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1. Introduction

1.1. A map f ofa metric space (X, d) intoa metric space (f, d') is said to be a

Lipschitz map if there is a constant Z such that

(r.2) d'(f(*),/(y)) = Ld(x, y)

forall x,yinX. If every x€X hasaneighborhood Usuchthat flu is Lipschitz,

/is said to be locally Lipschitz (abbreviated LIP). If X is compact, every LIP map

of Xis Lipschitz. We also let LIP denote the category of metric spaces and LIP maps.

An isomorphism in the category LIP is called a lipeomorphism. Thus a lipeomor-
phism is a bijective map f such that both / and Ji-L are LIP.

Lipschitz topology can be defined as the study of those properties of metric spaces

which are invariant under lipeomorphisms. We shall be particularly interested in
Lipschitz manifulds: metric spaces which are locally lipeomorphic to a eucli-

dean space.

Let us compare LIP with three important categories: TOP:topological spaces

and continuous maps, pt :polyhedra and PL maps, and DlFF:smooth mani-

folds and smooth maps. Without an essential loss of generality, we may assume
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that each polyhedron and each smooth manifold is embedded in a euclidean space.

Then they are metric spaces, and PL and smooth maps are LIP. Thus we have
the diagram

3it")ttt*roP
where each arrow is a forgetful functor. Alternatively, we could use locally metric
spaces, see 3.4.

There is an extensive literature on the topology of manifolds in the categories

TOP, PL, and DIFF. Lipschitz manifolds have been mentioned in some papers,

especially in Whitehead [31], but no systematic treatment seems to be published

so far.
In this paper we give the basic geometric tools needed in Lipschitz topology.

These include the cone construction, extension and approximation of maps, gen-

eral position apd collaring. We also give some results concgrning LIP embedding,
the Schönflies problem, and the LIP Hauptvermutung. For example, we show that
for nl4, Rn has a unique LIP structure.

7.3. Notation and terminology. Our set-theoretical and topological notations
are fairly standard. We let ,4\.8 denote the set-theoretical difference of A and B,
and CA is the complement of A in a given space. A singleton {x} is usually written
simply as x. The symbols 0A and int A arc used, somewhat ambiguously, for both
manifolds and subspaces. A map is always continuous, a function need not be.

We let Än denote the euclidean n-space, and Ä! is the closed upper half space

{x€R'lx">0}. The standard orthogonal basis for Rn is written as (er,...,eo).
lf p=n, we identify .Rp with the subspace ÄPXO of Ä' by (xr,-..,xo):
:(xt,...,xo,0,...,0). We shall use the euclidean norm l:cl :(xl+...+xl)r/2 and
the euclidean distance 'd(x,y):lx-yl in lT. Given two sets A, B in N, AB is

their rectilinear join. Given two vectors x, y in Än, we let x. y denote their inner
product, and

ang (x, /) : arc 
"o, ffi, ac(x, y): arc cos fr#

are the angle and the acute angle between x and y, with the special conventions
ang(x,!):n, ac(x,Y):n12, if x:0 or Y:0'

When we are dealing with a metric space X, the letter d will stand for the metric
of X. If we consider maps of X into another space Y, we shall use d' for the metric
of Y. The distance between two non-empty sets A, B in X will be written as d(A, B),
and the diameter of A by d(A) with d(0)=0. If ,S is a set and it f, g: ,S*X are

functions, then d(f,g):sup {d(f(*),g(x))lx€S} is the distance between f and g.

For a(X and r>0, weletB(a,r)denotetheopenbill {xld(x,a)=r}. If X:R",
we may use the notation B'(a, r) for B(a, r) and the abbreviations ,Bn(r): B"(0, r),
B":8"(l). For spheres, we write S"-t(o, r)=\Bn(a, r): {x€R'l lx-al:r}, S"-1(r):
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:,So-1(0, r), and Sr-1-Su-1(1). The unit cube in Rn is In:l-l,llo' Thus 11

is different from the standard interval 1:[0, 1]. We shall also use the symbol 'Ifor
a general indexing set if there is no danger of misunderstanding' Zisthe set of integers

and N is the set of positive integers.

The definitions for a Lipschitz map, a LIP map (ocally Lipschitz map) and a

lipeomorphism were given in 1.1. The Lipschitz constant lip/ of a Lipschitz map

f: x*r is the smallest number z>0 satisfying the condition (1.2). If lipf=L,f
is said to be L-Lipschitz. lf f is bijective and if both f and, f-l are L-Lrpschitz, f is

an L-lipeomorphism.If this is true for some L=0, f is a strong lipeomorphism. If
f: x*Y isinjective and/defines a lipeomorphism fr : x*fx, /is a LIP embedding.

ifn ir a strong lipeomorphism,/is a Lipschitz embedding.If every x in Xhas a

n"igntornood u such that flu is a LIP embedding, f is a LIP immersion. Two

-"tri", d, d'ina space X areLIP equiualent ot Lipschitz equiualmtif id: (X,d)*
*(X, d') is a lipeomorphism or a strong lipeomorphism, respectively'

we remark that whitehead [31] has used the term "Lipschitz map" for a LIP

map and the term .oregular Lipschitz map" fot a LIP immersion.

2. Basic properties of Lipschitz anil LIP maps

2.1. We begin by stating some algebraic properties for the class of Lipschitz

maps. The straightforward proofs will be omitted'

2.2. Lemma. suppose that f: XtY and g: Y*Z are maps betwem metric

spaces. If f is Lr-Lipschitz and g is Lr-Lipschitz, then gf is LrL2'Lipschitz. If f and s

are LIP, then gf is LIP. n
2.3. Lemma. Let X be a metric space, let f,g: x*N ffid Q,tlt; x*RL

be Lipschitz, and let c€N. Then flg, cf, lfl, max(E, t), and min(g' tlt) are

Lipschitz. If f and cp are bounded, then Ef is Lipschitz. If, in addition, E is bounded

away from zero, then flE is Lipschitz' n

2.4. Corollary. Let X be a metric space, let f,g: X-N and E'tlt: X-N
be LlP, and let c€RL. Then .f+g, cf,l/1, max (E,'lt), min (E' rlr)' and Ef are LIP'

If q(x)+O for all x, then flE is LIP' X

2.5. Lemma. Let X be ametric space andlet o*AcX. Then the map x-d(x, A)

is l-Lipschitz.If A and B are disjoint closed sets in x, there is aLIP map f: y*[0, 1]

such that A:f-t(0), B:f-t(l).
proof. The first assertion is elementary and well-known (but extremely useful).

To prove the second assertion, we may set f(x):i(x, A)l(d(x, A)+d(x, B)) if
,,q*g+n.If B:0 and O+A+X, choose y€X^-\ 4 and set/(x): d(x, A)12(d(x, A')*

*d(x,y)). lf B:0 and A:X, set /(x):Q forall x.If A:B:0, set f(x):ll)'
for all x.'The case where A:0lB is treated similarly. n
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2.6. cone construction. Let a(N and ec( be such that a and e are
independent, or equivalently, ae is a cone. This means that a|e and no ,uy fro,n
a meets Q in more than one point. Each point x€ae can be *ritt"r, as x:).alpy
with yEg,0<r.<l, 1+p:1. This representation is unique for x#a. Given a
map f: Q-Rp and a point bQ.Rp, the b-cone of f with aertex a is the function
f: a9*11o defined by Ie,a+p.y):l,b+pf(y). In general,/need not be continuous.
However, if Q is compact, then f is continuous. This is one reason why cones work
best for compact sets. observe also that a cone of a compact set is always compact,
while a cone of a locally compact set is not usually localiy compact at the vertex a.
Even if Q is compact, a cone of a Lipschitz map f: e*|g need not be Lipschitz.
For example, let Q : {(x, y)10 = x = l, y : xz]r c R2, a : (1, 0),å : 0 € Ä1, and 7i g * pt
the constant map f(x,!):|, Then for zt:(8,0) and zz:(E,ez) we navi 1f1rr1_
-IQr)llkt-z2l:1f e, and hencef is not Lipschitz.

2.7. Deiinition. Let ecN be compact, and let a€/- be such that ae
is a cone. we say that a and e are Lipschitz independent and. ae is a Lipschitz cone
if foreveryLipschitz map f: Q*Rp andforevery å6Re, theå_cone f: ae*11toflis Lipschitz.

2.8. Radial projection. Let a(R,, and let er, ercÄn\. Suppose that each
ray from a through e, meets e, in exactry.one point. Then the radiar projection
from Q, into Q, with center a is the unique function .f: et*ez such that /(x)
belongs to the ray from a througl x. rf eris compact, then/is 

"ontinuou, 
but not

necessarily LIP.

2.9' We are going to establish several equivalent conditions for Lipschitz
independence.Wefirst introduce some notation. If a(R", ecÄ,\, å€0, we set

(2.r0) P (Q, a, b) : 
ItS inf {ac (b - a, x - y)l*, y €e n B" (b, r)}.

It is easy to see that

P(Q' q, b) : 
IrS inf {ac (x- e, x- y)l*, y €e 

^ 
Bn (b,,)}.

For x,y(Rn weset s(x, y7:{Ax*F!l),+p:1,)"1t=gtr. If x:y, then s(x, y):{x}.rf x*y, then .r(x,y) is the line through x and y less the open segment between x
and y.For a set QcR" we write s(e): u{s(x, y)lx€e,y€e}.

2.12. Lemma. L.et p: Ä,\*Sn-l åe defined by p(x):xl|cl. Then
lp@)-pu)l'=lx-vl'llrllvl and lp@)-pu)llvl=2rx-yl ior'oi x and y. Hencep is LIP.

Proof. Using elementary esrimates, we obtain lxllyllp(x) _p0)lr:2lxllyl_
- 2x' v = lxlz + lvlz - 2x . v : lx - vlz and lp @) - p o)l 1, 

y1:lt - t 
ytit Gil= lri l r'l *+llrl-l/l=z1x-y1. o

(2.11)
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2.13. Theorem. Let aQ be a cone in R" with Q compact. Then the following
conditions are equiualent :

(l) aQ is a Lipschitz cone.

Q) If c: Q*pt is the constant map c(x):|, the 0-cone E:, aQ-I1t sY .
is Lipschitz.

(3) a(@).
(a) inf {f (Q, a,b)lb<Q}>O.
(5) p(Q,a,b)>O for all b(Q.
(6) If p: Rn\*So-t is the map p(x):(x-a)llx-al, plQ is a Lipschitz

embedding.

(7) For euery set QrcR" such that a{Qt and such that each rayfrom a througlr

Q, meets Q in exactly one point, the radial projection f: Qr*Q is Lip-
schitz.

Proof. We shall prove the implications (l)==+(2)=+(3)=+(4)+(5)=+(6)+(l) and
(6)+(7)+(6). We may assume that a:0. Choose positive numbers r and R such

that QcBn(Ä\B"(r).
(l)+(2): Trivial.
(2)=+(3): If (3) is false, there are points x,y<Q and z(s(x,y) with lrl:

d(O,s(x,y7)<(L+1/r)-1 where Z:lipö. Now lzl<r implies x*z#y. Hence

z and x-y are orthogonal. We may assume lz-xl=.lt-yl. Letting u be the
orthogonal projection of x on y, we obtain

le@)-e@)l lyl-lul ly-,| - I I-ffi":Wä--ffi=I4-Tfr-t'
which is a contradiction.

(3)==+(a): If ($ is false, it follows from (2.11) that there are sequences of points

xi€Q, !i€.Q such that 0<lx;-y;l*0 and q5:ac(xi,xi-yi)*0. For large 7
we have lx1-lj=rll2 and ai=n14. Then lxi-yil=lxrl cos or;, which implies
d(0, s(x1,1)): l"rl sin cr<R sin ar*O. Hence 0€s@J.

(a)=+(5): Trivial.
(5)=+(6): By 2.12, plQ is Lipschitz. We must show that the inverse g:

pQ*Q of plQ is LIP. Let z€pQ. Then there is an open neighborhood U of qQ)
n Q and a positive number p such that ac(x,x-y)>B for all x,/€U. Since

0\U is compact, the set lt:pQ:pQ\ptQ\Ul is an open neighborhood of
z in pe. If x,y€.V and a:ac(q(x), q(x)-q(y)), then

tq(x)- so)t= # v- yt =fr r-.ut.
Hence 4 is LIP.

(6)+(l): Let f: Q*Rp be Lipschitz,let b€Rp, and let J: aQ*pt be the
å-cone of I We must show that J is Lipschitz. We may assume that å:0. Let
q: pQ-Q be the inverse of plQ. Then g:fq: pQ*Rp is Lipschitz. Letting g



90 J. LUUTKATNEN and J. VAsÄrÄ

and p denote the 0-cones of g.and plQ, respectively, with vertex 0, we have I:EF.
Hence it is sufficient to show that B and f are Lipschitz. Choose L>0 and M>0
such that q and g are Z-Lipschitz and lf(z)l=M for all z(Q. For x,y€0Q\
we obtain

lF@)-80)l _ Itq@o))lx-tqb("))tvl
lq(p(")) llq(p(v))l

lq@@)ll*- vl_,. llq(p(v))l- lq(p("))ll lvl
o,ro r'

RL
i l*- yl+7lp@)- p(y)l lyl.

By 2.12, this implies lF@)-F0)l=(R+2L)r-2lx-yl. Since p is continuous, this
also holds for x:0. Hence B is Lipschitz.

- To show that f is Lipschitz let x, ! €0 (p2'5. If x #0 # y, we obtain lg(x) -g (]l) I 
:

: llrlg(p(") -lyls(pj))l = lrcl lg(p(x))-g(p(D)l+ lx-yl lg(p(y))1. By 2.12, this
implies lg(x)-C(y)l=QL+M)lr-yl. Since g is continuous, this also holds for
n:0. Hence g is Lipschitz.

