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ON ORTHOGONALLY SCATTERED
DILATIONS OF BOUNDED VECTOR
MEASURES

HANNU NIEMI

1. Introduction. Let H be a Hilbert space with complex scalars and let S be
a locally compact Hausdorff space. In this paper we show that every bounded
H-valued vector measure p defined on S is, in a certain sense, a projection of a
bounded orthogonally scattered vector measure pu’ defined on S with values in a
larger Hilbert space H'.

Our result is a generalization of Abreu’s Theorem 3.1 in [2] (see also the proof
of the main theorem in Abreu’s paper [1]), where he presented a sufficient condi-
tion for a bounded H-valued vector measure to be a “projection” of a bounded
orthogonally scattered vector measure with values in a larger Hilbert space H".

The proof of our result is essentially based on a factorization theorem of
Grothendieck [5; p. 52] and on a construction used by Abreu in [1] and [2].

A detailed proof of Grothendieck’s theorem (in another form) was presented
by Rogge [11] in the case of bounded vector measures defined on a compact Haus-
dorff space and taking values in a real Hilbert space. Rogge’s work was based on
some earlier results of Pietsch [10]. For the sake of completeness we show in Sec-
tion 2 that these results of Rogge and Pietsch are applicable even in the case con-
sidered by us.

2. On 2-majorizable vector measures with values in a Hilbert space. In this
section we show that the results of Rogge [11] and Pietsch [10] concerning the so-
called 2-majorizable vector measures are valid even for vector measures, which are
defined on a locally compact Hausdorff space and taking values in a complex Hil-
bert space.

Let T be a compact Hausdorff space. By C(T) we denote the linear space of
all continuous functions! f: T—C. Similarly, for a locally compact Hausdorff
space S we denote by Cy(S) the linear space of all continuous functions f: S—~C

1 In this paper we denote by N, R and respectively by C the set of natural, real and respectively
complex numbers.
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vanishing at infinity, i.e., a continuous function f: S—C is an element of Cy(S)
if for every >0 there exists a compact set KcS such that |f(s)|<e for all
s¢ K. The linear subspace of all real-valued functions in C(7T) (resp. in Co(S)) is
denoted by CR(T) (resp. by CR(S)). The topology of C(T) and Cy(S) is defined
by the supremum norm.

Next we recall some definitions concerning Radon measures and vector measures.
For convenience we present them in the case of a locally compact Hausdorff space
and the complex scalars. The definitions in the case of a compact Hausdorff space
or in the case of the real scalars are similar.

Let S be a locally compact Hausdorff space. The set of all bounded Radon
measures on S, i.e., the dual of C,(S) is denoted by #}(S). We recall that a Radon
measure vE#E(S) is said to be real-valued, if v(f)=v(f) for all fECy(S). In
this paper we call a real-valued veZ2(S) positive, if v(f)=0 for all f€C,y(S),
f=0.

Let H be a Hilbert space. By (.|.) or by (.|.)y we denote the inner product
and respectively by ||.|| or by || .|z the norm of H. The topology of a Hilbert space is
always the norm topology.

In this paper we use the integration technique of vector measures introduced
by Thomas [12]. We use even Thomas’ terminology, i.e., we use the term integrable
when Bourbaki [4] uses the term essentially integrable.

Let H be a Hilbert space with complex scalars and let S be a locally compact
Hausdorff space. We recall that a bounded H-valued vector measure i on S is a
continuous linear mapping u: C,(S)—~H. For a bounded H-valued vector measure
pon S (or for a Radon measure pu€./#;(S)) the linear space of functions f: §—C
for which the function | f]? is p-integrable is denoted by F2Z(w), p=1; and the
integral of a function f€%}(u) with respect to u is denoted by

[fau.

Moreover, we denote by sp {u} the closed linear subspace in H spanned by the set
{u( )| fe€Cy(S)}). It follows from the completeness of sp{u} and from the way
to define the integral of a vector measure (see Thomas [12; pp. 65—69]) that

Jrduesp sy forall fe L.

The norm of a bounded H-valued vector measure won S,ie., the norm of the
continuous linear mapping u: C,(S)—H is denoted by |ul.

The definition of a 2-majorizable (or more generally p-majorizable; 1=p- )
vector measure is essentially due to Persson and Pietsch (see Pietsch [10] and ref-
erences given there).

