was
this fact which was important in the proof of the local Bieberbach conjecture in [11]
and which indicates the potential importance of studying the class &.
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1.5. The concept of pairs was introduced by Aharonov in 1969 in [1]. In some
respects, this concept is equivalent to considering functions f and g which have
disjoint ranges with f (=F) analytic and g (=1/G) meromorphic in U. Functions
with disjoint ranges had been studied by several authors earlier, for example [5, 6,
14, 20, 22]. In particular, see the supplements to [12]: However, Aharonov’s class
seems to be the correct one to consider as a generalization of Bieberbach—Eilenberg
functions, as is evident from some of the results of the present paper.

The main previously known results about pairs are found in [1, 2, 16, 21]. Some
of these are discussed in the following sections.

1.6. Variational methods are powerful tools in the study of univalent functions.
They offer one of the most systematic and widely applicable methods of attacking
extremal problems. The variational method in the class & introduced in [31] has
been generalized considerably, and systematic methods of using this and similar
variations have been found. See for example the discussion in [32].

The development of variational methods for special classes depends on finding
a method of varying the image domain so as to preserve the desired property. In
particular, it does not seem immediately obvious how to do this in the case of the
class &.

D. . Nelson, in his thesis [26], obtained a variation in the class & by using
(1.5) to map FE& to f€&. The well-known variation [31] of & was used on f
and the resulting varied function was mapped back to & by (1.5) again. The extra
parameter # which had to be introduced could be eliminated so that he was able
to obtain the differential equation satisfied by the extremal function for some specific
problems. Some of the observations he made for these problems are generalized
and appear in Theorem 4.2 below. In particular, Nelson obtained the differential
equation (4.3) for the Fe& maximizing Re b,, and studied the specific problem of
maximizing Re b,, obtaining some bounds on the maximum value.

1.7. In Sections 2 and 3 of this paper, we obtain variational methods for the
class & and for univalent pairs. In Sections 4 and 5 we show how to apply these
variations to quite general types of extremal problems. The remainder of the paper
is devoted to studying a representative set of extremal problems.

An extremal function for such a problem is found to satisfy a differential equa-
tion of the form Q(w)dw?=R(z)dz® where Q and R are typically rational func-
tions which unfortunately involve unknown parameters. Each side of this equation
is a quadratic differential, and we obtain information about the solution by con-
sidering the trajectories of these quadratic differentials. A simple discussion of the
structure of such trajectories may be found, for example, in [4]. Here we will review
some elementary facts about such trajectories.

A trajectory of the quadratic differential dQ?=Q (w)dw* where Q(w) is a
rational function is a path w=w(t), a<t<b along which dQ*=0. An orthogonal
trajectory is a path on which dQ*<0. A critical point is a point at which Q(w)
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has a zero or pole. If w, is not a critical point, then Q= [YQ(w)dw is analytic
and univalent in a neighborhood of w, and hence there exists a unique trajectory
through w, (and similarly a unique orthogonal trajectory). Two trajectories can
meet only at a critical point. A trajectory can be continued indefinitely unless it
closes or reaches a critical point.

The structure of trajectories near a critical point can be complicated, but we
will need only two special cases in this paper. If Q () has a simple pole at w,, then
exactly one trajectory of dQ? leaves w,. If Q(w) has a simple zero at w;y, then three
trajectories leave w;. These make equal angles with one another.

2. A method of variation for Bieberbach—Eilenberg functions

2.1. To use the known formulas for the variation of the Green’s function to
obtain a variation of the mapping function, we must have a method of varying a
domain so as to stay within the desired class. Define a Bieberbach—Eilenberg domain
to be the image of a function in &, that is, a simply connected domain containing
the origin which is such that if w is in the domain, then 1/w is not.

Theorem 2.1. Let D be a Bieberbach—Eilenberg domain. Let A be a domain
whose closure does not contain O or e, which contains the boundary of D, and which
is symmetric with respect to the mapping w—1/w (i.e., weA iff 1/wed). Let
@ (w) be analytic in A and satisfy

(2.1) D(w) =—P(1/w)
Sor all weA.

Then for all ¢ sufficiently near 0, the function
2.2) wH(w) = wes(")

is univalent in A and maps the boundary of D onto the boundary of a Bieberbach—
Eilenberg domain.
Proof. Introduce the function

Y’(w,a)):ﬂv—‘g;y W
= Q" (w) W= .

This ¥ is defined, analytic, and uniformly bounded in the compact set 4 4.

Suppose w*(w) were not univalent in A. Then there would exist Wi W, In
4 such that w*(w;)=w*(w,). That is, w;—w,=w,[l—exp {ewy—wy) ¥ (wy, wo)}].
Now for any s, |1—e|=|sle!*l, so this implies

[wi—ws| = [e] « Wy (Wy—wz) ¥ (w1, ws)| exp {le(wy—wa) ¥ (w1, wy)[}.

Divide through by |w,—w,|. The stated conditions on A then give a contradiction
for all sufficiently small |e].
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Since w*(w) is univalent in 4, it maps the boundary of D onto the boundary
of a simply connected domain D*. It remains to show that D* is a Bieberbach—
Eilenberg domain for all sufficiently small |e].

This property is equivalent to asserting that D* and Df={w: 1/weD*} do
not intersect. Suppose to the contrary that they do. Then they must in fact inter-
sect at points arbitrarily close to the boundary of D* and we can therefore assume
that there exist w, and w, in 4nD such that w*(w)w"(wy)=1, ie., that
wywy exp {e[@(wy)+ @ (wy)]}=1. Using (2.1) this is equivalent to

(wi—wi?) = wy[l—exp {e(wy—wz ) ¥ (w1, wz )}l
Since w,, wo€D, w,#w; ", and we may proceed exactly as before to obtain a con-

tradiction as |¢|—~0. This proves the theorem.

2.2. We use this theorem to find a variational formula for functions in & using
the variational formula for the Green’s function [31]. The form we use is described
in [32]. Let D be a domain and D* a varied domain obtained from D by the mapping
w*=w+ev(w)+o(e) defined and univalent near the boundary in D. If p(w, w)
and p* (w, w) are the analytic completions of the Green’s functions of D and D*, then

p*(w, @) = p(w, w) +eq. (W, @) +0(e)

where ¢, (w, w) is an analytic function of w such that
1 ’ 4
.3 Re{au(, 00} = Re{ - [ wWp', 00 )

and I is a curve system in D bounding a subdomain of D containing w and .

Let F map U onto D and F* map U onto D* with F(0)=F*(0)=0. If ¢ and
¢* are the inverse functions of F and F*, then pw, 0)=—log @ (w), p*(w, 0)=
— —log ¢*(w) and hence ¢*(W)=¢(W)—ep(W)g,(w, 0)+o(e). Then, as in [32], it
follows that

(2.4 F*(z2) = F(2)+ezF'(2) ¢:(F(2), 0)+0(e).

Notice that the derivative at 0 is not normalized in this class.
Let w,€D and let o be any real number. Set

2.5) @(w)ze"“[ ! i ]

w—w, 1l—wew

This & satisfies (2.1). The remaining hypotheses of Theorem 2.1 hold and hence
the variation w*=we?®® =w+tewP(w)+o0(e) preserves the class. We need only
compute g, (w, 0) using v(w)=w P (w).

2.3. Let ¢ be the inverse function of F. Then
p(t, w) = —log ([p (1) —e(W)I/[1 —p(W)e(1)])
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and hence from (2.3) we have

Re {41(“’., 0)} L
- Re{;:i r/[(p(wg)o—(t;(t) N 1 ﬁ%;tgt)] ' [qq;((tt))] ' [t—two 1 —tivot] dt}
= Reler ‘Zél‘;) = o 1 —W»zo o) co(w;)vtvggv,v()@); ool +

+ eia Wo (p,(w0)2 m) }'

PWo)[L—p (W) (wy)]
Here we calculated the residues at 7=w and t=w,. There is no singularity at ¢=0,
We may conjugate the final term inside the real part. The resulting function is
analytic in w and may be identified with g, (w, 0). Replacing w by F(z), w, by F(zy)
and so on, (2.4) gives

Theorem 2.2. Let F(z)€&, let o be any real number, and let zo€U. Then for
all sufficiently small e>0 there exists a function F*(2)€& such that

* . ia F(z) F(z)? i F(zy) zF'(z)
F*(z) = F(z)+¢e [F(z)—F(zO) —~ I—F(ZO)F(Z)] —ge (ZOF’(ZO)Z] =z

—wf  F(zp) ) 22F’(2)
T8 [ZOF’(ZO)Z =%,z

(2.6)
+o0(e).

In the calculation of g, (w, 0) we found a residue at w, since Wo was assumed
in D. There was none at 1/w, since D was a Bieberbach—Eilenberg domain. Sup-
pose neither wy nor 1/w, were in D. Then the only residue would be at w. Thus
we have

Theorem 2.3. Let F(z)€&. Let o be any real number. Suppose Wy IS such
that neither wy nor 1/w, is in the closure of F(U). Then Jor all sufficiently small &¢=0
there exists a function F*(z)€& such that

F(z) F(z)?
F(z)—w, 1—w,F(z) ]+0(8)'

@2.7) F*(z) = F(z)+sefa[

3. A method of variation for pairs

3.1. Let {F;(2), F5(2)} be a univalent pair. Set D,=F,(U), D,=F,(U), D=
={w: 1/weD,}. Suppose 4, is an open set which contains the boundaries of D,
and Dj, and that ¢ (w) is analytic in the closure of A,. Then one easily verifies that

(3.1 w (W) = wed(w)
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is univalent in 4, for all sufficiently small e. This will induce a variation of D, to
D} and hence of F; to F;'. At the same time (3.1) induces a variation of D} to D}’
and hence of D, to D} and of F, to F; so that {F[", F;} will be a new uni-
valent pair.

As in §2.2, we have

(3.2) F{'(2) = Fi(2)+ezF{ (2) 1 (F1(2), 0) +0(e)

where ¢, (w, 0) is an analytic function of w satisfying

(33) Re (g, 0} = Re {51 [ pi(t, i, 0)00) i
r

the quantities being defined as in § 2.2.

To find the variation of D, induced by (3.1), let w=1/w. Then w*=w-+e®(w)
and hence w*=1/w* =w [l +eP(w)/w] =01 —eP(w)/w]+0(e) =w—ew?d(1/w) +
+o0(e). Hence

(3.4) F3(2) = Fy(2)+2zF; (2) ,(F2(2), 0) +0(e)

where ¢, is determined as before by

1 ’ ,
65 Re{n0n0) =—Re{5 [ pie Wit 0o/ ar.
Ty
3.2. Let w, be any point which is neither on the boundary of D; nor in the
closure of Dj. Let o be real and set

(3.6) ®(w) = Weffvo .