(6)=+(7): The radial projection f: Qt*Q can be written as f:q1019) where
p is as in (6) and q: pQ*Q is the inverse of plQ. By 2.12, plQ, is Lipschitz.
Hence / is Lipschitz.

(7)+(6): Trivial, since the inverse q: pQtQ of plQ is a radial projec-
tron. I I

2.14. Corollary. If aQ is a Lipschitz cone and QrcQ is compact, then aQ,
is a Lipschitz cone.

ProoJ'. This follows, for example, from Q) of 2.13. tr

2.15. Extmded cones, lf aQ is a cone in R', the corresponding extended cone

eQ* is defined as {).alpxlx(Q, 1*lt:1, p=0}. It consists of all rays from a
through Q.If .f: Q-Rp is a map and if b(Rp, the extended å-cone oflwith vertex
a is the function f*: aQ-*pp defined by f*()"u*px):)"b*pf(x).

2.16. Theorem. If aQ is a Lipschitz cone, then euery extended cone of euery
Lipschitz map f: Q*RP is LiPschitz.

Proof. We may assume that a:0 and f*(a):0. Since f*laQ is the cone

of f, it is Z-Lipschitz for some L. Let \!(aQa. Choosing t>0 so that tx and,

ty lie n aQ, we obtain 
I f* @) -f* (y)l: lt -1f* (t x) - 1 -t7* $y)l= Llx - yl. I

2.17. Theorem. Suppose that AcN is a compact conuex set and that a<tnt A.
Then a(|A) is a Lipschitz cone.
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Proof. choose r>0 such that B"(a,r)cA. Using the notation of 2.9 we

see that s(x,y)nB"(a,r):0 for all x,ye.\A. The theorem follows from 2.13

(3). n The result is well-known [16].

2.18. Theorem. Let PcR" be a polyhedron' Then euery PL map f: P*Rp
,s LIP.

proof. The theorem is obviously true if dim P:0, and we proceed by induc-

tion on dim P. Assume that the theorem is true for dim P<m and suppose dim P:m.
Let a(P. Then there is an n-cube A, centeredat a, such that P n\A:Q is com-

pact, p na:aQ, and flP aA is a cone of flQ. Since Q is a polyhedron with

dim Q-<m,flQ is Lipschitz. By 2.17 and 2.14, aQ is a Lipschitz cone. Hence flP aA

is Lipschitz. !
2.19. Theorem. Let aQ be a cone in N sach that Q is a compact polyhedron.

Then aQ is a LiPschitz cone'

Proof. Let c: QtRr be the constant map c(x):l' Since c is PL, its 0-cone

c: aQ-pr is also PL. By 2.18, ö is Lipschitz. By 2.13 Q), aQ is a Lipschitz cone. n

2.2O. Standard mistakes. The well-known standard mistake of PL topology

is a radial projection of a compact polyhedron onto another. It is usually not PL.

By 2.13 and2.l9, such a map is always Lipschitz. A standard mistake of another

kind will be consideredin 2.43.

2.21. Unions. Let AuB be a metric space. Let f: AvB*Y be a function

such that flA and. flB are LIP. Without any additional condition, / need not

be LIP or even continuous. If ,4\,8 and .B\'4 are separated, that is, 7\p n

^(B\,4):g:(,4\B) 
n7-, then /is continuous. In this case we say that AvB

is a proper union of A and B. If A and B are both open or both closed in AvB,
then ,4 u.B is a proper union. In particular, the union of twq compact sets is always

proper.
Even if A andS are compact,/need not be LIP. For example, let,4 be the

parabolic arc {(x,y)en'10=x=_1, y:rc2), let 'B: {(x,y)l(x, -y)<A), and let

f: AvB*R1 bedefinedby f(x,!):x for x(A andby f(x,!):-x for (x,y)€B'
'Ihen flA and flB are Lipschitz, but/is not'

we say that Au,B is aLIP proper union of A and B if A u,B is a proper union

and if a function f: AvB*I/ is LIP whenever flA and flB ate LIP. A related

concept has been considered by Wilker [32].

We shall give some characteraations for LIP proper unions. Before that, we

give a simple but useful result, which can often be directly used to prove that a map

is Lipschitz.

2.22. Lemma. Suppose that AvB is a metric space, that EcAvB, and

that C>l is a constant such that for euery pair ofpoints a€AnE, b€B nE, there

91
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is cQAnB such that d(a,c)+d(c,b)=Cd(a,b). If f: AwB*Y is afunction such
that flA and flB are L-Lipschitz, then flE is CL-Lipschitz.

proof. For a€AnE, b€B^E, we obtain d',(f(a),f(b))=d'(f(a\,f(c))+
d'(f(c),f(b))= Ld(a, c)+Ld(c, b)=CIÅ(a, b). !

2.23. Theorem. Let AwB be a proper union with AnB+A. Define
u: AvB*RL by u(x):d(x,AnB) for x(A and by u(x):g for x(8. Then
AvB is a LIP proper union if and only if u is LIP.

Proof. The necessity of the condition is clear. Conversely, assume tåat z is
LIP. Let f: AwB*Y be a map such that flA and flB are LIP, and let x(AvB.
If .rr€l\8, there is a neighborhood U of x in AvB with UcA. Then flu is
LIP. Next suppose x(AnB. Choose r>0 such that for U:B(x,2r),flAn(l,
flBnU, and ulU are Lipschitz. Let a(AnB(x,r) and b€BoB(x,r), a#b.
Pick a point cQA aB nU such that d(a, c)<d(a, A nB)*d(a, å). Then d(a, c)t
* d (c, b) 

= 
2d (a, c) 1 d (a, b) 

= 
2 (u (a) - u (b)) + 3 d (a, b) 

= Q lip (ulu) + 3) d (a, b). By
2.22, flB(x, r) is Lipschitz. n

2.24. Theorem. Let AvB be a proper union with AaB#0. Then AvB
is a LIP proper union if and only if

m*p{#3i$1 ce(.n\r) a B(x,")} = -
for all x€TVnNcl n,B.

Proof. Suppose that AvB is a LIP proper union. Let x(7vntr1,7.
8y2.23, thereare r>0 and Z>1 suchthatfor U:B(x,2r),ulU isZ-Lipschitz.
Let a€(,a\B) nB(x,r) and å€(-B\l)nU. Then d(a,AnB):lu(a)-u(b)l=
<Ld(a, å). Hence d(a, A nB)=141o, B^\l), and the limit is finite.

Conversely, assume that the limit is finite for all x. Let x€Ä:.8 nN. There
is a neighborhood U of x and a constant Z>1 such that d(a, A aB)=Ld(a; B\,4)
forall a€(,a\B)nU. Then lu(a)-u(b)l=Ld(a,b) forall a€UaA and. b€Bn(1.
Thus ulUis Lipschitz, and the theorem follows from2.23. n

2.25. We next turn to tå.e case where A and B are subsets of R, with A aBl\.
For a€A, b(8, we set u(A,B,a,b)-sup {ang(a-y,b-y)lyeAnB]1. The inter-
section angle of A and B at a point x(An.B is defined by

a(A, B, x) : liqlXf u(A, B, a, b).

For example,tf A and,B are line segmerrts:ax andbxwith x:An.B, then a(A, B, x)
is the ordinary angle between A and B. Note that a(A,40):0 for the example
in 2.21.

2.26. Theorem. Let AvB be a proper union of A, BcN. If u(A, B, x)>e
for all x€AaB, then AvB is aLlP proper union.
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Proof. We may assume AnB*$. Let u: AvB*Rr be the map given in
2.23, and let x€AnB. It suffices to show that u is Lipschitz in a neighborhood

of x. Set e: u(A, B, x)12 and choose a neighborhood U of x such that a(A, B, a, b) > e

for all a€(,a\B)nU and å€(B\l)nU. For such a pair a, å choose !€.AnB
such that ang (a - y, b - y) > e. Then lu (a) - u (b)ll la - bl=la - yll la - bl < l/sin e. n

2.27. Remark. The converse of 2.26 is not true. A counterexample is given

in 3.10 (4).

2.28. Remark. Sometimes the LIP properness of a union I u,B depends

only on the space AvB and not on the sets A, B.For example, let AvB be a

proper union such that Au,B is a convex subset of R'. Then u(A, B, x):n fot all
x€A nB, and the LIP properness follows from 2.26.

We shall next consider this phenomenon in a more general situation.

2.29. Quasiconuexity. Let Xbe a metric space' Given a pair of points a,b€X,
we let C (a, b, X) denote the infimum of all numbers C> 1 such that there is a rec-

tifiable path y in X joining a and b with length l(y)=Cd(a, å). If no such path

exists, we set C(a, b, X): -.For AcX we write C(A, X):sup {C(a, b, X)laQA, b€A}
and C(X):C(X, n. If C(X)<.o, w€ say that X is quasiconuex, and X is C-quasi'

cont)ex if C (x) = g. If each point of X has a neighborhood U such that C (U, X) < *,
X is locally quasiconuex.

For example, a convex set in a normed vector space is l-quasiconvex. The

spheres Sn are (zr/2)-quasiconvex (n>1). A quasiconvex space is always locally
quasiconvex. The arc {(x, )r)€Ä'z10= x=|,lyl:r.2} is not locally quasiconvex.

2.30. Lemma. Euery open subset of a locally quasiconuex metric space is locally

quasiconuex.

Proof. Let V be open in a locally quasiconvex space X. For x( Z choose a

neighborhood U such that C(U,X):Q<-' Next choose r>0 such that

B(x,QC+3)r)cUnV. Let I4t be the ball .B(x, r).lf a,bQW, thete is a path y
joining a and b in X such that l(y)<(C-ll)d(a, b). If 7 is any point on im 7, then

d(a,y)=t(y)=2(C+l)r. Hence imycV, which implies C(W,m=C+|. n

2.31. Retracfs. A subset A of a metric space X is a Lipschitz retract of X
if there is a Lipschitzmap r: X*A with rlA:id. It A is a Lipschitzrettactof a

neighborhood of A, then A is a Lipschitz neighborhood retract of X. Similarly, we

define the concepts LIP retract and LIP neighborhood retract.

2.32. Lemma. A Lipschitz retract of a quasiconDex spaca is quasiconuex' A LIP
neighborhood retract of a locally quasiconuex space is locally quasiconuex'

Proof. Suppose that X is C-quasiconvex and that r: X*A is an l-Lipschitz
retraction. Given a, b€A and e>0, there is a path 7 joining a and b in X with

93
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/(f)<(C+e) d(a,b). Then ry joins a and b in A, and l(ry)=L(C+e)d(a, b). Thus
A is LC-quasiconvex.

Next assume that r: V*A is a LIP retraction of a neighborhood Z of
A. Let x€A and choose an open neighborhood U of x in X stch that UcV
and lip (rlU):2=-. By 2.30, there is a neighborhood WcU of x with C(W, U):
C-*. Arguing as in the first part of the proof we see that C(AIW,A)<LC.
Hence ,4 is locally quasiconvex. n

2.33. Lemma. If X is compact, connected, and locally quasiconoex, then X is
quasiconuex.

Proof. Since Xis connected and locally quasiconvex, each pair of points x, y€X
can be joined by a rectifiable path in X. Let ö(x, y) be the infimum of the lengths

of all such paths. Then ö is a metric in X. Since X is locally quasiconvex, the identity
map id: (X,d)*(X,ö) is LIP. Since X is compact, it is Lipschitz, whence X is
quasiconvex. n

2.34. Theorem, Eaery compact connected polyhedron in R" is quasiconuex.

Euery polyhedron in N is locally quasiconuex.

Proof. It suffices to prove the first assertion. Let PcN be a compact con-

nected polyhedron. Then P is a PL retract of a regular neighborhood N of P. By
2.18, P is a Lipschitz neighborhood retract of Ä'. The theorem follows from 2.32

and2.33. D

2.35. Theorem. Suppose that X is C-quasiconuex and that .4 is a couer of X
suchthatfor each x(X, the star st(x,,il):U{Alx€A€,il\ of * is aneighborhood
of x. (For example, ,il is a locally finite closed couer of X or ,il is afamily of two

sets with aproper union.) If f: X*Y is afunction such that flA is L-Lipschitzfor
all A(.&, then f is CL-Lipschitz.

Proof. Let a,bCX, and let e>0. Choose a path y: I*X with y(0;:4,
t(l):b, /(7)=(C+e) d(a, b). For every .s€1, choose an open interval neighborhood
U(s) in lsuch that 7U(s)cst(r(s),a/). Choose a subcover {u(s)1l<i<k} of

{U(s)ls€I} which has no proper subcover. We may assume that s,<s;*1 and
g*U(s)ntl(s;*r)c(si,si+r)forall i€{1,..., k-l\.Choosingnumbers sie U(sr)n
nU(s;*) and relabeling the sequence (0, s1, s{, ..., s|-r, so, 1) we obtain num-

bers 0: ts<...<.tzk:| such that for xr: y(t), {xi-r, x,} is contained in some

member of "q/. Thus d'(f(xr),f(x))=Ld1xr-t, x;), which implies

d'(f (o), f (b)) d(x,-u xi) = LUy) = (C+t)Ld(a, b). n

2.36. Theorem. Suppose that X is locally quasiconuex and that ,il is a point'

finite coaer of X such that for each xCX,st (x,,il) is a neighborhood of x. If f: X*Y
is a function such that flA is LIP for all A(,il, then f ,s LIP.

