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WEIERSTRASS DIVISION
WITH
QUASIANALYTIC BOUNDARY VALUES

C. L. CHILDRESS

1. Introduction

Let g: Rt>R* (R* is the set of nonnegative real numbers) be a convex
increasing function such that g(0)=0 and 77'g(t)—>+o as t—-+eo. Define a
sequence {M,},.,+ (Z is the set of nonnegative integers) by M,=exp g(n), neZ=.
We assume g grows fast enough to ensure that M,=n!, ncZ*.

Let Q be a domain in C* with 0 a point on its boundary bQ. We denote by
sdy= ot ({M,}, Q) the set of germs at 0 of complex-valued Whitney C* functions
fon @ (the closure of Q) which are analytic in Q and satisfy the following growth
conditions on their derivatives: for each r=0 sufficiently small that f'is represented
by a function on Q N4, (r) (4,(r)={z€C*: |z|<r, 1=j=k]}) there exist constants
A and B, which depend in general on both fand r but not on n€Z™, such that for
all neZ™,

(L.1) sup |D*f(2)| = AB"M,,.
a€(Z)%, |a|=n,
26 00 A (P
(D*=D*=0")9z1...0z%, where z=(z',z)=(z1, ..., z) are coordinates on Ck,
=0y .., ) E(ZT), and |u|=o0y4...+0.) We assume that o/ is quasianalytic

in the sense of Denjoy and Carleman:
(1.2) feot, and D*f(0)=0 forall ac(Z*)* imply f=0€s.

Before going on, we remark that by the use of the logarithmic convexity of the
sequence {M,)}, it is not difficult to show that ./ is a local algebra with maximal
ideal m,={fcs,: f(0)=0}. The quasianalyticity assumption is independent of
the dimension k. If the sequence {M,} satisfies certain additional hypotheses, then
o, is closed under composition whenever the composition makes sense, and ./
is also closed under differentiation. For a more complete discussion, see [2].

In this paper we consider a quasianalytic local algebra < ({M,}). We show a
Weierstrass—Malgrange—Mather type division theorem does not hold in <7 ({M,})
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if k=2, o4,({n!}) is a proper subset of .({M,}), and bQis C* smooth and strongly
Levi pseudoconvex at 0. If, however, bQ is Levi pseudoflat at 0, we prove a generic
division theorem holds in 2, ({M,}), k=2. We further show in this case that division
is possible in 7, ({M,}) by every regular element of 0Oy, the local algebra of germs
at 0 of analytic functions. (The case in which bQ is pseudoconcave at 0 is trivial,
since in this case 2 ({M,}) reduces to 0. See L. Hérmander, [4].)

2. Preliminaries

The following proposition is any easy consequence of the closed graph theorem:

Proposition 2.1. Let E be a Banach space and F= UL F, be an inductive
limit of Banach spaces. If T: E—~F is a continuous linear map, then there exists a
positive integer ny such that T (E)anO. O

We will apply this proposition to estimate the derivatives of the quotient and
remainder when we divide by a fixed regular element f¢.s/ ({M,}). The result will
be that the growth of the derivatives of the element we are dividing by f determines
the growth of the derivatives of the quotient and remainder.

For positive integers v and N, let

A vy = {f:f is a Whitney C= function on Q n 4,(1/v)

and sup sup |D*f(2)|/N" M, < + oo}.
n€Z* a€(Z*)<, |al=n,
z€ 2N 4,(1/v)

Note that for all positive integers v and ¥, Ay, n 1s a Banach space, and the induc-
tive limit (J%_; 4, , v may be identified with A ({M,)}).

