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STRONGLY NONLINEAR ELLIPTIC
VARIATIONAL INEQUALITIES IN
UNBOUNDED DOMAINS

VESA MUSTONEN

1. Introduction

In this paper we are concerned with the solvability of strongly nonlinear varia-
tional inequalities involving differential expressions of the form

1) Au(x)+ Bu(x), x€Q,

where Q is a (unbounded) domain in RY (N=2),

2) Au(x) = 3 (— DDA, (x, u(x), ..., D*u(x))
o=k

is quasilinear,
3) Bu(x) = > (—DPIDPB(x, u(x), ..., D"u(x))

1BI=m
is strongly nonlinear in the sense that B; do not satisfy a polynomial growth con-
dition, and 9=m~<k~<N. Two particular methods in tackling these problems are
available: 1) the use of mappings of monotone type, which may not be everywhere
defined on the Sobolev spaces involved; 2) the theory of monotone operators acting
on an Orlicz space; (see [6] and numerous references listed therein). We shall con-
sider here the solvability by means of either methods.

Our study by the method 1) rests on the foundation of the recent papers of
Hess [12], C4c [4] and Edmunds, Moscatelli and Webb [9]. Hess introduced a new
class of maps of monotone type for which the solvability can be shown under a
mild coercivity condition. However, this result seems to be directly applicable
for a rather restricted class of expressions 4 only (for example for a linear one).
The treatment of Cac reaches a more extensive class of expressions A but stronger
conditions for B and for coercivity are needed. Moreover, the proof involves certain
concrete function spaces and differential expressions. We prove here the corre-
sponding result in an abstract form by adopting the concepts introduced by Hess
with a mild coercivity condition. We apply the solvability theorems obtained to
variational inequalities generated by (1) in unbounded domains. We extend and
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generalise the corresponding results of [9]. In particular, the &-condition (see (B,)
in § 4) is removed when A is linear, and the requirement that the origin is an interior
point in the convex set involved is relaxed also when A is a quasilinear operator.
Moreover, our coercivity conditions are weaker than those occurring in [9]. In [4]
and [12] the applications are given in bounded domains only.

On the other hand, we show here that in certain particular cases the results
obtained by the method 1) can be improved by means of the method 2). Our Orlicz
space method for the spaces involving unbounded domains is established by the
recent embedding theorems obtained by Edmunds and Evans [7], [8]. In particular,
if the treatment given here is applied to a strongly nonlinear elliptic Dirichlet problem

{Au(x)+Bu(x) = F(x) in Q,

“
D*u(x) =0 on 9Q forall |¢] = k-1,

where
Au(x) = 3 (=1)*D*(a,5(x)D?u(x))

lal, |Bl=k

is linear, B is given by (3), F is a prescribed function in L2(Q) and O=m<k<N
with k—m=N/2, then the results obtained in [6], [8] for the existence of a weak
solution, can be generalised and improved.

2. Prerequisites

Let 2 be an open subset of RY (N=2) with Lebesgue measure dx, and let
C(Q) stand for the space of all real-valued functions which are k times continuously
differentiable on Q and have compact support in Q. By HY?(Q) we shall mean the
completion of C¥(Q) with respect to the norm

lulk,, = g’ 1D,

with |D'u(x)[? =3 |, =; |D*u(x)[2, where the summation extends over all N-tuples
o=(0y, ..., ay) of non-negative integers with |¢|=o;+...4+ay and D*=
=[] yzl(a/ax,.)%-. For l<p<e, H¥?(Q) becomes a separable, reflexive Banach
space. In particular, H}?(Q) is a Hilbert space with a familiar inner product.

Let B(x, R) denote the open ball in RY with centre x and radius R, and given
any p>0 and any measurable function Q denote

Me)=sup [ 10O)|w,(x—y)dy,
*€2 0NB(x,1)
where
|x[*~N if u<N
w,(x) =11 if p=>N or p=N and |x|>1

1—log|x| if u=N and |x|=1.
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We also denote
Q(x) if [x|=R
0 otherwise.