2k

=Lzl:L
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Proof. Let xCX, and let Ar,...,Ap be the members of .il containing x.

Choose an open neighborhood U of x and a positive number Z such that
(/cst(x, d):Arv...vA1, and such that fluaA; is z-Lipschitz for all i. since

/is clearly continuous, it follows that also flu aft is Z-Lipschitz for all i. By 2.30,

there is a neighborhood vcu of x with c(v,u):c<-' we show that /lz
is CZ-Lipschitz. Let a, b(Y and e >0. Choose a path 1 joining a and b in t/ with

/(y)<(C+e)d(a,b). We can find numbers 0:lo<.'.=1":1 such that for each

t€ {1, ... , s}, {? (1,-r), y (d} is contained in some of the sets U nÄr. Hence

d'(f (v(t'-r)),f (v(t)))=Ld(v(4-J, 7(r)), which implies

t'(f (o), f (b)) = L Z d(v(t,-J, vQ,)) = Lt(v) =

2.37. Corollary. If AvB rs locally quasiconuex

A v B rs o LIP proper union. n

2.38. Theorem. If A and B are polyhedra with a proper union, then AvE
is a LIP proper union.

Proof. SiUce a proper union ofpolyhedra is obviously a polyhedron, the theo-

rem follows from 2.34 and 2.37. n

2.39. Cartesian pro&tcts. Let (X,d) and (X',d') be metric spaces. Then the

distance between points (x, x') and (y, y') in XxX' can be defined in three natural

ways: d(x,y)*d'(x',y'), (d(x,y)2+d'(x',y)')tl', or max(d(x,y), d'(x',y'))-
Letting dr, d", d, denote the corresponding metrics of XXX', we have d"=dr=

=dr=2du. Hence these metrics are Lipschitz equivalent. From the point of view

of LIP topology, it makes no difference which metric we use.

It is readily seen that cartesian products of LIP maps are again LIP. More-

over, a map (f,f') of a metric space Z into XXX' is LIP if and only if / and f '
are LIP.

2.40. Maps of xxRL. Let x be a metric space. we shall later make use of
maps /:XXRl*XXRl of the following type: Let a, and ftbeLIP maps X*R1,
i:0, ..., k, such that (to<...<.oq and fo=...=frr,. Then .f(x, t):(x, r,(t))'
where r, is the PL homeomorphism of d onto Rr which maps [a;-t(x), a{x)},

affinely onto W;r(x), frr(x)] and is a translation on (- -, *o(")l and on

[a1(x), -).
We shall show that f is a lipeomorphism of XXRr onto itself. Since/-l is

obtained by changing the roles of a; and B,, it suffices to show thatf is LIP. For
this, it is sufficient to prove that the map r: XXÄ1*Ä1, defined by r(x,t):r,(t),
is LIP.

Set At: {(x, t)la,-t(x)=t=a,(x)} for L=i=k and Ao: {(x, t)lt=ao@)},
A*,+t: {(x, t)lt>uo@)}. For (x, t)€A1 we have r(x, t):(l-u)fr0@)Iuf(x}

(C + e) Ld(a, b). u

and a proper union, then
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where y:(t-ao(x))/(or(")-oo(x)). Using 2.4 we see that rlA, is LIP. A similar
proof shows that rlAt is LIP for all i.

To show that r is LIP in X)r.R' we use 2.22. For example, let us show that
rlArvA2 is LIP. Since the question is local, we may assume that lip d':L<.a.
Let a:(x,s)(4 and b:(y,t)(Az. Then c:(x,a1(x))eArnAr. Using the
metric d, of 2.39 in XXR1 we have d1(a,c):q(x)-s and dr(c,b):d(x,y)*
*lr-ar(x)1. If t>ur(x), we obtain dr(a,c)+dr(c,b):d1(a,b). If t=at(x), then
t > ar(y) > a1@) - Ld (x, y), which implies dr(a, c) a dr(c, b) 

= 
t - s + (ZL + l) d (x, y) =

=QL+l)dr(a, å). Hence rlArwA, is LIP.

2.41. Lemma. Let C be a (p+q+l)-simplex which is the join of a p+implex
A and a Q-simplex B, p=0; g>0. Let' tt: AXBY.I -C be the map n(x, y; t):
:(I-t)x+ty. Then n is LIP .and defines a lipeomorphism no:,4XBX(0, 1)*
*C\(,4 uB).

Proof, IJsing an auxiliary affine homeomorphism, we may assume tbat
"(qfto+e+t-.RpXR4XR1, lcRpX0X0, .Bc0XR4Xl. Choose R>0 such that

".y+e+t 
(R). Let zr:(xr, yt, tL) and zr:(xr, yr, tr)€AX,BXL Then

ln (z ) - n (z )l = ( I - r) lx r- x rl + V," - t rl lx rl + t rly r- y rl * lt, - t rl ly rl

= Q+zR)l"r-trl
-{Ience z is LIP.

Let 0<ä<112, andlet zr,z2QAXBX.(ö, l-ö). Then ålxr-xrl=l(1 -tr)xt-
- (l-t)xzl+ltr-trllxrl=(l *R)ln(z)-n(2,)1, and similarly ölyr-y2l<_(l *
R)lnQ)-n(zr)1, which implies lzr-z)=(I +(2+2R)lö)ln(zr)-n(zr)1. Hence z6
is a lipeomorphism. n

2.42. Stretching maps. We shall consider the stretching process between dual
skeletons, which is often used in an engulfing argument. Suppose that K is a finite
simplicial complex and that L, M are disjoint subcomplexes of r( such that every
simplex of Kis the join of a simplex in Z and a simplex in M.Let Xbe the set of
all (x, y)€lLlXlMl such that xy lies in a simplex of K, and let u, B: y*(0, 1) be
LIP maps. Choose h,tz€(0,1) such that imauim Fc(tr, /r). For each (x,y)EX
we let a,r: I*f denote the PL homeomorphism which maps the points 0, tr,
'a(x, y), tz, I to the points 0, tr, B(x, !), tz, l, and is affine on the remaining intervals.
Let h: lKl*lKl be the unique bijective function such that hllLlvlMl:id and
h((l-t)x+ty):(t-co*r(t))x*a*(t)y for all (x,y)€.X. We shatl prove that
h: lKl*lKl is a lipeomorphism.

Since å-1 is obtained from h by changing the roles of a ånd B, it suffices to show
that h is LIP. By 2.38, it suffices to show that hlC is LIP for every C€K. Write
"C:AB with A<L, B(M. We may assume that A#0#8. Let n: AXBXI-C
be the map of 2.41. Since C is convex, it suffices to show that h is LIP in each of
the sets ,C1:TDi, i:1,2, where Dr:AXBX(I},trfvftr,l]) and Dz:AXBX
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xltL,tz7. Since ålcr:id' it is LIP. Furthermore, wemay wtite hlcr:nognf,rlc,
*nå" 

"o 
is the lipeomorphism of 2.41, and g(x, y,t):(x,y,a*(t))' It follows

from 2.40 that g is LIP. Hence å is LIP.
The stretching process will be used in 8.4 in the following situation. K has a

subcomplex K, such that lrKl and lKtl are concentric n-cubes, .L is the 2-skeleton

of K, and M isthe dual (n -3)-skeleton of a derived subdivision of K. Given open

neighborhoods u and Y of lLl and, lMl, we need a lipeomorphism å: lrKl*lr<l
such that lKrlchUvV and hl}lKl:id. For this, we first choose e€(0,1/2) such

that for all (x,y,t)(XXlO,el,'(1-r)x*ty€(I and tx+(l-t)y1Z. Then choose

a LIP map ).: lKl*[e, 1/2] such that ]t(x):e for x€lKrl and ,1(x):ll2 for

ie|lxl, and set a(x,y):(L(x)+),(fl)12, f(x,y):L-a(x,v). Then the stretching

map h: lKl*Uq has the desired properties.

2.43. Remark. Suppose that the maps o( and B of 2.42 ate constants, a#8.

It is sometimes stated that the corresponding homeomorphism h: lKl*lKl is PL.

However, this is usually not true, for example if lKl is 4 triangle abc, lLl:a,
lMl: bc. We may call this map a standard mistake of the second kind- A PL homeo-

morphism is easily obtained as follows: Let f: K*I be the simplicial map which

maps z into 0 andMinto 1. choosederiveds Kt,Kzof KneatLBS,p.32lsuchthat

f-tlo,al and f-rlo, fI are the underlying polyhedra of the derived neighborhoods

N(L, K) and N(L,K2), respectively. Then the canonical simplicial isomorphism

{p: Kr*Y, maPs ff(2, K) onto N(L, K2)'

3. Lipschitz manifolds

3.1. Definition. A Lipschitz n-manifold (or a LIP z-manifold) is a separ-

able metric space M such that every point x€M has a closed neighborhood [/
lipeomorphic to 1".

3.2. Remarks. (1) Recall that a connected paracompact topological manifold

has a countable base. Hence, separability is not a restriction for connected manifolds.

(2) Since f is lipeomorphic to Bn, the pair (u,x) in 3.1 is lipeomorphic to

either (1o, 0) or (1n, 4). lt follows that each point of a LIP manifold has an open

neighborhood lipeomorphic to either .ff or R!.
(3) The boundary 0M of a LIP z-manifold is either empty or a LIP (n-t)-

manifold.
(4) lf M and N are LIP manifolds, so is MXN.
(5) A LIP manifold is locally quasiconvex.

3.i. Atlases. There is an alternative way to define a LIP manifold based on

atlases. Let M be a Hausdorff space. A LIP atlas on M is a family of charts (Ut, h)
where the sets t4 form an open cover of M, h, maps I{ homeomorphically onto a
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set t/i which is open either in R' or in Ri, and, hrhlt defines a lipeomorphism of
hllUlnUl onto htfUt nUrJ for ail i anå,7. Two LIP atlases are called equivalent
if their union is a LIP atlas. Then a LIP manifold can be defined as a pair consisting
of M and an equivalence class of LIP atlases. The concept of a LIP map between
LIP manifolds is theh defined in the obvious way using charts.

lf M is a LIP manifold in the sense of 3.1, it has a nabtraJ, LIP aflas consisting
of all lipeomorphisms h: U-(J' such that U is open in M and, U' is open in rY
or in Äi. Moreover, the two definitions of LIP maps of M and into M are consistent.
one can show that a paracompact LIP manifold is lipeomorphic to a metric space.
Hence, for second countable spaces, the atlas definition is not essentially mpre gen-
eral than 3.1. This can be proved in several ways. For example, it will follow from
our embedding theorem 4.2. But it is also a special case of a metrization theorem
for locally metric spaces (Theorem 3.5 and Remark 3.7), which is our next goal.
Moreover, weller [30] has proved thd result (stated for closed manifolds) using a
method somewhat similar to the proof of 3.5.

3.4. Local metrics. A local metric on a Hausdorff space X is a family of metric
spaces (Ur,dr) such that the sets U; form an open cover of X, di is compatible with
the topology of Ui, and for each pair i, j of indices, the restrictions of d; and di
are LIP equivalent on uraur. Two local metrics on x are called LIP equivalent
if their union is a local metric. Cf. whitehead [31, p. 166]. A locally metric space is a
pair consisting of a Hausdorff space X and an equivalence class of local metrics on
x. Each metric space defines a locally metric space in the obvious way. we shall
show that each paracompact locally metric space can be obtained in this way.

Every LIP atlas (Ur, h)47 of a manifold M defines a local metric on M con-
sisting of pairs (Ur, dr) where dr(x, y7:lhr(x)-h1Q)1. Moreover, equivalent LIp
atlases define LIP equivalent local metrics. Hence every LIP manifold in the atlas
sense can be regarded as a locally metric space. The same is true for abstract PL and
DIFF manifolds.

3.5. Theorem (Metrization). on a paracompact Hausdorff space, euery local
metric tr LIP equiaalent to a metric.

Proof. Suppose that ö:(Ui, d)ier is a local metric on a paracompact Haus-
dorff space X. We may assume that the cover (tr);61 is locally finite. We f.rst show
that ä is LIP equivalent to a local metric ö':(Uj,d')1at of X such that for every
pair j,k€J, d; and di are Lipschitz (not only LIP) equivalent in (IjnUi. There
is an open cover (V)rE1of X with Vrc(I, for all i. For every x€X, choose an open
neighborhood W(x) such that (1) W(x)cY, if x(V,, Q) W(x)cUi if x(U,,
(3) W (x) 

^Vt: 0 if x {fi , (4) dt andd, are Lipschitz equivalent in W (x) if x € U, atJ, .
Next choose a locally finite open refinement (Uj)i, of the cover (W(x)),e x. For
every j€J, choose x,€X and i(j)(I such that Ujc.W(x,)cV4iy. Then d',:
:dai)U'iXUj is a metric for U'r, compatible with the topology of U'r. Suppose
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thatUjmeets Ui. ThenW(x)meets Vrrrr, which implies xo(Vnir' Thus xo€ Utn^
nflari, whence"dj and di are Lipschitz equivalent nW(xe\, and hence in Ui n!ir'_

rnus itre local mötric 5':(ui, di)iEv has the desired property' obviously å and ä'

are LIP equivalent.
changing notation, we assume that the original local metric ö:(u1, d)ial

has the above property. Choose again an open cover (V)rc, of X with TrcUt'

We define a function d: XXX-RL as follows: For x, y(X, let P(x,y) be the set

of all finite sequences of the form n:(xs, ..', x*i it, "', i*\ such that xo:x, x*--!'
and {x;-r, xi}cV,r. For such z, set

s(n) - dr,(*i -r, xi).

lf P(x,y):0, we set d(x,Y):'l', otherwise

d(x, y): min(1, inf {s(n)lz€P(x' y)}).

