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1. Introduction

- In this paper we are concerned with the solvability of strongly nonlinear varia-

tional inequalities involving differential expressions of the form

Au(x)* Bu(x), x€.Q,

where (2 is a (unbounded) domain in RN (N=2),

(2) Au(x) : 
*ä_o(- 

1) t"t po'tro(x, u(x), ... , Dou(x))

is quasilinear,

(3) Bu(x) - (- t;trl DP B p(*, u(x), ..., D* u(x))

is strongly nonlinear in the sense that Bp do not satisfy a polynomial growth con-

dition, and C=m<ft<N. Two particular methods in tackling these problems are

available: 1) the use of mappings of monotone type, which may not be everywhere

defined on the Sobolev spaces involved; 2) the theory of monotone operators acting

on an Orlicz space; (see [6] and numerous references listed therein). We shall con-

sider here the solvability by means of either methods.

Our study by the method 1) rests on the foundation of the recent papers of
Hess [2], Cäc [fl and Edmunds, Moscalelli and Webb [9]. Hess introduced a new

class of maps of monotone type for which the solvability can be shown under a
mild coercivity condition. Howevet, this result seems to be directly applicable

for a rather restricted class of expressions A only (for example for a linear one).

The treatment of Cåc reaches a mor€ extensive class of expressions I but stronger

conditions for .B and for coercivity are needed. Moreover, the proof involves certain

concrete function spaces and differential expressions. We prove here the corre-

sponding result in an abstract form by adopting the concepts introduced by Hess

with a mild coercivity condition. \Me apply the solvability theorems obtained to
variational inequalities generated bV (1) in unbounded domains. We extend and

(1)

z
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generalise the corresponding results of [9]. In particular, the e-condition (see (B)
in $ a) is removed when A is linear, and the requirement that the origin is an interior
point in the convex set involved is relaxed also when A is a quasilinear operator.
Moreover, our coersivity conditions are weaker than those occurring in [9]. In [a]
andll?) the applications are given in bounded domains only.

On the other hand, we show here that in certain particular cases the results
obtained by the method t) can be improved by means of the method 2). Our Orlicz
space method for the spaces involving unbounded domains is established by the
recent embedding theorems obtained by Edmunds and Evans lfl, [S]. In particular,
if the treatment given here is applied to a strongly nonlinear elliptic Dirichlet problem

(4)

where

is,inear, B is given :::.;, i#::::':"::u ,'^?,^ snn e=m<ft<r{
with k-m:N12, then the results obtained in [6], [8] for the existence of a weak
solution, can be generalised and improved.

2. Prerequisites

Let Q be an open subset of Ril (N=-2) with Lebesgue measure dx, and let
Ct@) stand for the space of all real-valued functions which are /c times continuously
differentiable on O and have compact support in O. By Ht'o(q we shall mean the
completion of Cf (O) with respect to the norm

/ 
[A"(x)+ Bu(x) -
[p'u(x)-o on

F(x) in d),

AO for all lol = k-1,

llD'ullp
ks

.4-J
i:0

-sup f
x€t} pnf@,D

I l"lu-n if tt < N
wu(x):l1if p>N or F:N and lxl =1

l. t -log lxl if Ir : N and lxl = 1.

llullo, n

with lDtu(x)l':Zp1=ilD"u(x)12, where the summation extends over all ÄLtuples
d:(ar,..., dr) of non-negative integers with lol:or+...*aiv and Do:
:Il!=r(010x)t. For 1<p< -, Ht,p(Q) becomes a separable, reflexive Banach
space. In particular, Ht''@) is a Hilbert space.with a familiar inner product.

Let B(x,A) denote the open ball in Rtr with centre x and radius Ä, and given
an! p>Q and any'measurable function Q denote

Mt (l0l) lQ@l*r(x- y) dy,

where
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We also denote

Q^@):

An Orlicz function is any map

and for which

is convex, continuous, even

1sry:g;
The Orlicz class K*(A) is defined as the

measurable functions u such that

I o1u1x1ydx = -,
o

and the Orlicz space Lr(A) as a linear hull of Kr(O) furnished with the Luxemburg

norm

llallo : inf 
{,t: { o1"1*11t"\ax =tl.

