WEIERSTRASS DIVISION
WITH
QUASIANALYTIC BOUNDARY VALUES

C. L. CHILDRESS

1. Introduction

Let \(g: \mathbb{R}^+ \to \mathbb{R}^+ \) (\(\mathbb{R}^+ \) is the set of nonnegative real numbers) be a convex increasing function such that \(g(0)=0 \) and \(t^{-1}g(t) \to +\infty \) as \(t \to +\infty \). Define a sequence \(\{M_n\}_{n \in \mathbb{Z}^+} \) (\(\mathbb{Z}^+ \) is the set of nonnegative integers) by \(M_n = \exp g(n) \), \(n \in \mathbb{Z}^+ \).

We assume \(g \) grows fast enough to ensure that \(M_n \geq n! \), \(n \in \mathbb{Z}^+ \).

Let \(\Omega \) be a domain in \(\mathbb{C}^k \) with 0 a point on its boundary \(\partial \Omega \). We denote by \(\mathcal{A}_k = \mathcal{A}_k(\{M_n\}, \Omega) \) the set of germs at 0 of complex-valued Whitney \(C^\infty \) functions \(f \) on \(\bar{\Omega} \) (the closure of \(\Omega \) which are analytic in \(\Omega \) and satisfy the following growth conditions on their derivatives: for each \(r > 0 \) sufficiently small that \(f \) is represented by a function on \(\bar{\Omega} \cap A_k(r) \) \((A_k(r) = \{z \in \mathbb{C}^k : |z_j| = r, 1 \leq j \leq k\}) \) there exist constants \(A \) and \(B \), which depend in general on both \(f \) and \(r \) but not on \(n \in \mathbb{Z}^+ \), such that for all \(n \in \mathbb{Z}^+ \),

\[
\sup_{z \in (\mathbb{Z}^+)^k, |z| = n, z \in \partial \Omega \cap A_k(r)} |D^s f(z)| \leq AB^nM_n,
\]

(1.1) \(D^s = D_z^s = \frac{\partial |z|^s}{\partial z_1^{a_1} \cdots \partial z_k^{a_k}} \), where \(z = (z', z_k) = (z_1, \ldots, z_k) \) are coordinates on \(\mathbb{C}^k \), \(a = (a_1, \ldots, a_k) \in (\mathbb{Z}^+)^k \), and \(|z| = a_1 + \cdots + a_k \). We assume that \(\mathcal{A}_k \) is quasianalytic in the sense of Denjoy and Carleman:

\[
f \in \mathcal{A}_k \quad \text{and} \quad D^s f(0) = 0 \quad \text{for all} \quad a \in (\mathbb{Z}^+)^k \quad \text{imply} \quad f = 0 \in \mathcal{A}_k.
\]

Before going on, we remark that by the use of the logarithmic convexity of the sequence \(\{M_n\} \), it is not difficult to show that \(\mathcal{A}_k \) is a local algebra with maximal ideal \(m_k = \{f \in \mathcal{A}_k : f(0) = 0\} \). The quasianalyticity assumption is independent of the dimension \(k \). If the sequence \(\{M_n\} \) satisfies certain additional hypotheses, then \(\mathcal{A}_k \) is closed under composition whenever the composition makes sense, and \(\mathcal{A}_k \) is also closed under differentiation. For a more complete discussion, see [2].

In this paper we consider a quasianalytic local algebra \(\mathcal{A}_k(\{M_n\}) \). We show a Weierstrass—Malgrange—Mather type division theorem does not hold in \(\mathcal{A}_k(\{M_n\}) \).
if \(k \geq 2 \), \(A_k([n!]) \) is a proper subset of \(A_k(M_n) \), and \(b\Omega \) is \(C^2 \) smooth and strongly Levi pseudoconvex at 0. If, however, \(b\Omega \) is Levi pseudoflat at 0, we prove a generic division theorem holds in \(A_k(M_n) \), \(k \geq 2 \). We further show in this case that division is possible in \(A_k(M_n) \) by every regular element of \(\mathcal{O}_k \), the local algebra of germs at 0 of analytic functions. (The case in which \(b\Omega \) is pseudoconcave at 0 is trivial, since in this case \(A_k(M_n) \) reduces to \(\mathcal{O}_k \). See L. Hörmander, [4].)

