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ON THE EXISTENCE OF AUTOMORPHIC
QUASIMEROMORPHIC MAPPINGS IN R

O. MARTIO and LJ. SREBRO

1. Introduction

Let G be a Möbius group in Ro:Ror{-}, n>2, and D a domain in R".

A mapping f: D*R" is said tobe automorphicwithrespect'to G if f is continuous,

open, discrete, sense-preserving, and' fog:f for all g(G' Note that if G has

aitomorphic mappings f: D*R", then G is discrete and D is invariant under G.

Discrete Möbius gloups which have invariant domains are called function groups'

A mapping f: D-N is called quasiregular, abbreviated qr,if f is continuous,

ACL', and

(1.1) lf '@)1" = KJ (x, f)

a.e. in D for some K€[1, -). If f: D*R", then the ACL'' condition and (1.1)

can be checked atf-L(-) by means of auxiliary Möbius transformations' If these

conditions hold the mapping is then said to be quasimeromorphic, abbreviated qm'

If n:2 and (1.1) holds with K:1, thenfis meromorphic'

The purpose of this note is to Prove

1.2. Theore m. Let G be a discrete Möbius group acting on Bn, n>2, with

V(B"]G)=*- Then G has qm automorphic mappings f: B"-ft'
In the above theorem v(B"lq denotes the hyperbolic volume of the'orbit

space B"IG, see [4].
The proof is constructive. It is based on a modification of the method of Alexan-

der [1], on basic properties of Möbius groups, see Chapter 3, and on the properties

of radiat strecthings, see Chapter 2. We shall not estimate the dilatations of / in

terms of G. For the sake of simplicity we shall restrict ourselves to the case n:3.
The same method applies to n>3 and to n:2'

It is known that every function group in R2 has meromorphic automorphic

mappings. We d9 not know whether function groups in N, n>2' have qm auto'

-öni" mappings, nor we know whether the condition V(B"1Q< - in Theorem 1'2

is essential. We have examples, see 14, 4.2f, of qm aatomorphic mappings f: B'*R'
for infinite groups with V(B"lq:*.
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The notation and terminology will be as in [4]. In particular we denote
x:(xr, ..., xn): Z xre, for x(N, B"(a, r): {x€R": lx-al<r}, Bn(r):8"19, 11,
B":8"(l), s"-t(o, r):08"(a, r), sn-1(r)-g'-t(0, r), sn-1:,sn-1(l), Hr(h):
:{x€Än: x,-h}, and H":H'(0). For Möbius groups G acting on Bn we letpia6:{x€8": g(x):a for some Sg@1{id}}.

2. Radial stretchings

2.1.'rn this chapter we consider a special class of bi-lipschitzian mappings.
A mapping f: A*R", AcN, is called bi-lipschitzian if
(2.2) lx- yllL = lf @)-f (y)l = rlx- yl

for all x and y in A and for some z>1. The smallest z for which (2.2) holds will
be denoted bV L(f).

2.3. A bounded domain DcRn is said to be strictry star shaped if each ray
z from 0 meets 0D at exaetly one point. It follows that 0€D and that the mapping
E*i 0D-s"-1 which sends znLD to znsn-l is a homeomorphism. we rei
E: R"-N denote the radial linear extension of g*,i.e. e(x):xE*(x\llx*1, xl\,
and E(0):0 where {x*}:|On{tx: t>0}. This mapping g which is an auto-
morphism of Ro and maps D onto .Bn will be called the radial linear stretching defined
bv D.

