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OI{ OR.THOGONAIIY SCATTERET)
DII,ATIONS OF BOUI{DED VECTOR

MEASURES

HANNU NIEMI

1. Introduction. Let H be a Hilbert space with complex scalars and let S be

a locally compact Hausdorff space. In this paper we show that every bounded

I/-valued vector measure p defined on S is, in a Certain sense, a projection of a
bounded orthogonally scattered vector measure p' defined on S with values in a
Iarger Hilbert space H'.

Our result is a generalization of Abreu's Theorem 3.I in [4 (see also the proof
of the main theorem in Abreu's paper [1]), where he presented 4 5nfficient condi-

tion for a bounded I/-valued vector measure to be a "projection" of a bounded

orthogonally scattered vector measure with values in alarger Hilbert space H'.
The proof of our result is essentially based on a fa&ortzation theorem of

Grothendieck [5; p. 521and, on a construction used by Abreu in [l] and [2].

A detailed proof of Grothendieck's theorem (in another form) was presented

by Rogge [1] in the case of bognded vector measures defined on a compact Haus-

dorff space and taking values in a real Hilbert space. Rogge's work was based on

some earlier results of Pietsch [0]. For the sake of completeness we show in Sec-

tton2that these results of Rogge and Pietsch are applicable even in the case con-

sidered by us.

2. On 2-majorizable vector measures with values in a Hilbert space. In this

section we show that the results of Rogge [11] and Pietsch [10] concerning the so-

called 2-majorizable vector measures are valid even for vector measures, which are

defined on a lgcally compact Hausdorff space and taking values in a complex Hil-
bert space.

Let T be a compact Hausdorff space. By C(7) we denote the linear space of
all continuous functionsl f: T*C. Similarly, for a locally compact Hausdorff

space ,S we denote bV Co(S) the linear space of all continuous lunctions f: S-C

1 In this paper we denote by N, R and respectively by C the set of natural, real and respectively

complex numbers.
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vanishing at infinity, i.e., a continuous function f: S*C is an element of Co(S)
if for every e>0 there exists a compact set KcS such that l/(s)l=e for all
s(K. The linear subspace of all real-valued functions in C(T) (resp. in Cr(S)) is
denoted by CR"(Z) (resp. by Cf"(S)). The topology of C(") and Co(S) is defined
by the supremum norm.

Next we recall some definitions concerning Radon measures and vector measures.
For conveniente we present them in the case of a locally com, pact Hausdorff space

and the complex scalars. The definitions in the case of a compact Hausdorff space

or in the case of the real scalars are similar.
Let S be a locally compact Hausdorff space. The set of all bounded Radon

measures on S, i.e., the dual of Co(S) is denoted by "&ä(S). We recall that a Radon
measure v€"6tf) is said to be real-ualued, if i(rt:vU) for all /€Co(S). In
this paper we call a real-valued v€./tl(S) positiue, if v(/)>0 for all f(Co(S),
f=0.

Let H be a Hilbert space. By (.1.) orby (.1.)" we denote the inner product
and respectively by ll .ll or by ll .lls the norm of -FL The topology of a Hilbert space is
alpays the norm topology.

In this paper we use the integration technique of vector measures introduced
by Thomas [2]. We use even Thomas' terminology, i.e., we use the term integrable
when Bourbaki [4] uses the term essentially integrable

'[.,et H be a Hilbert space with complex scalars and let S be a locally compact
Hausdorff space. We recall that a bounded H-aalued aector measure p on ,S is a
continuous linear mapping trt: G(,S)*fL For a bounded }I-valued veclor measure
p on S (or.for a Radon measure p<,trä(S)) the linear space of functions /: S*C
for which the function l"fl, is p-inlegrable is denoted by 9E@\ p>l; and the
integral of a function f<gåQD with respect to p is denoted by

!tau.
Moreover, we denote tV rp {p} the closed linear subsp ace in H spanned by the set

{pOl"f€Cr(S)}. It follows from the completeness of sp{p} and from the way
to define the integral of a vector measure (see Thomas U2; pp.65-69) that

The norm of a bounded }I-valued vector measure p on S, i.e., the norm of the
continuous linear mapping p: Co(,S)*fI is denoted bV llpll.

The definition of a Lmajonzable (or more generally p-majoraable; 1=p=<-)
vector measure is essentially due to Persson and Pietsch (see Pietsch [10] and ref-
erences given there).