It is easy to see that d is a pseudometric for the set X'

For the rest of the proof we fix the following notation: Let xQx and choose

i €1 such that x€2,. choose an open neighborhood vcvi of x such that "Ir:
:{jqllVmeets Ur} is finite and for every j.€.\, either VcU, ot VnVt:O' Set

lr: lictrlvcu,\.- There is å>1 such that b-1d1,(u, a)=di@' a\=bdr(u,u) for

"tti,'iinlanafår 
allu,urn(I,nUo. Choose r€(0, 1) suchthattheball Bo,(x,r):

:{y€aild (x,y)=r} is contained in V for all i€J2.
We must show that d is compatible with the topology of X (hence a metric)

and LIP equivalent to ä. If y,z€Vi, then d(y,z\=s(y,z;j):d1(y,z\' Hence

id,: X-tX,d) is continuous, and id:-((Ir,d)*(U1,d) is LIP' We next show that

id: (x, d)*x is continuous. Let w be a neighborhood of x in x. Replacine v by

vnw, we may assume vcw. we claim that d(y,x)=rlb implies y(.w. since

rlb=|, there is n:(xo, ...,x*i it, ...,io\€P(x,!) such that s(n)<rlb' Then

xo:x€2. Suppose inductively that xr€V for all i=q. Then iq+t€Jz an! ,xi-(Uy'*,
for all i<iq+l. Hence drn*r(xo*r,,x)<-bs(n)<r, and thus xq+t(-V, which implies

!:x*€.VcWr'
It remains to show that id: (u1,d)-((Ji'di\ is LIP for every j€l. It suffices

to show that this map is Lipschitz in a neighborhood of x for every 7€1 such that

x(Ui. Since ö is a local metric, we may assumei:i' The set B: ) {Bor@,r12)li€J')
is a neighborhood of x in (1,. We shall show that dr(y, z)=2bd(y, z) for y, z€B'

Since (y, z;i)(P(y,z),d(y,z)<1. Let ft:(!o,.",lniit, "',ie)€P(y,z)' If y"€V

for all v, then
k

dr(y, z) = Z d,(y"-u !n) = bs(n).

If y"(z for some v,let q be the least v with this property. Then in€J2, whence

d,-(yo,x)> r. Thus dr"(yn, y\>r12, which implies di(y, z)<r'2dro(yo, y)=?bs(n)'

Tägether with (3.6), this implies d1(y, z)=2bd(y, z)' n

k

zj:L

(3.6)
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3.7. Remark. suppose that M is a second countable Hausdorff space with
a LIP atlas ,il. Then it has a natural local metric as in 3.4. Since M is paracompact,
it follows from 3.5 that this local metric is LIp equivalent to a metric d on x.lf ,il
is replaced by an equivalent LIP atlas ,il', we obtain a metric d' which is LIp equiv-
alent to d. To get a full equivalence with the aflas definition, we should define a
LIP manifold as a pair consisting of a space X anda LIP equivalence class of metrics
of x such that for some (and hence for each) d in the class, (x, d) is locally lipeo-
morphic to In. However, we prefer to use the conceptually simpler Definition 3.1.

3.8. Terminology. A LIP n-ball is a metric space lipeomorphic to ,8,. A LIp
n-sphere is a metric space lipeomorphic to s". A subset r/ of a LIp manifol d, M is
a LIP submanifold of M it it is a LIP manifold in the metric inherited from M. If N
is a LIP 4-submanifold of a LIP n-manifold M with i/cint M, we say that N is
locally LrP flat at a point x€int i/ if x has a neighborhood u in l]1 such that
(U,UIN) is lipeomorphic to (V,VnR\ for some V open in p. At a point
x(ilN, (U,UoN) should be lipeomorphic to (v,VnRq,r). One can obviously
choose V:R".

3'9. Theorem. (cf. 116l) Let A be a compact conuex set in Rn. Then A is a
IocallyLrPflat LrP ball. Infact, there is a strong lipeomorphism of N which maps
A onto B, e:dim A.

Proof. Let T be the affine subspace of Än spanned by l. choose an interior
point a(a in the topology of r. By an auxiliary isometry, we may assume T:Rq
and u:0' Then A is the cone 0(0A).By 2.17, this cone is a Lipschitz cone, and
hence p(x):.rc/lxl defines a lipeomorphism p: 0A*Sq-'. By 2.16, the extended
cone p*: Rq*Rq of p is a strong lipeomorphism, and so is /:p*aid: Äz*R,.
Since fA:Bq, the theorern is proved. n

3'10. Examples. (l) By a LIP arc we mean a LIp l-ball. Unlike pL and
DIFF arcs, a LIP arc in RB need not be locatly LIp flat. For example, the construc-
tion of the Fox-Artin arc, given in [26, pp. 6l-62], can be modified so as to yield
a LIP arc, which is not even locally Top flat at the end points. we do not know
whether a locally TOP flat LIP arc in R' is always locally LIp flat.

Q) A LIP arc is always rectifiable. Indeed, if /is an Z-Lipschitz map of I
onto A, then the length of ,,4 is at most z. It is not difficult to show that a metric
space which is a ToP arc is a LIP arc if and only if it is quasiconvex. For example,
the arc {(",y)€n,lO=x=1, lyl:y2} is not a LIP arc. See also Katötov [15, 3.9].

(3) As a rectifiable arc, aLrP arcAcY has a tangent at almost every point.
Hence it pierces an (z-l)-disk at almost every point. on the other hand, there is a
ToP arc in Rs which pierces no disk (Bing t2l). This is so wild that no homeomor-
phism of RB maps it onto a LIp arc.

(4) Although a LIP arc AcN has a-tangent at almost every point, its tan-
gential behavior may be fairly complicated at certain points. Let f: R2-Rz be
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the homeomorphism defined by f(r, E):Q, E*logr) in polar coordinates. A com-

putation shows that the derivative of / is bounded in R\0. Hence / is Lipschitz.

Since /-1(r,e):(r,E-logr), it similarly follows thatf-r is Lipschitz. Thus the

image C of the segment joining (-1,0) and (1,0) is a locally LIP flat LIP arc,

which consists of two logarithmic spirals and the origin. The origin divides C into
two closed LIP subarcs A, B. The union C:A u,B is LIP proper, although the

intersection angle a(A, "8, 0) is zero. Hence the converse of 2.26 is not true. A similar
example in higher dimensions will be given in 4.11.

(5) Fattening the Fox-Artin arc we obtain a LIP 3-ball B in RB which is

not even locally TOP flat. See Gehring [2, Theorem 3, p. 316]. Thus the LIP version

of Newman's theorem [2.5, 3.l31is false. The boundary of .B is a LIP 2-sphere in .RB

which is not locally TOP flat.
(6) The set {(x,y,z)(Nl0=z=1, xzayz=sa} is a locally TOP flat 3-ball

in R3, but it is not locally LIP flat, because it contains no LIP arc through the origin.

3.11. Theorem. Euery connectedLlP l-manifold M is lipeomorphic to exactly

one of the following LIP l-manifulds: (0,1), [0, 1), [0, U, S1.

Proof. It is well known that there is a homeomorphism f: Mo-1'7 *1r"r"
Mo is one of the manifolds listed in the theorem. Using a locally finite cover of M
by LIP arcs such that no three of them intersect, we may choose a locally, finite
family of points (x)i<r in Mo with the following properties: (1) The indexing set ,I
isZfor Mo:(0,1), Nfor Mo:I0,1),and {1,...,r} foracompact Mo.Q)The
points xi are in the positive order. (3) If l, is the arc from x, to xi+t (1, is from x,
to r, if Mo:Sr), then fAr:B. is a LIP arcin M' (a) The arcs Btcover M. Choose

a homeomorphism g: Mo'tu1 such that g(x):f(x) for all j€J, and I maps

l, lipeomorphically onto .B;. Since Mo and M are locally quasiconvex, it follows

from 2.36 that g is a lipeomorphism. n

3.I2. Corollary. Let M and N be LIP l'manifolds. If M and N are homeo'

morphic, they are lipeomorphic. 3

3.13. Theorem. Let M be aLlP manifuld. Then there is aLIP manifold DM,
called the double of M, which has the following properties: DM contains LIP submani-

folds Mr, M2 such that DM:MrvMr, Mp Mr:fl11'[t:flMr, and there are lipeo'

morphisms fi: M- M. such that f1l0M:f2l0M. The triple (DM, ML, Mr) b unique

up to q lipeomorphism. Moreotser, 0DM:0, and the submanifolds Mr, Mr,0M1 are

locally LIP flat in DM.

Proof. The uniqueness of (DM, Mr, Mr) is clear. If 0M:0, we may put
DM:MX{O,|}. lf AM*0, DM can be constructed for example as follows:
Define f1,f2: M-MXR1 by .fr(x):(x,0) and .fr(x):(*,d(x,0M))' Then each

f, is a LIP embedding of M onto Mr with MlnMr:flM1:flIv[r-lMX0. Set

DM:MrvMr. It remains to prove that each point (4,O)Q.MLnM, has a neigh-
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borhood V in DM such that (V, V nM') is lipeomorphic to (,P, R!). Choose a
lipeomorphism å: (J*Rn+ of an open neighborhood U of a in M.77"n y:frUv
vfrU is an open neighborhood of (a,0) in DM. Define p: Pc-N by p(x):
:(rrr, ... ,xn-r, -x) and h*: Y*R" by h*lfrU:hfltlfrU and h*lfzu:
:phf;rlfzU. Then h* is a homeomorphism and defines lipeomorphisms fi U*N+
and frU*pR\. To prove that h* is a lipeomorphism it suffices to show that frUv
wfrU is a LIP proper union. Let (b,O)€ftUnfrQ:(Uo0M)X0. Choose r>0
with B(b,2r)c.U. Forevery x€B(b, r)nint M, wehave d(x,Un\M):fl(x,0M).
Using the metric dt of 2.39 in MXRL we obtain

dr(fr(*), fru nfr\ _ d(x, (I 
^ 

AM)+ d@, AM) _o
dr(fr(x), v\fru) d(x,0M)

By 2.24, the union "ftU v-frU is LIP proper. fl

' 4. Embediling

4.1. By Whitney's embedding theorem, every DIFF n-manifold can be DIFF
embedded into Äh+1. Similar results hold for PL and TOP manifolds. It is there-

fore natural to ask whether every LIP n-manifold can be LIP embedded into Rzt' +1.

We have not been able to solve this problem. However, we shall prove in 4.5 and
4.9 that a LIP n-manifold can be LIP embedded into Rn('+l) and that there is a
locally LIP flat LIP embedding into l((n+z'. Before that, we prove a weaker result,

which gives a new proof for the equivalence of the two definitions 3.1 and 3.3 of a
LIP manifold.

4.2. Theorem. Let M be a LIP n-manifuld in the atlas smse 3.3. If M hqs a

countable basis, then, M is lipeomorlthic to a closed subset of R(u+1)2.

Proof. For every xQM, choose a chart (U,,h) at x such thatA,is compact
and h,t/, is open in Ä!. By [2j, 2.7], the cover (U,),.y has a locally finite countable

open refinement 0 such that 0:#ov...v9&, where the members of eaeh 6,
are pairwise disjcint. Let 4r:{U,r,Urr,...}, and choose a LIP embedding å, of
Vi:v8i into Ä! suchthatforevery j,hiUii is an open subset of RinB'(3jer,l).
Since M is normal, it has an open cover {Wll=i =z} such that W,c. Z;. From
2.5 it easily follows that there is a LIP map Ei: M-I suchthat rptlfi:l and
spt g,c 2,. Then the product <pihi, extended by zero to M, is LIP. Let s:(n+l)z
and define f: M*N by f:(Eo,eoho,...,en,eoh). Then/is LIP. We show

that f is the desired LIP embedding.

Since ErlWr:l, we have lf(n;t@))-f(n-t(y))l=lx-yl for all x,y€.hiv[/,.
Thrls fh,l: hiWi-fWi is a lipeomorphism, which implies that / defines a lipeo-
morphism of W, onto f14,. Hence / is a LIP immersion in the obvious sense. To



Elements of Lipschitz toPology 103

prove thatf is injective, assume f(x):f(y). If x€Wi, then cpi(y):Ei(x\:1. Thus

y €Vi, and hi(x) : E {x) ht(x) : E t(y) h i(y) : hi(y), whence y : ;6.

We complete the proof by showing that f is proper. Let A be a compact set

.f-tA has a convergent subsequence. Choose a positive integer k such that

AcB"(3k*2). We may assume that for some i, xn(Wi for all v. Since QtlWi:\,
we have lh,(x)l=l"f("")l =.3k+2 for all v. Since h{JiicB"(3ie1, 1), this implies

x"€ U {t{rll =j=k} for all v. Since eachUu is compact, (x") has a convergent sub-

sequence. !
4.3. Remarks. (1) It follows from the proof of 4.2 that the map

(Eoho, ...,Eoh): M-pln+r1 is a proper LIP immersion.

(2) One can show that the embedding constructed above is locally LIP flat.

We omit the proof, since a better result will be given in 4.9.

(3) Theorem 4.2 holds, with essentially the same proof, for all locally compact

separable metric spaces which can be locally LIP embedded into R'.

4.4. Lemma. Let M be a LIP n'manifold (in the sense of 3.1), let s=2n,

let f: M*N be aLIP immersion and let e; M*(0,-) be continuous. Then there

is an injectiueLlP immersion g: M-E such that lf(x)-S(x)l=e(x) for all x€M.
If f is injectiue in a neighborhood (I of a closed set A, we may choose glA:flA.