Then we may let Ao={w: |[w—wy|=0d} for some sufficiently small §. Note that

eiac w2

Together, (3.6) and (3.7) make up the variation used in 2.3. Thus we have
split the variation for the class & into separate variations for each member of the pair.

There are two possibilities for w, in order to satisfy the stated requirements.
We may have w,=F;(z,) for some z,€U, or w, may lie in the interior of the com-
plement of D; uD; (if this set has an interior). In the latter case & (w) is analytic
in Dy. In either case —w?®(1/w) is analytic in D,.

Proceeding as in Section 2, one easily calculates the integrals in (3.3) and (3.5),
and proves

Theorem 3.1. Let {F,(2), F,(z)} be any univalent pair. Let o be any real num-
ber and let zy€U. Then for all sufficiently small ¢=0 there exists a univalent pair
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{F}(2), Ff(2)} such that

% _ i Fi(z) i Fi(z,) zF (z)
(3.9) B =Rt g ey % ( ENENE ] 2
' o FG) ) 2FE)
e [ZOF{(ZO)Z) 1—-Zyz +o(®),
(3.9) F(2) = Fy(z)—eet—220° 4o

1 —Fi(2p) F2(2)

If there exists a w, such that wy is not in the closure of F,(U) and wy' is not in
the closure of Fy(U), then for all real o« and all sufficiently small ¢=0 there exists a
univalent pair {Fy (z), F; (z)} such that

(3.10) F(z) = Fy(2)+ee™ —Eél)(i)wo +o(e)
(3.11) Ff(2) = Fy(z)—ee™ —ljjjsf—z}zz(—z)-{-o(s).

We remark that {F;, F,} is a univalent pair if and only if {F,, F,} is also. Hence
the roles of F; and F, may be reversed in the above theorem.

4. General extremal problems in the class &

4.1. The usual class & of univalent functions is normalized by the requirement
that f(0)=0 and f/(0)=1 for any f€£. Similar normalizations are impossible
in & since the addition of a constant or multiplication by a constant may spoil the
Bieberbach—Eilenberg property of a domain. Indeed, there are only two elementary
transformations of the image domain which are available in the class. If F(z)ed,
then so are — F(z) and F(Z). These correspond to symmetries of the Bieberbach—
Eilenberg property and are often useful.

Transformations can however be made freely in the z-plane. If g(z) is univalent
in U, g(0)=0, and g(U)cU, then F(z)c& implies F(g(z))€&. In particular,
F(e'z)€& for any real o. Thus we can assume F’(0)=0 if this seems like a useful
normalization in a particular problem.

By letting o be near zero, this last transformation can be viewed as a variation
in the class &. That is, if F(z)€&, then so is F*(z) where

4.1 F*(z) = F(e*z) = F(z)+iezF’ (z2)+o(e)

for real .

Another useful variation is the slit variation obtained by letting g(z) map U
onto U less a short slit. Let k,(z)=z/(1+e~"z)* be the Koebe function mapping
U onto the exterior of the radial slit from ¢*/4 to <. Let ¢=0, and define g(z)
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by k,(g(@)=k,(2)/(1+¢). This is equivalent to (1+&)(z7'+2e “+e % z)=
(1/g+2e~"+e~%*g) and hence g(z)=z+eg,(z)+o0(e) where

z(1+e"z)

8.(2) = ——— =%
Thus, if FE& and o is any real number, F*(z)€& also where
4.2) F*(2) = F(g(2) = F(z)—ezF"(2) j: +o(e)

and &=0. These two well-known variations will be usefull in what follows.

4.2. In considering extremal problems in &, one must be careful since the class
& is not compact. One easily sees that any sequence of functions in & has a sub-
sequence which converges either to a function in & or to the constant zero. The
functions {z/n},~, show that the last possibility can occur. Often, the fact that no
extremal function exists in & is not obvious. For example, if we wish to maximize
|bo/by| where F(z)=byz+b,z*+ ..., we find that no maximum exists. The func-
tions mapping U onto U slit from —1/n to —1 will give |by/b;|—~2, but the
uniqueness of the Koebe function maximizing a, in & shows there is no FE& with
|ba/by| =2.

In most of the problems we consider, the existence of an extremal function will
be obvious. For example, consider the maximum absolute value of b,, the n-th
coefficient of Fe&. We can always assume b,=0 and so look for F maximizing
Re b,. A sequence of functions whose n-th coefficient converged to the supremum
of such values could not tend to zero, and hence the extremal F must exist. It is
instructive to see what the variation of Theorem 2.2 implies in this case.

For every o and z, we must have Re b =Re b, for the extremal F. Since the
real part is unchanged if we conjugate the term containing ¢~ in (2.6), the terms
of order ¢ must have an n-th coefficient which vanishes. One easily sees that this
implies that any extremal F must satisfy the differential equation

(4.3)

zF'(z))2 o (k+1)( 1 § k) k)b,, . =
( F(2) k:zl P Fer T 2 T e Z (n=k) by 2"
where the b are defined by F(z)*= 3, b¥z"

This is exactly the differential equation which Nelson obtained in his thesis [26]
for the same problem.

4.3. We now look at more general extremal problems, following the methods
of [32]. Let ¥ be a continuous functional defined over &. We assume that ¥ has a
continuous Fréchet (or more generally Gateaux) derivative L. That is, for any FE&
and any analytic G,
(4.4 Y(F+¢G) = Y(F)+eL(F; G)+o(e).
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Here L(F; G) will be a continuous linear functional of G for each fixed F. Since
F will remain fixed, we will usually suppress the dependence on F and write merely
L(G).

Define

e )

A(w) = D(W)+L(F)+D(1/w); B() = EQ)+L(EF (2))+E1/D.
Observe that

(4.5)

wF? F F
46 TT—wF T w(F—1/w)
(2F'(2) _ .. zF'(2)
T O
and hence the variation of Theorem 2.2 implies
. . F(z,
Y(F*) = Y(F)+ee™ F(IHO) A(F(z,))—ge™ F(lzo) [ZF(TZ(%] E(zy)
ca U ((FGD) Yoy ap _
—ge 5 [Zo i (Ozo)) [L(zF’(2))+E(1/Zg)] + 0(€)
or
47) ReP(F*)=ReP(F)+eRe—— F( Py { (F(zo))—[;g%] B(zo)}—l—o(e).

We are interested in problems of the type: maximize Re ¥ (F) among all F¢é&.
Such a problem may or may not have a solution, but if it does, we can use (4.7)
to characterize this solution. We will say that FE& is (locally) extremal for Re ¥ (F)
if Re W(F*)=Re ¥(F) for all (nearby) F*€&. Here, “nearby” is in the sense
of convergence on compact subsets of U. Using (4.7) we therefore can prove:

Theorem 4.1. Let the functional ¥, defined over &, have a continuous linear
Fréchet derivative L(F; G) as defined in (4.4). Let A(w) and B({) be defined as in (4.5).
Suppose FE& is locally extremal for Re W (F). Then F satisfies the differential
equation

(4.8) [Zﬁ: ((f) ] A(F(2)) = B(z), z€U

or equivalently

(4.9)

—, w=F(z), zeU.

Further, L(F; zF'(2)) is real, B(z) is real and non-positive for |z|=1, and if A(F(z))
is analytic in some annulus o<|z|<1, then F maps U onto a domain whose bound-
ary is made up of analytic arcs (or is an analytic curve) which are trajectories of
A (w)dw?/w.
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Proof. The fact that F satisfies the differential equation (4.8) or (4.9) follows
immediately from (4.7) since o is arbitrary, and F makes Re ¥ a local maximum.
Using the rotational variation (4.1) gives Re ¥(F*)=Re ¥ (F)+¢ Re iL(zF'(2))+
+0(g). Since & can be positive or negative, L(zF’(z)) must be real. If [{|=1, then
(4.5) shows B(() is real. Let {=¢™ Then the slit variation (4.2) gives

ReP(F*) =ReW¥(F)—¢ReL [zF’(z) C+Z) +o(e).
{—z
Since =0, this implies Re L(zF’(z)({+2)/({—z))=0. However, [(|=1 and since
((+2)/(C—2)=—1-2{/(z=0),
B(0) = Re B() = L(zF'(2))+2Re E(0)

—_:—ReL(ZF’(Z) g—t—z) =0.

If A(F(z)) is analytic in ¢<|z|<1, then the reflection principle shows
(zF’(z)/ F(2)?PA(F (2)) is analytic up to isolated poles on |z|=1. For z=¢" dz/z=idt
and from (4.8) the boundary of U must be a trajectory of A(w)dw?/w*

Theorem 4.2. Let ¥ and F be as in the previous theorem. Then A(w)dw?[w*
is invariant under the mapping w—1/w. Suppose A(w) is analytic up to isolated
poles and is not identically zero. If w, and wy* are not in D=F(U), then at least
one is on the boundary of D. The points 1 and —1 are on the boundary of D.
The function G(z)=F(z)+1/F(z) is univalent in U and maps U onto a domain Dy

(containing <) whose closure is the entire complex sphere.

Proof. We remark that these observations were made by Nelson [26] for the
case of the particular extremal problems he considered.

The first result is immediate from the definition of 4 (w) in (4.5). The second
follows from the fact that if w, and w;* were exterior to D, Theorem 2.3 would
apply and
(4.10) Y(F*) = W (F)+eeA(wg)+o(e).

Taking the real part, this implies A(w,)=0. However, this would then have to
hold in an entire neighborhood of w,, giving a contradiction.
Since 1 and —1 are such that w,=w, ", both points must be on dD.
Finally w+1/w has a two-valued inverse, the values being w and 1/w. Hence
the Bieberbach—FEilenberg property of D makes w+1/w univalent on D. Any
point exterior to D; would have to arise from a w, exterior to D such that wy ! was
also exterior to D. This completes the proof.

4.4. The following theorem is useful in many applications.

Theorem 4.3. Let ¥ be a complex valued functional over & having a continuous
Fréchet derivative L as in the hypotheses of Theorem 4.1. Let T={¥(F): FE&}
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and suppose Fe& is such that VY (F) is on the boundary of T. If E({) is not constant,
then there exists a complex A with |A|=1 such that F satisfies Theorems 4.1 and 4.2
as if it were locally extremal for Re A¥ (F).

Proof. The proof follows the argument found on pages 495, 496 of [30], but
we sketch it here since there are some differences in this case. The variation of Theo-
rem 2.2 gives

Y(F*) = Y (F)+ee*U—ee™“V+o(e),
where
U= A(F(Zo))/F(Zo)_(F(Zo)/ZO F/(Zo))2E(Zo)/F(Zo)a

V = (F(z0)/20 F'(z0))*+ [L(2F(2)) + E(1/Z0)]/ F (z,),

these quantities being computed from (4.5). Now s=¢e*U—sge ™ *V is a linear
transformation of the real and imaginary parts of ee™ to the real and imaginary
parts of s. Hence as ¢ and « vary, a full neighborhood of s=0 will be covered unless
the rank of the transformation is less than 2. Since ¥ (F) is assumed to be a bound-
ary point of 7, this rank must be less than 2 and ¢ U—e~ ™V has constant argument
for all real «. That is, there exists a 2 with |A|=1 so that Re {¢*AU—e ™1V }=
=Re *{AU—JV}=0. Hence AU=JV. Then F satisfies the differential equation

JA(W) de)\;z = [AE(2)+2L(zF'(2))+ 1E(1/2)] EZZZ—Z .