2. Preliminaries

The following proposition is any easy consequence of the closed graph theorem:

Proposition 2.1. Let \(E \) be a Banach space and \(F = \bigcup_{n=1}^{+\infty} F_n \) be an inductive limit of Banach spaces. If \(T : E \to F \) is a continuous linear map, then there exists a positive integer \(n_0 \) such that \(T(E) \subseteq F_{n_0} \). \(\square \)

We will apply this proposition to estimate the derivatives of the quotient and remainder when we divide by a fixed regular element \(f \in A_k(M_n) \). The result will be that the growth of the derivatives of the element we are dividing by \(f \) determines the growth of the derivatives of the quotient and remainder.

For positive integers \(v \) and \(N \), let

\[
A_{k,v,N} = \left\{ f : f \text{ is a Whitney } C^\infty \text{ function on } \Omega \cap A_k(1/v) \right\}
\]

and

\[
\bigcup_{n \in \mathbb{Z}^+} \sup_{a \in (A^*)^n, |a| \leq n} |D^a f(z)|/N^n M_n < +\infty.
\]

Note that for all positive integers \(v \) and \(N \), \(A_{k,v,N} \) is a Banach space, and the inductive limit \(\bigcup_{v,N=1}^{+\infty} A_{k,v,N} \) may be identified with \(A_k(M_n) \).

Fix \(f \in A_k(M_n) \), which is regular in \(z_0 \) of order \(d \). (This means \(f(0) = \partial f(0)/\partial z_k = \ldots = \partial^{d-1} f(0)/\partial z_k^{d-1} = 0 \), while \(\partial^d f(0)/\partial z_k^d \neq 0 \).) Let \(v_0 \) be the smallest positive integer such that \(f \) is represented by a function on \(A_k(1/v) \) for all \(v \geq v_0 \). We define a map

\[
(g, r_1, \ldots, r_d) \to g = f + \sum_{j=1}^{d} r_j z_k^{-j},
\]

\[
\bigcup_{v=v_0}^{+\infty} \left(A_{k,v,N} \oplus \bigoplus_{N=1}^{+\infty} A_{k-1,v,N} \right) \to \bigcup_{v=v_0}^{+\infty} A_{k,v,N}.
\]

This map is continuous, for its restriction to each direct summand \(A_{k,v,N} \oplus (\bigoplus_{N=1}^{+\infty} A_{k-1,v,N}) \) is continuous. The assumption that the \(A_k(M_n) \) are quasianalytic implies the map is injective. The map is surjective if and only if division by \(f \) is pos-
Weierstrass division with quasianalytic boundary values

Given positive integers \(v \equiv v_0 \) and \(N \), Proposition 2.1 implies that there exist positive integers \(v' \equiv v_0 \) and \(N' \), as well as a constant \(A \), such that for each \(g \in A_{k,v,N} \), there exist \(q \in A_{k,v',N'} \), and \(r_j \in A_{k-1,v',N'} \), \(1 \leq j \leq d \), which satisfy

\[
g = f_q + \sum_{j=1}^{d} r_j z_k^{d-j},
\]
and which also satisfy the estimates

\[
sup_{n \in \mathbb{Z}^+} \sup_{\beta \in (\mathbb{Z}^+)^N, |eta| \leq n, z \in \Omega \cap A_{k-1}(1/v)} |D^\beta r_j(z')|/(N')^n M_n^n \\ \leq A \sup_{n \in \mathbb{Z}^+} \sup_{\beta \in (\mathbb{Z}^+)^N, |eta| \leq n, z \in \Omega \cap A_k(1/v)} |D^\beta g(z)|/N^n M_n^n,
\]

\[
1 \leq j \leq d, \text{ and } \]

\[
sup_{n \in \mathbb{Z}^+} \sup_{\beta \in (\mathbb{Z}^+)^N, |eta| \leq n, z \in \Omega \cap A_k(1/v)} |D^\beta q(z)|/(N')^n M_n^n \\ \leq A \sup_{n \in \mathbb{Z}^+} \sup_{\beta \in (\mathbb{Z}^+)^N, |eta| \leq n, z \in \Omega \cap A_k(1/v)} |D^\beta g(z)|/N^n M_n^n.
\]