Definition 1. Let , U" o Hilbert space with complex (resp. real) scalars
andletSbealocallycompactHausdorffspace.Aboundeduectormeasure p: Co(S)*g
(resp. 1t: CoR"1,s;*ä,/ is called 2-majorizable, if there exisrs a bounded positiue

f f aue qp fu/) for all f € såQ.4.
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Radon measure v: Co(S)*f, (resp. t: C'R"1,S;*& such that

(l) llp(fll]"=v(l|l')'/' for all /€C.(s) (resp. feC["(S)).
For abounded2-majorizable H-ualued aector measure p: Co(S)-H (resp.p: Cf;"1S;
*H) the set ofall bounded positiue Radon meqsures v: Co(S)*f, (resp. v:Co*"(S)
*R) satisfying the condition (l) is denoted by tti. The elemmts of tri are called
2-majorufis of 1t.

The following lemma is essentially due to Thomas U! p.981. ln the proof
of the lemma we use the semi-variation p. of a vector measure p. The semi-variation
of a vector measure is defined by Thomas ll2; pp. 65-661.

Lemma 2. Let S be a locally compact Hausdorff space and let T:Su{-}
be an Alexandroff compactification of S. If H is a real Hilbert space, then for eoery

bounded aector measure p: CnR"1S;rH there exists a bounded vector measure

fi: CR"(T)*H such that lliLll:ll1ll and

tr(n : tt(f) for all /€CR"(,S);

here f: T*R is defined by f(s1:1s;, s€S, and f(*'1:9.
Proof. Let p: CoR"1,S;-;.i7 be a bounded vector measure. Since p is a con-

'tinuous linear mapping from a normed space to a Hilbert space it is weakly compact.
Thus all bounded continuous functions I S*R are p-integrable (Thomas ll2;
pp. 86-871).

We define a linear mapping it: CR'(77-ä by setting

frU)

here.fi is the restriction of/to S and I stands for the constant function g(s):l
for all s€,S. Then p is a bounded vector measure on 7, since using the properties

of p. (Thomas 112; pp. 68-691) we get

llfr(/)ll

p.(1"åD+ l"f(-)lp.(1)

= 
p.(1) sup l"f l, f €C""(T).

Since llp|l:p'(1) (Thomas U2; p.86 and p. 691), we get llpll:lllrll.
Clearly, p(fl:rtG) for all /€C'R"(^S), which proves the lemma.
I et H be a Hilbert space with complex scalars. In the following we denote by

11*" the corresponding real Hilbert space.

Suppose p is a bounded Il-valued vector measure defined on a locally compact
Hausdorff space S. We define a bounded vector measure p*": CoR"1,S)*I/n" by
setting

pn (I): p(f), ,f€c}"(s).

- f fo dp+f (q I ! dp, f ecR" Q);

= llf t,dpll *llrr."l f t dpll
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Lemma 3. Let H be a Hilbert space with complex scalars. Thmfor all bounded

H-ualued Dector measures p defined on a locally compact Hausdorff space S

tri ) {4i € //tf)lv € "wfu"} ;

here i (f) :v(Re/) + rv(Im f), f€Co(S).

Proof. Suppose a bounded positive Radon measure v: C|"1S1*n is a

2-majorant of tn".Then for all f€Co(S)

ll tt(f)ll " = llp(Re/)llr + ll p (rm"f )ll r
: llt*. (Re,f)ll r*" * llp*" (Im"f )ll "*.
= v (lRe/ l,)ti, + v 1;tm1 13tt 

2 <- 2v (lf l\Lt 
2.

Thus 4i is a 2-majorant of p, which proves the lemma.

Let H be a Hilbert space with complex scalars. It follows from Lemma2 and

Lemma3 thatthe results of Rogge [1]; Satzl] and Pietsch [10; Satzl] concerning
2-majonzable vector measures are applicable for all bounded ,F/-valued vector
measures defined on a locally compact Hausdorff space. We state these results as

a theorem.

Theorem 4, Let H be a Hilbert space with complex scalars and let p be a
bounded H-ualued oector measure defined on a IocaIIy contpact Hausdorff space S.

Then pr is 2-majorizable.

3. Orthogonally scattered ililations of vector measures with values in a Hilbert
space. In this section S stands for a locally compact Hausdorff space and the scalar

field of all Hilbert spaces under consideration is C.

In this section we use so-called bimeasures. We recall that a bounded bimeasure

B on SXS is defined as a continuous bilinear form -B: C0(S)XC0(S)*C.
Bimeasures and their integration have been especially studied in the paper

of Morse and Transue [7] and in the paper of Thomas ll2; pp. 144-t47} We have

used bimeasures in analyzrng vector measures with values in a Hilbert space in gur

papers [8] and [9].

Definition 5. Let H be a Hilbert space and let p be an H-ualued uector measure

on S. The (continuous) bilinearform

B(f, s) : @(f)lt G)), f, c€co(s),

is called the bimeasure defi.ned by 1t.

