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1. Introduction

1.1. A map f of a metric space (X, d) into a metric space (¥, d") is said to be a
Lipschitz map if there is a constant L such that

(1.2) d'(f(x), f(y) = Ld(x, )

for all x, y in X. If every x€X has a neighborhood U such that f|U is Lipschitz,
fis said to be locally Lipschitz (abbreviated LIP). If X is compact, every LIP map
of X is Lipschitz. We also let LIP denote the category of metric spaces and LIP maps.
An isomorphism in the category LIP is called a lipeomorphism. Thus a lipeomor-
phism is a bijective map f such that both f and f~* are LIP.

Lipschitz topology can be defined as the study of those properties of metric spaces
which are invariant under lipeomorphisms. We shall be particularly interested in
Lipschitz manifolds: metric spaces which are locally lipeomorphic to a eucli-
dean space.

Let us compare LIP with three important categories: TOP =topological spaces
and continuous maps, PL=polyhedra and PL maps, and DIFF=smooth mani-
folds and smooth maps. Without an essential loss of generality, we may assume
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that each polyhedron and each smooth manifold is embedded in a euclidean space.
Then they are metric spaces, and PL and smooth maps are LIP. Thus we have
the diagram

DIFF

o >LIP~»TOP
where each arrow is a forgetful functor. Alternatively, we could use locally metric
spaces, see 3.4.

There is an extensive literature on the topology of manifolds in the categories
TOP, PL, and DIFF. Lipschitz manifolds have been mentioned in some papers,
especially in Whitehead [31], but no systematic treatment seems to be published
so far.

In this paper we give the basic geometric tools needed in Lipschitz topology.
These include the cone construction, extension and approximation of maps, gen-
eral positien and collaring. We also give some results concerning LIP embedding,
the Schonflies problem, and the LIP Hauptvermutung. For example, we show that
for n=4, R" has a unique LIP structure.

1.3. Notation and terminology. Our set-theoretical and topological notations
are fairly standard. We let 4\ B denote the set-theoretical difference of 4 and B,
and C4 is the complement of 4 in a given space. A singleton {x} is usually written
simply as x. The symbols 04 and int 4 are used, somewhat ambiguously, for both
manifolds and subspaces. A map is always continuous, a function need not be.

We let R” denote the euclidean n-space, and R”, is the closed upper half space
{x€R"x,=0}. The standard orthogonal basis for R" is written as (e, ..., e,).
If p<n, we identify RP with the subspace RPX0 of R* by (x,...,x,)=
=(Xy, ...» Xp, 0, ..., 0). We shall use the euclidean norm |x|=(x+...+x%)!2 and
the euclidean distance d(x, y)=|x—y| in R". Given two sets 4, B in R", AB is
their rectilinear join. Given two vectors x, y in R", we let x.y denote their inner
product, and
x-y|
lx[y]
are the angle and the acute angle between x and y, with the special conventions
ang (x, y)=m, ac (x, y)=n/2, if x=0 or y=0.

When we are dealing with a metric space X, the letter d will stand for the metric
of X. If we consider maps of X into another space Y, we shall use 4’ for the metric
of Y. The distance between two non-empty sets 4, B in X will be written as d(4, B),
and the diameter of 4 by d(A4) with d(0)=0. If S is a set and if f, g: S—X are
functions, then d(f, g)=sup {d( f(x), g(x))|x€ S} is the distance between f and g.
For acX and r=0, we let B(a, r) denote the open ball {x|d(x, @)<r}. If X=R",
we may use the notation B"(a, r) for B(a, r) and the abbreviations B"(r)=B"(0, r),
B"=B"(1). For spheres, we write "~ '(a, ) =0B"(a, r)={x€R"||x—a|=r}, $" (r)=

ang (x, y) = arc cos —lgl'Til—, ac(x, y) = arccos
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— "0, ), and S""'=S""*(1). The unit cube in R is I"=[—1,1]". Thus I*
is different from the standard interval 7=[0, 1]. We shall also use the symbol 7 for
a general indexing set if there is no danger of misunderstanding. Z is the set of integers
and N is the set of positive integers.

The definitions for a Lipschitz map, a LIP map (locally Lipschitz map) and a
lipeomorphism were given in 1.1. The Lipschitz constant lip f of a Lipschitz map
f: XY is the smallest number L=0 satisfying the condition (1.2). If lip f=L, f
is said to be L-Lipschitz. If f is bijective and if both fand f -1 are L-Lipschitz, f is
an L-lipeomorphism. If this is true for some L=0, fis a strong lipeomorphism. If
f: XY is injective and f defines a lipeomorphism f;: X—fX, fisa LIP embedding.
If f; is a strong lipeomorphism, f is a Lipschitz embedding. If every x in X has a
neighborhood U such that f|U is a LIP embedding, f is a LIP immersion. Two
metrics d, d’ in a space X are LIP equivalent or Lipschitz equivalent if id: (X, d)—~
—~(X,d’) is a lipeomorphism or a strong lipeomorphism, respectively.

We remark that Whitehead [31] has used the term “Lipschitz map”’ for a LIP
map and the term “regular Lipschitz map” for a LIP immersion.

2. Basic properties of Lipschitz and LIP maps

2.1. We begin by stating some algebraic properties for the class of Lipschitz
maps. The straightforward proofs will be omitted.

22. Lemma. Suppose that f: X—~Y and g: Y—~Z are maps between metric
spaces. If f is Ly-Lipschitz and g is L,-Lipschitz, then gf is L, L,-Lipschitz. If f and g
are LIP, then gf is LIP. O

23 Lemma. Let X be a metric space, let f,g: X—R" and @, . X—~R!
be Lipschitz, and let c€R'. Then f+g, cf, |fl, max (, V), and min (¢, ) are
Lipschitz. If f and ¢ are bounded, then of is Lipschitz. If, in addition, @ is bounded
away from zero, then f]@ is Lipschitz. O

2.4. Corollary. Let X be a metric space, let f,g: X—~R" and o@,y: X—-R!
be LIP, and let c€R'. Then f+g, cf, |f|, max (¢, ), min (@, ¥), and @f are LIP.
If ¢(x)=0 for all x, then flo is LIP. O

25 Lemma. Let X beametric space and let 05 AC X. Then the map x—d(x, A)
is 1-Lipschitz. If A and B are disjoint closed sets in X, there is a LIP map f: X—[0, 1]
such that A=f~*(0), B=f"*(1).

Proof. The first assertion is elementary and well-known (but extremely useful).
To prove the second assertion, we may set f(x)=d(x, A)/(d(x, A)+d(x, B)) if
A=0=B. If B=0 and 0 A=X, choose y€ X\ 4 and set f(x)=d(x, A)[2(d(x, A)+
+d(x, ). If B=0 and A=X, set f(x)=0 for all x. If A=B=0, set f(x)=1/2
for all x. The case where A=0##B is treated similarly. O
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2.6. Cone construction. Let acR" and QCR" be such that 4 and Q are
independent, or equivalently, aQ is a cone. This means that a¢Q and no ray from
a meets O in more than one point. Each point x€aQ can be written as x=Aa+puy
with y€Q, 0=A=1, A+pu=1. This representation is unique for x#a. Given a
map f: Q—~R” and a point bERP, the b-cone of f with vertex a is the function
f: aQ—~RP defined by f(Aa+puy)=1b-+ W (»). In general, f need not be continuous.
However, if Q is compact, then f is continuous. This is one reason why cones work
best for compact sets. Observe also that a cone of a compact set is always compact,
while a cone of a locally compact set is not usually locally compact at the vertex a.
Even if Q is compact, a cone of a Lipschitz map f: O—R? need not be Lipschitz.
For example, let Q={(x, y)[0=x=1, y=x2}C R, a=(1,0), 5=0¢R', and f: Q—R
the constant map f(x, y)=1. Then for z;=(e,0) and z,=(e, £%) we have [ f(z)—
—f(z2)|/lz1—z5|=1/e, and hence 7 is not Lipschitz.

2.7. Definition. Let QcR" be compact, and let acR" be such that aQ
is a cone. We say that a and Q are Lipschitz independent and aQ is a Lipschitz cone
if for every Lipschitz map f: Q—~R” and for every bERP, the b-cone f: aQ--RP
of fis Lipschitz.

2.8. Radial projection. Let acR", and let 0,, O R™\ a. Suppose that each
ray from a through Q, meets Q, in exactly one point. Then the radial projection
from Q, into Q, with center a is the unique function Ji Q1—~0, such that f(x)
belongs to the ray from a through x. If Q, is compact, then f'is continuous but not
necessarily LIP.

2.9. We are going to establish several equivalent conditions for Lipschitz
independence. We first introduce some notation. If acR", QcR™\a, bcQ, we set

(2.10) B, a, b) = 1r1£% inf{ac(b—a, x—y)|x, ycOn B"(b, r)}.
It is easy to see that
(2.11) B(Q, a, b) = Iri_13(1) inf {ac (x—a, x—y)|x, yc0 A B"(b, r)}.

For x, ye€R" weset s(x, y)={Ax+uy|i+u=1, /p=0}. If x=y, then s(x, »)={x}.
If x>y, then s(x,y) is the line through x and y less the open segment between x
and y. For a set QCR" we write s(Q)= U{s(x, »)|x€Q, yc Q).

2.12. Lemma. Let p: R™N\O—S""' be defined by P(xX)=x/|x|. Then

) —pMP=x=yP/Ix|[y| and |p(x)—p(D)||y|=2]x—y| for all x and y. Hence
p is LIP.

Proof. Using elementary estimates, we obtain x|y lpx)=p (=2 |x||y|—
—2x+y=|x[P+|yF—2x.y=|x—y2 and ) =D Iyl=]r—1ylx/Ix||= |y —x|+
+|lxl=[yl|=21x—y]. O
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2.13. Theorem. Let aQ be a cone in R" with Q compact. Then the following
conditions are equivalent:

(1) aQ is a Lipschitz cone.

(2) If ¢: Q—~R' is the constant map c(x)=1, the 0-cone ¢: aQ—~R' of ¢
is Lipschitz.

(3) a¢s(0).

(4) inf {B(Q, a, b)|b€ Q}=0.

(5) p(Q,a,b)=0 for all beQ.

6) If p: R™\a—~S""" is the map p(x)=(x—a)/lx—al, p|Q is a Lipschitz
embedding.

(7) For every set Q,CR" such that a¢Q, and such that each ray from a through
0, meets Q in exactly one point, the radial projection f: Q;—~Q is Lip-
schitz.

Proof. We shall prove the implications (1)=(2)=(3)=(4)=(5)=(6)=(1) and
(6)=(7)=(6). We may assume that a=0. Choose positive numbers » and R such
that QcB"(R)\B"(r).

(1)=(2): Trivial.

(2)=(3): If (3) is false, there are points x, y€Q and z€s(x,y) with |z|=
d(0, s(x, »))<(L+1/r)~* where L=lipc. Now |z|<r implies x#z>y. Hence
z and x—y are orthogonal. We may assume |z—Xx|<|z—y|. Letting u be the
orthogonal projection of x on y, we obtain

lc)—cw)| _ |yl—fu| _ ly—z _ 1 1

=-———=>17L

e—ul  Iyllx—ul  Dllzl Tl Dyl

2

which is a contradiction.

(3)=(4): If (4) is false, it follows from (2.11) that there are sequences of points
x;€0, y;€Q such that O<|x;—y;[-~0 and o;=ac(x;, x;—y;)~0. For large j
we have |xj——yjl<r/]/§ and o;<m/4. Then |x;—y;|<|x;|cose;, which implies
d(0, s(x;,y))=|x;| sin o;=R sin «;~0. Hence 0€5(Q).

(4)=(5): Trivial.

(5)=(6): By 2.12, p|Q 1is Lipschitz. We must show that the inverse ¢:
pQ—Q of p|Q is LIP. Let z€pQ. Then there is an open neighborhood U of ¢(z)
in Q and a positive number f such that ac (x, x—y)=p for all x, ycU. Since
O\U is compact, the set V=pU=pO\ p[O\ U] is an open neighborhood of
zin pQ. If x, y€V and a=ac (¢(x), ¢(x)—q(»)), then

lg»l,. ,_ R
sy XY =g vk

lg(x)—q(y)| =

Hence ¢ is LIP.
(6)=(1): Let f: Q—RP be Lipschitz, let bc€R?, and let f: aQ—~R? be the
b-cone of f. We must show that f is Lipschitz. We may assume that 5=0. Let
q: pQ—~Q be the inverse of p|Q. Then g=fgq: pO—~RP is Lipschitz. Letting g
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and p denote the O-cones of g-.and p|Q, respectively, with vertex 0, we have f=gp.
Hence it is sufficient to show that p and g are Lipschitz. Choose L=0 and M =0
such that ¢ and g are L-Lipschitz and |f(z)|=M for all z€Q. For x, yc00\0
we obtain

— lap3)lx—la(p())ly|

P =Pl = == T O)
_ la@o)llx=y1_ [la(eG)I=la(pe)] 1y

= S l—rl+ o @ =) b

By 2.12, this implies |p(x)—p(»)|=(R+2L)r ~2|x—y|. Since p is continuous, this
also holds for x=0. Hence p is Lipschitz.
~ To show that g is Lipschitz let x, y€0(pQ). If x##05y, we obtain |g(x)—g(y)|=
=|lxlg(p ) —1ylg(pM)| = Ixl12(p(x)—g(p (M) +|x—y|Ig(p(M)|. By 2.12, this
implies |g(x)—g(»)|=QL+M)|x—y|. Since g is continuous, this also holds for
x=0. Hence g is Lipschitz.