Or(x) = {

An Orlicz function is any map @: R—~R which is convex, continuous, even

and for which
tim 20— o; 1im 20 =

r—-0 r : r-c F

oo,

The Orlicz class Kp(Q) is defined as the set of (equivalence classes of) real-valued
measurable functions # such that

jcp[u(x)] dx < oo,
0

and the Orlicz space Ly(Q) as a linear hull of K4(Q) furnished with the Luxemburg
norm

lulle = inf{z ;[ @)/l dx = 1}.
Q2

The closure in Ly () of the bounded functions with compact support in Q is denoted
by Ep(2). An Orlicz function @ is said to satisfy the A%-condition if there exist 1>1
and r,>0 such that ®2(r)=®(Ar) for all r=r,. For example, ®(r)= |r|eet®
with ¢>1 and §=0 satisfies the 4%-condition. If ® and ¥ are two Orlicz functions,
we shall write ¥< & at 0 or oo, if for all 2=0,

() o)
7 N m <7y ==

respectively. If ¥ <@ at 0 and oo, then for any ¢=>0 there is a constant K(¢)=0
such that ¥ (r)=K(e)®(er) for all r=0. For a more detailed treatment of Orlicz
spaces we refer to [14].

Finally, the following notations will also be used. The number of «’s with
lu|=m is denoted by s,,. By &, we denote a typical vector in R*». The components of
&, are denoted by &, so that &,,=(&,) s =m- Furthermore, &, () (x) = {D*u(x): |a|=m}.
If V is a real normed space, its dual space is denoted by V*, and (.,.) stands for
the natural pairing between ¥ and V'*.

3. Method involving operators of monotone type

Let V be a real reflexive Banach space and let W be a normed space with W V;
the natural injection i is supposed to be continuous. Let ¥; be a subset of V' such
that WV, V. We set the following conditions for the map T': V;—~W* (cf. [12]).

(A,) T is continuous from finite dimensional subspaces of W to the weak*-topology
Of W*,'
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(Ay) if (u,) is any sequence in W with u,—~u weakly in V and {Tu,, u,)= const.
for all n, then ucV, and Tu,~Tu in weak™-topology of W*;
(Ag) to u€eV; there is associated a real number A(u) such that A(u)=
=liminf (Tu,, u,) for any sequence (u,) occurring in (Ay);
(Ay) lim sup (Tu, u,)=21(u) for any sequence (u,) occurring in (As).

Hess [12] proves the following

Theorem 3.1. Let T: V-W?* satisfy the conditions (A))—(A;) and let K
be a closed convex subset of V containing the origin. If for a given feV* and for
some R=0, ‘

(3.1) (ITw—f,wy =0 forall weKnW, |w|ly=R,

then the variational inequality
(3.2) (Tu, wy—A(u) = (f,w—u) forall weKnW,
admits a solution u in KnV.

Let S be a map from ¥ to V* and let S: V;—~W* be defined by (Su, w)=
=" Su, wy={Su, iw), ucV;, we W. The maps we shall be dealing with are of
the form T=S+7,, where T, satisfies (A;)—(A;) or (A,)—(A,), respectively. If
the conditions (A,)—(A;) hold for 7; with u—A;(x) occurring in (A,), then for
any bounded, monotone and weakly continuous map S also T=8+7, satisfies
the conditions (A;)—(A;) with A(u)=2,(u)+{(Su, u). In particular we have (cf. [12])

Corollary 3.2. Let Ty: Vi—W?* satisfy the conditions (A)—(A;), let
S: V->V* be linear, bounded and monotone, and let K be a closed convex subset
of 'V containing the origin. If (3.1) holds for a given feV* and for some R=0, then
the variational inequality

(Tyu, wy+{Su, w—uy—A(u) = {f, w—u) forall weKnW,
admits a solution uin KnV;.

The proof of the following theorem is essentially a combination of the proofs
of Theorem 1 of [12] and Theorem 3 of [4]. We recall first that a map S: V—-V*
is said to be pseudomonotone, if it is bounded and if for any sequence (v,) in ¥ which
converges weakly to v with lim sup (Sv,, v,—v)=0, lim inf (Sv,, v, —u)={Sv, v—u)
for all ueV.