Definition 6, A bounded aector measure p on S with ualues in a Hilbert space

H is said to be orthogonally scattered, if
(p(/) lp(e)) : o

.for all f,s€Cr(S) such that the supports of f and g a.re compact and disjoint.
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Orthogonally scattered vector measures (with values in a Hilbert space) have

been especially studied by Masani t6l. In t9l we gave several charactenzations of an

orthogonally scattered vector measure using the bimeasure defined by it. In this

paper we make use of the characteÅzation stated in the following theorem. For the

proof see [9; Theorem24].

Theorem 7. Let H be a Hilbert space. A bounded H'oalued Dector measure

p on S is orthogonally scattered if crtd only if there exists a positiue v ("{/l(S) such that

Q) Q-,$)lp(g)) - v(fs) fo, all f, g€Cs(S);

here (/g)(s):/(s)ffi, s€S. If there exists a bounded positiue Radon measure

vcrllå(S) satisfying the conditibn (2), then it is unique and 9!(v):gljt).
Let H be a Hitbert space and let M be a closed linear subspace of 1L Then the

orthogonal projection of H to M is denoted by Po6.

Definition 8. Let H be a Hilbert space and let p be a bounded H-aalued oector

rneesure on S. A triple (H', pt', j) con;istW of a Hilbert space H', of an H'-oalued

bounded uector lmeqsure p' on S and of a linear mapping i: sp{p\*H' is said to

be an orthogonally scattered dilation of the pair (H, lD, if
(r) 1t' is orthogonally scattered,
(ii) .r: qp {p}*f (qp {p}) is art isometric isomorphism and if
(iir) Pir6tr, o p'(f):j o p(f) for all ,f€Cr(S).

The following theorem is a direct consequence of Theorem 7 and a general

result of Thomas [12; pp. 78-79].

Theorem 9. Let p be a bounded aectqr measure on S with oalues in a Hilbert
space H andlet (H', tt', j) be an orthogonally scattered dilation of (H, tD.fhen 9å(p)
:gå(i op) and

If ve"d/|(S) is the unique bounded positioe Radon meqsure on S for which

(p'U)lt 'G)) : v(fE), /, g( G(s);
then 9!(t) - 9|(p') c 9[(p). Furthermore,

fo, all f€gå(p').

Let p, be a bounded vector measure on S with values in a Hilbert space ä'
We present next a necessary and sufficient condition for the existence of an orthog-

onally scattered dilation of the pair (H, Lr).

First we present some preliminary results.

Definition lO. A bounded bimeasure B on SXS ts called positiue fufinite, f

iUf dp): Itd,(iotD fo, att fe så(p).

Pir* {r}r(lf dp')= If dU"p)

B(f,l)=O forall feCo(,S).
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Remark. Let E be an arbitrary set. We recsll that a mapping r: EXE*C
is said to be positiue definite or a positiue definite kernel, if

mil

Z ) a:rder(si, s1) = 0j:t k-L

for .all ai€C, si€E, j:1, ..., m, m€N.

If B is a bounded positive definite bimeasure on SXS, then the mapping

Q: C,(S)XC'(S)*C,
QU, s) : B(f, d, f, gCCo(,s),

is a positive definite kernel.
Let E be an arbitrary set and let r: EXE*C be a positive definite kernel.

For t€E we define rr: E*C by setting

. r,(s) : r(s, l), s€ E

It is a well-known fact that for the positive definite kernel r there exists a (unique)
Hilbert space ,F/(r) consisting of a linear space of functions f: E-C, such that
r'€H(r) for all 

''"t ,,"|r)uot: r(r, s) for all s,t€E;

and the closed linear subspacein H(r) spanned by the set {r,lr€E} coincides with
I1(r). The space ä(r) is called the reproducing kernel Hilbert space spanned by r
(Aronszajn [3]).

The following lemma is a direct consequence of the properties of reproducing
kernel Hilbert spaces listed above.

I-emma ll. Let B be a bounded positiue definite bimeasure oz ,SXS. Define

Then the mapping 
QG'h): BEE' g'h<co(s)'

(3) paj): Qr, "f€Co(S),
is a bounded aector measure on S with aalues in the reproducing kernel Hilbert space

H(Q) spanned by Q and

@aj)lpak))"@: B(f, E), for all /, ge G(s).
Let H be a Hilbert space. The following theorem characterizes the bounded

f/-valued vector measures on S for which there exists an orthogonally scattered

dilation of (H, p). In the proof of the theorem we use the direct sum of two repro-
ducing kernel Hilbert spaces. This idea originates from Abreu's papers [1] and [2].

Theorem 12. Let p be a bounded t)ector measure on S with ualues in a Hilbert
space H. Then there exists an orthogonally scqttered dilation (H', tt',j) of (H, p) if
and only if there exists a positiue y€l//å(S) such that

(4) llp7)llä = v(lfn fo, att f €co(s).