(6)=(7): The radial projection f: Q,—~Q can be written as f=g(p|Q,) where
p is as in (6) and ¢: pQ—>Q is the inverse of p|Q. By 2.12, p|Q; is Lipschitz.
Hence f is Lipschitz.

(7)=(6): Trivial, since the inverse g¢: pO—~Q of p|Q is a radial projec-
tion. [

2.14. Corollary. If aQ is a Lipschitz cone and Q. Q is compact, then aQ,
is a Lipschitz cone.

Proof. This follows, for example, from (2) of 2.13. O

2.15. Extended cones. If aQ is a cone in R", the corresponding extended cone
aQe is defined as {la+pux|x€Q, A+p=1, p=0}. It consists of all rays from a
through Q. If f: Q—~RP isa map and if H€RP, the extended b-cone of ;' with vertex
a is the function f*: aQe—R? defined by f™*(lu+ pux)=1b+puf(x).

2.16. Theorem. If aQ is a Lipschitz cone, then every extended cone of every
Lipschitz map f: Q—RP is Lipschitz.

Proof. We may assume that ¢=0 and f*™(a)=0. Since f*|aQ is the cone
of f, it is L-Lipschitz for some L. Let x, y€aQe. Choosing t=0 so that #x and
ty lie in aQ, we obtain | f*(xX)—/* (W)=t Y (tx)—t " @ty)| =L|x—y|. O

2.17. Theorem. Supposethat ACR" isa compact convex set and that a€int A.
Then a(0A) is a Lipschitz cone.
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Proof. Choose r=0 such that B"(a,r)CA. Using the notation of 2.9 we
see that s(x,y) nB"(a, 7)=0 for all x,y€dA. The theorem follows from 2.13
(3). 0 The result is well-known [16].

218. Theorem. Let PCR" be a polyhedron. Then every PL map f: P—~R"
is LIP.

Proof. The theorem is obviously true if dim P=0, and we proceed by induc-
tion on dim P. Assume that the theorem is true for dim P<m and suppose dim P=m.
Let a€P. Then there is an n-cube A, centered at a, such that PnoA=Q is com-
pact, PndA=aQ, and f|[PnA is a cone of f|Q. Since Q is a polyhedron with
dim Q=m, f]Q is Lipschitz. By 2.17 and 2.14, aQ is a Lipschitz cone. Hence f|P nA
is Lipschitz. O

2.19. Theorem. Let aQ be a cone in R" such that Q is a compact polyhedron.
Then aQ is a Lipschitz cone.

Proof. Let ¢: Q—R' be the constant map c¢(x)=1. Since ¢ is PL, its 0-cone
¢: aQ—R! is also PL. By 2.18, € is Lipschitz. By 2.13 (2), aQ is a Lipschitz cone. [

2.20. Standard mistakes. The well-known standard mistake of PL topology
is a radial projection of a compact polyhedron onto another. It is usually not PL.
By 2.13 and 2.19, such a map is always Lipschitz. A standard mistake of another
kind will be considered in 2.43.

921. Unions. Let AUB be a metric space. Let f: A UB—~Y be a function
such that f|4 and f|B are LIP. Without any additional condition, f need not
be LIP or even continuous. If AN B and B\ A are separated, that is, ANJBn
A(B\A)=0=(A\B) "A\B, then f is continuous. In this case we say that 4 LB
is a proper union of A and B. If A and B are both open or both closed in 4 LB,
then 4 UB is a proper union. In particular, the union of two compact sets is always
proper.

Even if A and B are compact, f need not be LIP. For example, let 4 be the
parabolic arc {(x, »)€R*0=x=1, y=x2}, let B={(x, »)|(x, —y)€A}, and let
f: AUB—R! bedefined by f(x, y)=x for xe4 and by f(x, y) =—x for (x, y)€B.
Then f|4 and f|B are Lipschitz, but fis not.

We say that 4 UB is a LIP proper union of 4 and Bif A UB is a proper union
and if a function f: 4 UB—~Y is LIP whenever f|4 and f|B are LIP. A related
concept has been considered by Wilker [32].

We shall give some characterizations for LIP proper unions. Before that, we
give a simple but useful result, which can often be directly used to prove that a map
is Lipschitz.

2.22. Lemma. Suppose that AUB is a metric space, that ECAUB, and
that C=1 is a constant such that for every pair of points acANE, b BNE, there
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is c€ANnB such that d(a, c)+d(c, b)=Cd(a, b). If f: AUB~Y is a function such
that f|A and f|B are L-Lipschitz, then f|E is CL-Lipschitz.

Proof. For acAnE, beBNE, we obtain d'(f(a),/(b))=d(f(a),f(c))+
d'(f(c), (b)) = Ld(a, )+ Ld(c, b)=CLd(a, b). O

2.23. Theorem. Let AUB be a proper union with ANB#0. Define
u: AUB—-R" by u(x)=d(x, AnB) for x¢A and by u(x)=0 for xcB. Then
AUB is a LIP proper union if and only if u is LIP.

Proof. The necessity of the condition is clear. Conversely, assume that u is
LIP. Let f: AUB—~Y be a map such that f|4 and f|B are LIP, and let xc 4 UB.
If x€AN\B, there is a neighborhood U of x in A UB with UcA. Then f|U is
LIP. Next suppose x€A nB. Choose r=0 such that for U=B(x, 2r), flANU,
fIBnAU, and u|U are Lipschitz. Let a€AnB(x,r) and bEBNB(x,r), as=b.
Pick a point c€ANBNU such that d(a, c)<d(a, AnB)+d(a,b). Then d(a, ¢)+
+d(c, b)=2d(a, c)+d(a, b)=2(u(a) —u(b))+ 3d(a, b)=(2 lip (u|U) + 3)d(a, b). By
2.22, f|B(x, r) is Lipschitz. [J

2.24. Theorem. Let AUB be a proper union with ANB#0. Then AUB
is a LIP proper union if and only if
{d (a, An B)

d(a, B\ A)
Sor all x€ANBNB\ACANB.

lim sup 'aE(A\B)mB(x, r)} < oo

r—>0

Proof. Suppose that AUB is a LIP proper union. Let x€ANB B\ A.
By 2.23, there are r=0 and L=1 such that for U=B(x, 2r), u|U is L-Lipschitz.
Let ac(AN\B)nB(x,r) and be(BN\A)NU. Then d(a, AnB)=u(a)—u(b)|=
=Ld(a, b). Hence d(a, A nB)=Ld(a, B\ A), and the limit is finite.

Conversely, assume that the limit is finite for all x. Let x€ 4N\ B NnB\ 4. There
is a neighborhood U of x and a constant L=1 such that d(a, 4 "B)=Ld(a, B\ A)
for all ac(ANB)NU. Then |u(a)—u(b)|=Ld(a, b) forall acUnA and beBNU.
Thus u|U is Lipschitz, and the theorem follows from 2.23.

2.25. We next turn to the case where 4 and B are subsets of R" with 4 N B0,
For acA, beB, we set (4, B, a, b)=sup {ang (a—y, b—y)|y€A nB}. The inter-
section angle of A and B at a point x€A NB is defined by

(A, B, x) = ling inf «(4, B, a, b).
For example, if 4 and B are line segments ax and bx with x=A4 nB, then a(4, B, x)

is the ordinary angle between 4 and B. Note that «(4, B,0)=0 for the example
in 2.21.

2.26. Theorem. Let AUB be a proper union of A, BCR". If «(A, B, x)=0
for all x€eAnB, then AUB is a LIP proper union.
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Proof. We may assume ANB=fp. Let u: AUB—~R' be the map given in
2.23, and let x€A NnB. It suffices to show that u is Lipschitz in a neighborhood
of x. Set e=w(A, B, x)/2 and choose a neighborhood U of x such that «(4, B, a, b)>¢
for all a€(AN\B)NU and bc(B\A)nU. For such a pair a, b choose ycAnB
such that ang (a—y, b—y)=e. Then |u(a)—u(d)|/la—b|=|a—y|/la—b|=1/sine. O

2.27. Remark. The converse of 2.26 is not true. A counterexample is given
in 3.10 (4).

2.28. Remark. Sometimes the LIP properness of a union 4 uUB depends
only on the space 4 UB and not on the sets 4, B. For example, let 4UB be a
proper union such that 4 UB is a convex subset of R". Then «(4, B, x)=n for all
Xx€A NB, and the LIP properness follows from 2.26.

We shall next consider this phenomenon in a more general situation.

2.29. Quasiconvexity. Let X be a metric space. Given a pair of points a, b€ X,
we let C(a, b, X) denote the infimum of all numbers C=1 such that there is a rec-
tifiable path y in X joining @ and b with length I(y)=Cd(a, b). If no such path
exists, we set C(a, b, X)=o. For Ac X we write C(4, X)=sup {C(a, b, X)|ac A, bc A}
and C(X)=C(X, X). If C(X)<e, we say that X is quasiconvex, and X is C-quasi-
convex if C(X)=C. If each point of X has a neighborhood U such that C(U, X)< <o,
X is locally quasiconvex.

For example, a convex set in a normed vector space is I-quasiconvex. The
spheres S” are (m/2)-quasiconvex (n=1). A quasiconvex space is always locally
quasiconvex. The arc {(x, )€ R}|0=x=]1, |y|=x%} is not locally quasiconvex.

2.30. Lemma. Every open subset of a locally quasiconvex metric space is locally
quasiconvex.

Proof. Let V be open in a locally quasiconvex space X. For x€V choose a
neighborhood U such that C(U, X)=C<eo. Next choose r=>0 such that
B(x, (2C+3)r)cUnV. Let W be the ball B(x,r). If a,beW, there is a path y
joining @ and b in X such that /(y)=(C+1)d(a, b). If y is any point on im y, then
d(a, y)=I1(y)=2(C+1)r. Hence imycV, which implies C(W, V)=C+1. O

2.31. Retracts. A subset A of a metric space X is a Lipschitz retract of X
if there is a Lipschitz map r: X—A4 with r|4=id. If 4 is a Lipschitz retract of a
neighborhood of A, then A is a Lipschitz neighborhood retract of X. Similarly, we
define the concepts LIP retract and LIP neighborhood retract.

2.32. Lemma. A Lipschitz retract of a quasiconvex space is quasiconvex. A LIP
neighborhood retract of a locally quasiconvex space is locally quasiconvex.

Proof. Suppose that X is C-quasiconvex and that r: X—A4 is an L-Lipschitz
retraction. Given a, b€A4 and =0, there is a path y joining ¢ and b in X with
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[(y)=(C+e)d(a, b). Then ry joins a and b in A4, and [(ry)=L(C+e)d(a, b). Thus
A is LC-quasiconvex.

Next assume that r: V-4 is a LIP retraction of a neighborhood V of
A. Let x€A and choose an open neighborhood U of x in X such that UcCV
and lip (r|U)= L=< . By 2.30, there is a neighborhood W< U of x with C(W, U)=
C=co. Arguing as in the first part of the proof we see that C(AnW, 4)=LC.
Hence A is locally quasiconvex. [

2.33. Lemma. If X is compact, connected, and locally quasiconvex, then X is
quasiconvex.

Proof. Since X is connected and locally quasiconvex, each pair of points x, y€ X
can be joined by a rectifiable path in X. Let 6(x, y) be the infimum of the lengths
of all such paths. Then § is a metric in X. Since X is locally quasiconvex, the identity
map id: (X, d)~(X, ) is LIP. Since X is compact, it is Lipschitz, whence X is
quasiconvex. [J

2.34. Theorem. Every compact connected polyhedron in R" is quasiconvex.
Every polyhedron in R" is locally quasiconvex.

Proof. Tt suffices to prove the first assertion. Let PCR" be a compact con-
nected polyhedron. Then P is a PL retract of a regular neighborhood N of P. By
2.18, P is a Lipschitz neighborhood retract of R". The theorem follows from 2.32
and 2.33. O

2.35. Theorem. Suppose that X is C-quasiconvex and that </ is a cover of X
such that for each x€X, the star st (x, /)=U{A|xcAcl} of x is a neighborhood
of x. (For example, < is a locally finite closed cover of X or o is a family of two
sets with a proper union.) If f: X—Y is a function such that f|A is L-Lipschitz for
all A€ot then [ is CL-Lipschitz.