Proof. We shall give a LIP version of Milnor's proof [21, l'29] for the cor-

responding DIFF result. Choose an open locally finite refinement (U)ia, of the

cover (M^,\ 4,U) of Msuch thatUi is compact and flU, is a LIP embeddingfor

all i. The indexing is chosen so that {tlr<0 and Ur*A}:{il0+U;cU}. Next

choose an open cover (V).r" of M with Trc Ut for all i. By 2.5 there are LIP maps

Ei: M*1, i>0, such that ErlTt:I and spt QicUr
We shall inductively construct LIP immersions g;: tr{*P,j>O, such that

go:f, gj:gi-1*Eibi, where å;€4" is yet to be chosen. The first requirement is

that lb;l=2-inineU, (or år:g if U,:91- Thel ls;(x)-8i-{x)l'2-ie(x) for
all x€M. Choose an open cover {.8r, ..., B.l of Q and a positive number / such

that lg.,-1(x) -si-tj)l>ld(x,y) for all x, y in 81,, L<k=r. The second require-

ment is that lbil=llzlip(Ejl4). Then lsi@)-siU)l=lg;-'(")-s;-r(y)l-
-lEi(x)-Ei0)llå;l>2-Lld(x,y) for all x, y in U1nBr, L=k<r. Since qi(x):
:g;-r(x) outside sptei, it follows that gt is a LIP immersion. Finally, let N be

the open se,t n MXM consisting of pairs (x,y) such that tpi@)1q;(y). Define

a LIp map ry': N*lc by t@,D:(si-'U)-si-r@))l(Ei@)-Ei0)). Since

MXM is a LIP 2n-manifold and s>2n, the set r/1[ is of Hausdorff r-measure

zero (see 6.2). Hence we may require b jqrLN. Then gr(x): sij) tf and only if
E.i@): q i0) and gy-1(x) : g i -J!).

Define g: M*N by g(r):limi-*8i(x). Foreach xs(M, there is aneigh-

borhood V of xo and an integerT such that g(x):g.(x) for x€Y. Hence g is a
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LIP immersion. Furthermore, lf(x)-S@)l-e(x) for all x€M, and glA:flA.
It remains to prove that g is injective. Suppose that g(x):g(y) with x+y. Then
Ei@):qi(y\ and gr-r(x):Ei-{!) forall 7>0. For "r:1 this yields f(x):f(y).
Hence x and y cannot be in the same set Ur.lf x(Vi for some i >0, then Er(y):
-Ei(x):I, and thus y€{. Hence x and y are in U. This is impossible, since /lU
is injective. n

4.5. Theorem. Let M be a LIP n-manifuld. Then there is a closed Llp em-
bedding f: M-Rn(n+r).

Proof. For n: I the theorem follows from 3.11. Assume n>2. By 4.3 (l),
there is a proper LIP immersion .F: MtP(n+t). Since z(zf l)>2n, it follows
from 4.4 that there is an injective LIP immersion .f: M*N@+r) such that
lf@)-f@)l=l for aJl x€M. Then/is a proper map and hence a closed LIp
embedding. n

4.6. Remark. Lemma 4.4 and, Theorem 4.5 can be generalized for locally
compact separable metric spaces which can be locally LIP embedded into N, n=2,
see Remark4.3 (3).

4.7. Theorem. Let D be aLIP k-ball in N. Then there is a strong lipeomor-
phism E of N+k:NXN onto itself such that ED:Iv.

Proof. This is the LIP version of a theorem of KIee [26, Theorem 2.5.1, p. 74].
using 5.6 instead of rietze's theorem, all maps occurring in the proof can be made
Lipschitz. n

4.8. Corollary. If M is aLIP k-submanifold of K, M is locally LIp flat in
R"+k:RrXRft. n

4.9. Theorem. If M is aLIP n-manifold, there is a closed locally Llp flat Llp
embedding f: M*I(b+z).

Proof. This follows from 4.5 and 4.8. tr

4.10. Remark. Theorem 4.9 is one dimension better than the result announced
in 4.3 Q).

4.17. Projections. Suppose that f: M*N is a LIP embedding of a LIp
z-manifold M, s>2n{1. one might think that the dimension of the target space
could be lowered by choosing a suitable projection of R" onto an (s- l)-dimensional
linear subspace. In the-DIFF category this is possible, see [7, Thdoröme 5, p. lZ].
Set N:fM, and let o(N):{(*-Dllx-yllx,y€N, xty}cSu-t be the set of
directions of all secants of r/. It is easy to see that the Hausdorff (s-l)-measure
of o(M) is zero. Hence there is a(s"-\o(i/). Let p be a projection of .ff in the
direction a onto an (s-l)-dimensional subspace v. Then plll is injective and
Lipschitz. Continuing similarly we obtain a LIP injection of i/ into Äk+1. How-

lo4
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ever, plN need not be a LIP embedding. In fact, we shall next construct a strongly

LIPflat arcAcI,c suchthat ä(U)-5"-r foreveryneighborhood Uof apoint
in A.It is clear that no projection of R" onto a proper subspace can define a LIP
immersion of ,4.

For s:l take A:11. For s:2 see 3.10 (4)' Let s>3, and let (r,E,z)be
the cylindrical coordinates in Ä". Thus xr:1 cos E, xz:rsin g, and (xa, ..', xJ:
:(2r,...,2"-z). Define g: rT*R" by g(r,q,z):(r,Q*loglxl,z). It is easy to

verify that g is an ZJipeomorphisin for some Z. For example' computing the deriva-

tive g'(x) shows that it is bounded for xl\. Moreover, 7-t(r, Q, z):(r, E -log lxl ")"
Choose a countable dense set {o;lfe N} in {x(S"-1lxt:0}. For each 7€N choose

a rotation hi of N such that hi(er):eu hi@):ai. Set fr:hrgt,rl and observe

that frf S"-1 (r'"k):id for all integers k. Hence we can define a homeomorphism

I R,*R by f(x):fr(x) for e-2i"=lxl=s-zti-t1",ii€N, and f(x):x for x:O
and l"l=t. By 2.35, "flÄ\O is an lJipeomorphism. Hence / is an zJipeo-
morphism. Let J be the segment {terl-l=t=l}. Then A:ff is a strongly LIP
flat (in the obvious sense) arc in .R" consisting of two "twisted" logarithmic spirals,

and the origin. Clearly clo(AnB"(e)):5"-r for all e >0.

4.12. Non-manifulds. Every finite-dimensional separable metric space can be

topologically embedded into a euclidean space, see [14, Theorem V3, p. 60]. We shall

next show that the corresponding result is not true for LIP embeddings by con-

structing a countable metric space which cannot be LIP embedded into any

euclidean space.

LetX be the set consisting of all positive integers and the point -. Let a(l)>
>aQ)>... be a sequence such that a(i)-O and the series Zta(i)" diverges

for every n€N. For example, we may choose a(i):Ulog(i+1). Define a metric

din Xby d(i,i):q(min(i,j)) it i+j and by d(i,i):0. Then xhas its usual

topology and is compact. Suppose that f: X*N is a LIP embedding. Then there

is q>0 suchthat lf@-fjl=qd(i,i) forall i,iinX.Since d(i,i)>a(i) when-

ever i,7(\- ard i+j, it follows that the balls B,:3"(f(i),qa(i)12) are dis-
joint for i€tr\-. Since the series ); a(i) diveryes, the set -E: u{-Brl;e X\-}
has an infinite measure. On the other hand, since fX is compact, E is bounded, and

we obtain a contradiction.
Observe that we did not make use of the fact that / is LIP. Hence there is no

homeomorphism I X-YcN such that/-l is LIP.

5. Extension anil approximation

S.t. nr. main results of this section deal with maps of a metric space X into a
LIP manifold M.In 5.12 we show that if ,4 is closed in X, every LIP map f: A*M
has a LIP extension to aneighborhood of Ain X. This result will be used in 5.18

to prove that every map f: X*M can be approximated by a LIP map.



106 J. LUUTKATNEN and J. VÄlsÄrÄ

5.2. Definition. A LIP partition of unity subordinated to an open cover
(U)ie, of a metric space X is family (E)ie, of LIP maps gj: X*.f such that the
supports sptgr:sl E j1(0,11 form a locally finite family, sptErc(I, for all i61,
and )trtei(x):l for all x(X.

5.3. Theore m. Let (U1);e,r be an open couer of a metric space X. Then there
is a LIP partition of unity subordinated to this couer.

Proof. We may assume that Ur*X for all j. Choose a locally finite open
refinement (v)i<, of (u)ier such that Ttc(lt [8, p. 162]. set gr(x):d(x,cYi)
,and E,:rfu.l Zi,,rlri. Then spt Ercvi, and the theorem follows. tr

5.4. Theorem. Let X be a metric space and let fo, f, be real-ualued functions
an X such that fo is upper semicontinuous,f, is lower semicontinuous, and fo@)=fr(x)
for all x€X. Then there is a LIP map g: X*RL such that fs(x)<g(x)=fi(x)
for all x€X.

Proof. The proof given in f8, 4.3, p. 1711 for the paracompact case yields a
LIP map g if a LIP partition of unity is used. D

5.5. A metric space X is an absolute LIP extensor (ALE) if for every closed
set,B in every metric space r, every LIP map f: B*x has a LIP extension to r.
If every such/has a LIP extension to a neighborhood of B, x is an absolute Lrp
.neighborhood extensor (ALNE). our next goal is to show that every LIp manifold
is an ALNE. The proof is based on LIP versions of Tietze's theorem, due to McShane,
and Hanner's theorem, which states that being an ALNE is a local property.

5.6. Lemma. Let A be a subset of a metric space X and let f: A-Rn be
Lipschitz. Thmf has a Lipschitz extension g: X*N with lipg=nLlzlipf.

Proof. Apply McShane [19, Theorem 1] to each coordinate map of / !
5.7. Theorem. .Ro and Ri are ALE's.

Proof. Since Ri is a LIP retract of ,T, it suffices to show that R' is an ALE.
I-et B be closed in I, and let f: B*N be LIP. For each å€,B choose an open
neighborhood Ub n I such that flU6n.B is Lipschitz. By 5.6, flUunB has a
LIP extension f6: Y-P{. Let (Er)rq be a LIP partition of unity subordinated to
the cover {f\B}v{aulb(B} of L Set 1:{iEIlBnsptE,#fi}. For each 7€,r
choose b<B with sptqrcUu and set 7i:.fi. Then g(x):ZietEi@)Siiul)
defines a LIP map g: X*R". If x(B and cpr(x)>O, then i(J and gi@):-f(x),
whence g(x):f(x). !

5.8. Lemma. Let 4( be an open couer of a metric space x satisfying the follow-
ing conditions:

(l) If U€Qt and V is open in U, then V(lt.
Q) If U and V are in olt, then UvV€Qt.
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(3) If {Uli€ry is a pairwise disioint subfamily of 4t, thm u {u,lielwll.
Then 4t contains all oPen sets of X.

Proof. This follows directly from Michael [20, 2'l (e) and 3.3]' u

5.9. We shall give a general version of Hanner's theorem and obtain the LIP

result as a special case. Let F be a class of maps between metric spaces. We say that

a metric space X is an ANE' if for every closed set .B in every metric space I, every

F-map f: Btx has an F-extension g: (I*x to an open neighborhood u of B.

Thus ALNE means ANEF for F:LIP

5.10. Theorem, Let F be a class of maps between metric spaces such that the

following conditions are satisfied:

(l) If f: Y*X isin Fandif Bisopenor closedinY,then flB: B*X isin F'

(2) Let A be open in X, let i: A*X be the inclusion, and let f: Y*A' Then

f(F if and onlY if if€F.
(3) If f: Y*x is a map such that eoery point in Y has a neighborhood u such

that flU€F, then f(F,
Suppose thqt X is a metric space such that euery point in X hus a neighborhood

which is an ANE". Then X rs an ANE".

proof. The proof of Hanner u3, 3.11 shows that every open subset of an ANEa

is an ANEp. Hence every point of Xhas an open neighborhood which is an ANE'.
Let 4t be the family of all open subsets of X which are ANE"'s. Then a|/ is an

open cover of X. It suffices to show that Ql satisfies the conditions of 5.8. The con-
'dition (1) follows from the first remark of the present proof. The condition (3) is

proved exactly as in Michael!2}, a.l (c). To prove (2), we can follow F{anner's

proof [13, 3.3, a)] with a slight modification. Indeed, the maps g and F constructed

in the proof need not be in F. To arrange this, we choose the sets Yr, Y, so that

YlaYr:Q. Then choose open neighborhoods Z; of Y; such that VrnVr:g'
Let Vn:Y\(VtvVz). Then gl(Uo nVo)vB is in 4 since it is locally in .F..

Replacing Yiby vi we may thus assume that g is in F. To show that the map .F is

in the family fl we observe that the sets Zr:Ut\% and Wr: UNft form an

open cover of U and FlWi:glW1, i:1',2. D

5.11. Corollary. Let X be a metric space such that euery point has a neigh-

borhood which is az ALNE. Then X ls az ALNE. n

5.12. Theor em. Euery LIP manifold rs az ALNE

proof. Let M be a LIP manifold. Every point in M has a neighborhood u
lipeomorphic to Rn or Ä!. Since the property ALE is obviously a LIP invariant,

it follows fro m 5.7 that [/ is an ALE and hence an ALNE. By 5. I 1, M is anALNE. fl

5.13. Theor em. Let M be a LIP submanifold of N. Then M is a LIP neigh-

borhood retract of N.
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Proof. Since M is locally compact, it has an open neighborhood u such that
M is closed in u. By 5.12, the identity map M*M has a LIp extension to an open
neighborhood V of M in U. f]

5.14. Approximation. Suppose that f: x-Y js a map between metric spaces
x, Y. rt is natural to ask whether/can be approximated in some sense by LIp maps.
If I is too general, the answer is negative, as is seen from the following counter-
example: Let X:l-l, 11, let f(x):(x,xsin(llx)),f(0):(0,0), and let y:imfc
c.R2. Then lis an arc which is not locally rect fiable at 0. If g: X-y is LIp, then
im g lies entirely either in the left half plane or in the right half plane. Thuslf cannot
be approximated by LIP maps.
, We shall show that the approximation is always possible if Iis a LIP manifold.
Moreover, the approximating map can be obtained from / by a small homotopy.
A relative version will also be given.