We summarize these results as a lemma.

\[\text{Lemma 2.2. Let } f \in \mathcal{A}_k(\{M_n\}) \text{ be regular in } z_k \text{ of order } d, \text{ and suppose that division by } f \text{ is possible within } \mathcal{A}_k(\{M_n\}). \text{ Let } v_0 \text{ be the smallest positive integer such that } f \text{ is represented by a function on } A_k(1/v) \text{ for all } v \equiv v_0. \text{ Given positive integers } v \equiv v_0 \text{ and } N, \text{ there exist positive integers } v' \equiv v_0 \text{ and } N', \text{ as well as a constant } A, \text{ such that for each } g \in A_{k,v,N}, \text{ there exist } q \in A_{k,v',N'} \text{ and } r_j \in A_{k-1,v',N'}, \text{ } 1 \leq j \leq d, \text{ which satisfy equation (2.1) and estimates (2.2) and (2.3).} \]

We will need one technical lemma, which we now state. The proof may be found in [2].

\[\text{Lemma 2.3. Let } \lambda(a) = \sup_{n \in \mathbb{Z}^+} |a^n|/M_n \text{ for } a \in \mathbb{C}, \text{ and suppose there exist } \varepsilon > 0, A > 0, \text{ and } C > 0 \text{ such that} \]

\[
\exp(\varepsilon a) \leq C \lambda(a), \quad a \in \mathbb{R}, \quad a > A.
\]

\[\text{Then there exist } \alpha > 0 \text{ and } \beta > 0 \text{ such that} \]

\[
M_n \leq \alpha \beta^n n!, \quad n \in \mathbb{Z}^+. \]

\[\square\]
3. The case of a strongly pseudoconvex boundary

Let \(\Omega \subseteq \mathbb{C}^k \) be a domain with \(C^2 \) smooth boundary \(\partial \Omega \), and assume \(\Omega \) is strongly pseudoconvex at \(0 \in \partial \Omega \). Then there is an open neighborhood \(U \) of \(0 \) in \(\mathbb{C}^k \) and a \(C^2 \) smooth function \(\varphi : U \rightarrow \mathbb{R} \) with the following properties:

\[
\varphi(0) = 0, \\
\text{grad } \varphi(0) \neq 0, \quad \text{and} \\
\text{the Levi form } (\partial^2 \varphi(0)/\partial z_i \partial \overline{z}_j)_{1 \leq i, j \leq k} \text{ is strictly positive definite.}
\]

After analytic change of coordinates in \(\mathbb{C}^k \), we may assume \(\varphi \) has the form

\[
\varphi(z) = \text{Im } z_k + \sum_{j=1}^k c_j |z_j|^2 + O(|z|^3),
\]

where \(c_j > 0 \) is constant, \(1 \leq j \leq k \). (A proof of this fact may be found in Hörmander, [4].)

Let \(\mathcal{A}_k(\{n!\}) \) be a proper subset of \(\mathcal{A}_k(\{M_n\}) \), \(k \geq 2 \), a quasianalytic local algebra as defined in the Introduction. Set \(z' = (z_1, \ldots, z_{k-1}) \) and \(f(z) = f(z', z_k) = -z_k^2 + z_1 \). Then \(f \) is an analytic Weierstrass polynomial of degree two in \(z_k \). For \(a \in \mathbb{C} \), set \(g(z, a) = e^{iaz_k} \). Note that for each \(a \in \mathbb{C} \), \(g \in \mathcal{O}_k \subseteq \mathcal{A}_k(\{M_n\}) \). Suppose it were possible to write for each \(a \in \mathbb{C} \)

\[
(3.1) \quad g(z) = \text{Im } z_k + \sum_{j=1}^k c_j |z_j|^2 + O(|z|^3),
\]

where \(c_j > 0 \) is constant, \(1 \leq j \leq k \). (A proof of this fact may be found in Hörmander, [4].)