Theorem 3.3. Let Ty: Vi—~W™* satisfy the conditions (A))—(A,), let S: V—~V*
be pseudomonotone, and let K be a closed convex subset of V containing the origin.
If (3.1) holds for a given feV™ and for some R=0, then the variational inequality

(3.3) (Tyu, wy+{Su, w—u)—A,(u) = {f, w—u) forall weKnW,

admits a solution uin KnV;.
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Proof. Pseudomonotone maps are known to be demicontinuous (see [15],
p. 179) so that T=_8+T; satisfies (A;). Let & be the set of all finite dimensional
subspaces F of W equipped with the norms |.[z=]. ly. Let jp stand for the natural
injection of F to W and jj for its adjoint: W*—~F* Then T,=jpoToj, is a
continuous map from F to F*. By (3.1),

(Tpw—jif,wy=0 forall weFnK, [w]|r=R,

for a given f€V* and for some R=0. By a result for finite dimensional spaces
(see [1], [12]) there is up€ FNK with [lup| =R such that

(3.4 (Tup, w—ugy = {f,w—ugpy foral weFnKk.

For any F'€Z set
Up = {up: FEF, F'CF, up asin (3.4)}.

The family {Ug}p ¢ obviously has the finite intersection property. By reflexivity
of ¥, Npes {weakcly (Up)}=0. Let u be an element in this intersection. We
shall show that u solves (3.3). It is readily seen that u€K, |ul,=R, and that the
correspondence F—{uy} given by (3.4) meets the conditions of Proposition 11
of [3].

Let w,c KNW be arbitrary and let F,, be a finite dimensional subspace of W
containing w,. Then there exists an increasing sequence {FjC# with F,CFC...,
and for each k an element w,=uy in U, u, € F,nK such that w,—~u weakly
in V. Taking account of (3.4) we obtain

(3.5) (Tu,, w—u,y = (f,w—u,y foral weF,nk.
In particular,
(3.6) (Tt Upy—Upy = &fs thy—u,y for 1=m=n.

Setting w=0 in (3.5), (Su, u,)+(Tytt,, uy={f, u,y=const. for all z. Since S
is bounded, also (Tyu,,u,y=const. for all n, and, by (A,) and (Aj),

u€V,, M) =liminf{Tyu,,u,y and (Tiu,, Uy = (Tytt, Upy

for any fixed m. Moreover, since V'* is reflexive, there is g€ V* such that, by pass-
ing to a subsequence preserving the notation, Su,—~g weakly in V*. For any fixed
m we then have

lim sup {Su,,, u,—u) = limsup (Su,, u,—u,,) +lim sup (Su,,, u,—u)
= lim sup {(Tu,, ty— ) —Tythy, Uy —Up)}+ (s Uy — 1)
= lim sup (Tu,,, t,— v,y — lim inf {{Ty u, ,u,) — Tyt Uy} {85 Uy — 1)

= lim"sup (fy thy—ttyy — Ay () + (Tyth, Uy {85 U — 1)
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Letting m—oo we obtain further by (A,),
limnsup (St u,—uy = —A(u)+72,(u) = 0.
Since S is pseudomonotone,
Iimninf<Su,,, u,—wy = (Su,u—w) forall weV.
Therefore, by passing to a limit n—~c in (3.5) with w=w,,
(Tyu, wo)— Ay (u)+(Su, wo—u) = (f, wo—u).

Since w, was arbitrary in KW, (3.3) has been verified.

4. Applications I

Let Q be an unbounded domain in RV (N=2) and let V=H¢?(Q),
W=Hy*(Q)nV with 0=m<k<N,2=p<oc and s>max {p, N/(k—m)}. The
space W is furnished with the norm ||| =max {||. [ ,, | .[lx,s}; it then is a reflexive
separable Banach space (see [9]). Since s=>N/(k—m), HF ™*(Q) is continuously
embedded in C(Q) L= (Q) for all t=m (see [8]); hence there is a constant ¢=0
such that for all uecHE™™%(Q),

lulle = sup [u(x)| = cllulx—,s-
xen

We impose on the operator Bu(x)=_3'5=m (—1)"*'D?By(x, &,,(u)(x)) the follow-
ing conditions (cf. [2], [4], [11]).