The closure in Lq(A) of the bounded functions with compact support in O is denoted

by E6(A). An Orlicz function @ is said to satisfy the lz-condition if there exist l.>1
and ro>0 such that azQ)=QQ"r) for all r>ro. For example, Ö(r):lrlostrtö
with q=1 and ä>0 satisfies the /s-condition. If @ and Y are two Orlicz functions,

we shall write Y< @ at 0 or -, f for all 1>0,

[Q@ if lxl =Ä
t o otherwise.

Q: R+R which

set of (equivalence classes of) real-valued

lsW:-' 1! a?r)or åT I,'J|:T,
respectively. If Y< iD at} and -, then for any e>0 there is a constant K(e)>0
such that Y(r)=K@)A(er) for all r=0. For a more detailed treatment of Orlicz

spaces we refer to [14].
Finally, the following notations will also be used. The number of a's with

lul=m is denoted by s-. By f. we denote atypical vector in R"-. The components of
(- are denoted by {" so that E^:(4)p1=^. Furthermore, (,,(u\(x): {D'u(x): lal=m}.
rf Zis a real normed space, its dual space is denoted by V*, and (.,.) stands for
the natural pairing between V and V*.

3. Method involving operators of monotone type

Let Vbea real reflexive Banach space and let Wbea normed space with lAcV;
the natural injection i is supposed to be continuous. Let V, be a subset of Z such

that IAcVrcV. We set the following conditions for the map T; Vt*W* (cf. [12]).

(AJ T is continuousfromfinite dimensional subspaces of I4 to the weak*-topology

of w*;
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(At if (u") is qny sequence in W with un*u weakly in V and (Tun, un)=const.

for all n, then uQV, and Tun*7y in weak*-topology of W*;
(Ar) to u€Vr there is associated a real number )"(u) such that ),(u)=
=liminf (Tu,,u,) for any sequence (un) occurring in (Ar);
(An) lim sup (Tu,u,)=),(u) for any sequence (un) occurring in (Ar).

Hess [12] proves the following

Theorem 3.1. Let T: V*W* satisfy the conditiors (A)-(Ar) and let K
be a closed conuex subset of V containing the origin. If for a giuen f(V* and for
some R>Q,
(3.1) (Tr-f,w) = 0 for att w(KaW, llwllr: R,

then the uariational inequality

(3.2) (Tu,w)-),(u) = (f ,*-u) for all w(Koll/,

admits a solution u in K aV1.

LetSbeamap fromVtoV* andlet S:Vr*W* bedefined by(Su,w):
:(i*Su,w):(Su,iw), u(Vr, w(W. The maps we shall be dealing with are of
the form f:,S*Tr, where 7, satisfies (AI)-(AJ or (A)-(An), respectively. If
the conditions (A)-(Ar) hold for T, with u*Lt(rz) occurring in (Ar), then for
any bounded, monotone and weakly continuous map S also T=S+T' satisfies
the conditions (Ar)-(Ar) with 1(u):11(u)+(Su, u). In particular we have (cf. [12])

Corollary 3.2. Let T1: Vr-l/[/* sqtisfy the conditions (At)-(AJ, Iet
S: V*V* be linear, bounded and monotone, and let K be a closed cont)ex subset
of V containing the origin. If (3.1) holdsfor a giuen "f€V* andfiqr some R>0, then
the uariational inequality

(Tru,w)+(Su, w-u)-).r(u) = (f,w-u> for all wQKaW,

admits a solution u in KnVr.

The proof of the following theorem is essentially a combination of the proofs
of Theorem I of [12] and Theorem 3 of [4]. We recall first that a map S: V*V*
is said to be pseudomonotone, if it is bounded and if for any sequence (u") in Z which
converges weakly to u with lim sup (Sun, un-a)=0, lim inf (Sun, uo-u)=(Sa, u-u)
for all u€V,

Theorem 3.3. Let Tr: Vr*14r* safisfy the conditions (Ar)-(An), let S: V*V*
be pseudomonotone, and let K be a closed conuex subset of V containing the origin.
If (3.1) holdsfor a giaen f€V" andfor some R=0, then the uariational inequality