Now consider only values of \(a \in \mathbb{R} \) with \(a < 0 \). If \(z \in \Omega \) and \(|z| \) is sufficiently small, it follows from equation (3.1) that \(\text{Im } z_k \leq 0 \). Thus, if \(a \in \mathbb{C} \), \(\varphi(2, a) = g(2, a) \in \mathcal{A}_k(\{M_n\}) \). Since the roots of \(f(z', z_k) = 0 \) are \(z_k = \pm i \sqrt{z_1} \), it would follow from equation (3.2) that

\[
(3.3) \quad r_1(z', a) = i(e^{a \sqrt{z_1}} - e^{-a \sqrt{z_1}})/2 \sqrt{z_1}.
\]

Thus, for each \(a < 0 \), \(g = g(z, a) \in \mathcal{A}_{k,1,1} \). If we apply Lemma 2.2, it follows that there exist \(e_1 > 0 \) and \(A_1 > 0 \), both independent of \(a \), such that

\[
(3.4) \quad \sup_{z' \in \mathcal{D} \cap \mathcal{A}_{k-1}(e_1)} |r_1(z', a)| \leq A_1 \lambda(a), \quad a < 0.
\]
Let $\varepsilon > 0$, $z' = (\varepsilon, 0, \ldots, 0)$, and $z_k = -i\varepsilon$. If ε is chosen sufficiently small, then $z' \in A_{k-1}(\varepsilon)$ and $\varphi(z) = -\varepsilon + c_1 \varepsilon^2 + c_k \varepsilon^d + O(\varepsilon^3) < 0$, so that $z \in \overline{\Omega}$. Thus estimate (3.4) yields

$$|e^a \sqrt{\varepsilon} - e^{-a} \sqrt{\varepsilon}/2 \sqrt{\varepsilon} | \equiv A_1 \lambda(a), \quad a < 0.$$

Since $(e^a \sqrt{\varepsilon} - e^{-a} \sqrt{\varepsilon})/2 \sqrt{\varepsilon}$ is asymptotic to $e^{-a} \sqrt{\varepsilon}/2 \sqrt{\varepsilon}$, inequality (3.5) implies there exist constants $A > 0$ and $K > 0$, both independent of a, such that

$$e^a \sqrt{\varepsilon} \equiv K \lambda(a), \quad a > A.$$

Inequality (3.6) together with Lemma 2.3 now imply the existence of constants $\alpha > 0$ and $\beta > 0$ such that

$$M_n \equiv \alpha \beta^n n!, \quad n \in \mathbb{Z}^+.$$

This implies $\mathcal{A}_k(\{M_n\}) = \mathcal{A}_k(\{n!\})$, contrary to assumption. We conclude the Weierstrass division theorem does not generalize to $\mathcal{A}_k(\{M_n\})$ when $\mathcal{A}_k(\{M_n\}) \nsubseteq \mathcal{A}_k(\{n!\})$ and $k \equiv 2$. Indeed, we have shown that it isn't always possible to divide in $\mathcal{A}_k(\{M_n\})$ by Weierstrass polynomials from $\mathcal{C}_k(\{z_k\})$.

4. The case of a pseudoflat boundary

Let $\Omega \subseteq \mathbb{C}^k$, $k \equiv 2$, be a product domain with 0 a member of the pseudoflat part of $\partial \Omega$. Thus, let $U_1 \subseteq \mathbb{C}$ be any plane domain with $0 \in \partial U_1$, let $U_j = \{z \in \mathbb{C}: |z| < 1\}$ be the open unit disc in the plane for $2 \equiv j \equiv k$, and let $\Omega = U_1 \times U_2 \times \ldots \times U_k$. Let $\mathcal{A}_k(\{M_n\})$ be a quasianalytic local algebra. We show in this section that a generic division theorem holds in $\mathcal{A}_k(\{M_n\})$. We also show that division is possible in $\mathcal{A}_k(\{M_n\})$ by every regular element of \mathcal{C}_k.

By a generic monic polynomial in z_k of degree d we mean an element in $\mathbb{C}[z_k]$ of the form $P_d(z_k, \lambda) = z_k^d + \sum_{j=1}^d \lambda_j z_k^{d-j}$, where $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d$.