Next, we show that 2L (zF'(z)) is real and B, ({)=AE({)+AL(zF'(z))+2E(1/))=0
for |{]=1. First, consider a combination of variations (4.1) and (2.6). Let —1=u=1,
—1=v=1 and set F,(z)=F(ez). Apply variation (2.6) to F; with ¢ replaced
by ev. Since F;=F+0(e), we find

Y(F*) = Y (F)+ev[e*U—e *V]+o(e)
= Y(F)+ieuL(zF'(z))+ev[e*U—e~*V]+o(e)
= Y(F)+eW(u, v)+o(e).

Here, AW(u, v)=uilL(zF'(z))+ v[e*AU — e~ “2U] + o(e) =uiAL(zF'(z)) +2vi Im {e”AU}.
Again, since a neighborhood of 0 cannot be covered, we must have AL(zF’(z))
real. The exception would be if U=0. But then V=0 and hence E(1/z,) would
be constant. Hence AL(zF’(z)) is real and so is B,({) if [¢[=1.

In an exactly similar way we may combine the variation (4.2) with (2.6). Then
for ¢ with [{|=1, Y (F*)=¥ (F)+eW (u, v)+o0(e), where ¢=0,0=u=1, —1=v=1,
and AW, (u, v)= —ulL(zF'(z)({+2)/({ —z))+2vi Im {“2U}. Again, Im {"AU} is
not identically zero. Hence, if the real part of AL(zF'(z)({+z)/({—z)) took on
different signs for two {, then this combination of variations would cover a neigh-
borhood of ¥ (F). Hence B;({)=—Re [AL(zF'(z)({+2)/({—z2))] cannot change sign.

When we chose / above, we could have equally well chosen —/. Hence by
proper choice we can assure that B,({)=0 for all { with [{|=1. Finally, the proof
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of Theorem 4.2 holds with only minor changes. If (4.10) holds, then ¥ (F*) will
again cover a neighborhood of ¥ (F), leading to a contradiction.

4.5. Letting z—0 in (4.8) will give a Marty relation for the given extremal
problem. This can also be obtained quite simply directly from (2.6).

Theorem 4.4. Let ¥ and L be as in Theorem 4.1. Suppose F(z)=b;z-+byz%+ ...
...€& is locally extremal for max Re W (F). Then F satisfies the Marty relation

b, L(F; 1—F(2)}) = L(F; F’'(2))—L(F; z2F'(2)).
Proof. Put z,=0 in (2.6). This relation follows easily.

5. General extremal problems for pairs

5.1. The pair property has one useful symmetry. If {F, G} is a pair, then so is

{F(2), G(2)}. Although the pair property is quite restrictive, there is a wide class
of transformations available for special normalization. In particular, if {F, G} is
a pair and a0, then {aF, a=1G} is also a pair. If g,(z) and g,(z) are any univalent
functions mapping U into U with g,(0)=g,(0)=0, and {F, G} is a univalent pair,
then {F(g,(2)), G(g:(2))} will be a univalent pair.

Specifically, if {F, G} is a univalent pair and ¢=0, o, o, o, are any real num-
bers, then
(5.1 {oe* F(e1z), o~ te ™ G (e*2z)}

is also a univalent pair. Observe that by proper choice of «,, «;, and o,, we can
use (5.1) to make any coefficient of F and any two coefficients of G real and positive.

We also observe that the rotational and slit variations of (4.1) and (4.2) can be
applied independently to each member of a univalent pair.

5.2. The class of univalent pairs is not compact, but it does have some com-
pactness properties. Suppose {F,, G,} is a sequence of univalent pairs. Then by
extracting subsequences as necessary we can assume F,(z)/F, (0)~f(z)€<,
G,(2)/G,(0)~g(2)€S, F.(0)~b, and G,(0)—c. If b and c are both finite non-zero
complex numbers, then the pairs {F,, G,} converge uniformly on compact subsets
of U to the univalent pair {bf(2), cg(2)}.

If b=-oo, then quarter theorem and the pair property show that G,(U)c
c{w: |w|<4/|F,(0)|} and hence ¢=0. In this case F,(z)—<> (in the sense that it
converges to oo uniformly in compact subsets of U—{0}) and G,(z)~0 (uniformly
in compact subsets of U).

If 5=0, then F,(z)~0. However, G,(z) may converge to <o, 0, or some
univalent G(z). This is easily seen by considering examples of F,(z) which map U
onto V,={w: |w|<1/n}, or onto V,uW(1/n% n), or onto V,uW(1/n2, 4) where
W@, R)y={w: 0<Re w<R, [Im w|<d}.
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If b is finite and non-zero, then the F,(z) converge to some univalent F. The
G, may converge to a univalent G, in which case {F, G} is a pair, or the G, may con-
verge to 0.

Individual extremal problems must be considered carefully to see whether an
extremal univalent pair does indeed exist. For example, (|by|+]|ci|) is easily seen
to have no maximum in the set of all pairs.

5.3. Let ¥ (F,, F,) be a continuous complex valued functional defined over
all univalent pairs {F;, F,}. We assume that ¥ has a Fréchet derivative at {F;, F,}.
That is,

(5.2)
VY (Fy+eH,, Fy+eH,) = Y(F,, Fo)+el(Fy, Fy; Hy)+ely(Fy, Fy; Hy)+o0(e)

where L, and L, are continuous linear functionals of H; and H,, respectively. We
will usually suppress the dependence on F; and F, and write these simply as L, (H,)
and L,(H,). We will say that a univalent pair {F;, F,} is (locally) extremal for
Re ¥ (Fy, F,) if Re Y (F), F;)=Re Y (F,, F,) for all (nearby) univalent pairs
{Fy, FS}. Here “nearby” is in the sense of convergence on compact subsets of U.

Suppose that the univalent pair {F;, F,} is locally extremal for Re ¥ (F,, Fs).
From Theorem 3.1 and (5.2) we must therefore have

(5.3) ,
oo o - () 1 ) D

for any z,€U and any real «. Here wy=F;(z,) and we conjugated the term con-
taining e~ in (3.10).

Define
(P = ( F:Vflw ) D, = La F;”fzw ]
(5.4) ! EQ =L, {CZZF_l EZ)) E(0) = Lz[é’zzliz’éz)]

| 4sw) = Dy +Lo(F)+ Dalfw)  Ay(w) = Do)+ Lo (F)+Dy(1)w)
5.0 = BOLECEDLEDD B = B0+ LEEE)+ EGD.

Proceeding almost exactly as in the proof Theorems 4.1 and 4.2, noting that the roles
of F, and F, can be interchanged in Theorem 3.1, one easily verifies:

Theorem 5.1. Let ¥ (F,, F,) be a continuous complex valued functional defined
over all univalent pairs, having a continuous linear Fréchet derivative defined as in
(5.2). Let Ay, Ay, By, and B, be defined as in (5.4). Suppose the univalent pair {Fy, F,}
is locally extremal for Re W (Fy, F,). Then Ly(zF;(2)) and Ly(zF, (2)) are real; B;(z)
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and B, (2) are real and non-positive for |z|=1; and F, and F, satisfy the differential
equations
zF; (2))?
( 1( ))A1(F1(Z)) = By(2), zeU

(5.5) Fi(2)

(FEO) 4 (re) = o1 zev

If either Ay(w) or Ay(w) is analytic up to isolated singularities and not identically zero,
-1

then there is no w, exterior to F,(U) with wy* simultaneously exterior to Fy(U).

We remark that the last conclusion of theorem is equivalent to saying that the
closure of [Fy(U)]U[F,(U)] is the entire complex sphere, where we denote
B’={w: 1/weB}.

5.4. In most extremal problems, 4,, 4,, B;, and B, are analytic up to isolated
poles (and not identically zero). Since dz?/z2<0 on |[z|=1, it follows that the
boundaries of F;(U) and F,(U) lie on the trajectories

2
w =0
5 =

Ay (w) W

= 0: A2 (W)

dw? d
w2 ’

respectively. These boundaries must consist of a simple closed curve plus some
possible slits and must be made up of analytic curves and arcs. Any branching can
occur only at the critical points of 4; and A4,. Since w—1/w carries the outer bound-
ary of F,(U) to the outer boundary of F,(U), we must have A4,(w)/4,(1/w) real
and positive for w on the analytic arcs making up the outer boundary of F;(U).
In practice, we find for most simple problems that after suitable normalization
A;(w)=4,(1/w).

5.5. The obvious analog of Theorem 4.3 will hold for pairs. The proof is essen-
tially the same.

Similarly, Marty relations will hold for an extremal pair. Putting z,=0 in
Theorem 3.1 gives

F{(O)[Ly(1)— Ly(FD)] = Ly(F{ (2) — Ly(2*F{ (2)),
F (O)[Ly(1)— Ly (FD)] = Lo(F5 (2)) — La(2°F; (2).
Again these Marty relations are interesting but do not seem to be generally useful.

5.6. It is useful to demonstrate the use of Theorem 5.1 in a very simple case.
Let Fy(2)=b;z+byz2+..., Fy(z)=c,z+c,z%+... and consider the problem of
maximizing |b;c,| among all univalent pairs. Here the solution |b,c;|=1 is well
known [1] and is sharp, for example for the pair F;(z)=F,(z)=z. However, let us
analyze the problem using the methods of this section.

From (5.1) we may assume b;>0 and ¢;=>0, and hence set Y (F;, Fp)=
=1 (F) %2 (Fs), where y,(H (z)) represents the coefficient of z* in the series expansion
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of H(z). Let a=sup Re {y;(F) 1 (Fs): {Fi, F>} is a univalent pair}. There exists
a sequence of pairs {F, ,,, F, ,} with y;(F, ,)=1, x1(F,,,)~o. The quarter theorem
shows that the F, , are bounded, hence « is finite. Since =0, the F, , do not con-
verge to 0. Hence an extremal pair exists for this ¥. Observe that the important
fact here is that ¥ is invariant under {F;, Fo}—{aF;, a 1 F,}.

For Y (F,, F))=y,(F)y(F,), one easily verifies that L,(H;)=c;y (H,),
Ly(Hy)=byy,(Hy) where Fy(z)=byz+... and F,(z)=c;z+.... Then from (5.4)
A,(w)=A4s(w)=B;(z)=B,(z)= —b,c; and hence the extremal pair satisfy

(- g

Thus F,(z)=b,z, F,(z)=c,z, and the relationship of the boundaries of F,;(U)
and F,(U) requires |c¢;|=1/|by|, i.e., a=l|bic;|=b,c;=1 for the extremal pair.