5.L5. Function spaces. Given two metric spaces X, Y we let T(X, I) denote the
set of all maps I x-Y. we shall use the majorant topologyin T(x, r). A basis
for this topology consists of sets u(f,e):{gld'(f(x),g(x))=e(rc) for ail xexl.
Here d'is the metric of Y, f€T(X, Y), and. e,: X*(0, -) is an arbitrary map. This
topology is equal to the graph topology (Wtritehead l3l, (5.2), p. 172!), whose basis
consistsof sets Wu:{flf(ncU}. Herei-(/) isthegraph of f: X*y and.U
is a arbitrary open set in xX r. Hence the topology of T(x, y) is independent
of d'-

The elements of U(f,e) are called. e-approximations of f. A homotopy
h: xxJ*Y is called an e-homotopy if h, is an e-approximation of åo for every t<1.

Let X, Y, Z be metric spaces, and let rp: Y-Z be a map. Then g induces
a function E*: T(X, Y)'T(X, Z) by E*(D:Ef. Using the graph topology, it
is easy to give a straightforward proof for the following result:

5.16. Lemma. q*: T(X, Y)*T(X, Z) is continuous. n

5.17. Theorem. Let M be aLIP manifold, X ametricspace, f: XtM con-
tinuous, 6: X*(0, -) continuous, and AcX closed. Then there is a continuow
ö: A*(0, -) such that if g: A*M ö LIP and a ö-approximation to flA, then g
has a LrP extension u: x*M which is e-homotopic to f. Moreouer, if flA ,b LIp
and g:flA, the homotopy can be chosen to be fixed on A.

Proof. Special case: M is an open subset 14 of R". We may assume that e(x)<
=.d(f(x),R'\72) for all x€X. We show that ö:dA satisfies the conditions of
the theorem.

So let g: A-W be a LIP map, which is an ell-approximation to flA. For
every x€X choose an open neighborhood tl as follows: If x€XV, then U,c
cXV and d(fU*)<inf eU*. If x€A, then glu* nA is Lipschitz. By 5.6, we



Elements of Lipschitz topology 109

can choose a LIP extension g,: X*N of glU,nr4. We may assume, replacing
U*by a smaller neighborhood, that lr-0)-f0)l=e(y) for all y(U, and for all
x(A. Let (E)*e* be a LIP partition of unity subordinated to the cover (U,)".".
For each x€X define u*: X*N by u*:g* if xQA and by u*(y):f(x) if
x€ts1,4 and. y(X. Set u:)*rxg*u*. Then u is clearly LIP. If a(A and

E*(a)=O, then u,(a):g*(a):g(a), whence u(a):g(a). If y€X and E*(y)>O,
then lu,(y)--fU)l=e(.y),w hence lu(y)-f(y)l=e(y). Setting h(x,t):(l-t)f(x)+
*tu(x) we obtain an e-homotopy from f to u. Since e(x)=d(.f(x),R\tz),
imhcW. If g:flA, å is fixed on l. The special case is proved.

General case. By 4.2, there is a LIP embedding of M into a euclidean space

Rn for some n. From 5.16 it follows that we may assume McRn. By 5.13, there
is a LIP retraction r: W-M of an open neighborhood W of M. By 5.16, there
is a continuous ä: X*(0, -) such that if ui XtW js a ä-approximation to f,
then ru: x*M is an e-approximation to rf:f. we may assume ö(x)<d(f(x), R\rv)
forall x(X. Let g: A*M beLIP andaålA-approximation to flA. Bythespecial
case, g has a LIP extension u: X-W which is ö-homotopic to f in IL Then
u:n): X-M is a LIP extension of g. If h: XXI*W is a ö-homotopy fromf
to u, then rh is an e-homotopy from f to u in M. If g:flA and if å is fixed on ,4,

then also, rh is fixed on A. n
5.18. Corollary. Let M be a LIP manifold, X a metric space, f: X*M

continuous, and e: X*(0, -) continuous. Then there is aLIP map g: X*M which
is e-homotopic to f. Moreouer, if flA is LIP for a closed set AcX, the homotopy
can be chosen to be fixed on A. tr

6. General position

6.1. General position is 2n important tool in PL topology. A typical example
is the following result: Let P and Q be compact polyhedra of dimensions p and q
in the interior of a PL n-manifold M.lf ptq=n-|, there is for every e=0 a
PL homeomorphism h: M*M such that d(h,id)<e and PnhQ:O. In this
section we try to find LIP analogues of results like this. It turns out that on a LIP
manifold, polyhedral conditions can often be replaced by assumptions concerning
rectifiability and Hausdorff measure. For example, we shall prove a LIP version
of the above result, assuming that P is p-rectifiable and Q is of Hausdorff (q+l)-
measure zero.

6.2. Hqusdorff measure and rectifiability. An excellent reference on these topics
is Federer [10], and we shall use his terminology and notation. Thus welet /f,q(X),
q >0, denote the 4-dimensional Hausdorff measure [10, p. 171] of a separable metric
space X. Recall that af,o is the counting measure. If/is an L-Lipschitz map of X,
then /f,q(fx)=Lq#q(X). Hence the following properties are LIP invariants of
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a separable metric space tr: (D g/q(n:O, Q) #n(n is o-finite, (3) the Haus-

dorff dimension of X is q. For a compact space X, the property tro(X)= - is also

a LIP invariant.
A metric space X is p-rectifiable tf there is a bounded set FcRP and a Lip-

schitz map of F onto X. If X is a countable union of p-rectifiable sets, it is countably

p-rectifiable. Equivalenfly, X is countably p-rectifiable if there is a set .FcÄp and

a LIP map of ,P onto X. Thus countable p-rectifiability is a LIP invariant property.

We shall use the phrase "pr almost all" in its usual sense, meaning all except

for a set of p measure 
'zero, 

andwe may omit p if it is the ordinary Lebesgue measure

(af in R"). Following Federer [10], we do not make a distinction between measure

and outer measure.

6.3. Lemma. Suppose that Ac.Rp with /f,p(A)<.a, il.: A*N is Lipschltz,
EcN, and g: EXA*N is amap such that E@,y):(g(x,y),y) defines a Lip-
schitz embedding E: EXA*NXA. Suppose also that QcN with trq(Q)<*
and that 0=k=p+q. rhen af,k(Qa(atg*)A)=* for nfp+q-k almost all x€E,
where g"(y):g(x,!). In particular, if p*q<n, then Qn(u*S)A is finite for
almost all x(E.

Proof. Setting {(*,y):E@,y)*(u(y),0) we obtain another Lipschitz em-

bedding r!: EXA*PXI. Indeed, if qr: imq*gya is the inverse of 9, then

tr(x,y):Er(*-o(y),y) defines a Lipschitz inverse {r: imt*EXA of r/. By

UO,2.l}.45l, ffo+n(QXA)-.-. Hence the set Qr,:rlt-tlQX,4l is of finite //p+q
measure. For x€Ro set D(x):{"1€Rpl(x, y)(Q}. Applying ll0, 2.10.271 with
the substitution y-N, Z*A, A-Qt, m-p+q-k yields Zfk(n1x1)=,- for
afp+q-k almost all x(N. If u(y)*S@, y):zQQ, then (2, y):t(x,7) and y€D(x).
Hence Qn(u*g)Ac.ptltlxXD(x)l where pL: /{:r.A+R' is the projection. The

lemma follows. !
6.4. Lemma. Suppose that AcRp,u: AtN,sLIP, EcRo, and g: EXA-N

is a map such that cp(x,y):(s@,!),1) defines aLIP embedding E: EXA*R,Y.A.
Suppose also that QcN with tru(Q):0 and that O=k=p+q. Then

tro(8n(u*g)A):0 for /f,n+e-k almost all x(E. In particular, tf p*q€n, then

Qn(u,*S)A:0 for almost all x(8.

Proof. A slight modification of the proof of'6.3. tr

6.5. Theorem. Suppose that PcN is countably p'rectifiable and QcR"
with afq(Q):o. If p+q=n, then Qn(Pax):g for almost all x(P.

Proof. Apply 6.4 with E:N and g(x, !):x. n

6.6. Notation. We let llxll:max(lxtl,...,l""l) denote the Banach norm of
a vector x€Ä'. For z€intl", let w,; Io*Io be the PL homeomorphism defined

by w.(x):x+(l-llxll)2. Thus w" is the z-cone extension of idlåI" to I":0(0F).
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6.7. Lemma. Let Pcrntl" be countably p-rectifiable and let Qc.intl" with
tro(Q):O. If pfq>n, then afe+s-n(Qnw,P):0 for almost all z€intl'. If
p*q=n, then Qnw,P:0 for almost all z€tntl".

Proof. Choose a LIP map a of a set AcRp onto P. Set .E:int In and define

s: EXA*E by g(z,y):(l-lla(y)ll)2. Then E(z,y):(s(",t),t) defines a LIP'
embedding E: E)r.A'R"XA, since it has a LIP inverse Er: im E-EXA, defined
by Erk,D:(rl(l-lla(y)ll),7). Since d*g,:w"a, thelemmafollowsfrom 6.4. n

6.8. Definition. A LIP isotopy of a metric space X is a level preserving
lipeomorphism ,F: XXI*XXI such that 4:id. Here we use the customary
notation F(x,t):(Fr(*),t). lf d(Fr(x),x)=e for all xCX and t€l, F is said to.
be an e-isotopy. If .F'l( U)XI:id, F is supported by U.

6.9. Theorem. Let M be a LIP n-manifold, Iet Pctnt M be compact and
countably p-rectifiable, Iet QcM with tro(Q):O, Iet U be a neighborhood of
P nQ, and let e>0. Then there is a LIP e-isotopy F of M supported by U such that
a(e+c-n(Q n4P):0. For paq=4 this means Q nFrP:A. If M is a PL manifold,
F can be chosen to be a PL isotopy.

Proof. Choose LIP z-balls 8t, ..., Bo in U so that P aQcU {int,B,ll=;=k}-
Choose lipeomorphisms E,: Bi*In and set Pr: ErlP aint 3J, Qt: eJQ nint Brl.
By 6.7, there is z1(int1" such that gfe+s-o(Qrow"rP):0. The Alexander trick
125, p. 371 gives a PL isotopy of 1n fixed on 0Io and finishing with w,,. With the aid
of et, we can transfer this isotopy to a LIP isotopy of .Br. Extending this isotopy
by the identity, we obtain a LIP isotopy F1 of M supported by B, such that
af e + s-n (Qn,Frl P nint BJ :0. Setting Pr: tp rlF! P aint Brl, Qz: ezlQ nint,Brl we
similarly choose z, with afe+s-n(Qznw,,Pr):0 and obtain a LIP isotopy Fz of
M supported by B, with J(e+c-n(QnFlFlPn(intfruintB)):6. After k
steps we have a LIP isotopy F:FV...FL of M supported by U'such that
zfe+c-n(Qn4P):0. Since the points z, canbe chosen to be arbitrarily close to'
the origin, F can be chosen to be an e-isotopy. If M is PL, all maps can be chosen

to be PL. tl

6.10. Theorem. The condition gfp+q-n(QnFrP):g of 6.9 can be replaced
by 36t+e-n1P 

^FLQ):o.
Proof. Replace the isotopy lr by its inverse F-r MXI*MXI. fI

6.11. Remark. There are several obvious modifications of 6.9. We may use

6.3 instead of 6.4 and obtain a finiteness condition on a(p+c-n(QaFrP) instead
of the zero condition. For example, if Pn and Qq are compact LIP zubmanifolds of
M" with p+q=n, then there is a small LIP isotopy of rl1 which carries P onto P"
with QnP' finite.
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6.12. Applications. We shall give three applications of LIP general position.
First, we show that removing a set of sufficienfly small Hausdorffdimension does not
,change the lowdimensional homotopy groups of a LIP manifold. Next, we show that
for a compact set XcRn, to+'(X):O implies dem X=q where dem means

demension in the sense of Stanko. Since dim<dem, this is a stronger result than
the classical dim X=q Il4, p. 1041. The third application deals with PL engulfing.
The usual engulfing theorems B6, Chapter 4l are concerned with engulfing a poly-
hedron of dimension r. Using 6.9 we can show that the polyhedron can often be

replaced by an arbitrary compact set of Jf,'+r measure zero.

6.13. Theor em. Let M be a LIP n-maniftld without boundary, let E be closed

in M with trc(E):0, and let xo€M\E Then the homomorphisms z(M\E, xo)*
-fti(M,x) induced by the inclusion are injectiue for 0=i=n-q-I and surjectiue

lfor O=i<n-q.