Theorem 4.1. (Generic division theorem for $\mathcal{A}_k(\{M_n\})$) Let $P_d = P_d(z_k, \lambda)$ be a generic polynomial in z_k of degree d. For each $g \in \mathcal{A}_k(\{M_n\})$, there exists $\varepsilon > 0$ such that if $\lambda \in \Delta_d(\varepsilon)$, then there exist unique elements $q = q(z, \lambda) \in \mathcal{A}_k(\{M_n\})$ and $r_j = r_j(z', \lambda) \in \mathcal{A}_{k-1}(\{M_n\})$, $1 \equiv j \equiv d$, such that

$$g = P_d q + \sum_{j=1}^d r_j z_k^{d-j}. \quad (4.1)$$

Furthermore, all the germs in equation (4.1) are defined for $(z, \lambda) \in (\overline{\Omega} \cap \Delta_d(\varepsilon)) \times \Delta_d(\varepsilon)$ and are analytic in (z, λ) on $(\overline{\Omega} \cap \Delta_d(\varepsilon)) \times \Delta_d(\varepsilon)$.

Proof. Choose $0 < r < 1$ so that the germ g is defined on $\overline{\Omega} \cap \Delta_d(r)$. Let $0 < \delta < r$. By Cauchy's integral formula, if $z \in \overline{\Omega} \cap \Delta_d(\delta/2)$, then

$$g(z) = \frac{1}{2\pi i} \int_{|\zeta| = \delta} \frac{g(z', \zeta)}{\zeta - z_k} d\zeta. \quad (4.2)$$
Observe that

\[P_j(\zeta, \lambda) = \zeta^j + \sum_{i=1}^{j} \lambda_i \zeta^{j-i} = \zeta^j \left(\sum_{i=1}^{j-1} \lambda_i \zeta^{j-1-i} \right) + \lambda_j \]

\[= \zeta P_{j-1}(\zeta, \lambda) + \lambda_j, \]

and so

\[-\lambda_j = \zeta P_{j-1}(\zeta, \lambda) - P_j(\zeta, \lambda). \]

Thus

\[P_d(\zeta, \lambda) - P_d(z_k, \lambda) = \zeta P_{d-1}(\zeta, \lambda) + \lambda_d - \sum_{j=1}^{d} \lambda_j z_k^{d-j} - z_k^d \]

\[= \zeta P_{d-1}(\zeta, \lambda) + \sum_{j=1}^{d-1} (-\lambda_j) z_k^{d-j} - z_k^d \]

\[= \zeta P_{d-1}(\zeta, \lambda) + \sum_{j=1}^{d-1} \left[(\zeta P_{j-1}(\zeta, \lambda) - P_j(\zeta, \lambda)) z_k^{d-j} - z_k^d \right] \]

\[= \sum_{j=1}^{d} \zeta P_{j-1}(\zeta, \lambda) z_k^{d-j} - \sum_{j=0}^{d-1} P_j(\zeta, \lambda) z_k^{d-j} \]

\[= \left(\sum_{j=1}^{d} P_{j-1}(\zeta, \lambda) z_k^{d-j} \right)(\zeta - z_k). \]

Adding \(P_d(z_k, \lambda) \) to both sides of the identity we have obtained, viz.,

\[P_d(\zeta, \lambda) - P_d(z_k, \lambda) = \left(\sum_{j=1}^{d} P_{j-1}(\zeta, \lambda) z_k^{d-j} \right)(\zeta - z_k), \]

and dividing through by \(P_d(\zeta, \lambda)(\zeta - z_k) \), we obtain

(4.3)

\[\frac{1}{\zeta - z_k} = \frac{P_d(z_k, \lambda)}{P_d(\zeta, \lambda)(\zeta - z_k)} + \sum_{j=1}^{d} \frac{P_{j-1}(\zeta, \lambda)}{P_d(\zeta, \lambda)} z_k^{d-j}. \]