Fix fe€s.({M,}), which is regular in z, of order d. (This means £(0)=9£(0)/z, =
=...=0""1(0)/0z¢ 1 =0, while 0°f(0)/0z{=0.) Let v, be the smallest positive
integer such that f'is represented by a function on 4,(1/v) for all v=v,. We define
a map

d
(q> Fis ey rd) - g :fq_,_ 21 ’”jZ/‘f_’,
j=

+oo d +oo

U (Aklv,zv@(@ Ak—l,v,N]]—’ U 4,,,,n-
v=v, 1 v="yy,

N=1 N=1

This map is continuous, for its restriction to each direct summand Ay D
(®{ A4;-1,, 5) is continuous. The assumption that the .7, ({M,}) are quasianalytic
implies the map is injective. The map is surjective if and only if division by f'is pos-
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sible within 7, ({},}). If the map is surjective, the closed graph theorem implies
its inverse is continuous. It is to this inverse map that we apply Proposition 2.1.

Given positive integers v=v, and N, Proposition 2.1 implies that there exist
positive integers v'=v, and N’, as well as a constant 4, such that for each g€ 4, , y,
there exist g€A4y , n, and r;€A4,_q,,, n, |=j=d, which satisfy

d
2.1 g=fq+ 2; rizh,
=

and which also satisfy the estimates

(2.2) sup sup |D*r;(2")|/[(N')" M,
n€Z* a€(Z -1, |a|=n,
2/ €QN 4, _,(1/v)

= A4 sup sup |DFg(2)|/N"M,,,
n€Z+ BE(Z*)<, |B|=n,
Z€ 20 4, (1)

1=j=d, and
(2.3) sup sup  |DPq(2)|/(N')' M,

n€Z+ PE(Z*)-|Bl=n,
Z€2N4,/V)

= A sup sup |DPg(z)|/[N"M,,.
n€Z* PE(Z*)e |pI=n,
z2€R2N4,(1/v)

We summarize these results as a lemma.

Lemma 2.2. Let fc</,({M,}) be regular in z, of order d, and suppose that
division by f is possible within <£,({M.,}). Let v, be the smallest positive integer such
that f is represented by a function on A, (1/v) for all v=v,. Given positive integers
v=v, and N, there exist positive integers vV'=v, and N’, as well as a constant A,
such that for each gcA,,, y, there exist €Ay, n and r;€A,_y, n, 1=j=d,
which satisfy equation (2.1) and estimates (2.2) and (2.3). O

We will need one technical lemma, which we now state. The proof may be
found in [2].

Lemma 2.3. Let A(@)=sup,.,. |a]"/M, for acC, and suppose there exist
e=0, A=0, and C=0 such that

2.4 exp (ea) = CA(a), a€R, a= A.
Then there exist a=0 and [=0 such that

(2.5) M,=af"n!, neZw . O
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3. The case of a strongly pseudoconvex boundary

Let QS C* be a domain with C2smooth boundary b@, and assume @ is strongly
pseudoconvex at 0€bQ. Then there is an open neighborhood U of 0 in C* and a
C? smooth function ¢: U—~R with the following properties:

QnU={zeU: ¢(z) <0}

¢(0) =0,

grad ¢ (0) = 0, and

the Levi form (029 (0)/0z;0Z;)1=;, j=x 1S strictly
positive definite.

After analytic change of coordinates in C¥, we may assume ¢ has the form

(1) 0(5) = Imz+ 3 ¢l +0(/2l)

where ¢;=0 is constant, 1=j=k. (A proof of this fact may be found in Hérman-
der, [4].)

Let </ ({n!}) be a proper subset of < ({M,}), k=2, a quasianalytic local
algebra as defined in the Introduction. Set z'=(zy, ..., z_;) and f(z)=f(z', z)=
=z2+z. Then f is an analytic Weierstrass polynomial of degree two in z. For
acC, set g(z,a)=¢"“*. Note that for each a€C, g€0,S s/ ({M,}). Suppose it
were possible to write for each a€C

(3.2) g =fq+riz+r,,

where g=q(z, @) 4, ({M,}) and r;=r,(z’, @), r,=r,(2", @) _,({M,}). Since the
roots of f(z/,z)=0 are z,=+i)z;, it would follow from equation (3.2) that
(3.3) (2, a) = i(eV P —e )21z,

Now consider only values of a¢R with a=<0. If z€Q and |z| is sufficiently small,
it follows from equation (3.1) that Im z,=0. Thus, if «€(Z*), |a|=n€Z*, z€Q,
and |z| is sufficiently small, then we get

DEg(z, @] = falllemeims
= |a|"
= (la]1*/ M) M,
= (a)M,.