2.4. Lemma. Suppose that D is strictly star shaped and rp*:0D-5"-L is
bi-lipschitzian. Then E is bi-lipschitzian.

Proof. Let M:sup {lxl: x€|D} and m:inf {lxl: xelD}. Let x,yeRn.
We may assume that x*0 and that E(x):x i.e. E*(x*):x* since otherwise we
consider the mapping q o F, where F,(z):lx*lz. Then .( is bi-lipschitzian with
Z(.F',)=-ut (M,llm), EoF,(x):x, and E is bi-lipschitzjan if and only rf EoF*
is. Let a€[0,d denote the angle between the vectors x andy.If 7:g we set oc:0.
We claim that
(2.5)

If y-0 then (2.5) is trivial. Suppose y*0. Now

lE1)- yl : lyl lE* (y*)- y*llly.l

= lyl (lE* Q*)-x*l + ly* - x*l) I *
= lyl(lE* (y*)- E* (x*) l+ L(E\\E* 0*)- E*(x*) Dl*
= lyl@+L(E\o)l*

lE(D-vl = lvl(r@\+1) alm.

and (2.5) follows.
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To prove that lE @)- E U)l= Xlx-yl suppose first that u>nf2. Then l.rc-yl >
lyl and (2.5) yields

lE @) - E 0)ll lx - yl = t + n (L(q*) + r) I m.

If a=n12, then lx-yl>lylsin a and (2.5) implies

tE @) - q 0)t t tx - Y t 

=i::i::å?,:',1!;.''To prove the opposite inequality let x,y€R\{0}. Then

lE (x) - E (il : | 1:c I 
rr* (x*) I lx* | - lyl E* (y\ I ly* ll = lx - y 

I I a
and since this inequality is trivial when x:0 or y-0, the lemma follows.

2.6. Let D be a bounded domain in .P with 0€D and let B€(0, nl4l. We
say that D satisfies the B-cone condition if the open cone

C(x, f) : {z(R : lz-xl -. lxl (x- z). x = lx- zllxl cos B}

, with vertex x and central angle f lies in D whenever x€\D. Note that if D satisfies

the B-cone condition, then D is strictly star shaped.

2.7. Lemma. Suppose that D satisfies the f-cone condition for some B>0.
Then q* is bi-lipschitzian.

Proof. Let x,y(\D. Then

IE*@)-E*0)l= lx-yllm

where m:int {lzl: z(LD}.
To prove the other inequality we may assume that q*(x):x and lyl=1"1.

Let a((0, n] denote the angle between x and y. Suppose first that a>n12. Then

lE* (x) - E* U)l = fz = lx - yll {2.

Suppose now that a=n12. Since y is outside the cone C(x, f), elementary
trigonometry yields

l*- yl = lyl sin a/sin B = lE* @)- E*(y)l/sin B,

and the lemma follows.
Since every bi-lipschitzian mapping of Än is quasiconformal, see [3], the above

lemmas imply:

2.8. Corollary. Suppose that D satisfies the B-cone conditionfor some B>0.
Then the radial linear stretching E: f.."-N defined by D is quasiconformal.

2.9. Remarks. (a) We shall mainly use Corollary 2.8 to show that the homeo-
morphism EID onto,Bn is quasiconformal.
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(b) It is easy to see that if D is stricfly star shaped, then E is bi-lipschitzian
if and only if D satisfies the B-cone condition for some B>0. Mordover, for n:3
the cone condition is equivalent to the boundary condition of [3, 5.3].

(c) We shall later use the following elementary property of linear stretchings:

Let D, and D, be strictly star shaped domains and rpr, Erthe corresponding linear
stretchings. Define E:E;toEr. Suppose that x,y€|Dt and .E(x):y for some

EeO(n). If lE(x)l:lEU)1, then EoE(x):EoE(x).

3. Fundamental polyhedra for Möbius groups

3.1. Normalfundamental polyhedra. Let G be a discrete Möbius group acting
on Bn. Then G is countable and thus A\Fix G*0. The normal fundamental poly-
hedron P centered at a point xo€B\Fix G is defined by

p : {x(B : d(x, xs) = d(x, g(r0) for all g€C\{id}}.