6. The value sets for FE&

6.1. In 1954 Jenkins showed [18] that if Fec& and |zy|=r, then |F(zy)|=
=r/(1—r?"2, with the maximum being achieved at z,=ie”r by the function

(I . r2)1/2 ei(pZ

©.1) Fro(2) = 1+irez

This function maps U onto the interior of a circle centered on the imaginary axis
and passing through the points +1. Such a circle is invariant under the mapping
w—1/w and hence F, ,€8.

In this section we study the set of possible values of a Bieberbach—Eilenberg
functions at a fixed point in U. Define, for any r with 0<r<1

(6.2) V(r) = {F(r): FE&)

If F(z)€&, then so is F(pe*z) for O0<=p=1 and any real o. Hence V(r)=
={F(re®): FE&}={F(z): FE& and O<|z|=r}. If FE&, then so are —F(z) and
F(Z). Hence V(r) is symmetric with respect to reflection in the real and imaginary
axes. It thus suffices to study V(r) in the first quadrant. The points 0, +1, —1 are
never in any V(r), but each V(r), O<r<1, contains a punctured neighborhood
of 0. Each ¥ (r) is bounded (from the Jenkins result or using the fact that F(z)/F’(0)
is in & and |F'(0)|=1 so |F(r)|=r/(1—r?). Thus V(r)u{0} is compact. It is
easy to construct examples of Bieberbach—Eilenberg domains with boundaries
made up of circular arcs containing any preassigned 530, +1, —1. Thus, each
such b is in some V' (r). If F(r)=b, then F maps a neighborhood of r onto a neigh-
borhood of b. Hence b is an interior point of V(r;) for any r,>r. That is, the do-
mains ¥ (r) U{0} are strictly monotone increasing and r,=inf {r: b€ V(r)} is such
that H€AV (ry). ‘
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6.2. Let 50, 1 bea boundary point of ¥ (r) in the first quadrant (i.e., 0=argh=
=m/2). Then log b lies on the boundary of the set of log F(r) and from Theorem 4.3,
if Fe& with F(r)=b, then F will be locally extremal for Re A log F(r) for some
Awith |2|=1. (Itis not essential to take the logarithm here, but it offers a minor con-
venience to do so.) Thus we consider ¥ (F)=Alog F(r). Then L(H)=AH(r)/F(r).
If Fis locally extremal for Re A log F(r), then from Theorem 4.1, F satisfies

A(1—b?) dw? Ac(1—r?)dz?

T T e e s v e

(6.3)

where b=F(r) and c=rF'(r)/F(r). Theorem 4.1 shows Ac is real, and since
B(1)=—Jc(1—r?/(1—r)?, Ac=0. Observe that A=1 corresponds to maximizing
|F(r)| for Fe&.

6.3. Set
64) Q=0w) = [ wb—w)(1—bw)] " 2dw.

This an elliptic integral and hence the inverse of a doubly periodic function. The
critical points are 0, b, 5~1, and <. One period, 2@, will be twice the integral from
0 to b along the line joining these points. Setting w=>»br% we find

1
(6.5) oy =2 [ [(1=B(A—b*A] V2d1

= 2K(b)

where K(b) is the normal complete elliptic integral of the first kind (in Jacobi’s
form). This is uniquely defined for any 5£0, 1 in the first quadrant if we specify
that its real part is positive to fix the sign of the root and define it by continuity for
b real and greater than 1. We remark that in the last case there is no canonical path
of integration. Passing above or below A~ results in complex conjugate determina-
tions of K(b). We choose the determination resulting from passing above.

A second period of (6.4) is 2d,, equal to twice the integral along the circular
arc from b to b1 through 1. This integral is twice the integral from b to 1 along
this path since dQ is invariant under the mapping w—1/w. Set b,=(1—b)/(1+b)
and w=(1—b,t)/(1+b,t). Then

A 4l ' 2 __h242)1—1/2
(Uz_(lTb)—d/ [(1—2)(1 by~ dr

4
= 735 Kb

Landen’s (or Gauss’) transformation gives 2K((1—56)/(1+b))=(1+b)K(y1 —b*)=
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=(1+4b)K’(b) where K’(b) is the associated complete elliptic integral. See [8] for
example. Thus '
(6.6) By = 2iK’(b).

Other pairs of periods of (6.4) will be related to &; and &, by unimodular
transformations and will correspond to integration over homotopically different
paths in the plane less the critical points 0, b, b~

The line segment joining 0 to @&, in the Q-plane corresponds to a path 4, joining
0 to b in the w-plane, along which d@ has a constant argument, and which is homo-
topic to the line segment joining O to b. (All homotopies are relative to C— {0, b, b='}.)
Similarly the line joining &, to &,+(1/2)®, in the Q-plane corresponds to a path
%, joining b to 1 in the w-plane, along which dQ has a constant argument, and which
is homotopic to the line segment joining b to 1. Let 9, and 9] be the images of 9,
and 9, under the mapping ww—1/w. Then 9;+9,+9,+9; is a path from 0 to o
through b, 1, and o~ along each separate arc of which dQ is constant. (6.4) defines
a univalent mapping of the complement of this path onto the parallelogram with
vertices +@;, +d;+®d,, in which b corresponds to +d;, 1to +d;+(1/2)d,,
b7l to Fwi+w,, and o to @,.

This parallelogram is half of the entire period parallelogram. Starting on the
“other side” of $;, we see that (6.4) also maps the same split plane univalently
onto the other half of the period parallelogram. Finally, observe that the mapping
w—1/w corresponds to symmetry with respect to @,+(1/2)®, or &;+(3/2)hd,,
modulo the two periods.

6.4. In a similar way we can consider the mapping
(6.7) Z = [[2(r—2)(1—rz)]dz.
0

Here O<r<1 and this is a much simpler integral. Much as in § 6.3 we find that
(6.7) maps the interior of the unit circle slit from 0 to 1 along the real axis univalently
onto the interior of the rectangle with vertices +2K(r) and +2K(r)+iK'(r).
This is one fourth of the entire period parallelogram. Here z=r corresponds to
+2K(r) and z=1 corresponds to +2K(r)+iK'(r). z=—1 corresponds to iK’(r).

6.5. Suppose w=F(z) is analytic and univalent in U and satisfies (6.3) for
some r, A, and ¢ with Ac=0, F(r)=b, and with 1 on the boundary of F(U). Since
b is interior to F(U), the boundary of F(U) is a trajectory of the lefi-hand side of
(6.3) and hence a simple closed analytic curve which we denote by y,. We know
1 lies on y; and since (6.3) is invariant under w+1/w, the same is true of y;. There-
fore F€é.

Let y; be the image of the segment [0, ] under the mapping w=F(z) and let
75 be the image of [r, 1]. Then 7, is a trajectory of the left-hand side of (6.3) joining
0 to b while y, is an orthogonal trajectory joining b to some point wy€y;.
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The mapping (6.4) carries 7, to a line segment /; joining 0 to some point w;
which will be the same as &, modulo the period parallelogram. That is, w;=n®;+
+nyd, where n, is the same odd integer and 7, is some even integer. y, maps to a
line segment /,, orthogonal to /, joining w; to some point w;+y. 73 Maps to a
line segment I, parallel to /;, from w,+w, to —w;+®,. Thus (6.3) maps the
interior of 7y, less the slit y,+7, to the interior of the rectangle R with vertices
+w,;, +w,+w,. The line segment /; must contain a point @, which is the image
of 1 under (6.4). That is, w}=d;=+(1/2)®y+2kd,+2jd,. It follows that there
exists an ®, such that o=, +(1/2)w, and wy=nyd;+n,d, where ng is some
even integer and n, is some odd integer. The pair 20, 2w, is a pair of periods for
the inverse of (6.4).

The above mapping can be reflected in /;. The exterior of p; slit from wy 110 e
along the image of 7,+7y, under w—1/w will map to a rectangle congruent to R.
and having a subsegment of /; in common on the boundary. It follows that the area
of R is one quarter of the area of the primitive period parallelogram and hence
2w,, 2w, is a primitive pair of periods. That is

W, = nydy+nyd, ny, ny odd integers
(6.8) Wy = Ny +n,Qy Ny, ng €ven integers

nyng—nyng = 1.

Here nyny,—nyng —1 since the mappings involved are all conformal. The trans-
formation (6.8) thus belongs to the congruence subgroup modulo 2 of the full set
of unimodular transformations.

Since w=F(z) satisfies (6.3), we must have [1(1—b?)]V2Q=[Ac(1—-r)}*Z.
Set B=[L(1—b)]V2, C=[Ac(1—r?)]2. Then Bw,=2CK(r) and B(w;+we)=
=C(2K(r)+iK’(r)). Combining these, Bw,=iCK'(r). Since ic=0, C=0 (choosing
the proper root). Multiplication of © by B therefore rotates the rectangle R so that
the image of /; lies on the real axis, and the image of /; is parallel to the real axis.
Hence Im {Bwo}=Im {Bw,}=Im {B-(1/2)w,}=Im {CiK'(r)}=CK’(r). Hence we
have shown that the following two relations hold:

[A(1—Db)]Y2 0, = [Ac(1—rA)]V22K(r) = 0,

Im {%j} = I;(’((:)) .

(6.9)

6.6. We now state the main theorem.

Theorem 6.1. Let b#0,1 with 0=argb=n/2 be given. Let K(b) and K'(b)
be the normal and associated complete elliptic integrals of the first kind, with sign
determinations made so that Re K(b)=0 and Re {K'(b)/K(b)}=0, and with K(b)
defined by continuity for b real and greater than 1. Then there exists a unique with
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O<ry<1, a unique 4, with |A|=1, a unique c,=0, and a function F,(2)€E such
that Fb(rb):b and ‘

(6.10) Re{lli, ((bb))} = 12((::)) ,

(6.11) [4 (1= bA]2 K (b) = 0,

(6.12) Jycy = 0,

(6.13) [ (1 =DA)2K(B) = [Ayc,(1—r)[V2K (1)

Furthermore, w=F,(z) satisfies the differential equation (6.3) with J.=1ly, r=ry,
c=cy=ry Fy (1y)| Fy(ry). The given b is on the boundary of V(r,) and F, is the unique
Sunction in & with F(r,)=b unless b is real and greater than 1, in which case there is
exactly one more, the function F,(Z).

Proof. Since K’(r)/K(r) is strictly monotone decreasing from o to 0 as r in-
creases from 0 to 1, there is a unique r,, O<r,<1, satisfying (6.10). Then there is
a unique 4, with [4,|=1 satisfying (6.11), and a unique c, satisfying (6.12) and
(6.13).