Thus, for each a<0, g=g(z, a)€A4,; 1,1. If we apply Lemma 2.2, it follows that
there exist & =0 and A4,=0, both independent of @, such that

3.4 sup (2, @)l = 4;M(a), a<0.
2/ €204y _1(e1)
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Let >0, z/=(g,0,...,0), and z,=—ie. If ¢ is chosen sufficiently small, then
Z€d;_1(e) and @(2) = —e+c e+ ¢824+ 0(?)<0, so that z€Q. Thus estimate
(3.4) yields

(3.5) leaVe —e—aVe|[2Ve = 4,A(a), a<0.

Since (eaVe—e-a¥z)/2)/e is asymptotic to e—aVe/2)/e, inequality (3.5) implies there
exist constants 4=0 and K=0 , both independent of g, such that

(3.6) eVe = Ki(a), a= A.

Inequality (3.6) together with Lemma 2.3 now imply the existence of constants o=0
and =0 such that
M, =oapn!, neZt.

This implies &, ({M,})=</,({n!}), contrary to assumption. We conclude the Weier-
strass division theorem does not generalize to <7, ({M,}) when &lk({Mn})g.sz{k({n!})

and k=2. Indeed, we have shown that it isn’t always possible to divide in %, ({M,,})
by Weierstrass polynomials from 0, _,[z,].

4. The case of a pseudoflat boundary

Let QSCF, k=2, be a product domain with 0 a member of the pseudoflat
part of bQ. Thus, let U;SC be any plane domain with 0€bU;, let U;=
={z€C: |z|]<1} be the open unit disc in the plane for 2=j=k, and let Q=U,;X
X UyX...XUg. Let o ({M,}) be a quasianalytic local algebra. We show in this
section that a generic division theorem holds in &7, ({M,}). We also show that divi-
sion is possible in 7 ({M,}) by every regular element of 0),.

By a generic monic polynomial in z, of degree d we mean an element in C|[z,]
of the form P,(z,, A)=zf+ 3%_, 2;2077, where A=(4y, ..., 2)€C"

Theorem 4.1. (Generic division theorem for % ({M,}).) Let P;=P,(z, %)
be a generic polynomial in z, of degree d. For each g€t ({M,}), there exists ¢=0
such that if A€A,(e), then there exist unique elements gq=q(z, 2)€,({M,}) and

ri=ri@, e ({M,}), 1=j=d, such that
d

@.1) g=Pig+ 2r;z .
j=1

Furthermore, all the germs in equation (4.1) are defined for (z, 2)€(Q n4,(e))X 44(e)
and are analytic in (z, 1) on (Q N4, (e))X 44(e).

Proof. Choose O<=r<1 so that the germ g is defined on Qn4,(r). Let
0<d&<r. By Cauchy’s integral formula, if z€Q n4,(5/2), then

“2) 1@ =5 [ £ a
lfl=0
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Observe that
o d .
Py Ay =0+ 200

= (o 3 np) 4
= CPj—l(C’ ]-)‘i‘/lja

and so

—2; = LP;_1(L, )= P;(C, A).
Thus

Pd(C’ i)_Pd(ZIw/D
= {Py_1({, D+ 21— 2/1 zp i —zf

d—1 )
= CPd—l(C) /{)"I‘ Z (_}“j)zltz_“’_zg
Jj=1

d—1
= PG Dt 3 P12 = PyC 2T~ 2

Il
||[\4§~

P& Nz — Z P Dz

{P;_1(C M)z J—Z'PJ (G Az

i
i

J

(3 P,a@ A=) 2.