Here d denotes the hyperbolic distance in Bn. P is a convex polyhedron in the hyper-
bolic sense, possibly with infinite number of faces. Each (n -l)-face, considering
only LPnBn, lies in a hyperbolic (n-l)-plane

H(A, x) : {xQBo : d(x, xs) : d(*, d(*J)}

for some .4€G\{id}. Since AH(A-L,xo):H(A,xo), the (z-l)-faces of P are
pairwise G-equivalent. Note also that HA-\,O) is contained in the isometric
sphere I(A):{x€JP: lA'(x)l:l} ot A and A:EoI where 1is the reflection in
H(A-I,O) and,E'is an orthogonal transformation in R'. Indeed, (IoA-L)B":B"
and (IoA-L)(0):0 and so IoA-L€O(n). Therefore A:EoI for some E€O(n),
and lA'(x)l:l for a].l x€H(A-1,0). Finally, recall that if G is discrete and the

hyperbolic measure V(B"lq is finite, then, see l2J,l5l, or [6], every normal funda-
mental polyhedron P has finitely many faces and FnSn-l is either empty, which
happens only when B"lG is compact, or consists of finitely many points, called

boundary aertices. We summarize the above facts:

3.2. Lemma. Let G be a discrete Möbius group acting on B" with V(B'lq<*.
Suppose that O{Fix G and let P be a normal fundamental polyhedron centered at O.

Then P is of the form

P Bt\ Bn (*r, rt)

where each Si:So-1(xi, rr), i:1,...,2k, is orthogonal to S"-L, ri:ri+k, and

ZrSr: Sr*p for some 7|1,...,To(G. Furthermore, each Ti, i:1,.':,k, is of the

form Tr=Erof, where I, denotes the reflection in S, and Et€O(n).

2k

U
i:L
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3.3. Simple fundamental polyhedron. Let G be a discrete Möbius group acting
on .Bn with V(B'lq-.-. A normal fundamental polyhedron P for G is said to
be simple if no two boundary vertices of P are G-equivalent. In other words, P is.

simple if and only if for each boundary vertex p€PnSo-1 all the (z-l)-faces
of P which meet at p are pairwise G-equivalent. By [4, Lemma 3.5], G has always-

simple fundamental polyhedra. To understand the action of G near a boundary
vertexp of a simple fundamental polyhedron P centered at xs€B , choose a Möbius"

transformation I with ABo:Ho, A(p\:-, ärd A(xs):en. Then Pr:7p ;*
a simple fundamental polyhedron centered at e*for the group Gr:AGA-t with
a boundary vertex at -. The (z- l)-faces of Pt which meet at - are pairwise equiv-
alent via elements of Gt which generate the stabilizer G-:{g€Gr: g(-):-},
Each g in G-\{id} is a similarity in R" with a unique fixed point at - and acts

on each (z-l)-plane \H"(h), h>0, in the same manner, see [4]. The normal fun-
damental polyhedron Prfor G- centered at eois of the form P,:QX(O, -) where

Q is a finite bounded convex euclidean (z- l)-dimensional polyhedron. There exists

åo>0 such that PrnH"(h):PrnH"(h) for all h=ho.
For the sake of notational simplicity we shall from now on restrict our con-

siderations to the case n:3. The extension to the general case n>3 and n:2 is

quite straightforward.

3.4. Lemma. Let G be a disuete Möbius group acting on Bs with V(BslG1=.*.
Suppose that G has a simple fundamental polyhedron P centered at O. Then there

exist a finite conex euclidean 3-dimensional polyhedron QcB' with all its vertices

in 52 and a homeomorphism h: p-Q such that
(i) hlP rs quqsiconformal,

- (ii) h o T,(x)' Ero h(x) for all x € E ^AP,ore as in Lemme 3.2.

i - l, ... , k, where E, Tr, and Ei

Proof. CaseL: BslG is compact. Let zr, ...,2^ betheverticesof P andletEt
and q, be the radial linear stretchings defined by P and the euclidean polyhedron

B which is spanned by Er("r),...,et(z-), respectively. Then h:gllog, is the
required mapping. Indeed, å maps F homeomorphically onto Q, and since P and
p satisfy the p-cone condition for some fr=O, etffid Ez are quasiconformal by
Corollary 2.8 and consequently so is ålP. For (ii) let x€ S1 nåP. Then by T,emma 3.2

hoTt(x) : ho Eio I i(x) : ho Ei(x).