Let 95 be the unique trajectory of the left-hand side of (6.3), with 1=41,, through
w=1. This is a simple closed analytic curve, invariant under the mapping w—1/w,
whose image by (6.4) is the line segment joining =+, +®,/2. The values which have
been chosen are such that (6.4), (6.7), and [4,(1—b%)]"2Q=[4,c,(1—r)]2Z together
define a univalent mapping w=F,(z) of U slit from 0 to 1 along the real axis to
the interior of §; slit by 9,49, where 9; is an orthogonal trajectory of the left-
hand side of (6.3) joining b to some point of §;. This function is easily seen to be
analytic at each point of the segment [0, 1) and hence can be continued to be univalent
in all of U. Since 95 is invariant under w—1/w, F,€&. The method of construction
insures that Fy(r;)=b. Letting z—r in (6.3) gives ‘c,=r, F; (ry)/Fy ().

Next we show that b€dV(r,). We know b€V (r) for some r and since
Fy(ry)=b,

(6.14) Py =T

If b€dV(r), then there exists an Fc& with F(r)=b satisfying (6.3) and
with the boundary of F(U) passing through 1. From the discussion of § 6.5, there
must exist a pair of primitive periods 2w, 2w,, such that (6.8) and (6.9) hold. Set
T=Ws/ Wy, Tp=1y/d;=iK'(b)/K(b). Then

(6.15) c= TaT s
‘ NaTy+ Ny
with ny, ny, ng, and n, as in (6.8).
Now 7,=iK’(b)/K(b) lies in the region Im t>0, 0=Re t=1, [t—1/2|=1/2, as

is shown, for example, in [10]. It is known (see [15] for example) that this is part of the
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fundamental domain of the congruence subgroup, but we can verify this easily and
obtain information on uniqueness at the same time.

From (6.15), Im t=Im t,/|n,7,4+m|% Set t,=x-+iy. Then T, —1/2|=1/2 is
equivalent to x2—x+)»*=0. But then [ny Ty +1y 2 =n5(x3 =X+ )+ + 1) x +
+n?(1—x)=x+(1—x)=1 since n;, being odd, is non-zero and n,+n, is similarly
non-zero. Therefore, Im r=Im 7, with strict inequality holding except when n;=*1,
n,=0, or when ny==+1, ny=F2, |[5,—1/2]=1/2.

In the first case, w;==+®, and from (6.9), A=1,. It follows that F(U) is
bounded by 95, the unique trajectory of the left-hand side of (6.3) through w=1,
and that y,=%,. Hence F(z)=F,(z).

In the second case, be(l, ), w,=+d; F20,. The two sign choices give the
same y, and 7, hence only one F(z). It is easily seen that this transformation cor-
responds to taking the path of integration in computing K(b) “below” 1/b, and
F(z)=F,(z) is the unique function giving the mapping.

In every other case K'(r)/K(r)=Imt<Im 7,=K'(r;)/K(ry). This implies r=r;
which contradicts (6.14). This completes the proof of the theorem.

6.7. If b is given, (6.10) determines the r so that »€d¥(r). Similarly, if r is
given, (6.10) determines the set of b which lie on 0¥ (r). In both cases tables such
as [10] are useful. It is only if 2 and r are given, that there is some difficulty. The
conditions of Theorem 6.1 in theory will determine b but in practice this may be
impossible. However, in a few special cases something can be done.

If A=1, corresponding to the problem of maximizing |F(r)|, then (6.11)
requires

fri—p 1 dr
(6.16) Of [1—b2z2] e 0

Here we are computing the weighted average of a set of complex numbers along a
curve. The values of (1—b?)/(1—b2t2) lie on the circular arc from (1—5%) to 1
which, if continued, would pass through 0. Thus if b* is not real, then the values of
[(1—5%)/(1—b2t»)]2 lie entirely in one half plane and (6.16) can hold only if b* is
real. That is, only if b is positive or pure imaginary. Further, b positive and greater
than 1 would also make (6.16) impossible.

Suppose b is real with 0<b<1. Then (6.10) requires r,=b, (6.11) shows
J,=>0, and the unique F,(z)=z.

Suppose b=if, f>0. Then using the imaginary modulus transformation and
the reciprocal modulus transformation (see [8], for example), K(b)=K @iB)=P1 K (B
and K'(b) = K(yT+p2)=K(1/B;) = Bi[K(B)+iK'(B)] = Bi[K'(B) +iK(By)] where
Bi=p/YT+B% and B;=1/yT+p> Hence (6.10) requires K'(r)|K(r)=K'(B)/K (1)
or r=r,=pf,. This is equivalent to f=r/ YT—r2. Since f>r in this case, this gives
the maximum for F(r) and we have Jenkin’s result.
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6.8. It is interesting to look at what can be said about r, for b real and greater
than 1. Here the transformations give K(b)=(1/b)[K(1/b)+iK’(1/b)] and K’(b)=
=K(iyp*—1)=(1/b)K(yb2—1/b)=(1/b) K’(1/b). Hence (6.10) requires r=r, where

K'(r) @ 5o K'(1/b)
K(r)  1+e2 ° T KU/b) "

As b increases from 1 to oo, ¢ increases from 0 to <, and ¢/(1+0?) increases from
0 to a maximum of 1/2 when ¢=1 and then decreases to 0 again. If r, is such that
K'(rp)/K(rg)=1/2, then for r<ry, V(r) does not intersect (1, «). For r=r,, V(r)
will have the single point »=}2 in common with (1, =), and for r=r,, dV(r)
will intersect (1, =) in exactly two points. Since K’(k)=2K(k) when k=3-2y2,
ro=2(3Y2—4)"2=0.98517... .

Finally, if b=¢”, then K(b)=(1/2)e™"*[K(cos (6/2))+iK’(cos (0/2))] and
K’'(b)=e""?K’(cos (0/2)). Hence r,=r where

K'(r) 2 _ K’(cos 0/2)
K 1+ed’ 27 K(cos0p)

From this one easily verifies that ¥(r) is contained inside the unit discif r<r,=72/2.
If r=r;, V(r) is tangent to the unit circle at +i. If r,<r<I1, 9V (r) intersects
the unit circle at precisely one point in each quadrant.

6.9. Figure 1 shows the boundaries of V(r) for the two critical » mentioned
above. Only the portion in the first quadrant is shown. The full set is symmetric
with respect to reflection in both axes.

The inner curve defines ¥(r,), r,=}2/2. The boundary appears nearly vertical
near the real axis, but its real part reaches a maximum near b=0.7077+:0.13.

Figure 1
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The outer curve defines V(ro), ro=2(3)2—4)Y2. This boundary is tangent to
the real axis at b=)2. The very small loop that the boundary makes around the
poiut 1 could not be determined very accurately because of the coarseness of the
tables [10] used to find these boundary points.

7. The value sets for pairs

7.1. In 1969, Aharonov [1] proved that if {F;, F,}is a pair and |zy|=ry, |z| =75,
ri, ra<1, then |Fy(z;) Fy(zp)|=rre(1—r2)~Y2(1—r2)~12, this being sharp if ry=rs,.
In 1972, Jenkins [21] proved that |Fy(zy)Fy(zo)|=[u"(v(ry)+v(rz))]~* where
v(r) and u(R) are the modules of suitably defined doubly-connected domains.
This result is sharp.

In this section we will study the more general problem of finding the boundary of

(7.1 V(rys o) = {Fy(ry) Fo(ry) : {Fy, Fy} is a univalent pair},

for any ry,ry<l1.

From (5.1) we see that if |z,|=ry, |z5| =rs, then V(ry, 1)) ={F,(z,) F2(z,): {F;, F,}
is a univalent pair}. Much as in § 6.1 one easily sees that 0, 1 are never in any V(ry, r,)
but every other complex number is in one; each V(ry, r,) U{0} is compact; V(ry, ry)
is symmetric with respect to reflection in the real axis; and the sets V(ry, r,) U{0}
are monotone strictly increasing with respect to either variable.

7.2. Again, it is a slight convenience to look at log F; (r,) F (r,), so we introduce
the functional

(7.2) V(Fy, Fy) = log Fy(ry) +log Fy(ry).

Suppose v is any complex number other than O or 1 and v€dV(r;, r,) for some
ry, Fo. It suffices to assume Im v=0. Let v=>5> with b in the first quadrant. Then
there must exist a A with |A|=1 and a univalent pair {F;, F,} extremal for
Re AV (F,, F,) such that F,(r)) Fy(r,)=>b% One easily computes A4;(w)=
=A(1—=b, b)) w/(by—w)(1—byw) and AA,(W)=A(1—b,by)w/(by—w) (1 —byw), where
Fy(r))=b,, Fy(ry)=by, byb,=0% The pair {(by/b))V2F,, (b;/by)?F,} is extremal
for the same problem, hence we may assume without loss of generality that b,=
=b,=b. That is, F; and F, must satisfy

A1=b)dw?  de,(1—rd)dz? B
3 wh—wa—bw) ~ zri—l-rg "= 013
@ A=bYdwt _ de(-rddz2 o @

w(b—w)(1—>bw) z{ry—2)(1—ry2)

where c¢;=r, F; (r)/F(ry), ca=ryF,(ry)/F(ry), and Ac;>0, Acy=>0.
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7.3. The mappings (6.4) and (6.7) were studied in § 6.3 of the last section. The
arguments of those paragraphs apply equally well here, and we have the same fun-
damental periods, 20, 2d, of (6.4), &;=2K(b), ®,=2iK’'(b). Let B?=A(1—b?%),
so B2dQ? is the quadratic differential on the left-hand side of (7.3).

Suppose {F;, F,} is a univalent pair which satisfies (7.3) for some r,, r5, 4, ¢;,
¢, with J.c; =0, Acy=0, F,(r;)=b, Fy(r;)=>b. Then F; maps the line segment (0, r,)
onto the unique trajectory of B2dQ? which joins 0 to b. Since 1 is the same, F, maps
(0, r,) onto the same trajectory. Therefore, just as in § 6.5, we must have some ,
satisfying (6.8) such that

(7.9 [A(1=b)V2w, = [Aey(1—rD)]M22K ()
= [Aes(1—1D]/22K (ry) = O.

The boundaries of F,(U) and F,(U) are analytic curves which are also tra-
jectories of B2dQ?. These need not pass through 1, but if we assume (as in the con-
clusion of Theorem 5.1) that these trajectories are mapped into one another by
w1/w, then they are mapped by (6.4) onto lines which are parallel to and equi-
distant from the line through +w;+(1/2)w,, where w, is such that 2w, , 2w, is a pair
of primitive periods satisfying (6.8). Looking at the composed mappings defined by
(7.4), we must thus have [A¢;(1—r2)]Y2K"(r) +[Acs(1 —rHV2K’ (1) =Im [A(1 — %) ]2,
Using (7.4), this implies

1 K'(ry) 1 K'(ry)
(.5 fm {E} =2 K@y 2 K(r)
7.4. We now state

Theorem 7.1. Let b#0,1 with 0=argb=n/2 be given. Let K(b) and K'(b)
be as in the statement of Theorem 6.1. Let r;, 0<r;<1 be such that Re {K'(b)/K(b)}>
>(1/2) K'(r)/K(ry). Then there exists a unique ry with O<ry<1, A with [A|=1, ¢
and ¢,#0, and a univalent pair {Fy, F,} with F,(r,)=Fy(ry)=b such that

K’(b)}_ 1 K'(r) 1 K'(ry)

e Re{ ) =2 ke 7 K

(1.7) [A(1—bAJ2K (b) = 0,

Ay =0, Acy=0,
and
[A(1=bI2K(b) = [Aey(1—rD]V2K (ry) = [Aes(1—rD)]V2K (ry).