Jj=1

Adding P,(z,, 1) to both sides of the identity we have obtained, viz.,

d .
Pul D= Pala D) = ( 3 PyalC D) (=20,
and dividing through by P,((, 2)({—z,), we obtain

3) 1 Py(z, 2) o P A

=z, PG A(—z) A PGH *

Now choose s=>0 such that A€A4,(s) implies that the roots of P,(z,, A) are
contained in A4,(6/2). If z€QnA4,(5/2) and A€A4,(s), substitution of expression
(4.3) for 1/({—z,) into equation (4.2) yields

- g(z, )
8(2) = [an ./Pd(C,/l)(C—zk)dC]Pd(Z"’A)

g(z, C)P,-—l(C, A) -
* Z [2m / P,C, ) dg] zk
1K=s
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Thus, we get an equation of the form (4.1) with

gz, 0)
o 1eH= mf PG AC-m "
and
;o L gz, OP;—1(C A .
(4.5) rj(z 5 /1) = Em;/; Pd(C, A.) dCa 1 =] = d.

Let ¢=min (§/2, s), and note |P;({,})|=C=0 and [(—z|=e=0 for [{|=
and A€4,(¢). We may thus differentiate under the integral sign in equation (4.4)
and obtain that ¢(z, A) is analytic in (z, A) on (2 N4, (e))X4,(e). Also, since g(z)
represents an element of & ({M,}) on @Qn4,(5), there exist 4,>0 and B;>0
such that for all ncZ+,

sup  [D*g(2)| = ALBIM,

a€(Z*), |aj=n,
z€2N4,(9)

Thus,
sup Dz g(z', )| = 41BiM,.

a€(Z*)k-1, a|=n,
@, D€e2N4,(5)

Since |P;({, )| and |{—z,] are bounded away from O for [{|=¢ and (z, })¢
€(2 N4, (e))X4,(e), it follows that there exist 4=0 and B=0, both independent
of { with |{|=¢ and A€4,(e), such that

sup  |D2[g(z, O/P, (€, A —z)]| = AB"M,.

a€(ZH), |a|=n,
z€2N4,(e)

We may thus differentiate under the integral sign in equation (4.4), estimate in a

straightforward manner, and obtain that if A€4,(¢), then g=g(z, 1) represents

an element of o7, ({M,}) on QN4 (e). A similar argument shows that if A€4,(e),

then r;=r;(z/,4) in equation (4.5) represents an element of <4 _,({M,}) on

Q N4, _1(e) which is analytic in (z/, 4) on (Qnd,_,(e))Xd,(e) for 1=j=d.
Finally, to prove uniqueness, suppose that

a
g=Pyq+ >z
i=1
d
Z’F zi,
where g=q(z, 1), §=4(z, Ve, ({M,}) and r;=r;(z’, 1), F;=F;(2", €A _1({M,})

for 1=j=d and for each A€ C? which is sufficiently small. Then for some &>0
and all (z, )€(Q N4, (e))X4d4(),

;dl' (r;(2/, N —F;(2', W) 2~ = Py(z,, D(G(z, H)—q(z, 2)).
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P,(z, /) has exactly d zeros, while 34_, (r;(z’, )—F;(z’, )z~ is a polynomial
in z, of degree at most d—1. Thus r;=F; for 1=j=d and ¢=q4. O

Theorem 4.2. Let f=f(z)€0,, k=2, be regular in z, of order d. Then we may
divide by f in <, ({M.,}).

Proof. Since f€0, is regular in z, of order d, we may apply the Weierstrass
preparation theorem in @ to write
f=uP,
where u€0@, is a unit and P€0,_,[z;] is a Weierstrass polynomial in z, of degree d.
Let geo ({M,}). If we can perform the division

g — Pq/+r’7
where ¢’€({M,}) and r’€o_,({M,})[z], then we can obtain the division

g =fq+r

by taking g=u"tq’ €</, ({M,}) and r=r'€,_,({M,})[z]. Thus, we may assume
f=P.