Proof. Let a,bcX, and let &£=0. Choose a path y: /-X with y(0)=aq,
y(1)=b, [(y)=(C+e¢)d(a, b). Forevery s€l, choose an open interval neighborhood
U(s) in I such that yU(s)Cst(y(s), &). Choose a subcover {U(s)|l=i=k} of
{U(s)|s€I} which has no proper subcover. We may assume that s;<s;;; and
0= U(s;) NU(8;41) < (83, 85;40) forall i€ {1, ..., k—1}. Choosing numbers s;€ U(s;) N
NU(s;.;) and relabeling the sequence (0, sy, 87, ..., S;_1, S, 1) we obtain num-
bers 0=t,<...<ty =1 such that for x;=7y(f), {x;_1,x;} 15 contained in some
member of /. Thus d’( f(x;-1),f(x;))=Ld(x;_:, x;), which implies

d'(f(a), () = L i d(x,_y, x;) = LI(y) = (C+e)Ld(a, b). 0

2.36. Theorem. Suppose that X is locally quasiconvex and that </ is a point-
Jinite cover of X such that for each x€X, st (x, &) is a neighborhood of x. If f: X—Y
is a function such that f|A is LIP for all A€sf, then fis LIP.
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Proof. Let x€X, and let Ay, ..., 4, be the members of o/ containing x.
Choose an open neighborhood U of x and a positive number L such that
Ucst (x, &)=A,U... U4, and such that f|Un4A; is L-Lipschitz for all i. Since
f1is clearly continuous, it follows that also f|U NA; is L-Lipschitz for all i. By 2.30,
there is a neighborhood VU of x with C(V, U)=C<<. We show that f|V
is CL-Lipschitz. Let a, b€V and e>0. Choose a path y joining a and b in U with
1(y)=(C+e¢)d(a, b). We can find numbers 0=t,<...<t,=1 such that for each
ic{l,...,s}, {y@t_), y(t)} is contained in some of the sets UnA;. Hence

d/(f(V (ti—1))af(7’ (ti)))éLd(? (ti-1); V(ti))a which implies

d'(f(a), f(b)) = L =Zsl d(y(ti-0), v(t)) = LI(y) = (C+e)Ld(a, b). O

2.37. Corollary. If AUB is locally quasiconvex and a proper union, then
AUB is a LIP proper union. []

2.38. Theorem. If A and B are polyhedra with a proper union, then AUB
is a LIP proper union.

Proof. Since a proper union of polyhedra is obviously a polyhedron, the theo-
rem follows from 2.34 and 2.37. (O

2.39. Cartesian products. Let (X,d) and (X’,d’) be metric spaces. Then the
distance between points (x, x”) and (y, ") in XXX’ can be defined in three natural
ways:  d(x,y)+d'(x, ), (d@x, y2+d' (<, yP)H,  or max(d(x,»), d'(x, ¥)).
Letting d,, dy, dy denote the corresponding metrics of XX X’, we have dy=d,=
=d,=2d,. Hence these metrics are Lipschitz equivalent. From the point of view
of LIP topology, it makes no difference which metric we use.

It is readily seen that cartesian products of LIP maps are again LIP. More-
over, a map (f,f’) of a metric space Z into XXX is LIP if and only if f and /*
are LIP.

2.40. Maps of XXR'. Let X be a metric space. We shall later make use of
maps f: XX R*—~ XX R! of the following type: Let «; and f5; be LIP maps X—R?,
i=0,...,k, such that og<...<o, and Py=<...<Py. Then f(x, 1)=(x, r.(1))
where r, is the PL homeomorphism of R' onto R' which maps [%;_;(x), o;(x)]
affinely onto [B;_1(x), B;(x)] and is a translation on (— oo, to(x)] and on
[ak (X), °°)

We shall show that f is a lipeomorphism of XXR' onto itself. Since f~* is
obtained by changing the roles of «; and f;, it suffices to show that f"is LIP. For
this, it is sufficient to prove that the map r: XX R'—~R!, defined by r(x, #)=r.(),
is LIP.

Set  A;={(x, Dloy_,(x)=t=0(x)} for l=i=k and A;={(x, 1)|t=0,(x)},
A1 ={(x, t)|t=0y(x)}. For (x,1)€4; we have r(x,t)=(1—u)By(x)+up;(x)
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where u=(t—0,(x))/(0t(x) — 9 (x)). Using 2.4 we see that r|4, is LIP, A similar
proof shows that r|4; is LIP for all i.

To show that r is LIP in XX R' we use 2.22. For example, let us show that
r|d4; UA, is LIP. Since the question is local, we may assume that lip oy =L < oo
Let a=(x,s)€4, and b=(y,1)€4,. Then c=(x, 2 (x))€4;nA4,. Using the
metric d; of 2.39 in XXR' we have d,(a,¢)=u;(x)—s and d,(c, b)=d(x, y)+
+t—o(x)|. If t=0;(x), we obtain d,(a, ¢)+d,(c, b)=d,(a, b). If t<a,(x), then
t=o(y)= oy (x)—Ld(x, y), whichimplies d,(a, ¢)+d,(c, b)=t—s+QL+1)d(x, y)=
=(2L+1)d,(a, b). Hence r|4; UA, is LIP.

241. Lemma. Let C be a (p+q+1)-simplex which is the join of a p-simplex
A and a g-simplex B, p=0, q=0. Let n: AXBXI~C be the map 7(x,y,t)=
=(1—1#)x+ty. Then n is LIP and defines a lipeomorphism my: AXBX(0, 1)~
—C\ (4 UB).

Proof. Using an auxiliary affine homeomorphism, we may assume that
CCRPHITI=RPX RIX R, ACR’X0X0, BCOXRIX1. Choose R=0 such that
Cc Bt Y(R). Let z;=(xy, y1, t;) and zy,=(Xs, Vs, ) EAXBXI. Then

(20 —7(2z0)| = (1 — 1) |01 —Xo| + [t — o] 3| + 21 |[y1— Yol + [t1— 5] |y
= (242R)|z,—z,|.
Hence 7 is LIP.

Let 0<6<1/2, and let z;, z,€ AXBX(d,1—5). Then &|x;—x,|=|(1—1;,)x,—
= (I=t)x5|+[ta— 1| |%o| =(1+ R)|n(z)) —7(2,)|, and similarly 6]y, —p,|=(1+
R)|n(z1)—n(z5)|, which implies |z,—z,|=(14(2+2R)/d)|n(z,)—n(z,)|. Hence m,
is a lipeomorphism. [J

2.42. Stretching maps. We shall consider the stretching process between dual
skeletons, which is often used in an engulfing argument. Suppose that K is a finite
simplicial complex and that L, M are disjoint subcomplexes of K such that every
simplex of K is the join of a simplex in L and a simplex in M. Let X be the set of
all (x, p)€[L|X|M| such that xy lies in a simplex of K, and let o, B: X—(0, 1) be
LIP maps. Choose t,, #,€(0, 1) such that im o uim fc(#, t,). For each (x, y)€X
we let w,,: I-I denote the PL homeomorphism which maps the points 0, #,,
a(x, y), ty, 1 to the points 0, #;, B(x, ), t,, 1, and is affine on the remaining intervals.
Let h: |K|—~|K| be the unique bijective function such that h||LJu[M|:id and
A=) x+1p)=(1—w (1)) x+w,,(#)y for all (x,)éX. We shall prove that
h: |K|—|K| is a lipeomorphism.

Since ~~1 is obtained from 4 by changing the roles of « and p, it suffices to show
that # is LIP. By 2.38, it suffices to show that 4|C is LIP for every CcK. Write
C=AB with A€L, BeM. We may assume that A=#0=B. Let n: AXBXI~C
be the map of 2.41. Since C is convex, it suffices to show that / is LIP in each of
the sets Cy=nD;, i=1,2, where D;=AXBX([0, t;]U[t,, 1)) and D,=AXBX
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X[t ts]. Since h|Cy=id, it is LIP. Furthermore, we may write /|Co=mogmg 1C,
where 7, is the lipeomorphism of 2.41, and g(x, y, 1)=(x, y, w,,(1)). It follows
from 2.40 that g is LIP. Hence 4 is LIP.

The stretching process will be used in 8.4 in the following situation. K has a
subcomplex K, such that |K| and |K;| are concentric n-cubes, L is the 2-skeleton
of K, and M is the dual (n—3)-skeleton of a derived subdivision of K. Given open
neighborhoods U and V of |L| and |[M|, we need a lipeomorphism /: |K|—~|K]
such that |K;|chUuV and h|8|K|=id. For this, we first choose &€(0, 1/2) such
that for all (x,y, 1)€XX[0,¢], (1—#)x+tyeU and tx+(1—t)yeV. Then choose
a LIP map A: |K|—[e, 1/2] such that A(x)=e for x€[K;| and Ax)=1/2 for
x€d|K|, and set a(x,y)=(1(x)+2A(»)/2, B(x,y)=1—a(x,y). Then the stretching
map h: |K|—|K| has the desired properties.

2.43. Remark. Suppose that the maps « and f of 2.42 are constants, R
It is sometimes stated that the corresponding homeomorphism /4: |K|—|K] is PL.
However, this is usually not true, for example if |K| is a triangle abe, |L|=a,
|M| = be. We may call this map a standard mistake of the second kind. A PL homeo-
morphism is easily obtained as follows: Let f: K—I be the simplicial map which
maps L into 0 and M into 1. Choose deriveds K;, K; of K'near L [25, p. 32] such that
f710, o] and f~1[0, ] are the underlying polyhedra of the derived neighborhoods
N(L, K;) and N(L, K;), respectively. Then the canonical simplicial isomorphism
¢: Ki—~K, maps N(L, K;) onto N(L, K,).

3. Lipschitz manifolds

3.1. Definition. A Lipschitz n-manifold (or a LIP n-manifold) is a separ-
able metric space M such that every point x€M has a closed neighborhood U
lipeomorphic to 1.

3.2. Remarks. (1) Recall that a connected paracompact topological manifold
has a countable base. Hence, separability is not a restriction for connected manifolds.

(2) Since I" is lipeomorphic to B”, the pair (U, x) in 3.1 is lipeomorphic to
either (I",0) or (I", e"). It follows that each point of a LIP manifold has an open
neighborhood lipeomorphic to either R" or R’.

(3) The boundary OM of a LIP n-manifold is either empty or a LIP (n—1)-
manifold.

(4) If M and N are LIP manifolds, so is MXN.

(5) A LIP manifold is locally quasiconvex.

3.3. Atlases. There is an alternative way to define a LIP manifold based on
atlases. Let M be a Hausdorff space. A LIP atlas on M is a family of charts (U, h;)
where the sets U; form an open cover of M, h; maps U; homeomorphically onto a
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set U/ which is open either in R” or in R", and hih7* defines a lipeomorphism of
h;[U;nUj] onto ;[U; nUj] for all i and j. Two LIP atlases are called equivalent
if their union is a LIP atlas. Then a LIP manifold can be defined as a pair consisting
of M and an equivalence class of LIP atlases. The concept of a LIP map between
LIP manifolds is then defined in the obvious way using charts.

If M is a LIP manifold in the sense of 3.1, it has a natural LIP atlas consisting
of all lipeomorphisms /: U~U’ such that U is open in M and U’ is open in R"
orin R . Moreover, the two definitions of LIP maps of M and into M are consistent.
One can show that a paracompact LIP manifold is lipeomorphic to a metric space.
Hence, for second countable spaces, the atlas definition is not essentially more gen-
eral than 3.1. This can be proved in several ways. For example, it will follow from
our embedding theorem 4.2. But it is also a special case of a metrization theorem
for locally metric spaces (Theorem 3.5 and Remark 3.7), which is our next goal.
Moreover, Weller [30] has proved the result (stated for closed manifolds) using a
method somewhat similar to the proof of 3.5.

3.4. Local metrics. A local metric on a HausdorfT space X is a family of metric
spaces (U, d;) such that the sets U; form an open cover of X, d; is compatible with
the topology of U;, and for each pair i, j of indices, the restrictions of d;, and d;
are LIP equivalent on U;nU;. Two local metrics on X are called LIP equivalent
if their union is a local metric. Cf. Whitehead [31, p. 166]. A locally metric space is a
pair consisting of a Hausdorff space X and an equivalence class of local metrics on
X. Each metric space defines a locally metric space in the obvious way. We shall
show that each paracompact locally metric space can be obtained in this way.

Every LIP atlas (U;, /;);c; of a manifold M defines a local metric on M con-
sisting of pairs (U, d;) where d;(x, y)=|h;(x)—h;(»)|. Moreover, equivalent LIP
atlases define LIP equivalent local metrics. Hence every LIP manifold in the atlas
sense can be regarded as a locally metric space. The same is true for abstract PL and
DIFF manifolds.

3.5. Theorem (Metrization). On a paracompact Hausdorff space, every local
metric is LIP equivalent to a metric.

Proof. Suppose that d=(U;, d;);c; is a local metric on a paracompact Haus-
dorff space X. We may assume that the cover (U));¢; is locally finite. We first show
that 6 is LIP equivalent to a local metric 6'=(U], d});¢, of X such that for every
pair j, k€J, d; and d] are Lipschitz (not only LIP) equivalent in U;nU;. There
is an open cover (¥));c; of X with V;,c U; for all i. For every x€ X, choose an open
neighborhood W(x) such that (1) W(x)cV, if xcV;, Q) W(x)cU, if xcU,,
(3) W(x) nV;=0if x¢V,, (4) d; and d, are Lipschitz equivalent in W (x) if x€ U, nU i
Next choose a locally finite open refinement (U});¢, of the cover (W(x)),cy. For
every j€J, choose x;€X and i(j)€l such that U;CW(x))CV;;. Then d;=
=dy;)|U;X U] is a metric for U/, compatible with the topology of U;. Suppose
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that U] meets U;. Then W(x,) meets V;;, which implies X €Vyy- Thus x,. € Uy 0
N Uy, whence d] and d; are Lipschitz equivalent in W(x,), and hence in U] nUj.
Thus the local metric 6’=(U;, d;);¢; has the desired property. Obviously 6 and 6"
are LIP equivalent.

Changing notation, we assume that the original local metric 0=(U;, d);er
has the above property. Choose again an open cover (Vier of X with V,CU,.
We define a function d: XX X—R' as follows: For x, y€X, let P(x, y) be the set
of all finite sequences of the form 7=(Xg, - s Xi5 f1s --» ip) such that x,=x, x;,=,
and {x;_q, x;}C V,-j. For such 7, set

k

s(m) = 2 di)(xX;-1 X;).

ji=1
If P(x,y)=0, we set d(x,y)=1, otherwise
d(x, y) = min (1, inf {s ()| w€ P(x, »})-

It is easy to see that d is a pseudometric for the set X.