(By) By: QXR*m—R satisfies Carathéodory’s condition for all |B|=m, i.e.,

By(x, &) is measurable in x for all &, €R* and continuous in &, for almost all

X€EQ;

1B (x, E)| =g () f(&,) Sfor almost all x€Q and all &R with geI}(Q),

f: R°m—>R continuous;

(By) Y (x, &)= 2 pj=m Bs(x, E,)E4=0 for almost all x€Q and all &, ER,
Set

Vi ={veV:By(-, &,(v)€ LY(Q) for all |f] = m, ?(-, Eu)e LM Q).
The semilinear form
b(u, v) =WZ [ By(x, &, (u)(x)) DPo(x) dx
=m o
is well-defined for all u€V; and vEW. Clearly .

Ib(u, v)| éwé'n |I1Bs (-, En@)|[1IDP ]l = Cllvllwmé’m [1Bs(+5 Em @)1
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Hence for each u€V, the map v—b(u,v) defines a continuous linear functional,
T,u say, on W by

4.1) (Tyu, vy = b(u,v), veEW.
Obviously Ty: D(Ty)=V,~W* and WcV,CV.

A further condition for B is needed (cf. [2], [4], [11]).
(B3) [Bﬂ(x: ém)l = h(léml)gl(x: ém)_!_| é qoo:(xz ]6a|)7

where we assume that h: RY~R*t is continuous, h(r)-0 as r—oo, and
b

K,(x)r’ with K, non-negative in L= (Q), K,(x)~0 as [x|->-e,
8, =D, 1/5,>1/p—(k—|a])/N, if k—l|oa|<Njp;
0. (6, 1) = <Ka(x) Y, (r) with K, as above, ¥, anIOi’licz Sfunction satisfying the
A ' A2-condition, ¥, (1)< ®()=|r?e"” at 0 and <o, if k—|u|=Np;
K,(x)0,(r) with K, non-negative in L}(Q) and 0,; R*~R* con-
l tinuous, if k—|o|=N/p.

We remark that (B;) automatically holds for m=0.
Lemma 4.1. Ifthe conditions (B,)—(Bs) are satisfied, then the map Ty: V;—~W*
defined by (4.1) satisfies the conditions (A)—(As) with 2, (u)=b(u, u).

Proof. We show first that (A,) and (Ay) hold. To this end, let (w,)C W with
w,~v weakly in ¥, and let (Tyw,, w,)=const. for all n. By Lemma 3 of [10] there
is a subsequence (v,) of (w,) such that D*v,(x)~D*v(x) a.e. in Q for all |x[=m.
By (By), By (x, & (1,) ()~ By(x, Eu()() and ¥ (x, & (1) ()~ (x, £, (0) () ace.
in Q. From (B,) it follows by Fatou’s lemma that

4.2) b(v,v) = [ ¥(x, Eu()(0)dx = lim inf (730, v,) =< .
2

By virtue of (B;) and (Bj) there are positive constants K; and K, such that
\Bﬂ(xa ,ém(v)(x))‘ = Klgl(xs ém(v)(x)) +[ 2 (pa(x’ ,D“U(X)D—i‘Kzg(x)

|=m

for almost all x€Q and all |f|=m. The embedding results of [8] imply (cf. [2]),
taking account also of (By), that By(., &, (v)€LY(Q) for all |f|=m. Therefore

vel;.
To show that Tyv,—~T;v weak™ in W™ we invoke Vitali’s convergence theo-
rem (see, for example, [5], p. 150). Indeed, for any z€W we have

(Ty0,—T1v, 2))| éwz: [ 1Bo((s En0) ()= By (6, £ () ()] IDP2()] dx
=m Q
= clzllw WZ  |Bs(%, & (0) ()= By (x, En(0) ()| dx.
=m Q

Let =0, n and x€Q be given. Since h(r)—~0 as r—eo, h being continuous, there
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is a constant K(5) such that A(r)=6 if r=K(5). Therefore, either [, (v,)(x)|=
K(d) or
By (%, & (0) ()| = 0¥ (x, &, (02) (x)) + lalé'm Po(X, [D*0,(x)])-

Let Ky(0)=sup {|f(&)|: |Ex|=K(6)}<<e. For any measurable subset E of Q,
[ |Bs(x, &) )| dx = Ko (®) [g@)dx+0 [ ¥(x, &, (0,)(x)) dx
E 3 E
+ 2 [0ux ID*0,)) dx.

lal=m g

By a further appeal to the embedding theorems of [8] we can see, as in [9], that the
conditions of Vitali’s theorem are met. In particular, for handling the terms ¢,
involving exponentials we refer to the proof of Lemma 5.1 later on. Therefore we
can conclude that (Tyv,,z)—~(Tv,z) as n—o. The same result for the initial
sequence (w,) follows by a standard contradiction argument. Bearing in mind (4.2)
we have then shown that (A,) and (A,;) hold with A,(v)=b(v, v).