Choose a polydisc 4, (r) such that the germ P is defined on 4, (r) and the germ
g is defined for z€Q A, (r). Since P is a Weierstrass polynomial in z,, we can
find numbers ¢; with 0<d;<r, 1=j=k, such that P(z)#0 if |z|=4, and |z;|=6;,
1sj=k—1. Let 4,(5)={z€C*: |z;]<é; for 1=j=k}. For z€QnA4,(5), define

1 [ e d

2mi ! —
wiJ, PED (4

(4.6) q(2) =

and

_ g(z,0) P, )—P(z, z)
r(Z) - i lm:/‘é}( P(ZI, g) C—Zk dc.

By the Cauchy integral theorem, if z€Qn4,(6), then

I CA
POUEHE =5 [

= g(2).

Since P is a Weierstrass polynomial in z, of degree d, r is a polynomial in z, of degree
at most d—1. We may differentiate under the integral signs in equations (4.6) and
(4.7) and see that g and r are analytic in z on Q N4,(5). Since g represents an ele-
ment of o ({M,}) on Qn4,(5), there exist 4;>0 and B,>0 such that for all
neZ™,

sup  |D*g(2)| = A, BiM,.

a€(Z*)k, |al=n,
2€ 2N 4,(5)
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Thus for all { with [{|=6, and all neZ™,
sup IDZ'g(Z,a C)l = AlBgMn

a€(ZH)e-1, |a|=n,
2 €3N 4y, _1(6)

Since P(z,{)#0 for [{|=6, and |[z;]<d;, 1=j=k—1, |P(z’,)|=C=0 for
lt|=6, and |z;|<6,2, 1=j=k—1. Also [(—z|=5/2 for [(|=6, and |z|<
<§8,/2. Let e=miny;,6,;/2. It follows that there exist 4=0 and B=0, both
independent of { with |{|=4d,, such that for all ncZr,

sup  [Dz[g(z, O/P(z, O —z)]| = AB"M,.

a€(ZH)¥, |a|=n,
z€2N4,()

We may now differentiate under the integral sign in equation (4.6) and estimate
in a straightforward manner to see that g represents an element of <, ({M,})
on @n4,(e). A similar argument shows that r, given by equation (4.7), represents
an element of Z,_,({M,D[z] on Qn4,(e).

To prove uniqueness, suppose

g = Pg+r = PG+rF.
Then for some polydisc 4, and all z€Qn4,,
r(2)—#(2) = P(2)(4(2)— 4(2)-

For z’ sufficiently small, P(z’, z,) has exactly d zeros, while r(z)—#(z) is a polyno-
mial in z, of degree at most d—1. Hence F=r and §=q. O

Corollary 4.3. Let k=2, PcO,_,[z] be a Weierstrass polynomial, and
fest (M), If fPedd,_({M,)z] is a polynomial, then f is a polynomial,
fé‘dk—-l({Mn})[Zk]'

Proof. Since fP and P are polynomials in z; over s, _1({M,}), we may apply
the algebraic division theorem for polynomials to write

fP = Pq+r,

where ¢, ré.,_,({M,))[z] and r has degree less than the degree of P. By the
uniqueness part of Theorem4.2, r=0 and f=g. Thus fesd,_ (M Dlz], as
desired. O

In closing, we mention one final application of Theorem 4.2. Let R be a com-
mutative ring with unit and M be an R-module. M is a flat R-module if for every
exact sequence of R-modules A—~B—C, the tensored sequence

AQM—-BOM-~COM
R R R
is also exact. It is possible to use Theorem 4.2 to establish that o, ({M,}) is a flat

ring extension of ¢, k=2. The details are so similar to those found in Nagel [7].
however, that we choose to omit them.
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