Definition 1. Let H be a Hilbert space with complex (resp. real) scalars
and let S be alocally compact Hausdorff space. A bounded vector measure p: Cy(S) ~H
(resp. w: CR(S)—~H) is called 2-majorizable, if there exists a bounded positive
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Radon measure v: Cy(S)—~C (resp. v: CR°(S)~R) such that

¢y lu(Hlle = v(fPY2 for all fFEC,(S) (resp. fECF(S)).

For a bounded 2-majorizable H-valued vector measure p: Co(S)—~H (resp. u: CE(S)
—~H) the set of all bounded positive Radon measures v: Cy(S)—~C (resp. v: CE(S)
—~R) satisfying the condition (1) is denoted by Jlf. The elements of %’f are called
2-majorants of u.

The following lemma is essentially due to Thomas [12; p. 98]. In the proof
of the lemma we use the semi-variation p+ of a vector measure p. The semi-variation
of a vector measure is defined by Thomas [12; pp. 65—66].

Lemma 2. Let S be a locally compact Hausdorff space and let T=S5uU{}
be an Alexandroff compactification of S. If H is a real Hilbert space, then for every
bounded vector measure p: CR(S)—~H there exists a bounded vector measure
fi: CR(T)~H such that |fi|=|p| and

u(f)y=p(f)  for all feCRe(S);
here f: T—R is defined by f(s)=f(s), s€S, and f(=)=0.

Proof. Let p: CR(S)—~H be a bounded vector measure. Since y is a con-
tinuous linear mapping from a normed space to a Hilbert space it is weakly compact.
Thus all bounded continuous functions f: S—~R are u-integrable (Thomas [12;
pp. 86—87]).

We define a linear mapping ji: CR¢(T)—~H by setting

A = [fodu+f(e) [1dp,  fECR(T);

here f, is the restriction of / to S and 1 stands for the constant function g(s)=1
for all s€S. Then fi is a bounded vector measure on 7, since using the properties
of u* (Thomas [12; pp. 68—69]) we get

13O = || f fodu]| +]|f =) [ 1du]
= 1 (Lfu) +1F () (1)

=p@sup [fl,  fECR(D).

Since |jull=p+(1) (Thomas [12; p. 86 and p. 69]), we get |u|=|7].

Clearly, u(f)=p(f) for all fECR(S), which proves the lemma.

Let H be a Hilbert space with complex scalars. In the following we denote by
Hy, the corresponding real Hilbert space.

Suppose p is a bounded H-valued vector measure defined on a locally compact
Hausdorff space S. We define a bounded vector measure ug,: Cré(S)—~Hy, by
setting

tre(f) = u(f),  fECF(S).
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Lemma 3. Let H be a Hilbert space with complex scalars. Then for all bounded
H-valued vector measures p defined on a locally compact Hausdorff space S

MEDAATE ME(S)|ve M
here V(f)=v(Ref)+iv(Imf), f€Cy(S).

Proof. Suppose a bounded positive Radon measure v: CR(S)—~R is a
2-majorant of pg,. Then for all f€Cy(S)

leNlla = ln®Re )+ [ndmf)llg

| tre (RE f)]| g + | tre (Im M e
= v([Re f[2-+v([Im V2 = 2v(| 57"

Thus 47 is a 2-majorant of p, which proves the lemma.

Let H be a Hilbert space with complex scalars. It follows from Lemma 2 and
Lemma 3 that the results of Rogge [11; Satz 1] and Pietsch [10; Satz 1] concerning
2-majorizable vector measures are applicable for all bounded H-valued vector
measures defined on a locally compact Hausdorff space. We state these results as
a theorem.

Il

Theorem 4. Let H be a Hilbert space with complex scalars and let p be a
bounded H-valued vector measure defined on a locally compact Hausdorff space S.
Then u is 2-majorizable.

3. Orthogonally scattered dilations of vector measures with values in a Hilbert
space. In this section S stands for a locally compact Hausdorff space and the scalar
field of all Hilbert spaces under consideration is C.

In this section we use so-called bimeasures. We recall that a bounded bimeasure
Bon SXS is defined as a continuous bilinear form B: Cy(S)X Co(S)—C.

Bimeasures and their integration have been especially studied in the paper
of Morse and Transue [7] and in the paper of Thomas [12; pp. 144—147]. We have
used bimeasures in analyzing vector measures with values in a Hilbert space in our
papers [8] and [9].

Definition 5. Let H be a Hilbert space and let 11 be an H-valued vector measure
on S. The (continuous) bilinear form

B(f, &) = (u(NH|u@), [, g€Co(S),
is called the bimeasure defined by .