(Ttu,w>*(Su, w-u>-Lr(u) = (f,w-u) for all w€KAW,(3.3)

admits a solution u in KnVr.
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Proof. Pseudomonotone maps are known to be demicontinuous (see [15],

p.179) so that T:S*TL satisf.es (A). Let Fbetbe set of all finite dimensional

subspaces F of I4r equtpped with the norms ll . llr: ll . lly. Letlr stand for the natural

injection of F to W ind$ for its adjoint: l[/**F*; Then Tu:i]oToj, is a

continuous map from F to F*. By (3.1),

(Tuw-jfrf,lv) =0 for all w€FoK, llwllF : A,

for a given -f€V* and for some ' Ä >0. By a
(see [1], U2l) there is ur(FnK with lluull=,R

(3.4) (Tr,,w-- ue) = <f,w-ur)

For any F'€fr set
(Jr,: fur: F(F, F'cF, up as in (3'4)).

The family {Ur,}r,ru obviously has the finite intersection property. By reflexivity

of V, O,e* {weakclr. (U))+0. Let u be an element in this intersection. We

shall show ihat z,solves (3.3). It is readily seen that u(K, llulln=R, and that the

correspondence F-{ur\ given by (3.4) meets the conditions of Proposition 1l

of [3].' Let woQKnW bearbitrary and let .Fo be a finite dimensional subspace of z
containing wo. Then there exists an increasing sequence {Fo\cF with Foc F;'c ' . ' ,

and for each k an element ltk:uFr, in (Jpo, u1,(FonK such that u*-u weakly

in Y. Taking account of (3.a) we obtain

result for finite dimensional spaces

such that

for all w €F n K.

(Tr*, w -u,> = (f, * -un) for all w C.Fn ^ 
K-

In particular,
(3.6) (Tu,,u^-u,)={f,u*--lr,) for l=m=n.

Setting w:0 in (3.5), (Su,,u,)+(Ttu,,u,)=(f,an)<const. for all n' Sinee S

is bounded, aJso (Trun,zn)=const. for all n, and, by (Ar) and (Au),

u€Vt, )'r(u) 
=lym,inf 

(Tru,u,) and (Trun,u*) t (Tp,u)

for any fixed m. Moreover, since Z* is reflexive, there is g€ Zx such that, by pass-

ing to a subsequence preserving the notation , Sun*g weakly in V*. For any fixed

z we then have

limnsup (Sr*, un-u>

- limsup {(Tun, un-um>-(Ttuo, un-u*>}*(g, u*-u)

= limns up (Tun, un u^)- lim inf {(?|', un,un) - (Ttun, u*) } * (s, u^- u)

= lims ap <f , un- r,t*) - å, (u) + (Tru, u*)* (g, u*- u). 
i

(3.5)
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Letting m+@ we obtain further by (AJ,

limnsup (Sun,u,-u) =-),rQt)+).r(n) 
: 0.

Since ,S is pseudomonotone,

liminf (Su", un-w)= (Su, u-w> for all w€V.

Therefore, by passing to a limit n-* in (3.5) with w:wst

(Tru, wo)-).1(u)+(,Su, wo-u) = (f, wo-u).

Since wo was arbitrary in KnW, (3.3) has been verified.

4. Applications I

Let Q be an unbounded domain in RN (N=2) and let V:Ht,p(e),
w:Ht,'(o)av with o<m<k<N,2=p-- and r>max {p,Nl(k-m)}. The
space W is furnished with the norm ll .llr:max {ll .lh,o, ll .lh,"h it then is a reflexive
separable Banach space (see [9]). Since s>Nl(k-m), Ht-","(e) is continuously
embedded in C(A)nL*(O) for all r<m (see [8]); hence there is a constant c>0
such that for all u<n[-","1Ay

llull- : sup la(x)l = cllalll-",".

We impose on the operator Bu(x):)*l=^(-l)t|tDuBo(*,(^(u)(x)) the follow-
ing conditions (cf. [2], [4], [11]).

(BJ 8p: OXR"--R satisfres Carathöodqy's conditionfor all l|l=*, i.e.,
BB(x, (^) is measurable in x for all (^(N^ and continuous in (^ for almost all
xcQ;
lBp(x,4^)l=s@)fc) for almost all xQQ and aII (-€R"- with g€Lt(Q),

f Rs-*R continuous;
(BJ V(x,(^)=)Wt=*Bp(x,t-)t,=O for almost all x(e and oll (,(R"-.