Now choose \(s > 0 \) such that \(\lambda \in \Delta_d(s) \) implies that the roots of \(P_d(z_k, \lambda) \) are contained in \(\Delta_4(\delta/2) \). If \(z \in \mathbb{Q} \cap \Delta_k(\delta/2) \) and \(\lambda \in \Delta_d(s) \), substitution of expression (4.3) for \(1/(\zeta - z_k) \) into equation (4.2) yields

\[g(z) = \left[\frac{1}{2\pi i} \int_{|\zeta|=\delta} \frac{g(\zeta', \zeta)}{P_d(\zeta, \lambda)(\zeta - z_k)} d\zeta \right] P_d(z_k, \lambda) \]

\[+ \sum_{j=1}^{d} \left[\frac{1}{2\pi i} \int_{|\zeta|=\delta} \frac{g(\zeta', \zeta) P_{j-1}(\zeta, \lambda)}{P_d(\zeta, \lambda)} d\zeta \right] z_k^{d-j}. \]
Thus, we get an equation of the form (4.1) with

\[
q(z, \lambda) = \frac{1}{2\pi i} \int_{|\zeta| = \delta} \frac{g(z', \zeta)}{P_d(\zeta, \lambda)(\zeta - z_k)} \, d\zeta
\]

and

\[
r_j(z', \lambda) = \frac{1}{2\pi i} \int_{|\zeta| = \delta} \frac{g(z', \zeta) P_{j-1}(\zeta, \lambda)}{P_d(\zeta, \lambda)} \, d\zeta, \quad 1 \leq j \leq d.
\]

Let \(\varepsilon = \min(\delta/2, s) \), and note \(|P_d(\zeta, \lambda)| \geq C > 0 \) and \(|\zeta - z_k| \geq \varepsilon > 0 \) for \(|\zeta| = \delta \) and \(\lambda \in \Delta_d(\varepsilon) \). We may thus differentiate under the integral sign in equation (4.4) and obtain that \(q(z, \lambda) \) is analytic in \((z, \lambda) \) on \((\Omega \cap \Delta_k(\varepsilon)) \times \Delta_d(\varepsilon) \). Also, since \(g(z) \) represents an element of \(\mathcal{A}_k(\{M_n\}) \) on \(\overline{\Omega} \cap \Delta_k(\delta) \), there exist \(A_1 > 0 \) and \(B_1 > 0 \) such that for all \(n \in \mathbb{Z}^+ \),

\[
\sup_{z \in (Z^*)^n, |z| \leq n, (z', \lambda) \in \Omega \cap \Delta_d(\delta)} |D^2 g(z)| \leq A_1 B_1^3 M_n.
\]

Thus,

\[
\sup_{z \in (Z^*)^n, |z| \leq n, (z', \lambda) \in \Omega \cap \Delta_d(\delta)} |D^2 g(z', \zeta)| \leq A_1 B_1^3 M_n.
\]

Since \(|P_d(\zeta, \lambda)| \) and \(|\zeta - z_k| \) are bounded away from 0 for \(|\zeta| = \delta \) and \((z, \lambda) \in (\overline{\Omega} \cap \Delta_k(\varepsilon)) \times \Delta_d(\varepsilon) \), it follows that there exist \(A > 0 \) and \(B > 0 \), both independent of \(\zeta \) with \(|\zeta| = \delta \) and \(\lambda \in \Delta_d(\varepsilon) \), such that

\[
\sup_{z \in (Z^*)^n, |z| \leq n, (z', \lambda) \in \Omega \cap \Delta_k(\delta)} |D^2 [g(z', \zeta)/P_d(\zeta, \lambda)(\zeta - z_k)]| \leq AB^a M_n.
\]

We may thus differentiate under the integral sign in equation (4.4), estimate in a straightforward manner, and obtain that if \(\lambda \in \Delta_d(\varepsilon) \), then \(q = q(z, \lambda) \) represents an element of \(\mathcal{A}_k(\{M_n\}) \) on \(\overline{\Omega} \cap \Delta_k(\delta) \). A similar argument shows that if \(\lambda \in \Delta_d(\varepsilon) \), then \(r_j = r_j(z', \lambda) \) in equation (4.5) represents an element of \(\mathcal{A}_k - 1(\{M_n\}) \) on \(\overline{\Omega} \cap \Delta_k - 1(\varepsilon) \) which is analytic in \((z', \lambda) \) on \((\Omega \cap \Delta_k - 1(\varepsilon)) \times \Delta_d(\varepsilon) \) for \(1 \leq j \leq d \).