For the rest of the proof we fix the following notation: Let xeX and choose
icI such that x€V,. Choose an open neighborhood VCV; of x such that J,=
={jeI|V meets U;} is finite and for every j€Ji, either VcU; or VnV;=0. Set
Jo={je;|VcU,}. There is b>1 such that b~d, (u, v)=d;(u, V)=bd(u, v) for
all j, k in J, and for all v, vin U; "U,. Choose ré&(0, 1) such that the ball B, (x, r)=
={yeU,|d;(x, y)=<r} is contained in V for all j€J,. '

We must show that d is compatible with the topology of X (hence a metric)
and LIP equivalent to d. If y,z€V;, then d(y, 2)=s(y, z;j)=d;(y, z). Hence
id: X—{(X, d) is continuous, and id: (U;, d)~(U;,d) is LIP. We next show that
id: (X, d)—X is continuous. Let W be a neighborhocd of x in X. Replacing V' by
VAW, we may assume V' W. We claim that d(y, x)<r/b implies y€W. Since
rlb<1, there is 7=(Xq, ..., Xg; I1s--e» i)€P(x,y) such that s(m)<r/b. Then
xo=x€ V. Suppose inductively that x;€V forall i=gq. Then i€/, and x;€U;
for all i=i,,,. Hence dqu(qu, x)=bs(m)<r, and thus x,,€V, which implies
y=x,ceVcW.

It remains to show that id: (U;, d)—~(U;, d;) is LIP for every jel. Tt suffices
to show that this map is Lipschitz in a neighborhood of x for every j€I such that
x€U;. Since ¢ is a local metric, we may assume j=i. The set B= 1 {B, (x, r/2)| €]}
is a neighborhood of x in U,. We shall show that d;(y, z)=2bd(y, zi for y, z¢B.
Since (y,z;1)EP(y, 2), d(y, z)<1. Let m=(Yo, ---s Vi I1s oo iEP(y,z). If y,eV
for all v, then

k

(36) di(.V: Z) = Z di(yv—b yv) = bS(TL’).

v=1
If y,¢V for some v, let ¢ be the least v with this property. Then i,€J,, whence
d; (y» x)=r. Thus d; (¥q» ¥)=1/2, which implies di(y, 2)<r<2d; (v, y)=2bs(n)-
Together with (3.6), this implies d;(y, 2)=2bd(y, z). O
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3.7. Remark. Suppose that M is a second countable Hausdorff space with
a LIP atlas .. Then it has a natural local metric as in 3.4. Since M is paracompact,
it follows from 3.5 that this local metric is LIP equivalent to a metric d on X. If &7
is replaced by an equivalent LIP atlas .«’, we obtain a metric d’ which is LIP equiv-
alent to d. To get a full equivalence with the atlas definition, we should define a
LIP manifold as a pair consisting of a space X and a LIP equivalence class of metrics
of X such that for some (and hence for each) d in the class, (X, d) is locally lipeo-
morphic to /”. However, we prefer to use the conceptually simpler Definition 3.1.

3.8. Terminology. A LIP n-ball is a metric space lipeomorphic to B”. A LIP
n-sphere is a metric space lipeomorphic to S”. A subset N of a LIP manifold M is
a LIP submanifold of M if it is a LIP manifold in the metric inherited from M. If N
is a LIP g-submanifold of a LIP »n-manifold M with NcCint M, we say that N is
locally LIP flat at a point x€int N if x has a neighborhood U in M such that
(U, UnN) is lipeomorphic to (¥, ¥ nR%) for some V open in R". At a point
X€ON, (U, UnN) should be lipeomorphic to (¥, VARY). One can obviously
choose V=R".

3.9. Theorem. (Cf. [16]) Let A be a compact convex set in R". Then A is a
locally LIP flat LIP ball. In fact, there is a strong lipeomorphism of R" which maps
A onto B, g=dim A.

Proof. Let T be the affine subspace of R" spanned by A. Choose an interior
point v€A in the topology of T. By an auxiliary isometry, we may assume 7'=R?
and v=0. Then 4 is the cone 0(94). By 2.17, this cone is a Lipschitz cone, and
hence p(x)=x/|x| defines a lipeomorphism p: 94—~S%"1. By 2.16, the extended
cone p*: RI>R? of p is a strong lipeomorphism, and so is f=p*xid: R"—R".
Since fA=BY, the theorem is proved. []

3.10. Examples. (1) By a LIP arc we mean a LIP 1-ball. Unlike PL and
DIFF arcs, a LIP arc in R® need not be locally LIP flat. For example, the construc-
tion of the Fox—Artin arc, given in [26, pp. 61—62], can be modified so as to yield
a LIP arc, which is not even locally TOP flat at the end points. We do not know
whether a locally TOP flat LIP arc in R" is always locally LIP flat.

(2) A LIP arc is always rectifiable. Indeed, if f is an L-Lipschitz map of I
onto A, then the length of 4 is at most L. It is not difficult to show that a metric
space which is a TOP arc is a LIP arc if and only if it is quasiconvex. For example,
the arc {(x, »))€R*|0=x=1, |y|=x} is not a LIP arc. See also Katstov [15, 3.9].

(3) As a rectifiable arc, a LIP arc AC R” has a tangent at almost every point.
Hence it pierces an (n—1)-disk at almost every point. On the other hand, there is a
TOP arc in R® which pierces no disk (Bing [2]). This is so wild that no homeomor-
phism of R® maps it onto a LIP arc.

(4) Although a LIP arc AcCR" has a tangent at almost every point, its tan-
gential behavior may be fairly complicated at certain points. Let fi R*—~R?* be
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the homeomorphism defined by f(r, ¢)=(r, ¢ +logr) in polar coordinates. A com-
putation shows that the derivative of f is bounded in R*\0. Hence f is Lipschitz.
Since f~1(r, )=(r, 9 —logr), it similarly follows that f~* is Lipschitz. Thus the
image C of the segment joining (—1,0) and (1,0) is a locally LIP flat LIP arc,
which consists of two logarithmic spirals and the origin. The origin divides C into
two closed LIP subarcs 4, B. The union C=A4uB is LIP proper, although the
intersection angle «(4, B, 0) is zero. Hence the converse of 2.26 is not true. A similar
example in higher dimensions will be given in 4.11.

(5) Fattening the Fox—Artin arc we obtain a LIP 3-ball B in R?® which is
not even locally TOP flat. See Gehring [12, Theorem 3, p. 316]. Thus the LIP version
of Newman’s theorem [25, 3.13] is false. The boundary of B is a LIP 2-sphere in R?
which is not locally TOP flat.

(6) The set {(x,y,2)ER*0=z=1, x?+)*=z"} is a locally TOP flat 3-ball
in R®, but it is not locally LIP flat, because it contains no LIP arc through the origin.

3.11. Theorem. Every connected LIP 1-manifold M is lipeomorphic to exactly
one of the following LIP 1-manifolds: (0, 1), [0, 1), [0, 1], S™.

Proof. It is well known that there is a homeomorphism f: My,—~M where
M, is one of the manifolds listed in the theorem. Using a locally finite cover of M
by LIP arcs such that no three of them intersect, we may choose a locally finite
family of points (x,);¢; in M, with the following properties: (1) The indexing set J
is Z for M,=(0,1), N for M,=[0,1), and {1, ..., r} for a compact M,. (2) The
points x; are in the positive order. (3) If 4; is the arc from x; to x;, (4, is from x,
to x; if My=S"), then f4;=B; isa LIP arc in M. (4) The arcs B; cover M. Choose
a homeomorphism g: My—~M such that g(x;)=f(x;) for all jeJ, and g maps
A; lipeomorphically onto B;. Since M, and M are locally quasiconvex, it follows
from 2.36 that g is a lipeomorphism. [

3.12. Corollary. Let M and N be LIP l-manifolds. If M and N are homeo-
morphic, they are lipeomorphic. ]

3.13. Theorem. Let M be a LIP manifold. Then there is a L1P manifold DM,
called the double of M, which has the following properties: DM contains LIP submani-
folds My, M, such that DM=M, M,, Myn My;=0M,=0M,, and there are lipeo-
morphisms f;: M —~M; such that f{|0M=f,|0M. The triple (DM, M,, M,) is unique

up to a lipeomorphism. Moreover, dDM =0, and the submanifolds M, M,, dM, are
locally LIP flat in DM.

Proof. The uniqueness of (DM, My, M,) is clear. If oM=0, we may put
DM=Mx{0,1}. If M0, DM can be constructed for example as follows:
Define f,,f,: M~MXR! by fi(x)=(x,0) and fy(x)=(x, d(x,0M)). Then each
f; is a LIP embedding of M onto M, with M; N My,=dM;=0M,=0M X0. Set
DM =M, U M,. It remains to prove that each point (@, 0)€M; N M, has a neigh-
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borhood ¥ in DM such that (V, ¥V nM,;) is lipeomorphic to (R", R"). Choose a
lipeomorphism 4: U-R" of an open neighborhood U of ain M. Then V=f,Uu
ufo, U is an open neighborhood of (a,0) in DM. Define p: R"—~R" by p(x)=
=(X1, ver Xpo1» —X,) and A*: V>R" by W*|ffU=H{Y /U and k*|f,U=
=phfy ! f, U. Then h* is a homeomorphism and defines lipeomorphisms f; U—R",
and f,U—~pR’.. To prove that 4* is a lipeomorphism it suffices to show that f, Uy
uf, U is a LIP proper union. Let (b, 0)€f,Unf,U=(UndM)x0. Choose r=0
with B(b, 2r)c U. Forevery x€B(b, r)nint M, we have d(x, UnoM)=d(x, 0M).
Using the metric d; of 2.39 in M XR' we obtain

di(f2(x), LU N f2U) _d(x, UnoM)+d(x,0M) 5
dy(fo(x), VN f2U) d(x, 0M) a

By 2.24, the union f,UUf U is LIP proper. [J

4. Embedding

4.1. By Whitney’s embedding theorem, every DIFF n-manifold can be DIFF
embedded into R**!, Similar results hold for PL and TOP manifolds. It is there-
fore natural to ask whether every LIP n-manifold can be LIP embedded into R*'*1,
We have not been able to solve this problem. However, we shall prove in 4.5 and
4.9 that a LIP n-manifold can be LIP embedded into R™*Y and that there is a
locally LIP flat LIP embedding into R"®*?. Before that, we prove a weaker result,
which gives a new proof for the equivalence of the two definitions 3.1 and 3.3 of a
LIP manifold.

4.2. Theorem. Let M be a LIP n-manifold in the atlas sense 3.3. If M has a
countable basis, then M is lipeomorphic to a closed subset of R"+Y°,

Proof. For every x€M, choose a chart (U, h,) at x such that U, is compact
and A, U, is open in R,. By {2, 2.7], the cover (U,),¢ has a locally finite countaile
open refinement % such that #=%,u... v%, where the members of each &
are pairwise disjoint. Let %;={U;, Uy, ...}, and choose a LIP embedding #; of
V= U4, into R’ such that for every j, ;U;; is an open subset of R", nB"(3je;, 1).
Since M is normal, it has an open cover {W;0=i=n} such that W,cV,. From
2.5 it easily follows that there is a LIP map ¢;: M~ such that ¢;|W,=1 aad
spt ;C V;. Then the product ¢;/;, extended by zero to M, is LIP. Let s={n+1)?
and define f: M—~R* by [f=(@q, Oohgs .- P> Puh,). Then f is LIP. We show
that f is the desired LIP embedding.

Since ¢;[W;=1, we have |f(hi*(x))—f(h7*(»)I=|x—y| for all x,yEhW,.
Thus fh7': h;W;~fW; is a lipeomorphism, which implies that f defines a lipeo-
morphism of W, onto fW,;. Hence f is a LIP immersion in the obvious sense. To
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prove that f is injective, assume f(x)=£(y). If x€W;, then @;(y)=¢;(x)=1. Thus
y€V;, and h(x)=0;(x);(x)=@;(»)h:(»)=h(y), whence y=x.

We complete the proof by showing that f is proper. Let 4 be a compact set
in R®. Since M is metrizable, it suffices to show that an arbitrary sequence (x,) in
f~'4 has a convergent subsequence. Choose a positive integer k such that
Ac B3k +2). We may assume that for some i, x, € W; for all v. Since ¢;|W;=1,
we have |h;(x,)|=|f(x,)|<3k+2 for all v. Since AU;;C B"(3je;, 1), this implies
x,€ U {U;;|l=j=k} for all v. Since each Uj; is compact, (x,) has a convergent sub-
sequence. [J

4.3. Remarks. (1) It follows from the proof of 4.2 that the map
(Pohgs s Puh): M—~R"*D is a proper LIP immersion.

(2) One can show that the embedding constructed above is locally LIP flat.
We omit the proof, since a better result will be given in 4.9.

(3) Theorem 4.2 holds, with essentially the same proof, for all locally compact
separable metric spaces which can be locally LIP embedded into R".

4.4. Lemma. Let M be a LIP n-manifold (in the sense of 3.1), let s=2n,
let f: M—~R°® be a LIP immersion and let &: M —~(0, ) be continuous. Then there
is an injective LIP immersion g: M—~R® such that |f(x)—g(x)|<e(x) for all xeM.
If f is injective in a neighborhood U of a closed set A, we may choose glA=flA.