To show finally that also (A,) holds it is clearly enough to prove that the restric-
tion of 73 to W is demicontinuous. To this end let w,—~w in W. Then w,~w alsc
in ¥V and |D*w,|. =const. for all n. Hence by (B,),

KT W] émg S |Bs (3, &, (9, (%))|1DP w, ()] dx = const [ g]ly.

That Tyw,~Tyw weak™® in W, follows from the former part of the proof.
Example 4.2. Let

Au(x) = 2 (—I)I“ID“(a“ﬂ(x)D/’u(x)),
lal, |Bl=Ek

where the real measurable functions g,, satisfy the following conditions (see [7]).

[ap€L=(Q) if |o| = |B] = k;
| Mo,y (aup]®) < == for some pu(w, B) with 0 < p(, B) < 2(k—min {|x], [B]}),
(& ift max {lal, B[} = k, ||+ |B] < 2k;
My, py(angl) < o= for some p(a, B) with 0 < p(a, B) < 2(k—max {|al, |]}),
if lo]=k—1,|p=k-1.

For V=H{*(Q) it is a routine application of the embedding theorems of [7] to
verify that 4 gives rise to a bounded linear map S: V—V* by the rule

4.3) (Su, 0y =a(w,v) = > faa,p(x)D”u(x)D"‘v(x) dx.
lal, 1Bl=k o
Moreover, if
(Cy > 588y =0 forall x€Q and & ER%,
lal, |Bl=Ek

holds, then S is monotone. In view of Corollary 3.2 we obtain the following
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Theorem 4.3. Let the conditions (B;)—(By), (Cy) and (C,) be satisfied, and
let K be a closed convex subset of V containing the origin. If for a given feV* and
for some R=0,

(4.4 a(w,w)+b(w, w)—(f,wy=0 forall weKnW, |[wly=R,
then the variational inequality

4.5 a(u,w—u)+bu, w—u) ={(f,w—u) forall wecKnW,
admits a solution u in KnV;.

Remark 4.4. The inequality (4.5) is solvable in particular, if the bilinear form
a(.,.) is coercive, i.e. there is ¢,>0 such that

(Cy) a(u, v) = colule for all ucv.

Since b(u, u)=0 for all uc¢ W by (B,), (4.4) clearly holds.
To apply Theorem 3.3 for situations where 4 is a quasilinear operator, we
impose on B the following further condition (cf. [2], [4], [11]).

(By) For each ¢=0 there is a constant K,>0 such that for almost all x€Q,
all &, EEeR™ and |f|=m,

By(x, &) Ef = e¥ (x, &)+ KAZ()+ P (x, &)+ |§ [0 (%, 1€+ @u (x, [E5D1}
with g€ LY(Q). -

Lemma 4.5 If the conditions (B,)—(By) are satisfied, then the map T: Vi—~W *
defined by (4.1) satisfies the conditions (A)—(A4) with A(@)=b(u, u).

PrOOE. In view of Lemma 4.1 we must only show that (A,) holds. Let (v,)
be the sequence occurring in the proof of Lemma 4.1, and let [¢]* stand for max {0, ¢},
t€R. It follows from (B,) that

[ > By(x, fm(v)(x))DBun(x)r—» ¥(x, &, (0)(x)) ae on Q.