Further, F, and F, satisfy the differential equations (7.3) with cy=ryF; (r))/Fy(ry),
cy=ry Fy (ry)| Fy(ry). The complex number b? is on the boundary of V (ry, ry) and {F,, Fy}
is the unique univalent pair with Fy(r))=F,(r;)=>b unless b is real and greater than 1,
in which case there is exactly one more pair, {F,(2), F,(Z)}.
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The proof of this theorem is omitted since it follows the proof of Theorem 6.1
quite closely.

7.5. Comparing Theorems 6.1 and 7.1, we easily prove:

Theorem 7.2. Let {F,, F,} be a univalent pair and let z,,z,€¢U. Then there
exists a real r between r,=|z;| and ry=|z,| and an FE& such that K'(r)[K(r)=
=1/ K (r)/K(r)+(1/2) K (rp)/K(ry) and F(r)*=F(z,) F3(zp).

Another theorem whose proof is immediate is

Theorem 7.3. Let O<r=<1, |z|=r, |zs|=r. If {Fy, F,} is any univalent pair,
then Fy(z;)) Fo(z0)#r2 except when |z;|=|z|=r, Fi(z)=c(r/z))z, Fy(z)=c"1(r/zy)z,
and c¢=0 is arbitrary.

Since {F(¢"™z), F(e"2z)} is a univalent pair for any Feé&, Theorem 7.3 gen-
eralizes the result of Grunsky [13], that F(z;) F(z,)#r? for any FE€& and zy, z,
in U with |z;|<r, |z5|<r.

Maximizing |F;(r;) F5(ry)| is the same as maximizing Re log F,(r;) Fy(r,). The
extremal pair must satisfy (7.3) with A=1, and hence (6.16) must hold. That is,
bisreal, 0<=b<1, oris pureimaginary.

In the first case, Theorem 7.1 shows that |Fy(ry) Fy(ry)|=r1r,. However, putting
Fi(2)=F,(2)=F,  »2(2), the Jenkins function of (6.1) gives F;(ry) Fo(ry)=
=r11y/(1—ry1)>riry. Hence b must be imaginary.

If b is imaginary, say b=if, then just asin § 6.7, |F,(r)) Fo(ro)|=p>=r*(1—r?
where r satisfies K'(r)/K(*)=(1/2) K'(r))/K(r{)+(1/2) K’(r,)/ K (). This is equivalent
to the result of Jenkins mentioned in §7.1.

8. The maximum of |b,| in &(|y])

8.1. For any 8, 0<fB<1, let &(B) denote the set of all FE& such that |by|=p,
where as in (1.1), F(z)=byz+byz2+.... &(B) is compact for each . We wish to
find the maximum of |b,| for Fe&(P) for each fixed f.

Jenkins has solved this problem [20] in the sense that he has implicitly defined
(in terms of their mappings) a one parameter family of functions which achieve the
maxima. Here we shall duplicate most of his results using variational techniques
and carry the analysis further to obtain the actual bounds in a more explicit form.
For B<0.827... these bounds are extremely simple.

We may assume b,>0 and look for the maximum |b,y| with b, fixed. The
extremal Fe&(b,) exists and is locally extremal in & for Re ¥ (F) where

8.1) ¥ (F) = 1 log by+log b,.

Here /. is a Lagrange multiplier. For this ¥, L(F; G)=21y.(G)/by+ y:(G)/by where
%,(G) is the v-th coefficient of G. Then L(zF’)=A+2. Hence from Theorem 4.1,
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4 is real. Computing 4 (w) and B(w) we find that the extremal F will satisfy

b? dw? 1 b dz?

(8.2) [(/1+1)+b—:[w W]] =3 [(,1+2)+—~—+b—: ] -
for |z|]<1. Here we have changed the sign and the right-hand side of (8.2) will
therefore be negative for |z|=1.

Let {=e ™ and consider the slit variation of (4.2). Since s>0 we find
Re [(A+2)+(2b,/by){*]=0 for each { with [{|=1. This implies A+2=2|b,/b,|=>1
since |by|<2|b,| for any F¢&. Thatis, i>—1.

Make the simple change of variable {=(|b,|/b,)z and put

1 1
8.3 = —. 2Z = —.
(8.3) W=wt—, {+ 7
Then w=F(z) defines W as a univalent function of Z, mapping the exterior of the
line segment [—1, 1] onto the exterior of a continuum I containing the points W= +1,
and having no interior (Theorem4.2). Since W2—1=(w—1/w)2/4, dw?/w?=
=dW?/(W?—1) and hence from (8.2.), W and Z satisfy

(t+aW)aw: _  (1+72)dz:

@4 —we T 1z

where

2B 2b A2
T hO+D T (hG+2 ¢T arL
We see ¢ and 1 are real, 9=>1, 0<t=1. The last since the right-hand side of
(8.4) is real and non-negative for Z¢[—1,1]. If t<1, then the right-hand side of
(8.4) has a zero at —1/r and hence the continuum I" will not contain the critical
point s=—1/g. If =1, then I' must contain s.

8.2. We now analyze the continuum I more carefully. We see that I contains
+1, and may or may not contain s. Except for these points it must consist of analytic
arcs which are trajectories of dQ2=(1-+ocW)dW?/(1— W?).

If o==%1, dQ? simplifies. Taking o=1, for example, dQ2=dW?/(1—W).
The unique trajectory of this through —1 is the infinite interval (—eo, +1) of
the real axis. Hence I' consists of a segment [x, 1], —eo<x=-—1, and F maps U
onto U less a slit {—1,a], —1=a<0. Then, just as in the derivation of (4.2),
F/(1=F)*=b,z/(1—z)®.. Comparing coefficients we find b,=2b,(1 —b;). This is
exactly the familiar Pick bound for the second coefficient of a bounded function
[27]. As we shall see, this is not the extreme value. The case o= —1 is similar and
gives the same bound for |b,|. Notice that in these cases |o|=1, =1 and hence
by=1/e.

Hence we assume o3 +1. Then dQ? has three finite critical pomts At +1,
exactly one trajectory leaves. At s=—1/o, exactly three leave at equal angles.



Variational methods for Bieberbach—Eilenberg functions and for pairs 29

Thus I' consists of either: (t<1) the points +1 and a single analytic arc not
passing through s, or: (t=1) the points +1, s, an arc joining —1 to s, an arc
joining +1 to s, and possibly a segment of a third arc leaving s.

Suppose 7, and y, are two distinct arcs meeting at s and lying on the trajectories
of dQ* Then [dQ on y,4y, is real and is equal to the integral on P+ 7at s
where y; and y; are subarcs of y; and y,, respectively, lying outside a small circle
of radius a centered at s, and 7, is the smaller of the two arcs of this circle joining y;
and y;. This, and indeed any path, can be altered homotopically in C—{s, 1, —1}
without changing the integral of dQ.

Next we show that if J is the line segment [—1, 1], then either f dQ over
J is real, or there are two disjoint subintervals of J for which [ dQ is real.

First, suppose t<1. Then either I' is homotopic (in C—{s, 1, —1}) to J,
or the three trajectories leaving s must cross J. The above assertion therefore holds.
On the other hand, if =1, then the pair of trajectories from =1 to s make up
a single path homotopic to J or else these, together with an arc of the third trajectory
from s to some point of J, make up two paths homotopic to disjoint segments of J.
Again the conclusion follows.

If x,x,€J and sin0;=x;, sin O,=x,, then [}2dQ= [G[l+0c sin 6]"d0.
This is the weighted mean value of complex numbers on a segment of an hyperbola
passing through 1. Two such disjoint integrals could be real only if o were real.

If [dQ is real over J, then so is

/2 n/2
[ [+osingp2do = [ [(1+0sin 0)2+(1 —o sin 6)!/%] 0.
—T1/2 0

The square of the last integrand is 2+2(1 —o? sin® 0)/2. If 02 is not real, this integral
is the weighted mean of values on an arc lying entirely in one half plane except for
the end point (9#=0) which lies on the real axis. Since the integral is real, we con-
clude that ¢2 must be real. We have therefore shown that in any case o is either
pure real or pure imaginary.

8.3. Suppose ¢ is real. If |o¢|<1, then the segment J=[—1,1] is the only
trajectory joining +1. Hence I'=J and F(U)=U. Since b,>0, F(z)=z and
b,=1, b,=0. This function however does not belong to the class &(f) with f<1.

If o is real and |g]|>1, say o=0, then s=—1/o lies on J. The only trajectory
from 1 is the segment (s, 1) and the only trajectory from —1 is the infinite segment
(— oo, —1). Hence no bounded I' can satisfy the requirements, and this case cannot
occur. The case of <0 is similar.

If ¢ =41, we have already seen that F maps U onto U less a radial slit and
[bs|=2b, (1 —by).

If o=iu is imaginary, the situation is more complicated. If F(z) is extremal,
then so is F(z) and hence we may assume u=0. One trajectory of dQ%=
=1 +iuW)dw?/(1—-W?) is the ray from s=i/u to oo along the imaginary axis.
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Thus I' consists of an analytic arc joining +1 which is homotopic to J, or arcs
from 1 to s, from —1 to s, and possibly a segment of the imaginary axis extending
upward from s. The second case occurs only when 7=1.

8.4. Suppose t<1. Then from (8.4) the integral of dQ around I' in the W-plane
will equal the integral around [—1, 1] in the Z-plane. Therefore we must have

(8.5) qw) =Vep()

where, since I' is homotopic to J,

/2

g = [ [A+ig)[(A=WH2aw = [ [1+igsin0]2d0

—n/2

(8.6)

_ /2
= V2 [ [(1+p2sin 0)2+ 12 d6).

0

Here we took the real part of the integrand, since the integral g(u) is real. Sim-
ilarly,

) p(r) = fI[(1+rZ)/(l—ZQ)]”2de f(l+rcos€)1/2d().

This is only one relation among three unknowns. However, from the definition,
lo/t|=u/t=0b,. Hence

(8.8) u = 9th;.