Proof. We shall give a LIP version of Milnor’s proof [21, 1.29] for the cor-
responding DIFF result. Choose an open locally finite refinement (U;);c5 of the
cover (MN\A, U) of M such that U; is compact and f|U; is a LIP embedding for
all i. The indexing is chosen so that {i[i=0 and U;=0}={i[0=U;,cU}. Next
choose an open cover (¥});¢z of M with V,c U; for all i. By 2.5 there are LIP maps
¢; : M—~I, i=0, such that ¢,|V;=1 and spt ¢;,C U,

We shall inductively construct LIP immersions g;: M—R°, j=0, such that
2=/, §;=8j-1+¢;b;, where b;E€R’ is yet to be chosen. The first requirement is
that |b;,|<27/ mineU; (or b;=0 if U;=0). Then |g;(x)—g;-1(x)| <27 e(x) for
all xé M. Choose an open cover {Bi, ..., B,} of U; and a positive number / such
that |g;_1(x)—g;-1(»)|=ld(x, y) for all x, y in By, 1=k=r. The second require-
ment is that !bjl<l/2 lip ((Pjin)- Then lgj(x)_gj(y)]élgj—l(x)—gj—d(y)l—
—lo;(x)—@;(MI[b;| =27 d(x, y) for all x, y in U;nB,, 1=k=r. Since g;(x)=
=g;_1(x) outside spt¢;, it follows that g; is a LIP immersion. Finally, let N be
the open set in M XM consisting of pairs (x, y) such that ¢;(x)=¢;(y). Define
a LIP map y: N-R by VY(x, y):(gj—l(y)_gj—l(x))/(q)j(x)_q)j(y))' Since
MXM is a LIP 2n-manifold and s=2n, the set YN is of Hausdorff s-measure
zero (see 6.2). Hence we may require b;§yN. Then g;(x)=g;(y) if and only if
(Dj(x):%'(y) and gj—l(x):gj—-l(y)'

Define g: M—~R° by g(x)=lim;,_ g;(x). Foreach x,cM, there is a neigh-
borhood ¥ of x, and an integer j such that g(x)=g;(x) for x€V. Hence g is a
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LIP immersion. Furthermore, |f(x)—g(x)|<&(x) for all xe€M, and g|d=f]A.
It remains to prove that g is injective. Suppose that g(x)=g(y) with xy. Then
¢;(x)=¢;(y) and g;_;(x)=g;-1(p) for all j=0. For j=1 this yields Sx)=f(p).
Hence x and y cannot be in the same set U;. If xe¥; for some i=0, then ¢,;(y)=
=¢;(x)=1, and thus y€U,. Hence x and y are in U. This is impossible, since f|U
is injective. [J

4.5. Theorem. Let M be a LIP n-manifold. Then there is a closed LIP em-
bedding f: M—R"™+D,

Proof. For n=1 the theorem follows from 3.11. Assume n=2. By 4.3 (1),
there is a proper LIP immersion F: M- RV Since n(n+1)=2n, it follows
from 4.4 that there is an injective LIP immersion f: M—~R"*D guch that
| f(x)—F(x)|<1 for all xéM. Then fis a proper map and hence a closed LIP
embedding. [J

4.6. Remark. Lemma 4.4 and Theorem 4.5 can be generalized for locally
compact separable metric spaces which can be locally LIP embedded into R", n=2,
see Remark 4.3 (3).

4.7. Theorem. Let D be a LIP k-ball in R". Then there is a strong lipeomor-
phism ¢ of R'™™ =R"XR* onto itself such that ¢D=IF.

Proof. This is the LIP version of a theorem of Klee [26, Theorem 2.5.1, p. 74].
Using 5.6 instead of Tietze’s theorem, all maps occurring in the proof can be made
Lipschitz. [

4.8. Corollary. If M is a LIP k-submanifold of R", M is locally LIP flat in
R =R"X Rk, O

4.9. Theorem. If M is a LIP n-manifold, there is a closed locally LIP flat LIP
embedding f: M—R""+?,

Proof. This follows from 4.5 and 4.8. O

4.10. Remark. Theorem 4.9 is one dimension better than the result announced
in 4.3 (2).

4.11. Projections. Suppose that f: M—R* is a LIP embedding of a LIP
n-manifold M, s>2n+1. One might think that the dimension of the target space
could be lowered by choosing a suitable projection of R* onto an (s— 1)-dimensional
linear subspace. In the DIFF category this is possible, see [7, Théoréme 5, p. 12].
Set N=fM, and let a(N)={(x—y)/|x—y||x, yEN, x#y}cS*~! be the set of
directions of all secants of N. It is easy to see that the Hausdorff (s— I)-measure
of o(M) is zero. Hence there is a€ S*""™\ o (N). Let p be a projection of R® in the
direction @ onto an (s—1)-dimensional subspace V. Then p|N is injective and
Lipschitz. Continuing similarly we obtain a LIP injection of N into R**'. How-
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ever, p|N need not be a LIP embedding. In fact, we shall next construct a strongly
LIP flat arc ACR® such that o(U)=S%"" for every neighborhood U of a point
in A. It is clear that no projection of R® onto a proper subspace can define a LIP
immersion of 4.

For s=1 take A=1I'. For s=2 see 3.10 (4). Let s=3, and let (r, @, z) be
the cylindrical coordinates in R®. Thus x;=rcos @, x,=rsin ¢, and (xg, ..., x,)=
=(zy, ..., Zg_s). Define g: R*~R* by g(r, ¢,z)=(r, o +log|x|,z). It is easy to
verify that g is an L-lipeomorphism for some L. For example, computing the deriva-
tive g’(x) shows that it is bounded for x 0. Moreover, g~ *(r, @, 2)=(r, ¢ —log |x], 2).
Choose a countable dense set {a;| jéN} in {x€S*7*|x;=0}. For each jEN choose
a rotation h; of R® such that %;(e))=e;, h;(e))=a;. Set fj:hjghj—1 and observe
that f;|S*~*(¢*™)=id for all integers k. Hence we can define a homeomorphism
fi R*>FR° by f(x)=f;(x) for e ¥"=[x|=e *U~V", jeN, and f(x)=x for x=0
and |x|=1. By 2.35, f|R"\0 is an L-lipeomorphism. Hence f is an L-lipeo-
morphism. Let J be the segment {te,|—1=r=1}. Then A=fJ is a strongly LIP
flat (in the obvious sense) arc in R® consisting of two “twisted”” logarithmic spirals
and the origin. Clearly cla(4nB*(e))=S°"" for all &=0.

4.12. Non-manifolds. Every finite-dimensional separable metric space can be
topologically embedded into a euclidean space, see [14, Theorem V3, p. 60]. We shall
next show that the corresponding result is not true for LIP embeddings by con-
structing a countable metric space which cannot be LIP embedded into any
euclidean space.

Let X be the set consisting of all positive integers and the point . Let a(l)=
~a(2)>... be a sequence such that a(i)=~0 and the series 23 a(i)" diverges
for every n€N. For example, we may choose a(i)=1/log (i+1). Define a metric
din X by d(i,j)=a(min (i,/)) if i+j and by d(i,i)=0. Then X has its usual
topology and is compact. Suppose that f: X—~R" is a LIP embedding. Then there
is ¢g=0 such that |f(i)—f(j)|=qd(i,j) for all i, j in X. Since d(i,j)=a(i) when-
ever i,j€X\ . and i#j, it follows that the balls B;=B"(f(i), ga(i)/2) are dis-
joint for i€ X\ eo. Since the series ; a(i)" diverges, the set E= U{Bj[ic X\ =}
has an infinite measure. On the other hand, since fX is compact, E is bounded, and
we obtain a contradiction.

Observe that we did not make use of the fact that fis LIP. Hence there is no
homeomorphism f: X—YCR" such that f~*is LIP.

5. Extension and approximation

5.1. The main results of this section deal with maps of a metric space X into a
LIP manifold M. In 5.12 we show that if 4 is closed in X, every LIP map f: A—~M
has a LIP extension to a neighborhood of 4 in X. This result will be used in 5.18
to prove that every map f: X—M can be approximated by a LIP map.
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5.2. Definition. A LIP partition of unity subordinated to an open cover
(U))jes of a metric space X is family (¢;);c, of LIP maps ¢@;: X—1I such that the
supports spt ¢;=cl ¢7*(0, 1] form a locally finite family, spt ¢ ;< U; forall jeJ,
and > ;¢c; 0;(x)=1 for all x€X.

5.3. Theorem. Let (Uj)jes be an open cover of a metric space X. Then there
is a LIP partition of unity subordinated to this cover.

Proof. We may assume that U;#X for all j. Choose a locally finite open
refinement (V));¢; of (Uj);¢; such that V,c U; [8, p. 162]. Set Y;(x)=d(x, CV))
and @;=y;/ > ;c;¥;. Then spto,CV;, and the theorem follows. ]

5.4. Theorem. Let X be a metric space and let fy, f, be real-valued functions
on X such that f; is upper semicontinuous, f, is lower semicontinuous, and f,(x)<f,(x)
for all x€X. Then there is a LIP map g: X—~R' such that f,(x)<g(x)<f,(x)
for all xeX.

Proof. The proof given in [8, 4.3, p. 171] for the paracompact case yields a
LIP map g if a LIP partition of unity is used. [

5.5. A metric space X is an absolute LIP extensor (ALE) if for every closed
set B in every metric space Y, every LIP map f: B—~X has a LIP extension to Y.
If every such f has a LIP extension to a neighborhood of B, X is an absolute LIP
neighborhood extensor (ALNE). Our next goal is to show that every LIP manifold
is an ALNE. The proof'is based on LIP versions of Tietze’s theorem, due to McShane,
and Hanner’s theorem, which states that being an ALNE is a local property.

5.6. Lemma. Let A be a subset of a metric space X and let fi A>R" be
Lipschitz. Then f has a Lipschitz extension g: X—~R" with lip g=n'2lip f.

Proof. Apply McShane [19, Theorem 1] to each coordinate map of £ [0
5.7. Theorem. R" and R". are ALE’s.

Proof. Since R”, is a LIP retract of R”, it suffices to show that R" is an ALE.
Let B be closed in Y, and let f: B—~R" be LIP. For each b€B choose an open
neighborhood U, in Y such that f|U,nB is Lipschitz. By 5.6, f|U,nB has a
LIP extension f,: Y—~R". Let (¢;);c; be a LIP partition of unity subordinated to
the cover {YN\B}U{U,|bcB} of Y. Set J={jcI|Bnsptp,=0}. For each jeJ
choose beB with spto,cU, and set g;=f,. Then g(x)=_3,., @;(x)g;(x)
defines a LIP map g: X—~R" If x¢B and ¢;(x)=>0, then i€J and g;(x)=f(x),
whence g(x)=f(x). O

5.8. Lemma. Let % be an open cover of a metric space X satisfying the follow-
ing conditions:

(1) If Ue% and V is open in U, then VEU.

2) If Uand V are in U, then UUVEXU.
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() If {Uli€I} is a pairwise disjoint subfamily of U, then U{Uliel}eu.
Then A contains all open sets of X.

Proof. This follows directly from Michael [20, 2.1 (e) and 3.3]. O

5.9. We shall give a general version of Hanner’s theorem and obtain the LIP
result as a special case. Let F be a class of maps between metric spaces. We say that
a metric space X is an ANEy if for every closed set B in every metric space Y, every
F-map f: B—~X has an F-extension g: U—X to an open neighborhood U of B.
Thus ALNE means ANE for F=LIP.

5.10. Theorem. Let F be a class of maps between metric spaces such that the
following conditions are satisfied:
() If f: Y—X isin F and if B is open or closed in Y, then fIB: B—~X isin F.
(2) Let A be open in X, let j: A—~X be the inclusion, and let 2 Y—~A. Then
fEF if and only if jfEF.
(3) If f: Y—X is a map such that every point in Y has a neighborhood U such
that fIUEF, then fEF.
Suppose that X is a metric space such that every point in X has a neighborhood
which is an ANEg. Then X is an ANEg.

Proof. The proof of Hanner [13, 3.1] shows that every open subset of an ANE
is an ANE,. Hence every point of X has an open neighborhood which is an ANEp.
Let % be the family of all open subsets of X which are ANEp’s. Then # is an
open cover of X. It suffices to show that % satisfies the conditions of 5.8. The con-
dition (1) follows from the first remark of the present proof. The condition (3) is
proved exactly as in Michael [20, 4.1 (c)]. To prove (2), we can follow Hanner’s
proof [13, 3.3, a)] with a slight modification. Indeed, the maps g and F constructed
in the proof need not be in F. To arrange this, we choose the sets Yy, Y, so that
Y,nY,=0. Then choose open neighborhoods V; of Y; such that VinV,=0.
Let V,=Y\(ViuV,). Then g|(UynV,)uUB is in F, since it is locally in F..
Replacing Y; by ¥; we may thus assume that g is in F. To show that the map F is
in the family F, we observe that the sets W= UNY, and W,=U,\Y, form an
open cover of U and F|W;=g|W;, i=1,2. O

5.11. Corollary. Let X be a metric space such that every point has a neigh-
borhood which is an ALNE. Then X is an ALNE. O

5.12. Theorem. Every LIP manifold is an ALNE.
Proof. Let M be a LIP manifold. Every point in M has a neighborhood U

lipeomorphic to R" or R?. Since the property ALE is obviously a LIP invariant,
it follows from 5.7 that U is an ALE and hence an ALNE. By 5.11, M is an ALNE. O

513. Theorem. Let M be a LIP submanifold of R". Then M is a LIP neigh-
borhood retract of R".
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Proof. Since M is locally compact, it has an open neighborhood U such that
M is closed in U. By 5.12, the identity map M —~M has a LIP extension to an open
neighborhood V of M in U. [

5.14. Approximation. Suppose that f: X—Y is a map between metric spaces
X, Y. It is natural to ask whether f can be approximated in some sense by LIP maps.
If Y is too general, the answer is negative, as is seen from the following counter-
example: Let X=[—1, 1], let f(x)=(x, x sin (1/x)), f(0)=(0, 0), and let ¥Y=im fc
CR?. Then Y is an arc which is not locally rect fiable at 0. If g: X—Y is LIP, then
im g lies entirely either in the left half plane or in the right half plane. Thus f cannot
be approximated by LIP maps.