Bl=m

By (B,), for each ¢>0 there is K,>0 such that
"Sl— [wﬂé Bﬂ (x, ém(v)(x))Dﬂ vn(x)] +§ SW(X, fm(v") (.X))
o {g )+ ¥ (6 E@)+ 3 [0a(x [D*00))+ 94 (x, [P, (x);)]},

where g, (., &,(v)) and ¢,(., [D*v]) are in L'(Q). By an appeal to Vitali’s con-
vergence theorem as in the proof of Lemma 4.1 we can conclude that

[ [yﬁ 3 Byl G @)D, (x)]+dx ~ b, 0) = (1) as n e,

Q

Therefore, lim sup (Tyv, v,) =2, (v).
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Example 4.6. Let Au(x)=_2,=x (— D" D"4,(x, & w)(x)),0=m—<k<Nand
V=H{?(Q) with 2=p<oco. Under certain conditions for the functions 4,: QX
XR%—~R, which can be found in [10], 4 gives rise to a pseudomonotone map
S: V-V* by the rule

(4.6) (Su, vy = c(u,v) = >/ _/.Aa(x, & (w)(x))D*o(x) dx, u, vEV.
W=k &

According to Theorem 3.3 we then have

Theorem 4.7. Let the conditions (B;)—(B,) be satisfied, let S: V—~V* be
a pseudomonotone map defined by (4.6), and let K be a closed convex subset of V
containing the origin. If for a given fcV* and for some R=0,

cw, w)+b(w, w)—{f,wy=0 forall weKnW, |w|, =R,
then the variational inequality
cu,w—u)+bu, w—u) = (f,w—u) forall weKnW,

admits a solution u in KnV;.

5. Orlicz space method

In the sequel we focus our attention on the particular case V=HE?*(Q), 0=m<
<k=N and k—m=N/2, where 4 is a linear differential operator as in Example 4.2.
We shall show that the sign condition (B,) can be weakened or removed by replacing
the condition (B,) with a rather mild growth condition.

Let Q be an unbounded domain in RY (N=2). To introduce the strongly non-
linear operator B we set the following conditions for the functions B;: QXR*=-R,

[Bl=m.

(D) By satisfies Carathéodory’s condition for all |B|=m and By(x,0)=0 for
almost all xcQ and all |p|=m;

D) 1By, ENZCE-) PO+ Q) S Yal)} for almost all x€Q
and all ¢, €R*», where C: R°m-1—R is continuous, P and Q are non-negative
Sunctions with P€L?(Q), fQ [Pr(x)|2dx—~0 as R—o, Q€L™(Q), Q(x)~0 as
|x|>co in Q, and ¥,, |o|=m, are Orlicz functions satisfying the A*-condition
and W,<®, at 0 and o with D,(r)=r2e".

To show that the semilinear form

(5.1) b (u, v) :IMZ [ By (%, & (u)(x)) DP v (x) dx

is bounded on VXV, we recall that HY '"2(Q) is continuously embedded in
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C(Q)nL=(Q) for all |¢|=m—1, and H{™*(Q) in Ly (2) (see [8]). By (Dy)
we have

1b(u, )|
= 3 [IC(En@@) {P@ID@I+0® 3 Y.(D'u) Dr (9} d

Bl=m g
Since C is continuous we get, by taking account of the embeddings above, that
|C(Ena@))] = h(lull,») forall xeQ,

where h: R*—>R* is a continuous non-decreasing function. Therefore, by the
Cauchy—Schwarz inequality,

Ib(u, v)| = h<nunk,g){npnm@umI > %(D“u)nz} AL

al=m

Since ¥,<®, at 0 and o and since ¥, satisfies the A%-condition, also ¥Yi< &,
at 0 and o for all |x|=m. Hence for each ¢=0 a constant K(g) can be found
such that

f Y2(D*u(x)) dx = K(e) f ®,(eD*u(x)) dx.
Q 2
Choosing ¢ so small that [eD*u[, =1 we obtain that

[ PH(D*u(x)) dx = K(e)e] D*ullg, = const |ull, -
2

Consequently, there is a constant K,>0 such that for all u,veV,

(5:2) [b(u, v)| = Koh([ully,2) {1+ Q- [ull/3} [vllg, o

Thus it is clear that b gives rise to a bounded map 7y: V—-V*=V by the rule
(5.3) (Tyu, vy = b(u,v), u,veVl.

Lemma 5.1. Ifthe conditions (D) and (D,) are satisfied, then the map T,: V-~V
defined by (5.3) is compact and continuous.