Proof. Suppose first O=i=n-q. Let a(n1(M,xo\. By 5.18, a has a LIP
representative f: (Ii,0I)-(M, xo). By 6.9, there is a LIP isotopy of M which carries
im/ off E and keeps xo flxed. Hence / is homotopic rel |Ii to a map into M\E

Next assume 0<i<-n-q-1. Let f: (I',AD*(rl1\,E, xo) be a map homotopic
to the constant map c relå.It in M.We must show that f-crel\Ii in M\E By
5.18, we may assume thatf is LIP. Choose a homotopy H: (IiX[ lliXl-(M, xo)

from/to c. By 5.18, we may again assumethat H is LIP. Now use 6.9 to isotope
im ä off E keeping xovimf fixed, and the theorem follows. tr

6.14. Remarks. The above result is true, of course, for PL and DIFF mani-
folds. For i:0 it means that no component of M is contained h Etf /f,"(E):0
and that each component of M contuns exactly one component of r}1\E if
.tr"-r(E):0. These are classical results, see [4, Theorem VII 3, p. 104 and Cor-
ollary 1, p. 481. The theorem is also true for manifolds with boundary. A special case

of 6.13 was proved in [17, 3.3].

6.15. Theorem. Let XcN becompactr'r, ty'a+t(X):O. Thm demX<q.

Proof. We shall use the dual demension Dem of Stanko [28], see Edwards

{9, Propositionl.2 Q')1. Let P be a closed polyhedron in R'with dimP:p<n-
-q-1, let U be a neighborhood of XnP, and let e>0. Then P is countably

p-rectifiable. By 6.10, there is an e-isotopy of Äo suppbrted by U which carries X
off P. Hence dem X=Q. n

6.16. Theorem (Engulfing). Suppose that M is an r-connected PL n-manifold
without boundary with r<n-3. If XcM is compact and //'+t(X):O, then X
,is contained in a PL n-ball.

Proof. Choose a compact polyhedral neighborhood Y of X and a triangula-
tion K of I such that no simplex of K meets both X and 0Y. Let,I, be the (n-r-l)-
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skeleton of Kand let Ir:{A€KlAnX:0\. By 6.10, there is a PL homeomorphism

h: M*M such that lJllnhX:O and ål(M\f ul"rrl:id. Let L be the sub-

complex of the barycentric subdivision of K consisting of those simplexes which

do not meet l"rrlul,frl. Then dimZ:r. By the engulfing theorem of Stallings

126, p.1501, ll,l is containedintheinteriorof a Pl-ball BcM. Using the map de-

scribed in 2.43 (not in 2.421), we find a PL homeomorphism g: M*M which
keeps lzlul"rrlu[rrlu(M\I) fixed and maps int.B onto a set containing hX.

Then X is contained in the PL ball h-tgB. n

6.17. The above results deal with general position of sefs. We have been less

successful with the general position of maps. For example, we would like to show

that a LIP map M"*N2'*L can be LIP approximated by a LIP embedding, but we

have not even been able to prove this in the euclidean case. However, we have estab-

lished the following weaker result:

6.18. Theorem. Let M be a compact LIP manifold with 0M:0, and let

g: M-RZ"+L be a LIP map. Then for euery e>0 there is mt injectioe LIP map

gt; M-Rzn+r suchthat d(gt,B)=e and lip(gr-g)=e.

Proof. Since the result is rather unsatisfactory, we only give a sketch. Let
A be the space of all LIP maps M -.Rz"tL. Then ,E'is a Banach space with the norm

ll,fll:sup,.r lf(x)l+Lipf. For €=0, the set 6":{fEEld(f-'0))=u for all

/€R2o+r; is open in .E By Baire's theorem, it suffices to show that Gu is dense. Let

f€E. Cover Mwithinteriors Ut,..., Ue of LIP balls such that d(U)<e for all i.

Using 6.4 we can find a mapft such that ft(x):f(x) for x€M\t/t,"f[M\Ut]n
af1(J1:0, and llfr-fll is small. Then modify similarlyfi in U2. Aftet k steps we

obtain a map f1, such that each fiber offi is contained in some t{. Thus f*€Gu, and

the theorem follows. tr

7. Collaring anil the Schönflies problem

7.I. In this section we first prove a LIP version of an important result of
Brown [5], which states that a locally collared set is collared. In particular, the

boundary of a LIP manifold M has a collar in M. Next we prove a Schönflies theo-

rem in the LIP category. In particular, a PL (n -l)-sphere in,Ro always bounds a

LIP ball.

7.2. Definitions. We let 1'denote the interval [0, l). Let Ybe a subset of
a metric space X. A I,IP collar of Y in X is a LIP embedding c: YXI'-X such

that c(x,0):x for all x(Y and im c is an open neighborhood of Y in X' A local

LIP collar is a family (U1, ci\iet such that (U)ie, is a cover of Y, Ui is open in Y,

and c, is a LIP collar of Ulin X.

7.3. Lemma. Let X be q metric space, let YcX, Iet c; YXI'*X be a map

such that c(x,0):7i for all x€Y, and let e: Y*(0,*) be continuous. Then there
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is aLlP map ö: I*(0, 7l such that d(x, c(x,t))=e(x) wheneuer x€Y and 0<t=
=å(.rc).

Proof. For x€Y set g(x):sup {llc[xX[O,t]fcB(x,e(x))]. It is easy to see

that g is lower semicontinuous. By 5.4, there is a LIP map ö: I*lR1 such that
0=ä(x)=g(rc) for all x. il

7.4. Theorem. Let Y be a subset of a metric spacie X. If Y has a local LIP
collqr in X, then Y has a LIP collar in X.

Proof. Let all be the family of all sets U open in Y such that U has a LIP collar
in X. Then olt is a cover of L It suffices to show that 07/ satisfies the conditions of 5.8.
The conditiqn (1) is clear. Next it is easy to verify that Brown's proof for the Top
case of (3)126, Lemma 1.7.1,p.351 yields a LIP collarif all given collars are LIp.
we shall prove (2) using an idea of connelly [6]. However, since we do not assume
that Y is closed in X, an additional argument is needed.

Assume that U7,Uz(.al/, and set U:Utv(Jz. Let q: (J1XI'*X be a
LIP collar of Ui, i:1,2. Applyrng 7.3 we find LIP maps ö,: (Ii-(0,11 such
that d(x, c1(x, ör(x)t))=d(x, U\U,) for all (x, t)€(JiXI', i:1,2. Thus
d(c{x,ä,(x)r),U\U)>0 forall (x,t)CUiXI'. Replacing c; by the LIp collar
(x,t)*cr(v,öt(x)t\ we may therefore assume that U is closed in N:im crvimcr.
Moreover, we may assume that clL(J:UiX0. Fromnow on, all closures will be
taken in i[. Choose a LIP partition of unity (qr,E) on U such that sptE,:
: ArC U, . Then choose an open neighborhoo d Y, of A, in N such that Vrcim q.
Setting Ui:VtnI we have (J:Uivui.ByT.3,thereareLIPmapsö;: Ui *(0, 1l
such that d(x,c1(x,ör(x)t))<d(x,If\r,J for all (x,t)€(IXf. Setting B,:
:{cr(x,öt(x)t)lx€A1, 0=t< ll2l we thus have BrcVr. Since .B; is closed in imc,
and Bicvrcimci, Biis closed in .l[. Replacng Uiby U{, crby ci(x,t):(x,6r(x)t),
and N by imciuim c!r, we may therefore assume that crlAiv.l},UAJ isclosed
in N for i:1,2.

Set M:NwUX[-1,0], where (x,0) is identified with x. We shall construct
a lipeomorphism g: N*M such that g(x):(x, -1) for x(U. Then (x,t)-
*B-l(rc, t- 1) will give a LIP collar of U in N, and hence in X.

Define ht: U.X[-L,1)-M by ht@):ci(x) for x€(I,XI' and by hi(x):y
otherwise. It is easy to see, for example by 2.22, that h, is a LIP embedding. Let
f1: (IryI'*tåX[-1,1) be defined by fr(x,t):(x,r"(t)) where rx(t):t for
t€U12,1) and rr maps \0,1l2l affinely onto [-qr(x), 1/2]. From 2.40 it follows
thatfl is a LIP embedding. Next define 91: N*M by g1(x):hr(fi(å;r(x))) for
x(imct and by gt(x):x otherwise. Since crprK\},U2lf is closed in -l/, g, is
a LIP embedding. Moreover, hltgrN:{(x, t)lx€(12, -Er@)=t<l\. Let
f2: hlLgrN*UzKf-l,l) be defined by f2(x,t):(x,s,(l)) where s,(t):1 fe1
t<U12,1) and & maps l-Er.@),1/21 affinely onto l-l,ll4. By 2.40, f, is a
lipeomorphism. Define 92: g1N-M by gr(x):lxr(fr(hr'(x))) for x€im hrnglN
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and by gr(x)':x otherwise. Since hrlArXl-l,U2lJ is closed in M, gz is a lipeo-

morphism. Then .g:g, gr: N*M is the sought-for lipeomorphism' n

7.5. Coroll ary. If M is a LIP manifold, then 0M has a LIP collar in M. n

7.6. Schöffies problem. Let f: S'tr-l+S'' be a topological embedding. If
n:2, thenfcan be extended to a homeomorphism Sn*Sn, according to the classical

Schönflies theorem. Because of the wild embeddings, the result is not true for n>3'

However, if f can be extended to an embedding g of an annulus' .BnlBn1a), o<a<|,
thenf canbe extended to a homeomorphism of ,Eo onto D where D is the component

of S;17S'-1 containing g[,8"\,8'(a)]. This result is due to Brown [3] and also

to Mazur [18] and Morse [22]. Similarly, we may consider the cAT Schönflies

problem, where cAT is one of the categories DIFF, PL, LIP, TOP: suppose that

f is a CAt n-ball, S a CAT n-sphere, f a CAT embedding of a neighborhood of å'B

in B into S. Does fl|B have an extension to a CAT embedding of B into S? Note

that in this case, /å.8 has a CAT collar in D where D is as above' In other words,

D is a CAT manifold with boundary f|B. Stated in this form, the answer is known

to be negative for CAT:DIFF, since there are diffeomorphisms 5r-1*5n-1

which cannot be extended to a diffeomorphism of Bo. In the PL case, the answer is

positive for n*4 and unknown for n:4. We shall show that the answer is posi-

iive for CAT:LIP. Without any collaring condition, a LIP (n-l)-sphere in Sn

need not even bound a topological ball. A counterexample can be constructed with

the aid of a fattened Fox-Artin arc, see 3.10.

A. quasiconformal schönflies theorem was proved by Gehring [11], who used

an explicit version of the Mazur-Morse method. His proof needs only slight changes

to yield the LIP theorem. To avoid repetition, we refer to Gehring's proof as given

in[29, Section 41] and give only the modifications needed in the LIP case.

7.7. Theorem. Suppose that 0<a<.1 and that f is a LIP embedding of the

annulus E:F \8"(4) into Sn. Then fls'-t can be extmded to a LIP embedding

f*: BntS".

proof. We may assume n>2. We work in the compactified space Rn:.ff u-.
With the spherical metric q 129, p.371' it is a metric space lipeomorphic to Sn' More-

over, the identity map is a lipeomorphism of (Rn, 4) onto R" with the euclidean metric.

All complements and closures are taken in Rn'

step 1. (See [29, 41.1].) Suppose that (l) Dr, D, are domains such that

Dr-1'Drl| and D, wDrcB", Q) Brand B, are open round balls such that Brn

ÅAr:g and .8, wnrcB", (3)/is a lipeomorphism of C(DtvD) onto C(B1uBr)

so,h thut f0D,:63,, (4) f(x):y in a neighborhood of CBn. Then there exists a

lipeomorphism /*: cDr-g&, such that f*10D2:fl0D2. All LIP properties are

taken in the sPherical metric.

115



116

The construction of/* is exactly as in [29]. Only the LIP property of f* at *
needs a separate argument.

The set l:CA\- is (nl2)-quasiconvex in the euclidean metric. Moreover,
,4 is a locally finite union of closed sets l, such that each f*lA, is a composite map
of translations, .f,.f-r, and a single affine map, common to all i. By 2.35, f*lA is
I-Lipschitzforsome Z intheeuclideanmetric. Since l/*(x)-nl=s for atl finite x,

l"f*(x)l=l*ll2 for lxl>10. Therefore, for all x,y in C-8"(10)\-, we obtain

s (f * (x),/* (y)) : lf 
* 

@) - f. 0) I ( I + l"f 
. (x) I,) -' t, (t + | f *' (y)l\-Lt 2

= ALq(x, y).

Hencelf* is LIP at -. A similar argument shows that (f*)-, is LIP at -, and Step I
is proved.

Step 2. (See [29, 41.2].) In addition to (l), (2), and (3) of Step 1, suppose that
(4') 0(D2, 6') CfCB'c,Bn. Then there exists a lipeomorphism /*: CD2-Qfr,
such that f*l0Dr:fl0Dr.

The proof of Step 2 in B9l is also valid in our case except that we must replace
the map g of B9l by the following map g: R'*Rn (which could be used in the
qc case as well): g(0):0,9(-):-, &rd g(:c):E(lxDl"l-tr for x#0, -, where

Ei Rr+*Äf, is the PL homeomorphism which maps [0, a] linearly onto [0, bl,la,l]
affinely onto [å, 1] and is the identity on [, -). Then g is a lipeomorphism.

Step 3. The proof of [29, 41.3] can be direcfly translated to the LIP case.
Since Möbius transformations are diffeomorphisms of So, they are lipeomorphisms
in the spherical metric of Rn. This completes the proof of 7.7. tr

7.8. Theorem. Let S be aLlP n-sphere, and let Srbe alocallyLIPflatLlP
(n-l)-sphere in S. Then (5, Sr) is lipeomorphic to the standard pair (5", So-L).