Set

v1 : {u(v : Bp(,, €*(r))€ L'(o) for afl lpl = *, y (., €^(a))e L,(e}.

The semilinear form

b(u,a): *ä ! "o@, 
t^@)(x))Df a(x)dx

is well-defined for all u(V1 and aeW. Clearly

lb(u,u)l=,u=Z^llar(., (^@))ll,,lloooll- 
= cllullo, 

,ol^llao(., 
(,(r))llr.



Hence for each u€V1 the map u*b(u, u) defines a continuous linear functional,

Tru say, on 14/ by

(4.1) (Ttu, u) : b(u, u), u(14t.

Obviously T1: D(T):V.*W* and IV'cVtcV.
A further condition for "B is needed (cf. 14, [4], [11]).

(Br) lBp(x,€)l=h(14*DY(*,()* r,Z^q"(x,l1"l),

where we assume that å: R+*R+ is continuous, h(r)*g as r+6, and

(Ko(x)r"" with Ko non'negatiae in L*(Q), K'(x)*O as lxl*-,
l r,=p, lls,>llp-(k-lal)/lf, if k-lal<Nlp;

, \ lX,@)Y,(r) with Kn as aboue, Vo an Orlicz function satisfying the
E"\x' '):1 az-condition, v.(r)1Q(r):lrlo sttto' at 0 and *, tf k-lal:Nlp;

lX,1x1O,7r1 with Ko non'negatiue in I)(o) and 0n; R+*R+ con-

| finuour, if k-lal=NlP.

We remark that (Bu) automatically holds for m:0.

Lemma 4.1. If the conditions(BJ-@J are satisfi'ed, then the map T1: Vr*l[/*
defined by @.1) satisfies the conditions (AJ-(AJ with )4(u):b(u, u).

Proof. We show f.rst that (A) and (Ar) hold. To this end, let (u,)cW with
wo*u weakly in V, and let (Tt*n,4)<const. for all z. By Lemma 3 of [10] there

is a subsequence (u,) of (w,) such that D"uo(x)*Ddu(x) a.e. in O for all lul=7n.
By (Br), Bp(x, (*(u)(x))-Bu(*,1^@)(x)) and Y(x, (^(a")(x))*W(x, (^(u)(x)) a.e.

in O. From (BJ it follows by Fatou's lemma that

(4.2) b(a, u): 
,{*(*, 

(^(t:)(x))dx = liminf(Truo,1),) = *.

By virtue of (BJ and (Bu) there are positive constants Kl andK, such that

l 
B u @, fi (u) (x))l = KrY (x, 4 

^@) 
(x)) *,å 

^ 
E *(x, l 

D u (x)l) + x,s (x)

for almost aI x€A and all lfl=m. The embedding results of [8] imply (cf. [2]),

taking account also of @r), that au(,(^(a))(Lt(Q) fot ail lfl=m. Therefore

u€Yt.

Strongly nonlinear elliptic variational inequalities in unbounded domains 6s

To show that Trun-Tru weak* in W* we invoke Vitali's convergence theo-

rem (see, for example, [5], p. 150). Indeed, for any z(W we have

l(r,uo-rp, ,)l = ,uä { lau{<*, (^(u,)(x))- Bu@, Q@)@))lpa z611ax

l cllzlln 
,rä^ J lBo(x, (^(u,)(x))-86(x, (^(u)(x)ldx.

Let ä>0, nand x(.Q be given.Since å(r)*0 as r*-, hbeingcontinuous, there
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is a constant K(ö) such that h(r)=ö if r>K(ä). Therefore, either l(-(u")(x)l=
K(ö) or

lau@, C^@)(r))l = öv(x, (^(u)ti)+ 
,äE,(x,lD"u,(x)l).