Proof. Let (4;) be a bounded sequence in V, R=0, Qzx=QnB(0, R), and
let yx stand for the characteristic function of B(0, R). Then

[Tyu;—Tyuy| = sup

Iolle, g=1

=, 2 BC, @) =By Gu)e

> [ABy(x. &0 () (%) = By (x, &, (u,) (X))} DP o (x) dx
Q

|Bl=m
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By (Dy), xr(x) By (xa En(®) (x)) =B, (x, Em 1) (x)) so that
[ 1By, €)= By (x, &) (0) 2

Q

= 9{ L 1Bs (¥, &ttt (0) = By (x. &) ()| dx
QR
+ [ 10— 2r () By (%, En@) @) 2dx+ [ |(1— 1 (6)) By (. g(u,-)(x))t?dx}

= Jr (i, )+ JIr(D+ IR ()-

Here u—ypu is a compact map from Hy *2(Q) to L2(Q) for all |¢|=m—1 and
from H{™™2(Q) to any Ey(Q) with ¥ <@, at 0 and o (see [8]). Hence there is a
subsequence of (u;), still denoted by (i), such that (yg(x)D*u;(x)) converges in
measure on Qp for all |¢|=m. By (D) it follows from Nemytskii’s lemma (see [13],
p. 20) that also {By(x, &, (xzu;)(x))} converges in measure on Q. In view of the
now familiar Vitali convergence theorem, Jy(i,j)—0 as i,j—oo, if we can show
that the family {|B,(., &, (u))?} has absolutely equicontinuous integrals on Q.
Indeed, by (D,),

1By 0, En s O)]* = const [|PIFHIQIE 3 [#(D%uix))
for all |f|=m and almost all x€Q,.. Since PEL*(Q) we need only to deal with
the family {|¥,(D*u;(x))[?}. By the 4%-condition, ¥,<®, at 0 and <o, for example.

Now we can invoke Vallée—Poussin’s theorem (see [14], p. 94). Indeed, for an &¢=0
small enough,

[P (D u, () dx = K@) [ @o(eD"u;(x)) dx = K(&)|eD u;],

= const |[ull;, . = L

for some positive constant L. By using the same argument for all |¢|=m we can
conclude that Jx(i,j)—>0 as i, j—~<. Similarly, since Q(x)—~0 as |x|—c in Q,

Tai) = const. [{IPrGO+10a00f 3 |¥,(Dru ()2} d
= const{f |Pg(x)[?dx +const 5(R)},
Q2

where 0(R)-~0 as R—oo. By (D) we then have that J(i)~0 as R--e, and
by the same argument Jp(j)->0 as R--co. Since all terms may be handled in the
similar manner, it is now clear that for any ¢=0 a subsequence of (1) and a natural
number 7, can be found such that

[Tyu;—Tyu;| <e whenever i, j=i,.

Thus the compactness of 7, has been proved. The continuity follows in the same way.
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Remark 5.2. For m=0 and N=2k, Bu(x)=B0(x,u(x)). In [8] Lemma 5.1
is proved assuming that By(x, r)=Q (x){ (r), where Q€L>(Q), Q(x)~0 as |x|—>e
in Q, ¥<®, at 0 and o, ¥ satisfies the 4;-condition and ¥ (the complementary
Orlicz function) satisfies the 4,-condition for all r=0. We note that for ¥ sat-
isfying the A2-condition, the 4;-condition holds for large values of r only (see [14]).

We are now in a position to produce the solvability theorems for variational
inequalities involving the maps T=S+Ti: V-V, where S is a bounded linear
and monotone map induced by (4.3).

Theorem 5.3. Let the conditions (Cy), (Co), (Dy) and (Dy) be satisfied and
let K be a closed convex subset of V containing the origin. If for a given f€V and for
some R=0,

5.4 (Sv, V) +(Ty, v)—{f, vy = U forall vEKnV, lvllg,2 = R,
then the variational inequality

(5.5) (Su, v—uy+(Tyu, v—uy = (f,v—u) for all veKnV,
admits a solution u in KnV.

Proof. The assertion follows immediately from Corollary 3.2, because 77,
being a compact and continuous map from ¥ to V¥, satisfies the conditions (A;)—(Aj)
with A, (w)=(Tyu, u).

Next we consider the case where the condition (C,) is replaced by (Cy), i.e. the
bilinear form a(., .) is coercive. First we introduce a condition

(Dy) Y (x, &)= \pj=m By(x; &) Ep= — F(x) for almost all x€Q and all
£ cRon with FELMQ).