We shall show that the approximation is always possible it ¥ is a LIP manifold.
Moreover, the approximating map can be obtained from f by a small homotopy.
A relative version will also be given.

5.15. Function spaces. Given two metric spaces X, Y we let T(X, Y) denote the
set of all maps f: X—Y. We shall use the majorant topology in T(X, Y). A basis
for this topology consists of sets U(f, &)={g|d'(f(x), g(x))<e(x) for all xcX}.
Here d’ is the metric of ¥, f€T(X, Y), and e: X—(0, =) isan arbitrary map. This
topology is equal to the graph topology (Whitehead [31, (5.2), p. 172]), whose basis
consists of sets Wy={f|['(f)cU}. Here I'(f) is the graph of f: X—Y and U
is a arbitrary open set in XX Y. Hence the topology of T(X, Y) is independent
of d’.

The elements of U(f,e) are called e-approximations of f. A homotopy
h: XX1-Y is called an e-homotopy if h, is an e-approximation of 4, for every 7¢1.

Let X, Y, Z be metric spaces, and let ¢: Y—~Z be a map. Then ¢ induces
a function ¢,: T(X, Y)->T(X,Z) by ¢,(f)=¢f. Using the graph topology, it
is easy to give a straightforward proof for the following result:

S.16. Lemma. o¢,: T(X, Y)>T(X, Z) is continuous. []

5.17. Theorem. Let M be a LIP manifold, X a metric space, f: X—~M con-
tinuous, &: X—(0, o) continuous, and ACX closed. Then there is a continuous
0: A—~(0, =) such that if g: A—~M is LIP and a 5-approximation to f|A, then g
has a L1P extension u: X—~M which is e-homotopic to f. Moreover, if fl4 is LIP
and g=f|A, the homotopy can be chosen to be fixed on A.

Proof.  Special case: M is an open subset W of R". We may assume that ¢(x)<
<d(f(x), R™\W) for all xcX. We show that d=¢|4 satisfies the conditions of
the theorem.

So let g: A—W be a LIP map, which is an ¢|4-approximation to f|4. For
every x€X choose an open neighborhood U, as follows: If xcX\ 4, then U,c
CXN\A and d(fU,)<infeU,. If x€A, then g|U,nA is Lipschitz. By 5.6, we
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can choose a LIP extension g.: X—R" of g/U,nA. We may assume, replacing
U, by a smaller neighborhood, that |g,.(y)—f(y)|<e(y) for all yeU, and for all
x€A. Let (¢,)scx be a LIP partition of unity subordinated to the cover (U,), .
For each x€X define u,.: X—R" by u,=g, if xé4 and by u,(y)=f(x) if
xX€X\A4 and yeX. Set u= D ..y p,u,. Then u is clearly LIP. If a€A and
¢ (@)=0, then u.(a)=g.(a)=g(a), whence u(a)=g(a). If y€X and ¢,(y)=0,
then |u,(»)—f(»)|<e&(y),w hence |u(y)—f(y)|<e(). Setting h(x, 1)=(1—1)f(x)+
+tu(x) we obtain an s-homotopy from f to u. Since e(x)<d(f(x), R\ W),
imhc W. If g=f|A, h is fixed on A. The special case is proved.

General case. By 4.2, there is a LIP embedding of M into a euclidean space
R" for some n. From 5.16 it follows that we may assume M CR". By 5.13, there
is a LIP retraction r: W—M of an open neighborhood W of M. By 5.16, there
is a continuous d: X (0, «) such that if v: X—~W is a J-approximation to f,
then rv: XM is an e-approximation to rf=f. We may assume 6(x)<d( f(x), R"™ W)
forall x€X. Let g: A—~M be LIP and a §|4-approximation to f|4. By the special
case, g has a LIP extension v: X—W which is d-homotopic to f in W. Then
u=rv: X—~M 1is a LIP extension of g. If Ah: XXI—~W is a d-homotopy from f
to v, then rh is an e-homotopy from fto u in M. If g=f|A and if 4 is fixed on A4,
then also r# is fixed on 4. [J

5.18. Corollary. Let M be a LIP manifold, X a metric space, f: X—~M
continuous, and ¢: X —~(0, =) continuous. Then there is a LIP map g: X—~M which
is e-homotopic to f. Moreover, if f|A is LIP for a closed set ACX, the homotopy
can be chosen to be fixed on A. [

6. General position

6.1. General position is an important tool in PL topology. A typical example
is the following result: Let P and Q be compact polyhedra of dimensions p and ¢
in the interior of a PL n-manifold M. If p+g=n—1, there is for every ¢=0 a
PL homeomorphism 4: M—~M such that d(h,id)<e and PnhQ=0. In this
section we try to find LIP analogues of results like this. It turns out that on a LIP
manifold, polyhedral conditions can often be replaced by assumptions concerning
rectifiability and Hausdorff measure. For example, we shall prove a LIP version
of the above result, assuming that P is p-rectifiable and Q is of Hausdorff (g+1)-
measure zero.

6.2. Hausdorff measure and rectifiability. An excellent reference on these topics
is Federer [10], and we shall use his terminology and notation. Thus we let #(X),
=0, denote the g-dimensional Hausdorff measure [10, p. 171] of a separable metric
space X. Recall that #° is the counting measure. If /is an L-Lipschitz map of X,
then #1(fX)=L1#7(X). Hence the following properties are LIP invariants of
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a separable metric space X: (1) #4(X)=0, (2) #%(X) is o-finite, (3) the Haus-
dorff dimension of X is ¢. For a compact space X, the property #?(X)<-<o is also
a LIP invariant.

A metric space X is p-rectifiable if there is a bounded set FCRP and a Lip-
schitz map of F onto X. If X is a countable union of p-rectifiable sets, it is countably
p-rectifiable. Equivalently, X is countably p-rectifiable if there is a set FCRP and
a LIP map of F onto X. Thus countable p-rectifiability is a LIP invariant property.

We shall use the phrase “u almost all” in its usual sense, meaning all except
for a set of u measure zero, and we may omit g if it is the ordinary Lebesgue measure
(#" in R"). Following Federer [10], we do not make a distinction between measure
and outer measure.

6.3. Lemma. Suppose that ACR? with H#P(A)<oe, a1 A—R" is Lipschitz,
ECR", and g: EXA—~R" is a map such that ¢(x,y)=(g(x,¥),y) defines a Lip-
schitz embedding ¢: EXA—~R"XA. Suppose also that QCR" with H(Q)< oo
and that 0=k=p+q. Then #*(Q(u+g)d)<ece for #P*17* almost all x€E,
where g.(»)=g(x,¥). In particular, if p+q=n, then Qn(u+g)A is finite for
almost all x€E.

Proof. Setting Y (x, )= (x, y)+(x(),0) we obtain another Lipschitz em-
bedding : EXA—~R"XA. Indeed, if ¢;: im ¢ ~EX A is the inverse of ¢, then
Yy (x, »)=0¢1(x—a(y), y) defines a Lipschitz inverse ,: imy—~EXA of . By
[10, 2.10.45], H#PT1(QX A)<e<o. Hence the set Q;=y[QXA] is of finite #P*1
measure. For x€R" set D(x)={ycR?|(x,y)€0,}. Applying [10, 2.10.27] with
the substitution Yi>R", Z>A, A—>Q;, m—p+q—k yields #*(D(x))<e for
AP almost all x€R™. If a(y)+g(x, y)=z€0Q, then (z, )=y (x, ) and yeD(x).
Hence Qn(x+g)ACp,y[xXD(x)] where p,: R"XA-R" is the projection. The
lemma follows. [J

6.4. Lemma. Suppose that ACR?, a: A—~R"is LIP, ECR", and g: EXA—~R"
is @ map such that ¢ (x, y)=(g(x, y).y) defines a LIP embedding ¢: EXA—~R"XA.
Suppose also that QcR" with #1(Q)=0 and that O0=k=p+q. Then
HH(Q (a+g)A)=0 for #PT4* almost all x€E. In particular, if p+q=n, then
0 (oa+g,)A=0 for almost all x<E.

Proof. A slight modification of the proof of 6.3. [

6.5. Theorem. Suppose that PCR" is countably p-rectifiable and QcCR"
with #1(Q)=0. If p+q=n, then Q"(P+x)=0 for almost all xcR".

Proof. Apply 6.4 with E=R" and g(x,y)=x. O
6.6. Notation. We let |x|=max (|x{], ..., |x,]) denote the Banach norm of

a vector x€R". For z¢intI”, let w,: I">I" be the PL homeomorphism defined
by w,(x)=x+(1—|x[[)z. Thus w, is the z-cone extension of id|0I" to I"=0(0I").
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6.7. Lemma. Let PCintI" be countably p-rectifiable and let QCint I" with
HUQ)=0. If p+q=n, then H*T"(Qw,P)=0 for almost all zcintI". If
p+q=n, then Qnw,P=0 for almost all zcintI".

Proof. Choose a LIP map « of a set 4R onto P. Set E=int /" and define
g: EXA—~E by g(z,y)=(1—|a(p)|)z. Then ¢(z,»)=(g(z, »),») defines a LIP
embedding ¢: EXA—R"XA, since it has a LIP inverse ¢,: im ¢ ~EX A, defined
by @1(z, »)=(z/(1—[«()]), »). Since a+g,=w,x, the lemma follows from 6.4. [

6.8. Definition. A LIP isofopy of a metric space X is a level preserving
lipeomorphism F: XXI—~XXI such that F,=id. Here we use the customary
notation F(x, t)=(F(x), t). If d(F(x),x)<¢ for all x€X and t€l, F is said to
be an e-isotopy. If F|(X\U)XI=id, F is supported by U.

6.9. Theorem. Let M be a LIP n-manifold, let PCint M be compact and
countably p-rectifiable, let QC M with #9(Q)=0, let U be a neighborhood of
PnQ, and let ¢=0. Then there is a LIP e-isotopy F of M supported by U such that
HPTN(Q NF,P)=0. For p+q=n this means Q nF,P=0. If M is a PL manifold,
F can be chosen to be a PL isotopy.

Proof. Choose LIP n-balls B, ..., B, in Uso that PnQc U {int B;|1=i=k}.
Choose lipeomorphisms ¢;: B;~I1" and set P;=¢,[P nint B,], O, = ¢,[0 nint B,].
By 6.7, there is z;€int I" such that #7"97"(Q; nw, P;)=0. The Alexander trick
[25, p. 37] gives a PL isotopy of I" fixed on 9I" and finishing with W, - With the aid
of ¢, we can transfer this isotopy to a LIP isotopy of B;. Extending this isotopy
by the identity, we obtain a LIP isotopy F!' of M supported by B; such that
HPHITN(Q NFL P nint B)=0. Setting Py=q,[Fi P nint By], Q= ,[Q Nnint By] we
similarly choose z, with %I"Lq‘"(szwzsz):O and obtain a LIP isotopy F? of
M supported by B, with #P*"(QNF]F}Pn(int By uint By))=0. After &
steps we have a LIP isotopy F=FF. F' of M supported by U ‘such that
HPT4T"(Q NF, P)=0. Since the points z; can be chosen to be arbitrarily close to
the origin, F can be chosen to be an e-isotopy. If M is PL, all maps can be chosen
to be PL. [

6.10. Theorem. The condition H#*t97"(Q nF,P)=0 of 6.9 can be replaced
by A#P"(PnF,Q)=0.

Proof. Replace the isotopy F by its inverse F~1: MXI-MXI. O

6.11. Remark. There are several obvious modifications of 6.9. We may use
6.3 instead of 6.4 and obtain a finiteness condition on H#?*?7"(Q NF,P) instead
of the zero condition. For example, if P? and Q¢ are compact LIP submanifolds of
M" with p+g=n, then there is a small LIP isotopy of M which carries P onto P’
with Q NP’ finite.
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6.12. Applications. We shall give three applications of LIP general position.
First, we show that removing a set of sufficiently small Hausdorff dimension does not
change the lowdimensional homotopy groups of a LIP manifold. Next, we show that
for a compact set XcR", #771(X)=0 implies dem X=q where dem means
demension in the sense of Stanko. Since dim=dem, this is a stronger result than
the classical dim X=g [14, p. 104]. The third application deals with PL engulfing.
The usual engulfing theorems [26, Chapter 4] are concerned with engulfing a poly-
hedron of dimension r. Using 6.9 we can show that the polyhedron can often be
replaced by an arbitrary compact set of #"*! measure zero.

6.13. Theorem. Let M be a LIP n-manifold without boundary, let E be closed
in M with #9(E)=0, and let x,€ M\ E. Then the homomorphisms m(M\E, x,)~
—7;(M, x,) induced by the inclusion are injective for 0=i=n—qg—1 and surjective
for 0=i=n—q.

Proof. Suppose first 0=i=n—gq. Let a€n;(M, x,). By 5.18, o has a LIP
representative f: (I°, 0I')~(M, x,). By 6.9, there is a LIP isotopy of M which carries
im f off E and keeps x, fixed. Hence f is homotopic rel d/' to a map into M\ E.