Let Ko(å):sup {lfc)l: l(-l=K(ä)}=-. For any measurable subset E of Q,

I luu@, il@)@))ldx = Ko() [ s@) dx+ö t y(x, (^(v)(x)) itx
EEE

+ Z f E,(*,lDo,(x)l)ilx.
lal=n fi

By a further appeal to the embedding theorems of [8] we can see, as in [9], that the
conditions of Yitali's theorem are met. In particular, for handling the terms (p,

involving exponentials we refer to the proof of Lemma 5.1 later on. Therefore we
can conclude that (T1uo,z)-(T1u,z) as n-*.'The same result for the initial
sequence (4) follows by a standard contradiction argument. Bearing in mind (4.2)

we have then shown that (Ar) and (A) hold with lr(a):b(u,a).
To show finally that also (A) holds it is clearly enough to prove that the restric-

tion of Ttto W is demicontinuous. To this end let wo*yt in W. Then w,-t! &lsct

in V and llD'w"ll-=const. for all n. Hence by @r),

l€rwn, u'")l = €*(w,)(")lloo w,(x)l d*: consr llgllr.

That Trwn*Trw weak* in Z, follows from the former part of the proof.

Example 4.2. Let

Au(x) : 
,,,å,=*(-l)t"t 

D(a,u(x)Dn u@)),

where the real measurable functiofis anB satisfy the following conditions (see [il).

(CJ

a,eQL-(Q) if lal: lfl: k;
Mp@,D(ladpl') = - for some p(a, f) with 0 = p(a, f) <.2(k-min{lol, l0l}),if max{lul,lfrl} : k,lul+lBl = zn;
Mu6,B1(la,6l1< * for some trt(a, f) with 0= p(u, fi<.2(k-max{lal, lfl}),

if lal = k-1,lpl = k-1.

For V:Ht''ziO1 it is a routine application of the embedding theorems of [fl to
verify that I gives rise to a bounded linear map S: V*V* by the rule

(Sr, u) : a(u, u) : 
w,å=o ! 

o"u(r.)nB u(x)Dou(x) dx.

tpä Iluu@,

(4.3)

Moreover, if
(CJ Z aoB€o€B =- 0 for all x€Q

lal,lFl=k
and €o(R"u,

we obtain the followingholds, then ,S is monotone. In view of Corollary 3.2
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Theorem 4,3. Let the conditions (BJ-(BJ, (C) and (Cr\ be satisfied, and

let K be a closed connex subset of V containing the origin. If for a gioen fQ.V* and

for some R>0,

(4.4) a(w,w)+b(w,w)-(f,lt) = 0 for all w€KnW, llwllr: Ä,

then the uariational inequality

(4.5) a(u,w-u)*b(u,w-u) = (f,*-r) for all w€Knll',

admits a solution u in KnVr.

Remark 4.4. The inequality (a.5) is solvable in particular, if the bilinear form

a(.,.) is coercive, i.e. there is co>O such that

(Cr) a(u, u) = collull? for all u(V.

Since å(rz, n)>0 for al7 uQW by (Br), (4.4) clearly holds.

To apply Theorem 3.3 for situations where ,4 is a quasilinear operator, we

impose on -B the following'further'condition (cf. [2], [4], [11]).

(BJ For each e>0 there is a constant Ku>o such that for almost all xQQ,

all (^,(å€R"- and lBl=m,

Be@, ()(t < eY (x, (i)+ x,{e@)+Y (x, 4)* 
,.ä*lE,(x,l€,D+rp,(x, 

leil)l}

with E(I](o).
Lemma 4.5 If theconditions (BJ-(BJ aresatisfied,thmthemap Tr: Vt*W*

defined by @.1) satisfies the conditions (AJ-(AJ with )"r(u):b(u,u).

Pnoor. In view of Lemma 4.1 we must only show that (A) holds. Let (o)
be the sequence occurring in the proof of Lemma 4.1, and let [r]+ stand formax {0, r},

t€R. It follows from (Br) that

f,rä^ou@, 
e@)(x))oo u,(*)J* * y(x, (^(r:)(x)) a.e. on a.