Definition 6. A bounded vector measure u on S with values in a Hilbert space
H is said to be orthogonally scattered, if

(u(f)|u(®) =0
Jor all f,g€Cy(S) such that the supports of f and g are compact and disjoint.
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Orthogonally scattered vector measures (with values in a Hilbert space) have
been especially studied by Masani [6]. In [9] we gave several characterizations of an
orthogonally scattered vector measure using the bimeasure defined by it. In this
paper we make use of the characterization stated in the following theorem. For the
proof see [9; Theorem 24].

Theorem 7. Let H be a Hilbert space. A bounded H-valued vector measure
pon S is orthogonally scattered if and only if there exists a positive v€.#5(S) such that

2 (D) =v(f2)  forall f, g€ Co(S);

here (f8)(8)=f(s)g(s), s€S. If there exists a bounded positive Radon measure
VEME(S) satisfying the condition (2), then it is unique and LE(v)=LE(w).

Let H be a Hilbert space and let M be a closed linear subspace of H. Then the
orthogonal projection of H to M is denoted by Py, .

Definition 8. Let H be a Hilbert space and let i be a bounded H-valued vector
measure on S. A triple (H', 1, j) consisting of a Hilbert space H', of an H’-valued
bounded vector measure i’ on S and of a linear mapping j: sp{u}~H’ is said to
be an orthogonally scattered dilation of the pair (H, p), if

(1) w is orthogonally scattered,

@) Jj: sp{u}—=jGp{u}) is an isometric isomorphism and if

(i) Py 01 (/)= on(f) for all FEC,(S).

The following theorem is a direct consequence of Theorem 7 and a general
result of Thomas [12; pp. 78—79].

Theorem 9. Let u be a bounded vector measure on S with values in a Hilbert
space H and let (H', 1t’, j) be an orthogonally scattered dilation of (H, ). Then Z}(w)
— LMo and

i(ffdu)= [fdGow  for all fe L&),
If veME(S) is the unique bounded positive Radon measure on S for which
WNIK @) =v(f8). f geCo(S);
then LE(V)=LE(W ) LE(W). Furthermore,
Picouy ([fdw) = [fdGow  forall fe LEW).

Let u be a bounded vector measure on S with values in a Hilbert space H.
We present next a necessary and sufficient condition for the existence of an orthog-
onally scattered dilation of the pair (H, p).

First we present some preliminary results.

Definition 10. A bounded bimeasure B on SX .S is called positive definite, if
B(f,/)=0  for all  fcCy(S).
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Remark. Let E be an arbitrary set. We recall that a mapping r: EXE—~C
is said to be positive definite or a positive definite kernel, if

2 2 a;ar(s;,s) =0
j=1 k=1
for all a;cC, s;cE, j=1,...,m, mcN.

If B is a bounded positive definite bimeasure on SXS, then the mapping
0: Gy (S)XCy(S)~C,
0(f,8) =B(f, 2, [ 8cC(S),

is a positive definite kernel.
Let E be an arbitrary set and let r: EXE—~C be a positive definite kernel.
For ¢€E we define r,: E~C by setting

r(s) = r(s, 1), seE.

It is a well-known fact that for the positive definite kernel r there exists a (unique)
Hilbert space H(r) consisting of a linear space of functions f: E—~C, such that
r,€H(r) for all 1¢E;
(rs|r,)H(,) =r(ts) for all s, t€ E;

and the closed linear subspace in H(r) spanned by the set {r,[t€E} coincides with
H(r). The space H(r) is called the reproducing kernel Hilbert space spanned by r
(Aronszajn [3]).

The following lemma is a direct consequence of the properties of reproducing
kernel Hilbert spaces listed above.

Lemma 11. Let B be a bounded positive definite bimeasure on SXS. Define

(g, h) = B(& h), g heCy(S).
Then the mapping

©) uo(f) = Qs,  FEC(S),

is a bounded vector measure on S with values in the reproducing kernel Hilbert space
H(Q) spanned by Q and

(ﬂQ(f)]#Q(g))H(Q) = B(f, 8), Sfor all f, g€ Co(S).

Let H be a Hilbert space. The following theorem characterizes the bounded
H-valued vector measures on S for which there exists an orthogonally scattered
dilation of (H, ). In the proof of the theorem we use the direct sum of two repro-
ducing kernel Hilbert spaces. This idea originates from Abreu’s papers [1] and [2].