Since lx,l: lxi*rl and. r1:ti+*, it follows by the nature of hlLP and Ei, see 2.9 (c),

that hoEr(x):Eroh(x) and so (ii) follows.

Case2: BslG is non-compact. Since now P does not satisfy the f-cone con*

dition for any B>0, we first map P quasiconformally onto a domain Rc-Bs which
satisfies the B-cone condition and then proceed as in Case l.

Let p1,...,pq be the boundary vertices of P. For each i:1,..',Q choose a
Möbius transformation A, with ArBs:Hg, Ai(pi):*, and Ai(0):es. Pick
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.å>0 such that A;t(Hs(h))nA;t(H"(t)):g for j+l and so that UA;1(H'(h))
'does not contain any vertex of P. By 3.3 each set Cj:A.(P)aHg(h) is of the form
Q1X(h, -) where Qi is a convex, bounded, and finite 2-dimensional euclidean
polyhedron containing 0. Let tj: Rz-Rz be the radial linear stretching defined
by Qi and let {tj: Rzxlh, -)*ä3 be the mapping ,lti@,t):(rlt}(x),s-å). fnen
{; is bi-lipschitzian and hence quasiconformal and maps C.; onto the semi-infinite
cylinder Z:B2X(0, *). Next we construct a quasiconformal mapping of Z onto
a finite cylinder.

Let (r, E, xr) and (t, E, @) denote the cylinder and spherical coordinates of
-R3, respectively. The polar angle is measured from the positive half of the x3-axis.
The mapping fr: Z*Bs nf18 which is defined by t:e-xs, E-q, and @=nrl2
is quasiconformal, see 13, p. 471, surjective, and maps the discs B2X{xB}, rsJO,
onto the hemispheres S2(e-'r) nfls. L.et f, denote the reflection in the sphere
S2(e213,213). Thenfris anti-conformal and maps -Bsnä3 onto Hs\Bs(e2l2,ll2),
BsQP)nä8 onto {x€Hs: xz<-ll3} and the 2-planes through the xr-axis onto
the spheres centered on the line L:{x€0H3: xz--1/3} and passing through
the points erl3 and -er. Using cylinder coordinates (r,E,xr) with L as the axis
of symmetry and g measured from the direction of the vector -e, to the direction
of er, we define a mapping f": Hs-Hs by

f"(r, e, x) : (r, nl2+E14, x), 0 = E < 2n13,

: (r, e, x), 2nl3 < E < n.

Then fr is quasiconformal, maps Hs\88(erl2,1l2) onto {x€Hg: xr>-ll3}
\.83(er/2, ll2), maps each sphere which is centered on L and which passes through
the points erl3 and -e2 into itself, and maps half-planes through Z rigidly into
half-planes through Z.

Finally, let rlr:flrofr to.fro.fzoft. Then ry' maps the semi-infinite cylinder Z
quasiconformally onto the finite cylinder Z':B?X(O,log 3) and has the following
properties:

(a) ry' has a homeomorphic extension to Z denoted, again by {r,
(b) tlr(x):Y for x€02n0H8, and
(c) each plane through the xr-axis is mapped into itself in the same manner.
To map P onto a domain R in ,BB which satisfies the p-cone condition for some

"B=0, define E: P*Bs by q(x):1it "ti'"t otioAi@) for x€P 
^Ajr(Hs(h)),j:1,...,Q, and E(x):x otherwise. Then E is quasiconformal with a homeo-

morphic extension, denoted by E, to P. the image domain R:eP is obtained from
? by cutting away balls tangent to 52 at the boundary vertices and hence R satisfies
the B-cone condition for some f =0. Because of (c),

(3.5)

for every x €AP n,S, .

eoEi(x) - EioE@)
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Let {21,...,2*} be the set of all vertices of P and letErand E2 be the radial

linear stretchings defined by R and by the euclidean polyhedron Q which is spanned

by {Er.Q),...,er(z*), Pt, ...,pq), respectively. Finally, let h:<pzroEroE. Then

h maps P quasiconformally onto Q with a homeomorphic extension to P.