Finally, to prove uniqueness, suppose that

\[
g = P_d q + \sum_{j=1}^{d} r_j z_k^{-d-j}
\]

\[
= P_d \tilde{q} + \sum_{j=1}^{d} \tilde{r}_j z_k^{-d-j},
\]

where \(q = q(z, \lambda) \), \(\tilde{q} = \tilde{q}(z, \lambda) \in \mathcal{A}_d(\{M_n\}) \) and \(r_j = r_j(z', \lambda) \), \(\tilde{r}_j = \tilde{r}_j(z', \lambda) \in \mathcal{A}_d - 1(\{M_n\}) \) for \(1 \leq j \leq d \) and for each \(\lambda \in \mathbb{C}^d \) which is sufficiently small. Then for some \(\varepsilon > 0 \) and all \((z, \lambda) \in (\overline{\Omega} \cap \Delta_k(\varepsilon)) \times \Delta_d(\varepsilon) \),

\[
\sum_{j=1}^{d} (r_j(z', \lambda) - \tilde{r}_j(z', \lambda)) z_k^{d-j} = P_d(z_k, \lambda)(\tilde{q}(z, \lambda) - q(z, \lambda)).
\]
Theorem 4.2. Let $f = f(z) \in \mathcal{O}_k$, $k \geq 2$, be regular in z_k of order d. Then we may divide by f in $\mathcal{A}_k(\{M_n\})$.

Proof. Since $f \in \mathcal{O}_k$ is regular in z_k of order d, we may apply the Weierstrass preparation theorem in \mathcal{O}_k to write

$$f = uP,$$

where $u \in \mathcal{O}_k$ is a unit and $P \in \mathcal{O}_{k-1}[z_k]$ is a Weierstrass polynomial in z_k of degree d. Let $g \in \mathcal{A}_k(\{M_n\})$. If we can perform the division

$$g = Pq' + r',$$

where $q' \in \mathcal{A}_k(\{M_n\})$ and $r' \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$, then we can obtain the division

$$g = fq + r$$

by taking $q = u^{-1}q' \in \mathcal{A}_k(\{M_n\})$ and $r = r' \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$. Thus, we may assume $f = P$.

Choose a polydisc $\Delta_k(r)$ such that the germ P is defined on $\Delta_k(r)$ and the germ g is defined for $z \in \Omega \cap \Delta_k(r)$. Since P is a Weierstrass polynomial in z_k, we can find numbers δ_j with $0 < \delta_j < r$, $1 \leq j \leq k$, such that $P(z) \neq 0$ if $|z_k| = \delta_k$ and $|z_j| \leq \delta_j$, $1 \leq j \leq k-1$. Let $\Delta_k(\delta) = \{z \in \mathbb{C}^k : |z_j| < \delta_j \text{ for } 1 \leq j \leq k\}$. For $z \in \Omega \cap \Delta_k(\delta)$, define

$$q(z) = \frac{1}{2\pi i} \int_{|\zeta| = \delta_k} \frac{g(z', \zeta)}{P(z', \zeta)} \frac{d\zeta}{\zeta - z_k}$$

and

$$r(z) = \frac{1}{2\pi i} \int_{|\zeta| = \delta_k} \frac{g(z', \zeta)}{P(z', \zeta)} \frac{P(z', \zeta) - P(z', z_k)}{\zeta - z_k} \frac{d\zeta}{\zeta - z_k}.$$

By the Cauchy integral theorem, if $z \in \Omega \cap \Delta_k(\delta)$, then

$$P(z)q(z) + r(z) = \frac{1}{2\pi i} \int_{|\zeta| = \delta_k} \frac{g(z', \zeta)}{\zeta - z_k} d\zeta = g(z).$$