Proof. Choose a lipeomorphism å: ^S'-t*Sr. Let Dr,D, be the components
of \S1. Since ,S, is locally LIP flat, it has a local LIP collar in Dr. BV 7.4, it has
a LIP collar c: S,XI'*D, in Dr.Then h can be extended to a LIP embedding

I B"\o*D1 bv f(x):c(h(xllxl), t-lxl). By 7.7, h canbe extended to a lipeo-
morphism gr: B"*Dr. Similarly we find an extension of h to a lipeomorphism
gs: RlBn*D-r. Then gtvgz is a lipeomorphism of (R', Sn-1) onto (S, ,S). Here
Rn:,Rnu- with the spherical metric. n

7.9. Theorem. Let M be a compact LIP n-manifuld which is the union of two
open LIP n-balls. Then M is a LIP n-sphere.

Proof. See the TOP case [26, Theorem 1.8.4, p. 49]. n
7.10. Theorem. Let SbeaPLn-sphereandlet SrcS bteaPL (n-l)-sphere.

Then (5, Sr) is lipeombrphic to the standard pair (^S', ,S'-t). In particular, the closure
of each component o/ S\S1 is a LIP n-ball.
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Proof. The theorem is obvious for n:1. Proceeding inductively, we assume

that the theorem is true for n=p, and suppose n:P* l. By 7.8, it suffices to show

that S, is locally LIP flat in S. Let x€&, and choose a triangulation (K, Z) of
(S, SJ such that x is a vertex. By induction, the PL sphere pair (llk (x, K)1,llk (x, -L)l)

is lipeomorphic to (Sr, Sr-r;. The cone construction yields a lipeomorphism

of (lst (x, K)1, lst (", ,L)l) onto (.Ep+l, Bp). Hence St is locally LIP flat in S. n

8. LIP structures of Äno Sn, and 1n

8. l. The aim of this section is to prove the Lipvermutung (LIP Hauptvermutung)

for the manifolds Äo and So for nl4, and for 1n for n*4,5. Bythiswemeanthat
if a LIP manifold is homeomorphic to one of these manifolds, it is lipeomorphic to it. A
LIP version ofthe Poincard conjecture follows then directly from the corresponding

TOP result, proved by Newman P4l.In fact, this section is a slightly enlarged LIP
version of Newman's paper. We begin by the LIP version of Newman's engulfing

theoreml24,Theorem 51. A subset X of aLlP n-manifold M is called LIP p'dominated

if forevery x(X there isaneighborhoodNof xandalipeomorphism I N*1"
such that flN axl is contained in a polyhedron of dimension at most p.

8.2. Theorem (Engulfing). Let M be aLlP n'manifold without boundary, and

let xcM be closed and LIP p-dominated with p=n-3' Let V be an open set in M
such that (M, V) is p-connected and X\V is compact. Then there is a lipeomorphism

h: M-M such that Xc.hV and h:id outside a compact set.

Proof. Thetheorem is proved by rewriting Newman's proof in the LIP category.

It is only necessary to be sure that all maps occurring in the proof can be made LIP.
The previous sections of our paper give all the tools needed for this. Sincethe proof
is long, we must leave the details to the reader. However, we shall give some hints

for this translation work together with some remarks on Newman's proof [24n

Sections 1-15, pp. 555-5691 concerning omission of certain unneeded hypotheses

and correction of some slight inaccuracies.

Lemma /. To obtain a LIP map E, apply 5.4.

Lemma 2. Assume that X is a LIP manifold and Fcompact. In the proof, set

fr : (l - t)fo+ tf1 and replace fr* by f6 and E' by f,for suitable 0 = a < 1 = å. A com*
putation shows that hln(.fo,fr) is LIP. By 2.36, å is LIP. Similarly å-1 is LIP..

In the definition of engulfing, the isotopy condition Q) can be omitted.

Theorem.l. Assume that Y and Z are LIP manifolds, .F is compact, and gt
is LIP. In case I of the proof, assume that go is also LIP. The set Z is chosen to be

AXintt F where A is a relatively compact neighborhood of o. Defining E(y, z):
:(d (y, o) gr(z) -t d (y, 0 A) gJz)) l(d (y, o) + d(y,ål)) yields a LIP engulfing h. The
theorem is only needed with (4.3) replaced by (4.3').

ttT
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Theorem 3. Assume that L, Kare compact and/is LIP. Since/'is constructed

by a coning process, it follows from our $ 2 that /' is LIP.

Theorem 4. Assume that L, K are compact and / is LIP. Newman's map E
seems to be a standard mistake of the second kind (see 2.43), but this is easily cor-

rected.

Theorem 6. Assume that H, L, I ate compact, M a LIP manifold, X LIP
p-dominated, andf I-IP. Replace the condition dim r=-p by the following one:

diml=n and dim p=p. Indeed, the theorem will be applied on p. 569 with the

substitution f-G* where dim G* may be n-2. Claim that g is LIP and h is a
lipeomorphism.

Sectionll. Replace the additional condition of B(q) by the following one:

H\.f-lV has a neighborhood in H of dimension =4. This helps in the proof of
C(q,l)+C(q,m) and allows us to change (11.2) into the form: intoa is a neigh-

borhood of f117-i V in H. This in turn will imply in Section 12 that oq is a prin-

cipal simplex of -Fl.

Lemma 6. In the proof, choose fo so that dim fIV=q.
Section 12. By 5.18, the extended mapf can be chosen to be LIP'

Lemma 7. Assume that G, L, K arc compact, dimG=n, dimK=p, andf
is LIP. In the proof, we could not see why the moP 8i+r satisfies (13.3): giallLvG":
:f'lLuGo, although obviously gr*t(x):f'(x) for x(L u(G'nD)' We obtained gr*t
by applying 5. 1 7 with the substitution X- G, f* L v G" v D, f+f ', C-(f' lL uGo) u
w(s'lLuD). Moreover, when defining the polyhedron G*, one should identify points

in Lv(D nG') with the same gr-image, not only in D nG", since otherwise f*lL*
is not necessarily an embedding. When applying B(q-l) on p. 569, the new con-

dition of B(q-l) is satisfied, since W:D*\plKvl9lll is a neighborhood of
D"\f*-thiv in D* and WcpP.

The rest of the proof is essentially unchanged. n

8.3. Theorem. Let X be a metric space which is the union of open sets Vtc
c.Yrc... such that euery Vrii lipeomorphic to N. Then X is lipeomorphic to N.

Proof. The corresponding TOP result is due to Brown [4]. It is easy to check

that all maps in Brown's paper can be made LIP. n

8.4. Theorem. Let M be a LIP manifuld homeomorphic to N, n*4. Then

M is lipeomorphic to N.

Proof. The case z:1 follows from 3.11. For n=2, Theorem8.3 implies

that it is sufficient to show that each compact set AcM is contained in an open

LIP ball. We divide the rest of the proof into two cases: 2<n<3 and n>5.
Letn:2 or 3, and let AcM be compact. Choose a homeomorphism å: M*N
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and a closed n-cube Q containing hA.Divide Qinto congruent closed cubes Qt, ... , Qr
so that for each i, Pr:Qtv...uQ, is a PLn-ball, Pt^Q*t is a PL (ru-l)-ball
in \Qr*r, and Qi:h-tQi is contained in an open LIP n-ball BrcM. It suffices to
show that P!:ht-tp. is contained in an open LIP ball for all i:1,...,k. This

is clearly true for f:1. Proceeding inductively, assume that Piis contained in an

open LIP ball,B.
We can obviously choose an open neighborhood U of Qi*rin 4*t and a homeo-

morphism/of U onto an open set VcN snchthatfQl+r:In-tKl andflU oPilc
c{x€.Plx,=O}. Choose e€(0, 1) suchthat (1+e)(f-lxDcV and (1+e)1o-1x

xl0,elcf[UaB]. Let S be the PL (z-l)-sphere å((l+e)1n-1x[e, 1+e]), and

let 51 be the PL (z-2)-sphere å((l*e),I'-lXe). Choose a lipeomorphism g of
u onto an open set wcN. Then E:gt-L: v-I4t is a homeomorphism' For
every ö>0, there is a homeomorphism z of 9S onto a PL (n- l)-sphere -E such

that d(u,id)<ä. For n:2 this is elementaly, and fot n:3 this follows from the

approximation theorem of Bing [1, Theorem l]. The same argument in the dimension

n-l yields a homeomorphism a of uES, onto a PL (n-2)-sphere FcE such

that d(u,id)=ö. Let Dr, Drbethe components of E\4 and let D be the bounded

component of P\E. Choosing ä small enough, we may assume that g[Q;+NB]cD,
DcW, DrcglBnUl, and EngQi*rc.Dt.

By 7.10 or by the PL Schönflies theorem, D is a LIP ball. Choose a lipeomorphism

q: D*1". Also by 7.10, (E,.F) is lipeomorphic to (01",01'-\. Using the cone

construction, we may therefore assume that qDr:flI."nRi. It is easy to construct

LIP maps u, B: Io-L*(0, 1) such that alLI"-L:BI\P-L:O, {(x, l)l-1=t=a(x)}c
cqlD nglB ^Ulf, and qlD aeQ!*Jc{(x, r)l-t=l=f(x)}. Applytng 2.40 we

find a lipeomorphism r: Io*fn such that rlLl":id and r(x,a(x)):(x, f (x) for
allx1J"-t. Define w: M*Mby wlg-LD:g-tq-Lrqglg-tD and by wlM\-lD:id.
Then w is a lipeomorphism, and wB is an open LIP ball conta ining P/*r . The case

21n33 is proved.

Suppose that n>5. Assume that AcM is compact. Using the proof of New-

manl24, Theorem 7, p. 5701, attributed by Newman to Connell, we can first show

that A can be covered with two open LIP balls. The proof makes we of 2.42 and8.2.

Then a slight modification of this proof shows that A can be covered with a single

open LIP ball. We shall give the latter proof in detail.
We may assume that A is a locally flat TOP n-ball. Choose LIP balls Br, B,

with ,4cint.BruintBs. Using lipeomorphisms 4+f we introduce PL structures

on Bu i:1,2. Choose smaller concentric "cubeso' C,cint Br, DrcintCi, i:1,2,
such that AcintDlvintDs. Choose a triangulation K of Cr such that a sub-

complex triangulates D2 and no simplex meets both 0D1 and \Cr. Set Mr:
:M\Cr, Vt:intBr\Cr, &:liKrl\G. Since M, and V1 are 2-connected, it
follows from 8.2 that there is a lipeomorphism h1: Mr*trl[, such that htVL)XL
and hr:i6 near DMr. We extend år by identity to a lipeomorphism h1: M-M.
Then (It:fu, int.B1 is an open LIP ball and lK'ål vCrcUr.
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Next choose a derived subdivision of K, and let L be the dual skeleton of K2.
ChooseaTOPballA, such that AcArcDrvD, and ,4\int,4 ishomeomorphic
to ,S'-1XL .Set Mr:iatAr, Vr-int,4Nl, X2:lLlaintAr. Since M, and V,
arc (n-3)-connected, it follows from 8.2 that there is a lipeomorphism h2:Mr* fuf,
such that hzvz)Xz and hr:if, near 0M2. We extend hrby identity to alipeo-
morphism h2: M-M. Then lzlu(M\lr)c hzlM\Al:Uz.

We have now the situation described at the end of 2.42. Hence there is a stretching
lipeomorphism h: Cz*Cz such that DrchlUrnCrlv(UrnCr) and hl\Cr:id.
We extend å by identity to a lipeomorphism h:, M-M. Since å maps simplexes
of K onto themselves, DrchCrchUr. Thus M:h(hw(Jz, and A is contained
in the open LIP ball h;rhuL. rt

8.5. Theorem. Let M be aLlP manifoldhomeomorphic to Sn, nl4. Then M
is lipeomorphic to 5".

Proof. Fix a point x€M. Choose a LIP ball neighborhood .81 of x. By 8.4,
Sn\x is lipeomorphic to .r?. Hence there is a LIP ball Brc S'\x with å-Blcint ,Bz.

The theorem follows from7.9. n

8.6. Theore m. Let M be a LIP manifold homeomorphic to In, n#4,5. Then
M is lipeomorphic to Ii.

Proof. By 3.13, the double DM of M is a LIP manifold containing M as a
locally LIP flat submanifold. By 8.5, DM is a LIP z-sphere and 0M is a LIP (n- 1)-
sphere. By 7.8, M is a LIP n-ball. tr

9. Open problems

9.1. Elementary problems. (l) Can every LIP n-manifold be LIP embedded
into R2n+1?

(2) The LIP annulus conjecture for n:2: Let S, and ,S, be disjoint locally
LIP flat LIP l-spheres in a LIP 2-sphere ,S, and let D be the domain whose boundary
is S'ruSr. Is D lipeomorphic to ^S1X1?

(3) Is a LIP arc in Rs always locally LIP flat?
(4) More generally, is a locally TOP flat LIP arc in Äo always locally LIP flat?
(5) Does a locally quasiconvex metric space have a basis consisting of quasi-

convex sets?

9.2. Aduanced problems. (1) The LIP annulus conjecture for n>3.
(2) Does every TOP manifold have a LIP structure?
(3) Lipvermutung: If two LIP manifolds are homeomorphic, are they lipeo-

morphic?
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(4) If two PL manifolds are lipeomorphic, are they PL homeomorphic?

9.3. Remarks. By Siebenmann 127,2.1,p. 1371, there exists a LIP manifold
which has no PL structure. The answers to the questions (3) and (4) of 9.2 cannot be

both positive, since they would yield the PL Hauptvermutung.
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