A third relation is obtained from (8.4) with the help of the observation that
Z =—1/t corresponds to W=i/u. Thus, the integral of 4Q in the Z-plane along
the line segment /=[—1/t, —1] must equal the integral of dQ in the W-plane along
L, the image of /. Since / lies along an orthogonal trajectory, L must be the line
segment from i/p to the point /¥ at which I' crosses the imaginary axis. This integral
18 pure imaginary, while the integral along any part of I' is real. Hence

(8.9) r(u) = Vos(@)
where
(8.10) s(t) = Im f [(1+12)/(1—Z)M2dZ

1/t

_ 1/2
g

1
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and
i/n iln
(8.11) r(=1Im [ dQ=1Im fdQ+Imf dQ

-1

/2
= Im f [I—msm@llzd()—l-f[ 2_{_12]

1 1—¢ ]1/2 1 /2
— T dt———_ 1+ 2sin26 1/2_1]1/2d9
f [ 75 J [Wrpsint)

Possible ambiguity of the sign of the last integral can be resolved easily since r(u)
must be zero when i/u is on I.

8.5. One easily verifies that p’(t)<O0 and hence p(r) is decreasing. We find
p(0)=m, p(1)=2)2. Actually, p(z) is a simple elliptic integral which can be calculated
with the help of [8], for example, to be p(t)=2)1+7 E’(k), k2=(1—1)/(1+1) where
E’ is the associated complete elliptic integral of the second kind.

Similarly, s’(t)<0 and hence s(7) is a descreasing function of = with §(0)= o,
s(1)=0. Again one can compute s(t)=2)1+7[K(k)—E(K)], K2*=1—1)/(1+7).

The first integral of the last line of (8.11) is a decreasing function of pu which
is infinite at 0 and tends toward zero as p—-c-. The second integral is an increasing
function, zero at 0 and tending toward < as u—<. Hence r(p) is a decreasing func-
tion of y which is infinite at u=0 and which decreases to 0 at some unique .
The pu, for which r(u,)=0 was found, with the help of numerical calculations, to be

(8.12) 1o = 1.1622005....

The function g (u) is clearly increasing. We have q(0) =, g (¢,) =¢,=3.3519319...,
the last value being found with the help of numerical calculations.

8.6. Let 7, O<t<1, be given. From (8.5) and (8.9), s(v)/p(v)=r(u)/q(w).
The right-hand expression is a decreasing function of g and hence this equation
determines a unique u between 0 and y,. Then (8.5) or (8.9) determines ¢. (8.8)
determines b, . Finally, from the definitions of ¢, o, and t we find |b,| =2b,(1/7)(1—1/0)
and hence |b,| is determined. That is, each T with O<t<1 determines a unique b,
and |b,|.

8.7. Suppose t=1. Then I' passes through i/u and hence we must have p=p,.
Then b,=pel0, |bs|=2b,(1—by/u;). When =1, dQ=9(1—Z)""?dZ in the
Z-plane. This is regular at Z=—1, so the boundary slit, [—1, 1] in the Z-plane
has an “open end” at Z=—1, ie., dQ changes sign if we change directions at
that point. The integral of dQ around this slit, starting at this end, will be the same
as the integral of dQ around I' in the w-plane, starting at the “open end” which
will be i/u or the tip of the slit extending upward along the imaginary axis. That is,
2g,+2v=4)2¢, where v=0 is the integral of dQ from the tip of the slit to i/u.
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This implies ¢=¢¢/8 with equality only if the extra slit is of zero length. We have
therefore proved most of

Theorem 8.1. Let F(z)=b,z+byz*+...€6  be locally extremal for
Re {Alog b; +log by} with by and A real, 0<b,<1, —1<A. Let o=(A+2)/(A+1).
Then one of the following three holds:

(8.13) b = 20,1k, b=
b JZ 75
8.14 by| = 2b ( ——1), b, = =2, ==
( ) I 2[ 1 Lo 1 0 Q 8
1 bl] o Ny g .
(8.15) 1b2| == 2b1—%‘[ _E B bl - —Q_, l’l'l ?’ Q = 8 B

where in (8.15) u, 7, and g satisfy (8.5) and (8.9).

Proof. It only remains to show that ¢<gi/8 in the case (8.15) when t<1.
Using the formulas of §8.5 and the well-known formulas for the derivatives of
the complete elliptic integrals (see, for example, 710.00—710.05 in [8]), we find

d ( s(‘c)] dk ) ,
- — ’ E 3, ’ /2.
7 0 I (k/k”*)(KE'+K'E—KK')|E
The derivative of KE’+ K’ E— KK’ is easily found to be zero and since K'(E—K)—0
as k-0, this factor is the constant x/2. Hence

L) s )

T 2E2(1-kY)
Since dk/dt<0, we conclude that s(t)/p(r) is a strictly decreasing function of 7.
Hence as t increases from 0 to 1, the u satisfying s(7)/p(7) =r(u)/q (1) increases
from 0 to py, and o=q(u)?/p(x)? increases from 1 to ¢g/8.

(8.16)

8.8. How does the theorem apply to the problem of finding the maximum of
|by| in & (|b4]) for a fixed b;? Figure 2 shows the results of some numerical calcula-
tions. The dashed curve is a plot of the parabola of (8.13). If ¢=¢2/8 in (8.14),
then b,=8uy/q3=0.82752416... . The arrow points to this value of b; and the
portion of the upper curve in Figure 2 to the left of this arrow is the parabola of
(8.14). Numerical computations of (8.15) gave b, as a decreasing function of 7z and
resulted in the portion of the curve to the right of 8p,/g:.

Analytic proofs of the facts that (8.15) determines b, as a decreasing function
of 7 and that (8.13) gives |b,| lying below the values determined by (8.14) and (8.15)
can be avoided by using the result of Jenkins in [20]. There he shows the existence
of a one-parameter family of functions F;€& which achieve the maximum |b,|
in the corresponding & (f). Theorem 8.1 must hold for each such F,. His descrip-
tion of the mappings shows that they belong to our class with ¢ imaginary, and
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hence (8.13) does not hold. They are therefore exactly the mappings giving rise to
(8.14) and (8.15). We conclude that for Fe&, |b,|=®(|b;]) where ®(|b,]) is the
function determined by (8.14) if |b,|=8u,/g2 and by (8.15) if |b;|=8u,/q;.

We remark that the extremal functions determined in this way are unique up
to the transformation F(Z), because of the uniqueness of the solution of the dif-
ferential equations. This one ambiguity arises because we had to choose p positive
or negative. Since ¢ is imaginary, the trajectories of dQ are symmetric with respect
to reflection in the imaginary axis and — F(—z)=F(2).

Figure 2

8.9. Let us consider the two special cases when A=0 and A=1.

Theorem 8.2. Let F(z)=byz+byz2+...€E. Then |by|=p,/2=0.5811002... .
This is sharp. ‘

Proof. The extremal F must satisfy Theorem 8.1 with A=0 and hence ¢=2.
If (8.15) were to hold, ¢=¢?/8=1.40443.... Hence (8.14) holds with by=b,|=
= Ho/2.

This bound may be compared with the best previously published bound, |b,|=
=¢72=0.7493..., due to Nehari [24] and Aharonov [3].

Theorem 8.3. Let F(z)=b,z+byz2+...c8. Then |byby|=8u5=0.4002103... .
This is sharp.

Proof. Here A=1 in (8.1) and ¢=3/2. Again (8.15) cannot hold and hence
by=2p,/3. Then |by|=4p,/9 and the theorem follows.

Figure 3 shows the image domain F(U) for one of the two extremal functions
of Theorem 8.2 (with b,=0). This was obtained by setting the left-hand side of
(8.2) positive and numerically integrating to find the trajectory through 1. The
length of the slit is found as discussed in § 8.7 by computing the integral v required
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to make go+v=}8g. The function of Theorem 8.3, or for that matter, any of the
functions of (8.14), map to the same domain with different slit lengths.

8.10. As a final remark in this section, we observe that we could easily treat
the problem of maximizing Re b, among all Fe& with a fixed real b,. This cor-
responds to ¥ (F)=b,+Ab;. Methods similar to those of this section lead to

2b3(W— W) s 2b(Z—-2y)
T 7 Y
where W= —(by+1b,)/2b2, Zy= —(2by+2by)[2b, and Z, is real, Z,=—1.

/N
| // | !‘
& /

S~

Figure 3

dz?

—

An analysis of the trajectories in this case leads to the conclusion that W,= —
and the extremal functions map U onto U less a radial slit from —1 to —b,/4.
That is, if F€& and 0<b,<1, then Re b,=2b,(1—b,).

9. The coefficient set of (b,, ¢;, ¢,) for pairs

9.1. Let {F, G} be a univalent pair with F(z)=b;z+..., G(z)=c z+ cy22+... .
We wish to determine the set % of all possible triples (b,, ¢;, ¢;). We can reduce the
study of this six dimensional set to that of a two dimensional set.

Let %, be the set of all (¢;, ¢,) such that {F, G} is a univalent pair with b,=1,
¢;=0, and ¢,>0. Given (by, ¢;, ¢,) €%, there exists a new pair obtained by the trans-
formations (5.1) so that (1, |by¢,l, |b1c,)€%, ie., so that (|bycyl, |bycs])€%,. Simi-
larly, if %, is known, then from (5.1) & is the set of all (xe™t, x~1ye%, x—1z¢%)
such that x>0, 0,, 0,, 0, are real and (y, 2)€%,.

For any univalent pair |by¢|=1, [1], and |b;co|<2e77/Y3, [2], where y is
the Euler constant. Further, since G is univalent, |c,/c;|<2. %; does not contain
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the origin 0, but we therefore see that %, U{0} is compact. We study %, by fixing
¢, and finding the maximum c¢,, or, what is equivalent, finding the maximum Re b, ¢,
for all univalent pairs {F, G} with fixed b,¢,>0 and b,>0. If {F, G} is extremal
for this problem, it will be locally extremal for Re ¥ (F, G) where

9.1) Y(F, G) = Abycy+bicy
and /. is the Lagrange multiplier.

9.2. We apply Theorem 5.1 to (9.1) with F=F,, G=F,. We find L,(H)=
=(hey+co)pa (H), Lo (H) = by x1 (H)+by 22 (H). Then 4, (W)= —[Aby ¢y +by ¢y +by ciwl,
As(W)= —[Absc;+bicy+bifw], By (2)= —[Abicy + by, and By(z)= —[Abyc;+
+2b,cy+byc,z+bycy/z], where we use the fact that byc;, L, (zF))=2Abyc,+b; ¢,
and L,(zF;)=Abyc;+2b;c, are all real.