By (Bn), for each e >0 there is K">0 such that

,i Ira B/"'' il@)@))oao'(x)J = eY(x' (*(u')(x))

+ n 
{s 

txl + v (x, ( 
^(o) 

(x)) *,,älE *(*, ln a @)l) + E' (x, lD. u" (x) l)l},

where f, Y(.,C^Qr) and Eo(,lD"ul) are in I1(O). By an appeal to Vitali's con-

vergence theorem as in the proof of Lemma4.l we can conclude that

Il "Z-Bp(x,(^(u)@ner,@)l*d, 
*b(rs,t:): l1r:) as n +6.

ri llpl='

Therefore, lim sup (Ttu, a,)= )'t(a).
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. Example 4.6. Let Au(x): Z p1=o(- l)lt"t o"no@, Q@)@)),0=m<.k <.iy'and
V:H|'?(A) with 2=p<-. Under certain conditions for the functions Ao: QX
yf,s**R, which can be found in [10], ,4 gives rise to a pseudomonotone map
S: l/*V* by the rule

(4.6) (Su, a) : c(u, d = Z f ,q,(*, Q@)@))D,u(x) d.x, u, u(V. ,.
lal=k å

According to Theorem 3.3 we then have

Theorem 4.7. Let the conditions (Br)-(B) be satisfied, Iet S: Y-Vx be
a pseudomonotone map defined by (4.6), and let K be a closed conoex subset of V
containing the origin. If for a giuen f€V* and for some R>0,

c(w,w)+b(w,w)-<f,lr) = 0 for all wQKnW, llwllr: R,

then the aariational inequality

c(u,w-u)lb(u, w-u) = (f, w-u) for all w(KaV[/,

admits a solution u in KnVr.

5. Orlicz space methoil

In the sequel we focus our attention on the particular case V: Ht'z (Q7, 0=mo.
<k<N and k-m:Nf2, where A is altnear differential operator as in Example 4.2.
we shall show that the sign condition (Br) can be weakened or removed by replacing
the condition (BJ with a rather mild growth condition.

Let O be an unbounded domain in RN (N>2). To introduce the strongly non,
linear operator,B we set the following conditions for the functions Bp: OXR"-*R,
lfl=m.

(DJ Bp satisfies Carathöodory's conditionfor all l|l=p and Bp(x,0):0 for
almost all x€Q and all lfl=m;
(DJ lBu@, Q)l=C((^-r){P(x)+Q@) Zp1=^V"(Q} for almost att xe.e
and aII (-€R"-, where C: R--r*R is continuous, P and Q are non-negatiue

functions with P€Lz(a), I"lPp(x)l2dx*0 a,s R* -, Q€L*(Q), Q(x)-o as

lxf *- in Q, and Yn, lol:m, are Orlicz functions satisfy:ing the lz-condition
qnd Y,{-iås atO and *with (Ds(r):yzs"z.

To show that the semilinear form

(5.1) b(u, u) : 
,uä* ! tu(*, (^(u)(g)Da u@) itx

is bounded on VXV, we recall that H[-tdt,'?1O; is continuously embedded in
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C(o) nL* (o) for all lul=m-|, and H[--'z(O) in Lr"(Q) (see [8]). By (Dr)

we have 
rb(u, a)l

=, uå [ lc (c 
^ -,{ul r") | {r r'l 

pn u @)l + Q @),"ä*Y *(D" u 1x\ pa u 611} a x'

Since C is continuous we get, by taking account of the embeddings above, that

lc(t^-r{u){*))l = h(llullo,,) for all x(Q,

where å: R+*R+ is a continuous non-decreasing function. Therefore, by the

Cauchy-Schw ar z inequality,

lb (u, u)l = h |lull *) 
{ 

I r t t, + il o tt -,,2 *lly,{D* ")1,1, uz ̂ll 
Df ull,.

Since Yo{ Qo at 0 and - and since Vo satisfies the lz-condition, also V71A,
at 0 and - for all lol:*. Hence for each e>0 a constant K(e) can be found

such that

I v2(o"u1x7) d* = K@) ! a,(eDu(x)) dx.

Choosing e so small that lleD'ulloo€l we obtain that

t v2(o""1x1) dx = K(e)ellD"ull60 = const llullo,r.
a

Consequently, there is a constant Ko=O such that for all u,a(V,

(s.2) lb(u, a)l = Kohuull1,,,;1t + ll0ll- llully."\llull*,,.

Thus it is clear that b gives rise to a bounded map T1: V*V*:V by the rule

(5.3) (Ttu, u> - b(u, r), u, u€Y.

Lemma 5.1. If the conditions (D1) and (Dr) are satisfied, then the map Tt: Y*V
defined by (5.3) is compact and continuous.