On orthogonally scattered dilations of bounded vector measures 49

For euery positioe y<'6ä(S) satisfying the condition (4) there exists an orthogonally
scattered dilation (H',lt', j) of (H, trt) sueh that

(5) (p'(f)lp'k))r' : v(fl) for all /, g€G(s).

Proof. The necessity of the condition (4) is obvious.
To prove the sufficiency we first note that in the case

llp4y1.llr": v(l"fl) for att /€cr(s)
the vector measure p is by Theorem 7 orthogonally scattered, since applying a well-
known polarization formula we get

(P(illlt(d)": vVE) for all"f, g€co(s)'

Thus, in this case the triple (H,p,i), where i: H*H is the identity mapping, is

an orthogona^lly scattered dilation of (H, 1t).

Suppose there exists a function "6(Cr(S) for which

llPfi)llk: v(lål)'
Let ,B be the bimeasure defined by pl. We define a bounded bimeasure .B'#0

on SXS by setting
B'(f, g): v(fd-B(f, g), /, g€co(s).

The bimeasure B' is positive definite, since it follows from the inequality (4) that

B'(f , I): v(l,fl,) - B(jf ,l) = O for all /€ Cr(S).

Thus the mappings

Q(f, g): BCI, g), f, s€Co(s1;

Q'U;d: B'$, g), f, sQ.co(s);

are positive definite kernels.
In the following we consider the reproducing kernel Hilbert spaces H(Q) and

H(Q') spanned by Q and respectively by Q' and the bounded vector measures po
and pq on S defined as in the formula (3).

We denote
H': H(Q)@H(8).

The elements of H' arc ordered pairs (x, y), x€H(Q), y(H(Q'): and the inner
product of two elements (xr., yr), (x2, yr)€H' is

((*r, y)l(xr, !))n, : (xrlx)ss1*(yr.ly)"e,t.

We define a linear mapping /: p(C'(S)) *H' by setting

j(p(f)) : (pa(f),0), /€co(s).
Since llp(/)lln:llj(p(f))lls, for all /€Co(S) the linear mappingjcan be extended
by continuity to an isometric isomorphism 7 : sp {p}*j(.p {p). Note thatj(sp {p}):
:fr(o)e {0}.
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To complete the construction of the orthogonally scattered, dilation (H', tr',i)
of (H,p) we define a bounded H'-valued vector neasure p'on S by setting

p' (^f) : (pa(f),O)+(0, pa,(f)), /€c.(s).
The vector measure ;r' is, by Theorem 7, orthogonally scattered, since for all

,4 g€cr(s)
Q| $ )l p' G)) E, : (p a(n I 

p aG)) E @ + Qt a, U )l p a' G)) 
" 

@t

: BQf, E)+B'(f, il: v(fil. :

Since 7(qp{1D:H(Q)@{0} we get

for all ,f€Co(S). Hence the triple (H', tt',i) is an orthogonally scattered dilation of
the pair (I/, p) satisfying the condition (4).

The theorem is proved.

We are now ready to present the theorem that has been aimed at in this paper.

It is a direct consequence of Theorem4 and Theorem 12.

Theorem 13. Let H be a Hilbert space and let p be a bounded H-ualued uector

me(Nure on S. Then the set of orthogonally scattered dilations of (H, p) is non-empty.

For ettery 2-majorant tt€"llfi there exists an orthogonally scattered dilation (H', p',i)
of (H, p) such that

(P'U)ltt'(d): vUE) fo' all f, g€co(s)'

As an example we present the special case considered by Abreu.

Example 14. Let pbe abounded vector measure defined on S with values in a
Hilbert space ä ana tet -B be the bimeasure defined by p.

. Suppose there exists a bounded Radon measure v(ft!(SXS) such that

(6) B(f, d: v(,fAg) , for all,f, g€Co(S);

here /6g(s, t):f(s)g(t) for all s, l€ S.

If there exists a bounded Radon measure v€.//LQY.S). satisfying the con-

dition (Q, then it is unique [8; p. 23].

Let lvl be the absolute value of v. Define a bounded Radon measure

vo: coR"(,s;*R by setting

here again 1 stands for the constant function S(s) -1,.s€,S.
Abreu has shown in the proof of the main theorem in tl] that

:

llrt(f)ll' = vo(l/l') for all f QCr(,S).

vo(fi:+f irut+t efidlrl, f€ctr"(s);



On orthogonally scattered dilations of bounded vector measures 51

Thus, using our terminology, the bounded positive Radon measure i6, i6(/)=
:vo(Re/)* ivs(Imf),,f€Co(S), is a 2-majorant of p.
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