Theorem 5.4. Let the conditions (Cy), (Cs), (Dp)—(Ds) be satisfied and let K
be a closed convex subset of V containing the origin. Then the variational inequality
(5.5) admits a solution u in KV for any feV.

Proof. By the conditions (Cs) and (D;) we have that
“U”k_,%{<SUa U>+<T1U, U>} = Co“””k,z—HFul -0 as  |vflg,s > oo

Therefore (5.4) holds for some R=0 and for any f€V. The assertion follows from
Theorem 5.3.

The following theorem utilises the estimate (5.2). Since /: R*—>R* is contin-
wous and non-decreasing, lim sup,.. 2(r)r~ "=y with 0=y=-e.

Theorem 5.5. Let the conditions (Cy), (Cs), (Dy) and (D,) be satisfied and let
K be a closed convex subset of V containing the origin. If y=0, the variational inequal-
ity (5.5) admits a solution u in KV for any feV. If 0<y<ee, then (5.5) admits
a solution u in KNV for any feV provided ||Q|.. is small enough.
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Proof. By (5.2) we have

(80, 0)+(Tyv, v) = ¢o[[v]F, 2= Koh (0], 2) {1+ 1Ol [P1R3} [Vl o

Hence
_ . h(|[v]ly,2) h(||vllx, 2)
ol (S, &+ (Tu0, o)) = ol o fer— Kol Q. T R 3

If y=0, (5.4) obviously holds for some R=0 and for any feV. If O=y<eoo,
(5.4) holds provided that |Q|.<c,K; 'y~

For the particular case m=0, N=2k, when C=1 in (D,) and A(r)=1 in
(5.2), we obtain the following result, which at the cost of the growth condition (D)
relaxes the sign condition for the function B,: QXR—>R. We remind that the
map 7} is now defined by

(Tyu, vy = fB(,(x, u(x))v(x)dx, u,veV.
g

Corollary 5.6. Let the conditions (C,), (Cs), (D;) and (D,) be satisfied and
let K be a closed convex subset of HE®(Q) (k=NJ2) containing the origin. Then
the variational inequality (5.5) admits a solution u in K "HE*(Q) for any fe HE?(Q).

Remark 5.7. If A satisfies an ellipticity condition

(Cp D ()& = ¢ |E|* forall x€Q and EERV,
k

lal=|B1=

¢;>0 a constant, and if Poincare’s inequality holds in H¥?(Q); for instance, Q cR*
is an infinite strip, then (C,) holds provided the lower order terms of 4 are not too
large in a certain technical sense (see [7], Lemma 5.2).

6. Applications IT

We shall apply the solvability theorems of § 5 for a strongly nonlinear elliptic
Dirichlet problem

6.1) {A“(x)+5u(X)=F(x) in Q

D*u(x) =0 on 9Q for all |¢| = k—1,

where QcRY (N=2) is an unbounded domain, A satisfies the conditions (Cy)
and (C,) or (Cy), B satisfies (D,) and (D,), FEL?*(Q) and 0=m<k<N with k—m=
=N/2. For any FeL?(Q) there is an element f€V=H*(Q) such that

fF(x)v(x) dx = (f,v)y forall wveV.
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A variational (weak) solution of (6.1) is any u€V such that
(6.2) a(u,v)+b(u,v) = {(f,v)y forall veVl,

where a and b are defined by (4.3) and (5.1) respectively. Therefore, by a choice
K=V, the solvability of the variational inequality (5.5) guarantees the existence
of a solution of (6.2). Thus the theorems for there to exist a solution of (6.2) are
particular cases of the solvability theorems of § 5. One can see that these results
generalise the corresponding results obtained in [6] and [8].

As a particular example of an equation which can be handled by this method
we cite

— Au(x)+ P () sin u(x) +0 () u(x)|ee"@’ = F(x), x€Q,

where QcR? such that Poincare’s inequality holds in Hy>?(Q), P€L*(Q), Q€L™(Q),
P(x), 0(x)~0 as |x|—>e in Q =2, 1=6<2. For strongly nonlinear eigenvalue
problems of the type (6.1) we refer to [16].
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