Proof. Let (u) be a bounded sequence in V, R>0, d)n:d) oB(0, Ä), and
let X^ stand for the characteristic function of .B(0, R). Then

llr,u,-r,uill : 
,,,l|rnll:, l,rä { {ur(x, (^(u1)@))- nu(r, (*(u)(*))} of u(i dxl

= ) lln(., E^@))-au(., E.@))11*
lfil=m
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By (D'), xn@)Bo(*, €*(u)(")) :Bp(*, (^(x^u)(")) so that

+ TK'

: J^(i, i)+JR(i)+JR(D.

Here u*Xna is a compact map from H(-"'z(O) to Lz(Q) for all lal<m-l and
from H[-^'z(O) to any E,y(Q) with Y<@o at 0 and - (see [8]). Hence there is a
subsequence of (u), still denoted by (u), such that (xn@)D"u{x)) converges in
measure on O* for all lal=m. By (DJ it follows from Nemytskii's lemma (see [13],
p.20) that also {.Br(x, (^(x"ur)(x))} converges in measure on O^. In view of the
now familiar Vitali convergence theorem, JR(i,j)-O zs i,j**, if we can show
that the family {lBp(.,C^@t))l'} has absolutely equicontinuous integrals on o^.
fndeed, by (Dr),

lno@,(*(u,("))1, =

for all l|l=m and almost all x€Qa.. Since P<LZ(O) we need only to deal with
the family {lY.(D'u,(x))1,}. Sv the /2-condition, V!4@o at 0 and -, for example.
Now we can invoke Vallde-Poussin's theorem (see [4], p. 94). Indeed, for an e >0
small enough,

! lv.(n"u,t*))f dx = xtu) I ao(eD.u,(x))dx = K(e)lleDnuilloo
9R oR

-- const lluill*,, = L

for some positive constant Z. By using the same argument for all lol:* we can
conclude that J^(i, j)rO as i, j*-. Similarly, since Q(x)*Q as lxl*- i1 12,

/^ (r) < const

where å(-R)*0 as -R*-. By (Dr) we then have that ,fR(i)*0 4s ft-.@, and
by the same argument J^(j)*O as R*-. Since all terms may be handled in the
similar manner, it is now clear that for any e >0 a subsequence of (ar) and a natural
number i, can be found such that

llTtui-Trutll < e whenever i, j = io.

Thus the compactness of I has been proved. The continuity follows in the same way.

! Vr(*, (*(u,)(r)) - Bn(*, (*@)("))l'a*

- xn(")) B B(*, (*(u,)(")) l' a* + f l(r - r^ (x)) B B(*, (*Qt )(")) P o.l

const 
{'"(")12+ 

il Qlr* .l*lw,(n"r,("))lr}

J{lp* 
(x) 

l '* leo(x) l ' ,.ä^lv,(n. 
u,(x))l'l o.
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Remark 5.2. For m:0 and N:2k, Bu(x):3r(*,u(x))'In [8] Lemmas'l

is proved assuming that Bo(x,r):Q@){(r), where Q(L-(O), Q@)*O as lxl*-
tn Q, Y <@o at 0 and. -, Y satisfies the /s-condition and I lttre complementary

Orlicz function) satisfies the /r-condition for all r>0. We note that for Y sat-

isfying the /2-condition, the /u-condition holds for large values of r only (see [1a]'
We are now in a position to produce the solvability theorems for variational

inequalities involving the maps T-S+TLi V*V, whete s is a bounded linear

and monotone map induced bY (a.3).

Theorem 5.3. Let the conditions (Cr), (Cr), (Dr) and (Dr) be satisfied and

let K be a closed conuex subset of v containing the origin. If for a giaen f€v and for
some R>0,

(5.4) (Sr, u)+(Au,u>-<f,o) = u for all u€KAV, llullo, z: R,

then the uariational inequalitY

(S,, u_u> + (Ttu, u-u> = <f, u-u> for all u€- K AV,

admits a solution u in KnV.

Proof. The assertion follows immediately from corollary 3'2, because 7t,

being a compact and continuous map from v to z*, satisfies the conditions (AJ-(AJ
with /.r(a): (Tru,u).