We can assume that the extremal pair have b;=1, ¢,>0, ¢,=0. Since B,(z)=0
and B,(2)=0 for |z|=1, Ac;+¢=0 and ZAc;+2¢,=2¢;. Since ¢y/c;<2, this
means that A is real and greater than —2. If Ac¢;+c¢,=0, then w=F;(z) would
satisfy A4 (w)dw?/w?=0, which is impossible. Hence Ac;+c;=>0. :

We can therefore write the differential equations of Theorem 5.1 as

dw2 dz?
9.2) (l—l—ocw) e w = F(2),
a)dw? T 1 ] dz? -
9.3) [H_W] =0 [1+7[z+7] — 5 W= Fy(2),
where
‘oc _Aey+2cs . 2¢y
| /101—1-02 e= Acytey At
(9.4) la=0, 0=>1, 0<rt=1,
_ 2x 1 [ 1) _2(2-0)
c; = o cy = 20, — I—Q ==

The last three relations in (9.4) are obtained from the first three by solving for ¢,
¢y, and A.

9.3. We now study the solutions of (9.2) and (9.3). First, (9.2) can be integrated
immediately. Using the boundary conditions w(0)=0, w'(0)=b,=1, we find that
w=F,(z) satisfies

1/2 __
9.5) 21 +aw)2+log AT =1 =2+10g%, w = Fy(2).

(I4+oaw)2+1
Since the right-hand side of (9.2) has no zeros or poles in U except at
0, —1/a¢ Fy(U). It may be on the boundary or be exterior; —o will correspondingly
be on the boundary or interior to F,(U), and t=1 or t<I, respectively.
Suppose 0<t<1. Then I',, the boundary of F,(U) will be an analytic curve,
an orthogonal trajectory of the left-hand side of (9.3). Dividing by 27/ and integrating
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around the unit circle, we find from (9.3) that

Ve

ki 1 N
- 1/2 - 1/2 =
o _[ [1+7cosB0]2db i f! [1+a/w2dw = 1.

Hence
(9.6) Vop(®) ==

where p(t) is defined in (8.7). Given 7, this determines a unique ¢ with l1<p<
<n?/8. ‘

Let O<o<1 be such that 2—1(6+07*)=0. Then the right-hand side of
(9.3) has a zero at —¢. The segment (—1, —o) is a trajectory of this quadratic
differential and corresponds to a segment (—f, —a) in the w-plane. Here —fB¢r,
and f=0. Integrating along these trajectories,

—0 —a

Vo [ 14+@/2)(E+1/2)]"2dz/z = [ [+o/wl2dwjw..

Using the substitution z-+1/z=—2¢, the left-hand integral is found to be the
negative of s(z) of (8.10). The right-hand integral is 2B+log (1—B)/(1+B) where
B=(1—0o/B)"2. This also is negative. Since —fE€IF,(U), —1/BEAF,(U) and hence
from (9.5), —Vo s(t)=2+log (—az/4) where z, is some point with |z,|=1. Since
this is real, z;=-—1 and

9.7) o = 4e 2exp {—- I/ES(T)} .

From this ¢; and ¢, can be determined.

9.4. If 7=1 so that —1/a€dF,(U), then the situation is much simpler. In
this case —a€dF,(U), and from (9.5),

(9.8) o =4e"?

and then from (9.4), ¢; and ¢, will be determined as a function of o.

In this case (9.6) need not hold. Three orthogonal trajectories of the left-hand
side of (9.3) meet at equal angles at —1/x. One lies along the line from this point
toward 0. The boundary of F,(U) will consist of a simple closed curve I',, analytic
except at —1/a plus a slit I'; from —1/o toward 0. I'; may be of zero length.
Integrating around |z|=1 we find

Vo

1 2
LA 1/2 — 1/2 1/2
i lz]f (1+2)dz/z 3 f(l+ocw) dwlw+ 3 f(l +ow)2 dw/w

=1 Iy Iy
or Yop(l)/n=1+s where s=0. Here all integrals are positive. We start at z=—1
in the z-plane and at the tip of the slit in the w-plane. Thus, if t=1, we find ¢=nr?/8;
and hence c¢;=8e¢"2/o=64/n2e?. 1t follows that if c¢;=64/n2e2=0.8775891...,
then only the T<1 case occurs.

If 7<1, then ¢;=8n"2e %p(r)>t'exp {—ns(r)/p(r)}. With the help of
(8.16), the formula for p(r) of §8.5, and the formulas for the derivatives of the
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elliptic integrals, one easily shows that (d/dt) log¢; =411 (1 +1) ' E'~?(n*—4E’ K’),
k?=(1—1)/(1+7). However, (d/dk)EK=(E+k’K)(E—k’'K)[kk’® and (d/dk) (E—k'K) =
= —(1—k")(E—K)/kk’>=0. Hence it follows that EK is an increasing function of
k whose minimum at k=0 (and hence the minimum of E’K") is n%4. Therefore ¢,
is a strictly decreasing function of 7.

As 10, k—~1, k’~0, E~1, E'>n/2, p(t)~>=n. Also 1=k"?/(2—k’?). Hence

limc¢; =
>0 L 72 o2

1111;)1 p(0)2Q2—k'2) exp {—(n/E")(K—E+(2/n) E’ log K')}

- 1—6 lim exp {— (x/E") (K —log (4/k’)— E+log 4+log k' QE'[m) — 1)}.

However, K—log (4/k’)~0 and log kK’(2E’/n—1)—0 (see 112.01 and 900.07 in [8]).
Hence ¢,—~1 as 7—0.

€2

0 5 1.0 ¢,

Figure 4

As 1—1, s(1)/p(x)~0, and p(tr)—>2)2. Therefore c,—~64/n%e. Putting these
facts together, we have proved:

Theorem 9.1. Let {F,, F,} be a univalent pair with Fy(z)=z+byz*+...,
Fy(2)=ciz4+ 2%+ ..., ¢;>0, ¢;=>0. Then for any ¢;, 0<c,=1, we have
¢y = 2¢q (1 —e%cy/8 if ¢, = 64/n%e?
©9.9) 2 1( /8 i /
= Qa/v(1—1/e)  if ¢ = 64/n%e

where T is the unique real number O<t<1 such that
8 p()? { S(T)}
n2e? 1 N p(®))’

and o=m2p(t)%. The functions p(t) and s(t) are defined in (8.7) and (8.10). These
inequalities are sharp for each c . .

C1 =
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We remark that with the help of the expansion of E” near k’=1 (900.07 in [8])
one can easily show that ¢,—~0 as ¢;—~1 in (9.9). Some numerical computations
were made and Figure 4 shows the bound of (9.9). The arrow points to the “joint™
between the regions, ie., at ¢;=64/n%€>=0.8775891.... At this point c,=
=128(n2—8)/n*e2=0.33248428... .

9.5. The pair which maximizes |b;c,| must be extremal for Re {b,¢,}. That is,
it will be one of the functions found above with 2=0 or g=2. This belongs to
the =1 case and the extremal value will be the highest point of the parabolic
part of (9.9). That is,

Theorem 9.2. If {F,, F,} is any univalent pair with Fy(z)=b,z+... and

Fy(z)=ciz+cy2%+ ..., then
[bycy| = de2

U

1
£, / \
_1:0 ‘ 0 j

1i
FO \
0 /

—

1.0

Figure 5
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This result is sharp with the maximum occuring for a pair satisfying (9.2), (9.3) and
(9.4) with 9=2, =1, and a=4e™%. In this case byc,=bycy=4e™ 2

This bound, 4e—2=0.5413411... , may be compared with Aharonov’s bound [2]
2¢~7/)3=0.6483176..., or with the bound for Bieberbach—Eilenberg functions
|byby| =8u2/27=0.4002103... (Theorem 8.3).

9.6. Figure 5 shows the typical images of U by the mappings F;(z) and F,(z)
which are extremal for Theorem 9.2 with t=1. The particular pair shown has
F/(0)=b;=1, hence —o=-—0.5413411... lies on the boundary of F;(U). The
boundaries and the length of the slit were obtained by numerical integration.

All extremal pairs of Theorem 9.1 in the case 1=1 (¢;=64/n%¢?) will map onto
similar domains but with slits of different lengths.

10. An inequality of Golusin type

10.1. The methods of this paper can be used to give a simple proof of an inequality
of Golusin type for Bieberbach—Eilenberg functions. This is closely related to
inequalities of Grunsky type proved by Jenkins [20] and Garabedian and Schiffer
[11], and to the inequalities proved by Nehari in [24]. In fact, it is shown in [17]
that inequalities of Golusin and Grunsky type are essentially equivalent. We include
the following theorem, however, since it illustrates the reduction which occurs when
the A (w) in Theorem 4.1 is a perfect square

Theorem 10.1. Let F(z)€6. Let zy, 2y, ..., 2y be distinct points of U and

let Xy, Xs, ..., Xy be complex constants such that
(10.1) Im > x, =0.
v=0
Then
(10.2)
N N N N
F(z,)—F(z,) _ _
Re x,x, 1o > £ =— X,x,log(1—2,z,).
v:zl7 u———Zl' vor B (Zv—'Zu)[l —F(ZV)F(Zﬂ)] v=21' u=21' ’ g( ﬂ)

Remarks. Ambiguities in the choice of branches of the logarithms disappear
because of (10.1). The requirement that the z, be distinct can be relaxed by taking appro-
priate limits. When p=v in the left-hand sum of (10.2), we let [F(z,)— F(z,)]/(z,—z,) =
=F'(z,). The right-hand side of (10.2) is always real.

Proof. We apply Theorem 4.1 with

N N F,—F,
Y(F) =2 2 x,x,log G I-F.F]

v=1 p=1
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where we denote F(z,)=F,. We find with some computation that

IR x,%,(1—F)(1—F2)
A(w) =—w ;:u;: (Fy=w)(F,—w) (1= F,w)(1—F,w)

- | S e |

The extremal ¥ maps U onto the interior of an analytic curve I' through +1 sat-
isfying A (w)dw?/w?=0. In this case we can take the square root and integrate.
We find that for wer

R ZN' lo L= Fw = constant
e 2 % log Fow = .

Since w=—1 is on I', this constant is zero and

- F(z,)—F .
Rev:Zvalog—l_(—?zzj%zo if |z|=1.

Then, for |z]=1 we have

3 F(z)—F(z) S
Re Zwloe = reyFEr - ke 2 x5

N
(10.3) = —Re D x,log [z—%]
v=1

N
= —Re > %,log(l1—%,2)
v=1

since ' X,log (—1/z) is pure imaginary for |z|=1 because of (10.1).
Both sides of (10.3) are the real parts of functions which are analytic in the
closure of U. Hence equality holds in all of U and

N
F(z,)—F(z) L = .
10.4 1o = yog(1—z,2)+ik
10D ey ray ~ o5+
where & is some real constant.

Set z=z, in (10.4), multiply by X,, and add the resulting relations for all .
Then i 3 x,k is pure imaginary and hence

N N F(z,)—-F(z,)
Re v;: ”;1' x,x, log (2= z)[1—F(z,) F(z,)] .

Thus, the extremal function gives equality in (10.2) and the inequality must hold
for all Feé.

N
2 X,x,log(1—3, Z,).

n=1

N.
=1
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