Since P is a Weierstrass polynomial in z_k of degree d, r is a polynomial in z_k of degree at most $d-1$. We may differentiate under the integral signs in equations (4.6) and (4.7) and see that q and r are analytic in z on $\Omega \cap \Delta_k(\delta)$. Since g represents an element of $\mathcal{A}_k(\{M_n\})$ on $\Omega \cap \Delta_k(\delta)$, there exist $A_1 > 0$ and $B_1 > 0$ such that for all $n \in \mathbb{Z}^+$,

$$\sup_{x \in \Omega \cap \Delta_k(\delta)} |D^s g(z)| \leq A_1 B_1^n M_n.$$
Thus for all ζ with $|\zeta| = \delta_k$ and all $n \in \mathbb{Z}^+$,

$$\sup_{z \in (\mathbb{Z}^+)^{k-1}, |z| \leq n, z \in B \cap \Delta_{k-1}(\delta)} |D^k_z g(z', \zeta)| \equiv A_1 B^n M_n.$$

Since $P(z', \zeta) \neq 0$ for $|\zeta| = \delta_k$ and $|z_j| < \delta_j$, $1 \leq j \leq k-1$, $|P(z', \zeta)| \equiv C > 0$ for $|\zeta| = \delta_k$ and $|z_j| < \delta_j/2$. Let $\varepsilon = \min \left\{ \frac{\varepsilon_1}{2}, \frac{\varepsilon_2}{2}, \ldots, \frac{\varepsilon_k}{2} \right\}$. It follows that there exist $A > 0$ and $B > 0$, both independent of ζ with $|\zeta| = \delta_k$, such that for all $n \in \mathbb{Z}^+$,

$$\sup_{z \in (\mathbb{Z}^+)^{k-1}, |z| \leq n, z \in B \cap \Delta_{k-1}(\varepsilon)} |D^k_z g(z', \zeta)| \equiv AB^n M_n.$$

We may now differentiate under the integral sign in equation (4.6) and estimate in a straightforward manner to see that g represents an element of $\mathcal{A}_k(\{M_n\})$ on $\overline{D} \cap \Delta_k(e)$. A similar argument shows that r, given by equation (4.7), represents an element of $\mathcal{A}_{k-1}(\{M_n\})[z_k]$ on $\overline{D} \cap \Delta_k(e)$.

To prove uniqueness, suppose

$$g = Pq + r = P\bar{q} + \bar{r}.$$

Then for some polydisc Δ_k and all $z \in \overline{D} \cap \Delta_k$,

$$r(z) - \bar{r}(z) = P(z)(\bar{q}(z) - q(z)).$$

For z' sufficiently small, $P(z', z_k)$ has exactly d zeros, while $r(z) - \bar{r}(z)$ is a polynomial in z_k of degree at most $d-1$. Hence $\bar{r} = r$ and $\bar{q} = q$. \(\square\)

Corollary 4.3. Let $k \geq 2$, $P \in \mathcal{O}_{k-1}[z_k]$ be a Weierstrass polynomial, and $f \in \mathcal{A}_k(\{M_n\})$. If $fP \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$ is a polynomial, then f is a polynomial, $f \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$.

Proof. Since fP and P are polynomials in z_k over $\mathcal{A}_{k-1}(\{M_n\})$, we may apply the algebraic division theorem for polynomials to write

$$fP = Pq + r,$$

where $q, r \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$ and r has degree less than the degree of P. By the uniqueness part of Theorem 4.2, $r = 0$ and $f = q$. Thus $f \in \mathcal{A}_{k-1}(\{M_n\})[z_k]$, as desired. \(\square\)

In closing, we mention one final application of Theorem 4.2. Let R be a commutative ring with unit and M be an R-module. M is a flat R-module if for every exact sequence of R-modules $A \rightarrow B \rightarrow C$, the tensored sequence

$$A \otimes_R M \rightarrow B \otimes_R M \rightarrow C \otimes_R M$$

is also exact. It is possible to use Theorem 4.2 to establish that $\mathcal{A}_k(\{M_n\})$ is a flat ring extension of \mathcal{O}_k, $k \geq 2$. The details are so similar to those found in Nagel [7], however, that we choose to omit them.
References

Case Western Reserve University
Department of Mathematics and Statistics
Cleveland, Ohio 44106
USA

Received 26 January 1976