Next we consider the case where the condition (cr) is replaced by (cr), i'e. the

bilinear form a(.,.) is coercive. First we introduce a condition

(Dr) Y(x,(^):Zwl=^BB(x,€)EB=--F(x) for almost all x(Q and all

Theorem 5.4. Let the condition^y (cr), (cJ, (DJ-(D") be satisfied and let K
be a closed conuex subset of V containing the origin. Then the aariational inequality

(5.5) admits a solution u in KnV for any f€V.

Proof. By the conditions (C3) and (Dr) we have that

llull;|(Su, a)+(Tra,u)) = collullo,2-llFlll * - as llullt,z * -'
Therefore (5.4) holds for some A>0 and for any f€V. The assertion follows from

Theorem 5.3.

The following theorem utilises the estimate (5.2). Since å: R+*R+ is contin-

uous and non-decreasing, limsupr+- h(r)r-u2-y with 0<7<-'

Theorem 5.5. Let the conditiow (cr), (cJ, (DJ and (Dr) be satisfied and let

Kbe a closed conuex subset of V containing the origin. If y:0, the uariational inequal'

ity (5.5) admits asolutionuin KnV for any feV. If 0-=y=*, then(5.5) admits

a solution u in KaV for any f€Y prouided llQll* is small enough'

7l

(5.5)
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Proof. By (5.2) we have

(su, t:)+(Tru, u) > collullfi,r- Kohilullo. rl1r + ll0ll_ lldti/.,r\llall,,,r.
Hence

ll u ll ; | {(^su, u) + (Tru,r)f = ll, ll *,, {", - ir, il 0 ll -' fr.i,rÅil - " WI
If y:9, (5.4) obviously holds for some R>0 and for any f€V. If 0=y=-,
(5.4) holds provided that llQll*<coK;ty-1.

Forthe particular case m:0, N:2k, when C=t in (Dr) and h(r):l in
(5.2), we obtain the following result, which at the cost of the growth condition (Dr)
relaxes the sign condition for the function Bo: OXR*R. We remind that the
map Tris now defined by

(Tru, u> u(x))u(x) dx, u, u€I/.

Corollary 5.6. Let the conditions (CJ, (Cu), (Dr) and (Dr) be satisfied and
let K be a closed conuex subset of Ht''@) (k:Nl2) containing the origin. Then
the uariational inequality (5.5) admits a solution u m KaH['z(a) for any f(Ht'z(O).

Remark 5.7. If A satisfies an ellipticity condition

(Cn) Z a*p(x) (" CP -- ctl(l'o for all x € Q and ( e n ,
lo'l:lPl:ft

h>0 a constant, and if Poincare's inequality holds in n['z(A); for instance, OcRz&
is an infinite strip, then (Cu) holds provided the lower order terms of A arc not too
large in a certain technical sense (see [7],Lemma5.2).

6. Applications II

We shall apply the solvability theorems of $ 5 for a strongly nonlinear elliptic
Dirichlet problem

: ! Bo(x'

(6.1) I A"(x)+ Bu(x) - F(x) in o
[^D" u(x) - 0 on A0 for all lol = k- 1,

I ufOu(x) dx -

where OcRtr (ff=2) is an unbounded domain, ,4 satisfies the conditions (Cr)
and (C) or (Cr), "B satisfies (D) and (Dr), F€L2(O) and O<m<k<N with k-m:
:N12. For any F<LZ(A) there is an element f€V:Ht''(O) such that

\f , u) for all u €V.
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A uqriational (weak) solution of (6.1) is any u€V such that

(6.2) a(u,u)+b(u,u): (f,a) for all a€Y,

where a and b are defined by (a.3) and (5.1) respectively. Therefore, by a choice

K:Y, the solvability of the variational inequality (5.5) guarantees the existence

of a solution of (6.2). Thus the theorems for there to exist a solution of (6.2) are
particular cases of the solvability theorems of $ 5. One can see that these results

generalise the corresponding results obtained in [6] and [8].
As a particular example of an equation which can be handled by this method

we cite

- lu (x) * P (x) sin u (x) + Q (x) lu (x)le siu{")rö : F (x), x ( 9,

where ocRz suchthatPoincare'sinequalityholdsinllsl'2(O), P(L|(Q), Q€L*(o),
P(x),Q@)*0 as lxl*- in Q q>2,7<ö<2. For strongly nonlinear eigenvalue

problems of the type (6.1) we refer to [16].
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