Next assume 0=i=n—qg—1. Let f: (I', )I')~(M\E, x,) be a map homotopic
to the constant map ¢ rel 91’ in M. We must show that f~crel 9I' in M\ E. By
5.18, we may assume that f'is LIP. Choose a homotopy H: (I'XI, dI' XI)—~(M, x,)
from f to ¢. By 5.18, we may again assume that A is LIP. Now use 6.9 to isotope
im H off E keeping x,uim f fixed, and the theorem follows. [

6.14. Remarks. The above result is true, of course, for PL and DIFF mani-
folds. For i=0 it means that no component of M is contained in E if #"(E)=0
and that each component of M contains exactly one component of MN\E if
A" Y(E)=0. These are classical results, see [14, Theorem VII 3, p. 104 and Cor-
ollary 1, p. 48]. The theorem is also true for manifolds with boundary. A special case
-of 6.13 was proved in [17, 3.3].

6.15. Theorem. Let X< R" be compact with #7"*(X)=0. Then dem X=q.

Proof. We shall use the dual demension Dem of Stanko [28], see Edwards
[9, Proposition 1.2 (2”)]. Let P be a closed polyhedron in R" with dim P=p=n—
—qg—1, let U be a neighborhood of X NP, and let ¢=0. Then P is countably
p-rectifiable. By 6.10, there is an e-isotopy of R" supported by U which carries X
off P. Hence dem X=q. [

6.16. Theorem (Engulfing). Suppose that M is an r-connected PL n-manifold
without boundary with r=n—3. If XcM is compact and H#"T*(X)=0, then X
is contained in a PL n-ball.

Proof. Choose a compact polyhedral neighborhood Y of X and a triangula-
tion K of Y such that no simplex of K meets both X and 9Y. Let J; be the (n—r—1)-
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skeleton of K and let J,={A4€K|4 nX=0}. By 6.10, there is a PL homeomorphism
h: M—~M such that |J;]nhX=0 and A|(M\Y)u|/|=id. Let L be the sub-
complex of the barycentric subdivision of K consisting of those simplexes which
do not meet |J;|U|J,]. Then dim L=r. By the engulfing theorem of Stallings
[26, p. 150], || is contained in the interior of a PL ball Bc M. Using the map de-
scribed in 2.43 (not in 2.42!), we find a PL homeomorphism g: M—M which
keeps |L|U|Ji|UlJ|U(MN\Y) fixed and maps int B onto a set containing hX.
Then X is contained in the PL ball A71gB. O

6.17. The above results deal with general position of sets. We have been less
successful with the general position of maps. For example, we would like to show
that a LIP map M"—~N?*! can be LIP approximated by a LIP embedding, but we
have not even been able to prove this in the euclidean case. However, we have estab-
lished the following weaker result:

6.18. Theorem. Let M be a compact LIP manifold with oM=0, and let
g: M—~R**Y be a LIP map. Then for every e=0 there is an injective LIP map
g0 M—~R*™ Y such that d(gy, g)<e and lip (g;—g)<e.

Proof. Since the result is rather unsatisfactory, we only give a sketch. Let
E be the space of all LIP maps M —R**!. Then E is a Banach space with the norm
| fll=supeey | f)|+lipfi For &=0, the set G,={f€Eld(f*(y)=<e for all
YER®™H1} is open in E. By Baire’s theorem, it suffices to show that G, is dense. Let
fEE. Cover M with interiors Uy, ..., U, of LIP balls such that d(U;)=<e for all i.
Using 6.4 we can find a map f; such that f;(x)=f(x) for xe M\ U, fIM\U]n
AUy =0, and | f;—f]| is small. Then modify similarly f; in U,. After k steps we
obtain a map f; such that each fiber of f; is contained in some U;. Thus f,€G,, and
the theorem follows. [

7. Collaring and the Schonflies problem

7.1. In this section we first prove a LIP version of an important result of
Brown [5], which states that a locally collared set is collared. In particular, the
boundary of a LIP manifold M has a collar in M. Next we prove a Schonflies theo-
rem in the LIP category. In particular, a PL (n—1)-sphere in R" always bounds a
LIP ball.

7.2. Definitions. We let I’ denote the interval [0, 1). Let Y be a subset of
a metric space X. A LIP collar of Y in X is a LIP embedding c¢: YXI'—>X such
that ¢(x,0)=x for all x€Y and im c is an open neighborhood of Y in X. A local
LIP collar is a family (U;, ¢;);e; such that (U;);c; is a cover of Y, U; is open in Y,
and c; is a LIP collar of U; in X.

7.3. Lemma. Let X be a metric space, let YCX, let c¢: YXI'~X be a map
such that ¢(x,0)=x for all x€Y, and let ¢: Y—(0, =) be continuous. Then there
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isa LIP map 6: Y—~(0, 1] such that d(x, c(x, 1))<e(x) whenever x€Y and 0=t<
<0 (x).

Proof. For x€Y set g(x)=sup {t|c[xX[0, ]| B(x, e(x))}. It is easy to see
that g is lower semicontinuous. By 5.4, there is a LIP map §: Y—R! such that
0<d(x)<g(x) forall x. [

7.4. Theorem. Let Y be a subset of a metric space X. If Y has a local LIP
collar in X, then Y has a LIP collar in X.

Proof. Let % be the family of all sets U open in Y such that U has a LIP collar
in X. Then % is a cover of Y. It suffices to show that % satisfies the conditions of 5.8.
The condition (1) is clear. Next it is easy to verify that Brown’s proof for the TOP
case of (3) [26, Lemma 1.7.1, p. 35] yields a LIP collar if all given collars are LIP.
We shall prove (2) using an idea of Connelly [6]. However, since we do not assume
that Y is closed in X, an additional argument is needed.

Assume that U, U,€%, and set U=U,uU,. Let ¢;: UXI'>X be a
LIP collar of U;, i=1,2. Applying 7.3 we find LIP maps &;: U,~(0,1] such
that  d(x, ¢(x, 8,(x)1))<d(x, UNU) for all (x,2)€U;XI’, i=1,2. Thus
d(c;(x, 6;(x)r),UNU;)=0 for all (x,)€U;xI". Replacing ¢; by the LIP collar
(x, t)—>c;(x, 6;(x)7) we may therefore assume that U is closed in N=im ¢, vim ¢,.
Moreover, we may assume that ¢;*U= U;x0. From now on, all closures will be
taken in N. Choose a LIP partition of unity (¢, ¢,) on U such that spt¢,=
=A;C U;. Then choose an open neighborhood ¥; of 4;in N such that V,cim ¢;.
Setting U/ =V;nY we have U= U, UU,. By 7.3, there are LIP maps §;: U/~ (0, 1]
such that d(x, ¢;(x, 6;(x)t))<d(x, N\V;) for all (x,¢)€U/XI'. Setting B;=
={cf(x, 6:(x)t)|x€A;, 0=r=1/2} we thus have B,CV;. Since B is closed in imc;
and B;cV,cim¢;, B; is closed in N. Replacing U, by U/, ¢; by ¢/ (x, 1)=(x, 6;(x)1),
and N by imc¢juim c¢j, we may therefore assume that ¢;[4;%[0, 1/2]] is closed
in N for i=1, 2.

Set M=NuUx[—1,0], where (x, 0) is identified with x. We shall construct
a lipeomorphism g: N—M such that g(x)=(x, —1) for xcU. Then (x,t)—
—g~1(x, t—1) will give a LIP collar of U in N, and hence in X.

Define A;: UX[—1,1)>M by h(x)=c;(x) for x€U,XI" and by h,(x)=x
Otherwise. It is easy to see, for example by 2.22, that /, is a LIP embedding. Let
Ji: U XI’>U;xX[—1,1) be defined by f(x, 1)=(x, r.(t)) where r.(t)=t for
1¢[1/2,1) and r, maps [0, 1/2] affinely onto [—¢,(x), 1/2]. From 2.40 it follows
that f; is a LIP embedding. Next define g,: N—~M by g, (x)=h(f;(h;*(x))) for
x€im¢; and by g;(x)=x otherwise. Since ¢,[4;X[0, 1/2]] is closed in N, g, is
a LIP embedding. Moreover, h;'g;N={(x, 1)|x€U,, —¢;(x)=t<1}. Let
fo: hi'giN—>UpX[—1,1) be defined by fy(x, 1)=(x, s.(r)) where s,(t)=t for
t€[1/2,1) and s, maps [—¢,(x), 1/2] affinely onto [—1,1/2]. By 2.40, £, is a
lipeomorphism. Define g,: gy N—+M by go(x)=hy(fo(hy"(x))) for x€im hyng, N
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and by gz(x);—-x otherwise. Since /[ 4,X[—1, 1/2]] is closed in M, g, is a lipeo-
morphism. Then g=g,g,: N—~M is the sought-for lipeomorphism. [

7.5. Corollary. If M is a LIP manifold, then OM has a LIP collar in M.

7.6. Schonflies problem. Let f: S""'—S" be a topological embedding. If
n=2, then fcan be extended to a homeomorphism S"—S" according to the classical
Schonflies theorem. Because of the wild embeddings, the result is not true for n=3.
However, if /' can be extended to an embedding g of an annulus B"™\B"(a), 0<a<1,
then f can be extended to a homeomorphism of B" onto D where D is the component
of S™fS""! containing g[B"™\B"(a)]. This result is due to Brown [3] and also
to Mazur [18] and Morse [22]. Similarly, we may consider the CAT Schonflies
problem, where CAT is one of the categories DIFF, PL, LIP, TOP: Suppose that
Bis a CAT n-ball, S a CAT n-sphere, fa CAT embedding of a neighborhood of 0B
in Binto S. Does f|0B have an extension to a CAT embedding of B into S? Note
that in this case, f0B has a CAT collar in D where D is as above. In other words,
D is a CAT manifold with boundary fdB. Stated in this form, the answer is known
to be negative for CAT=DIFF, since there are diffeomorphisms S"~*—S"!
which cannot be extended to a diffeomorphism of B". In the PL case, the answer is
positive for n#4 and unknown for n=4. We shall show that the answer is posi-
tive for CAT=LIP. Without any collaring condition, a LIP (n—1)-sphere in S"
need not even bound a topological ball. A counterexample can be constructed with
the aid of a fattened Fox—Artin arc, see 3.10.

A quasiconformal Schonflies theorem was proved by Gehring [11], who used
an explicit version of the Mazur—Morse method. His proof needs only slight changes
to yield the LIP theorem. To avoid repetition, we refer to Gehring’s proof as given
in [29, Section 41] and give only the modifications needed in the LIP case.

77. Theorem. Suppose that O<a<1 and that f is a LIP embedding of the
annulus E=B"™B"(a) into S". Then f|S"~' can be extended to a LIP embedding
f*: B"~>S™

Proof. We may assume n=2. We work in the compactified space R" = R" U«o.
With the spherical metric ¢ [29, p. 37], itisa metric space lipeomorphic to S”. More-
over, the identity map is a lipeomorphism of (R", g) onto R" with the euclidean metric.
All complements and closures are taken in R*.

Step 1. (See [29, 41.1].) Suppose that (1) Dy, D, are domains such that
D,nD,=0 and D,uD,cB", (2) B, and B, are open round balls such that B, N
AB,=0 and B,uB,cB", (3)fis a lipeomorphism of C(D, uD,) onto C(B; UB,)
such that f9D,=dB;, (4) f(x)=x ina neighborhood of CB". Then there exists a
lipeomorphism f*: CD,~CB, such that f¥|0Dy=f|0D,. All LIP properties are
taken in the spherical metric.
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The construction of f* is exactly as in [29]. Only the LIP property of f* at o
needs a separate argument. :

The set A=CB"™\ = is (n/2)-quasiconvex in the euclidean metric. Moreover,
A is a locally finite union of closed sets 4, such that each f*|4; is a composite map
of translations, f, /=1, and a single affine map, common to all i. By 2.35, f*|4 is
L-Lipschitz for some L in the euclidean metric. Since |f*(x)—x|<5 for all finite x,
| f*(x)|=|x|/2 for |x|=10. Therefore, for all x, y in CB"(10)\ =, we obtain

a(f* @), f*3) = 1= WA+ f* @R V2 (1+ [ f* ()2) 2
=4Lq(x, y).
Hence f* is LIP at o. A similar argument shows that (f*)~1 is LIP at oo, and Step 1
is proved.

Step 2. (See [29, 41.2].) In addition to (1), (2), and (3) of Step 1, suppose that
(4) 0€D,, (5) CfCB"cB". Then there exists a lipeomorphism f*: CD,—~CB,
such that f*[0D,=f|0D,.

The proof of Step 2 in [29] is also valid in our case except that we must replace
the map g of [29] by the following map g: R"—~R" (which could be used in the
qc case as well): g(0)=0, g(ec)=o, and g(x)=e¢(|x])|x|*x for x#0, o, where
¢: R, >R, is the PL homeomorphism which maps [0, ¢] linearly onto [0, &], [a, 1]
affinely onto [b, 1] and is the identity on [1, ). Then g is a lipeomorphism.

Step 3. The proof of [29, 41.3] can be directly translated to the LIP case.
Since Mobius transformations are diffeomorphisms of S”, they are lipeomorphisms
in the spherical metric of R". This completes the proof of 7.7. [

7.8. Theorem. Let S be a LIP n-sphere, and let S, be a locally LIP flat LIP
(n—1)-sphere in S. Then (S, S,) is lipeomorphic to the standard pair (S", S"~%).