To prove (ii) note tha.t, by Lemma 3'2 and by the symmetry of p, see 2.9 (c)'

ho T r(x) : h o E io I i(x) : h o E i(x) = E ; 1 o E to E i(x) : E io E z' o E r.(x) : E io h (x)

for x(åP\l)AiL(Hs(h)). Suppose now that x€LP nA;L(H"(h))nS, for some ir
and i. Then h(x):E;t oEroE(x) and hence by (3.5) and Lemma 3.2, hoTt(x\=
:ezToEroEroE(x). By the same reason as above we can now interchange E,

and E;t oEr. This yields (ii) and the proof is complete.

4. Construction of a QM attomotphic mapping in BB

4.1 . Simptices in Rs. Given a simplex o:(xo, xa,xz,xs) in,RB we let lol

denote the closed tetrahedron in RB which is spanned by the vertices xo, xL, x2, xg

and let c lol:Raaitr, ;o'. All 3-simplices in R3 will be oriented by the sign of the

standard determinant function associated with the basis er, €2, €s.

4.2. Lemma. Giuen any two simplices o:(xo, xt, x2, xB) and t:(yo, yr, y2, ys)

in Rs there exists a sense-preseruing'homeomorphism lt:ho" from lol into Rs such that

(i) h(lol):ltl if o and 'c haue the same orientation and å(lol):91t1
otherwise,

(ir) h(*):yt, i:0, 1,2,3,
(iir) hlllol is aptecewise linear homeomorphism,

(iv) hlintlol is quasiconformal.

Proof. lf o and r have the same orientations, then the piecewise linear map of

lol onto lrl which is defined bV (ii) satisfies (i), (iii), and (iv).

Suppose now that o and,r have different orientations. we may assume that

0€int lzl. The radial linear stretching E defined by int ltl is quasiconformal in Rg

and has a quasiconformal extension to RB with 91-1:-' Let 'rdenote the reflec-

tion in S' and fu: lol-lrl the sense-reversing piecewise linear map which satisfies

h1(x'):yi, i-0, 1,2,3. Then it is easy to check that h:E-LoloEoåt is the

required map.

4.3. Proof of Theorem l.2for n:3. Let P be a simple fundamental polyhedron

for G centered at xs€83. We may assume that xo:Q,'otherwise consider first

AGA L for some Möbius transformation ,4 with AB3:BB and ,4(x)=0.
Let T, and Ei, i:1,...,k, be as in Lemma3.2 and Q and y p-Q as rn

Lemma 3.4. Using planes through 0 triangulate Q so that any two .E-equivalent

faces in 0Q have,E-equivalent sub-triangulations. In this triangulation, call it K,

identify {-equivalent faces in 0Q and thus denote vertices of K which are .E-equiv-

129
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alent, i:1, ... , k, by the same symbols. Now K can be made fine enough so that
all four vertices of any 3-simplex are distinct. Let S: {or.,..., on} be the set of all
3-simplices in K and {0, xr, ..., xN; the set of all vertices in K. Then each o, is
of the form (0,7sit,yiz,xt). Choose .l[ points 0,!r,...,f io general position
in At, i.e. no four points are coplanar, and associate with each 3-simplex
or:(0, rtt,yiz,/a) .in S the simplex rr:(0,y'r,ytn,ytl. Now define C: A-Rs
by gllorl:1x,",", for i:1,..., v. Here ho,,,i, as in Lemma4.2.

Finally letl .83*RB bedefined for ie f-t(D nB\, T(G,by f(x):gohoT(x).
Then / is continuous by Lemma 3.4 (ii) and by the construction of K and S. f js

automorphic with respect to G, and since goh is qm rn P by Lemma3.4 and
Lemma4.2, it follows that so isf in 83.

4.4. Remark. The automorphic mapping/constructed above has the property
N(A,f)<.- where,4 is any fundamental set for G and N(A,f):sup card (f-r(y) nA)
over all .y€Rt.
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