Theorem 12. Let u be a bounded vector measure on S with values in a Hilbert
space H. Then there exists an orthogonally scattered dilation (H', ', j) of (H, p) if
and only if there exists a positive VEME(S) such that

“ le(OIE = v(fB)  for all fEC(S).
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For every positive vEME(S) satisfying the condition (4) there exists an orthogonally
scattered dilation (H', ', j) of (H, p) such that

©) WD W@ =v(fe)  for all f, geCo(S).

Proof. The necessity of the condition (4) is obvious.
To prove the sufficiency we first note that in the case

IkOIE = v(fIP)  for all feCy(S)

the vector measure u is by Theorem 7 orthogonally scattered, since applying a well-
known polarization formula we get

(n(N)|u@)a =v(f§)  for all f, g€ Co(S).
Thus, in this case the triple (H, u, i), where i: H—H is the identity mapping, is
an orthogonally scattered dilation of (H, p).
Suppose there exists a function fi€Cy(S) for which

el < v((fol®-

Let B be the bimeasure defined by u. We define a bounded bimeasure B’>0
on SXS by setting
B'(f, 8) =v(fa)—B(f,2), [, gcCy(S).

The bimeasure B’ is positive definite, since it follows from the inequality (4) that

B'(f,f)=v(fPH-B(f,f)=0  forall f€Cy(S).
Thus the mappings
Q(f3g):B(fa g)’ f’ g€ Cy(S);

(.9 =B(f g, [ gcCo(S);

are positive definite kernels.

In the following we consider the reproducing kernel Hilbert spaces H(Q) and
H(Q’) spanned by Q and respectively by Q" and the bounded vector measures p,
and po on S defined as in the formula (3).

We denote

H = HQ)®H(Q).
The elements of H” are ordered pairs (x,y), x€H(Q), y€H(Q’); and the inner
product of two elements (x;, y;), (X, yo)€H’ i

(Gers YD1 Ce2s ) = (1l XDmcoy + W1l Youcor) -
We define a linear mapping j: u(Co(S))—~H’ by setting

Jw() = (uo(f), 0),  FECK(S).

Since [|u(g=1j(r(f))lg for all f€C,(S) the linear mapping j can be extended
by continuity to an isometric isomorphism j: sp {u}-j(sp {1}). Note thatj(sp {u})=
=H(Q)® {0}.
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To complete the construction of the orthogonally scattered dilation (H’, i/, j)
of (H, u) we define a bounded H’-valued vector measure u’ on S by setting

1 (f) = (o (), 0)+(0, g (), FECH(S).
The vector measure p” is, by Theorem 7, orthogonally scattered, since for all

1, 8€Cy(S)
(.u'(f )|ﬂ,(g))f1' = (NQ(f )l#Q(g))H(Q)‘I’(ﬂQ' f )}ﬂQ' (g))H(Q’)

= B(f, D+B'(f, &) = v(f3)
Since j(sp{u})=H(Q)® {0} we get
jou(f) = (uo(f), 0) = Piap o’ (f)

for all f€C,y(S). Hence the triple (H’, 11/, j) is an orthogonally scattered dilation of
the pair (H, p) satisfying the condition (4).

The theorem is proved.

We are now ready to present the theorem that has been aimed at in this paper.
It is a direct consequence of Theorem 4 and Theorem 12.

Theorem 13. Let H be a Hilbert space and let u be a bounded H-valued vector
measure on S. Then the set of orthogonally scattered dilations of (H, p) is non-empty.
For every 2-majorant vE M, : there exists an orthogonally scattered dilation (H', u’, j)
of (H, n) such that

WD (@) =v(fe  forall f, g€ Co(S).
As an example we present the special case considered by Abreu.

Example 14. Let p be a bounded vector measure defined on S with values in a
Hilbert space H and let B be the bimeasure defined by p.
Suppose there exists a bounded Radon measure vE#;(SXS) such that

(©) B(f.g) =v(f®g)  forall f, geCy(S);

here f®g(s, 1)=f(s)g(¢) for all s, z€S.

If there exists a bounded Radon measure vEZE(SXS) satisfying the con-
dition (6), then it is unique [8; p. 23].

Let |v| be the absolute value of v. Define a bounded Radon measure
Vo: Cre(S)—~R by setting

W) =2 f U1+18)db,  fECH(S);

here again 1 stands for the constant function g(s)=1, s€S.
Abreu has shown in the proof of the main theorem in [1] that

I (OIF = vo (1) for all f€Co(S).
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Thus, using our terminology, the bounded positive Radon measure ¥,, ¥o(/f)=
=v,(Re f)+ive(Im f), f€C,y(S), is a 2-majorant of .
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