Proof. Choose a lipeomorphism #4: S""'—S;. Let D;, D, be the components
of S\S;. Since S, is locally LIP flat, it has a local LIP collar in D,. By 7.4, it has
a LIP collar ¢: S§;XI'~D; in D,. Then / can be extended to a LIP embedding
S BNO—D, by f(x)=c(h(x/|x]), 1—|x|). By 7.7, i can be extended to a lipeo-
morphism g;: B"-D,. Similarly we find an extension of / to a lipeomorphism
8t R"™\\B"—~D,. Then g, Ug, is a lipeomorphism of (R", S"~') onto (S, S,). Here
R"=R" U< with the spherical metric. []

7.9. Theorem. Let M be a compact LIP n-manifold which is the union of two
open LIP n-balls. Then M is a LIP n-sphere.
Proof. See the TOP case [26, Theorem 1.8.4, p. 49]. [

7.10. Theorem. Let S be a PL n-sphere and let S, S be a PL (n—1)-sphere.
Then (S, S,) is lipeomorphic to the standard pair (S", S*™Y). In particular, the closure
of each component of S\.S; is a LIP n-ball.
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Proof. The theorem is obvious for n=1. Proceeding inductively, we assume
that the theorem is true for n=p, and suppose n=p+1. By 7.8, it suffices to show
that S, is locally LIP flat in S. Let x¢S;, and choose a triangulation (K, L) of
(S, S,) such that x is a vertex. By induction, the PL sphere pair (|Ik (x, K)|, [Ik (x, L)[)
is lipeomorphic to (S?, SP~%). The cone construction yields a lipeomorphism
of (|st (x, K)|, |st (x, L)|) onto (B***, B?). Hence S, is locally LIP flat in S. (J

8. LIP structures of R", S”", and /"

8.1. The aim of this section is to prove the Lipvermutung (LIP Hauptvermutung)
for the manifolds R" and S" for n=4, and for I" for n#4, 5. By this we mean that
if a LIP manifold is homeomorphic to one of these manifolds, it is lipeomorphic toit. A
LIP version of the Poincaré conjecture follows then directly from the corresponding
TOP result, proved by Newman [24]. In fact, this section is a slightly enlarged LIP
version of Newman’s paper. We begin by the LIP version of Newman’s engulfing
theorem [24, Theorem 5]. A subset X of a LIP n-manifold M is called LIP p-dominated
if for every x€X there is a neighborhood N of x and a lipeomorphism f: N—I"
such that f[N nX] is contained in a polyhedron of dimension at most p.

8.2. Theorem (Engulfing). Let M be a LIP n-manifold without boundary, and
let XM be closed and LIP p-dominated with p=n—3. Let V be an open set in M
such that (M, V) is p-connected and X\V is compact. Then there is a lipeomorphism
h: M—~M such that XChV and h=id outside a compact set.

Proof. The theorem is proved by rewriting Newman’s proof in the LIP category.
It is only necessary to be sure that all maps occurring in the proof can be made LIP.
The previous sections of our paper give all the tools needed for this. Since the proof
is long, we must leave the details to the reader. However, we shall give some hints
for this translation work together with some remarks on Newman’s proof [24,
Sections 1—15, pp. 555—569] concerning omission of certain unneeded hypotheses
and correction of some slight inaccuracies.

Lemma 1. To obtain a LIP map ¢, apply 5.4.

Lemma 2. Assume that X is a LIP manifold and F compact. In the proof, set
fi=(1—1)fy+1tf; andreplace f;, by f, and ¢’ by f, for suitable 0<a<1<b. A com-
putation shows that A|n(f,,f;) is LIP. By 2.36, & is LIP. Similarly #~* is LIP.
In the definition of engulfing, the isotopy condition (2) can be omitted.

Theorem 1. Assume that Y and Z are LIP manifolds, F is compact, and g;
is LIP. In case 1 of the proof, assume that g, is also LIP. The set ¥ is chosen to be
AXint; F where A is a relatively compact neighborhood of o. Defining ¢ (y, z)=
=(d(y, 0)go(2)+d(y, dA) g1 (2))/(d(y, 0)+d(y, dA)) yields a LIP engulfing /. The
theorem is only needed with (4.3) replaced by (4.3").
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Theorem 3. Assume that L, K are compact and f'is LIP. Since f” is constructed
by a coning process, it follows from our § 2 that /” is LIP.

Theorem 4. Assume that L, K are compact and f is LIP. Newman’s map ¢
seems to be a standard mistake of the second kind (see 2.43), but this is easily cor-
rected.

Theorem 6. Assume that H, L, I’ are compact, M a LIP manifold, X LIP
p-dominated, and f LIP. Replace the condition dim I'=p by the following one:
dim I'=n and dim H=p. Indeed, the theorem will be applied on p. 569 with the
substitution I'—~G* where dim G* may be n—2. Claim that g is LIP and % is a
lipeomorphism.

Section 11. Replace the additional condition of B(g) by the following one:
H>\_f~'V has a neighborhood in H of dimension =g. This helps in the proof of
C(g, 1)=>C(g, m) and allows us to change (11.2) into the form: int ¢ is a neigh-
borhood of HN\ f~1V in H. This in turn will imply in Section 12 that ¢? is a prin-
cipal simplex of H.

Lemma 6. In the proof, choose I'y so that dim H\P=gq.
Section 12. By 5.18, the extended map f can be chosen to be LIP.

Lemma 7. Assume that G, L, K are compact, dim G=n, dim K=p, and f
is LIP. In the proof, we could not see why the map g, satisfies (13.3): g;+,|L VG"=
=f’|L UG*, although obviously g;,(x)=f"(x) for x€ L U(G* N D). We obtained g;,
by applying 5.17 with the substitution X—G, Y—~LUG*UD, f—f", g—~(f'|L WG U
U(g’|L uD). Moreover, when defining the polyhedron G*, one should identify points
in Lu(D nG% with the same g,-image, not only in D nG®* since otherwise f*|L*
is not necessarily an embedding. When applying B(g—1) on p. 569, the new con-
dition of B(g—1) is satisfied, since W=D"\p[KuU|;Q{|] is a neighborhood of
D\ f*~'h,V in D* and WcCpP.

The rest of the proof is essentially unchanged. [J

8.3. Theorem. Let X be a metric space which is the union of open sets ViC
C VoC... such that every V, is lipeomorphic to R". Then X is lipeomorphic to R".

Proof. The corresponding TOP result is due to Brown [4]. It is easy to check
that all maps in Brown’s paper can be made LIP. [

8.4. Theorem. Let M be a LIP manifold homeomorphic to R", n#4. Then
M is lipeomorphic to R".

Proof. The case n=1 follows from 3.11. For n=2, Theorem 8.3 implies
that it is sufficient to show that each compact set 4 M 1is contained in an open
LIP ball. We divide the rest of the proof into two cases: 2=n=3 and n=5.

Let n=2 or 3, and let 4 M be compact. Choose a homeomorphism /#: M —R"
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and a closed n-cube Q containing 4. Divide Q into congruent closed cubes Oy, ..., Oy
so that for each i, P,=0Q,u...uQ; is a PL n-ball, P;,nQ;,, is a PL (n—1)-ball
in 90,1, and Q;=h"1Q; is contained in an open LIP n-ball B;c M. It suffices to
show that P/=h"1P; is contained in an open LIP ball for all i=1, ..., k. This
is clearly true for i=1. Proceeding inductively, assume that P; is contained in an
open LIP ball B.

We can obviously choose an open neighborhood U of 0}, , in B;.; and a homeo-
morphism f of U onto an open set ¥’ R" such that fQ;,,=I"""XI and f[UNP/]C
c {x€R"|x,=0}. Choose £€(0,1) such that (1+&)(I""*XI)CV and (1+gI""'X
X[0, e]lf[UNB]. Let S be the PL (n—1)-sphere d((1+¢&)I"*X[e, 1+¢]), and
let S; be the PL (n—2)-sphere 9((1+&)I" *Xg). Choose a lipeomorphism g of
U onto an open set WcR". Then ¢=gf~': V—W is a homeomorphism. For
every 6=0, there is a homeomorphism u of ¢S onto a PL (n—1)-sphere E such
that d(u,id)<d. For n=2 this is elementary, and for n=3 this follows from the
approximation theorem of Bing [1, Theorem 1]. The same argument in the dimension
n—1 yields a homeomorphism v of u¢S; onto a PL (n—2)-sphere FCE such
that d(v, id)<4. Let D,, D, be the components of EN\F, and let D be the bounded
component of R"™\ E. Choosing ¢ small enough, we may assume that g[0;,,\BlcD,
Dcw, D,cg[BnU], and EngQ; ,CD;.

By 7.10 or by the PL Schénflies theorem, D is a LIP ball. Choose a lipeomorphism
g: D~I". Also by 7.10, (E, F) is lipeomorphic to (91", dI"~"). Using the cone
construction, we may therefore assume that gD,=dI" NR’.. It is easy to construct
LIP maps o, f: I"1—(0, 1) such that a|dI" "= BloI" '=0, {(x, 1)|—1=t=a(x)}C
cq[Dng[BnU]], and ¢q[DngQ;,,Jc{(x, )|—1=t<B(x)}. Applying 2.40 we
find a lipeomorphism r: I"~I" such that r|dI"=id and r(x, «(x))=(x, f(x)) for
all x€I"~L. Define w: M—M by w|g"1D=g g 'rqg|g='D and by w| M\ g * D=id.
Then w is a lipeomorphism, and wB is an open LIP ball containing P; ;. The case
2=pn=3 is proved.

Suppose that n=5. Assume that 4 M is compact. Using the proof of New-
man [24, Theorem 7, p. 570], attributed by Newman to Connell, we can first show
that 4 can be covered with two open LIP balls. The proof makes use of 2.42 and 8.2.
Then a slight modification of this proof shows that 4 can be covered with a single
open LIP ball. We shall give the latter proof in detail.

We may assume that 4 is a locally flat TOP n-ball. Choose LIP balls By, B,
with Acint B, uint B,. Using lipeomorphisms B;—~I" we introduce PL structures
on B, i=1,2. Choose smaller concentric “cubes” C;cint B, D;cintC;, i=1,2,
such that A4cint D, uint D,. Choose a triangulation K of C, such that a sub-
complex triangulates D, and no simplex meets both dD; and dC;. Set M;=
=M\ C;, Vi=int B\C;, X;=|K*\C,;. Since M, and V; are 2-connected, it
follows from 8.2 that there is a lipeomorphism /;: M;—~M; such that 7,V;DX;
and /;=id near OM;. We extend h, by identity to a lipeomorphism /,: M—M.
Then U,=h, int B; is an open LIP ball and |K?| uC,cCUj;.
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Next choose a derived subdivision of X, and let L be the dual skeleton of K2.
Choose a TOP ball 4; such that Ac 4, D, uD, and A4,\int A is homeomorphic
to S"7'XI Set M,=int A4,, V,=int 4\ A, X,=|L|nint 4,. Since M, and V,
are (n—3)-connected, it follows from 8.2 that there is a lipeomorphism /,: My— M,
such that A, V5 X, and h,=id near dM,. We extend 4, by identity to a lipeo-
morphism /y: M—~M. Then |L|U(M\A;)Chy[M\ A]=U,.

We have now the situation described at the end of 2.42. Hence there is a stretching
lipeomorphism /: C,~C, such that D,cCh[U;nCy] U(UynCy) and AlDC,=id.
We extend / by identity to a lipeomorphism 4: M—M. Since 4 maps simplexes
of K onto themselves, D;chC;chU;. Thus M=hU, uU,, and A4 is contained
in the open LIP ball 4, hU,. 0O

8.5. Theorem. Let M be a LIP manifold homeomorphic to S", n=4. Then M
is lipeomorphic to S™.

Proof. Fix a point x€M. Choose a LIP ball neighborhood B, of x. By 8.4,
S™\x is lipeomorphic to R". Hence there is a LIP ball B, S™\x with dB,Cint B,.
The theorem follows from 7.9. (0

8.6. Theorem. Let M be a LIP manifold homeomorphic to 1", n#4,5. Then
M is lipeomorphic to I

Proof. By 3.13, the double DM of M is a LIP manifold containing M as a
locally LIP flat submanifold. By 8.5, DM is a LIP n-sphere and M is a LIP (n—1)-
sphere. By 7.8, M is a LIP n-ball. O

9. Open problems

9.1. Elementary problems. (1) Can every LIP n-manifold be LIP embedded
into R**1?

(2) The LIP annulus conjecture for n=2: Let S; and S, be disjoint locally
LIP flat LIP 1-spheres in a LIP 2-sphere S, and let D be the domain whose boundary
is §3US,. Is D lipeomorphic to S1X7?

(3) Is a LIP arc in R? always locally LIP flat?

(4) More generally, is a locally TOP flat LIP arc in R" always locally LIP flat?

(5) Does a locally quasiconvex metric space have a basis consisting of quasi-
convex sets?

9.2. Advanced problems. (1) The LIP annulus conjecture for n=3.

(2) Does every TOP manifold have a LIP structure?

(3) Lipvermutung: If two LIP manifolds are homeomorphic, are they lipeo-
morphic?
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(4) If two PL manifolds are lipeomorphic, are they PL homeomorphic?
9.3. Remarks. By Siebenmann [27, 2.1, p. 137], there exists a LIP manifold

which has no PL structure. The answers to the questions (3) and (4) of 9.2 cannot be
both positive, since they would yield the PL Hauptvermutung.
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