Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 3, 1977, 123–130

ON THE EXISTENCE OF AUTOMORPHIC QUASIMEROMORPHIC MAPPINGS IN Rⁿ

O. MARTIO and U. SREBRO

1. Introduction

Let G be a Möbius group in $\overline{R}^n = R^n \cup \{\infty\}$, $n \ge 2$, and D a domain in R^n . A mapping $f: D \to \overline{R}^n$ is said to be *automorphic* with respect to G if f is continuous, open, discrete, sense-preserving, and $f \circ g = f$ for all $g \in G$. Note that if G has automorphic mappings $f: D \to \overline{R}^n$, then G is discrete and D is invariant under G. Discrete Möbius groups which have invariant domains are called *function groups*.

A mapping $f: D \to \mathbb{R}^n$ is called *quasiregular*, abbreviated qr, if f is continuous, ACLⁿ, and

 $(1.1) |f'(x)|^n \le KJ(x, f)$

a.e. in *D* for some $K \in [1, \infty)$. If $f: D \to \overline{R}^n$, then the ACLⁿ condition and (1.1) can be checked at $f^{-1}(\infty)$ by means of auxiliary Möbius transformations. If these conditions hold the mapping is then said to be *quasimeromorphic*, abbreviated *qm*. If n=2 and (1.1) holds with K=1, then *f* is meromorphic.

The purpose of this note is to prove

1.2. Theorem. Let G be a discrete Möbius group acting on B^n , $n \ge 2$, with $V(B^n/G) < \infty$. Then G has qm automorphic mappings $f: B^n \to \overline{R}^n$.

In the above theorem $V(B^n/G)$ denotes the hyperbolic volume of the orbit space B^n/G , see [4].

The proof is constructive. It is based on a modification of the method of Alexander [1], on basic properties of Möbius groups, see Chapter 3, and on the properties of radial streethings, see Chapter 2. We shall not estimate the dilatations of f in terms of G. For the sake of simplicity we shall restrict ourselves to the case n=3. The same method applies to n>3 and to n=2.

It is known that every function group in \mathbb{R}^2 has meromorphic automorphic mappings. We do not know whether function groups in \mathbb{R}^n , n>2, have qm automorphic mappings, nor we know whether the condition $V(\mathbb{B}^n/G) < \infty$ in Theorem 1.2 is essential. We have examples, see [4, 4.2], of qm automorphic mappings $f: \mathbb{B}^n \to \overline{\mathbb{R}}^n$ for infinite groups with $V(\mathbb{B}^n/G) = \infty$.

doi:10.5186/aasfm.1977.0317

The notation and terminology will be as in [4]. In particular we denote $x=(x_1, \ldots, x_n)=\sum x_i e_i$ for $x \in \mathbb{R}^n$, $B^n(a, r)=\{x \in \mathbb{R}^n: |x-a| < r\}$, $B^n(r)=B^n(0, r)$, $B^n=B^n(1)$, $S^{n-1}(a, r)=\partial B^n(a, r)$, $S^{n-1}(r)=S^{n-1}(0, r)$, $S^{n-1}=S^{n-1}(1)$, $H^n(h)==\{x \in \mathbb{R}^n: x_n > h\}$, and $H^n=H^n(0)$. For Möbius groups G acting on B^n we let Fix $G=\{x \in B^n: g(x)=x \text{ for some } g \in G \setminus \{id\}\}$.

2. Radial stretchings

2.1. In this chapter we consider a special class of bi-lipschitzian mappings. A mapping $f: A \rightarrow \mathbb{R}^n$, $A \subset \mathbb{R}^n$, is called bi-lipschitzian if

(2.2)
$$|x-y|/L \le |f(x)-f(y)| \le L|x-y|$$

for all x and y in A and for some $L \ge 1$. The smallest L for which (2.2) holds will be denoted by L(f).

2.3. A bounded domain $D \subset \mathbb{R}^n$ is said to be *strictly star shaped* if each ray L from 0 meets ∂D at exactly one point. It follows that $0 \in D$ and that the mapping $\varphi^* \colon \partial D \to S^{n-1}$ which sends $L \cap \partial D$ to $L \cap S^{n-1}$ is a homeomorphism. We let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ denote the radial linear extension of φ^* , i.e. $\varphi(x) = x\varphi^*(x^*)/|x^*|, x \neq 0$, and $\varphi(0) = 0$ where $\{x^*\} = \partial D \cap \{tx: t > 0\}$. This mapping φ which is an automorphism of \mathbb{R}^n and maps D onto \mathbb{B}^n will be called the *radial linear stretching* defined by D.

2.4. Lemma. Suppose that D is strictly star shaped and $\varphi^*: \partial D \to S^{n-1}$ is bi-lipschitzian. Then φ is bi-lipschitzian.

Proof. Let $M = \sup \{|x|: x \in \partial D\}$ and $m = \inf \{|x|: x \in \partial D\}$. Let $x, y \in R^n$. We may assume that $x \neq 0$ and that $\varphi(x) = x$ i.e. $\varphi^*(x^*) = x^*$ since otherwise we consider the mapping $\varphi \circ F_x$ where $F_x(z) = |x^*|z$. Then F_x is bi-lipschitzian with $L(F_x) \leq \max(M, 1/m), \varphi \circ F_x(x) = x$, and φ is bi-lipschitzian if and only if $\varphi \circ F_x$ is. Let $\alpha \in [0, \pi]$ denote the angle between the vectors x and y. If y=0 we set $\alpha=0$. We claim that

$$|\varphi(y) - y| \leq |y| (L(\varphi^*) + 1) \alpha/m.$$

If y=0 then (2.5) is trivial. Suppose $y\neq 0$. Now

$$\begin{aligned} |\varphi(y) - y| &= |y| |\varphi^*(y^*) - y^*| / |y^*| \\ &\leq |y| (|\varphi^*(y^*) - x^*| + |y^* - x^*|) / m \\ &\leq |y| (|\varphi^*(y^*) - \varphi^*(x^*)| + L(\varphi^*) |\varphi^*(y^*) - \varphi^*(x^*)|) / m \\ &\leq |y| (\alpha + L(\varphi^*) \alpha) / m \end{aligned}$$

and (2.5) follows.

To prove that $|\varphi(x) - \varphi(y)| \le K|x-y|$ suppose first that $\alpha \ge \pi/2$. Then $|x-y| \ge |y|$ and (2.5) yields

$$|\varphi(x) - \varphi(y)|/|x - y| \le 1 + \pi (L(\varphi^*) + 1)/m.$$

If $\alpha < \pi/2$, then $|x-y| \ge |y| \sin \alpha$ and (2.5) implies

$$|\varphi(x) - \varphi(y)| / |x - y| \leq 1 + \alpha (L(\varphi^*) + 1) / (m \sin \alpha)$$

$$< 1 + \pi (L(\varphi^*) + 1) / m_*$$

To prove the opposite inequality let $x, y \in \mathbb{R}^n \setminus \{0\}$. Then

$$|\varphi(x) - \varphi(y)| = \left| |x| \varphi^*(x^*) / |x^*| - |y| \varphi^*(y^*) / |y^*| \right| \ge |x - y| / M$$

and since this inequality is trivial when x=0 or y=0, the lemma follows.

2.6. Let D be a bounded domain in \mathbb{R}^n with $0 \in D$ and let $\beta \in (0, \pi/4]$. We say that D satisfies the β -cone condition if the open cone

$$C(x, \beta) = \{ z \in \mathbb{R}^n : |z - x| < |x|, (x - z) \cdot x > |x - z| |x| \cos \beta \}$$

with vertex x and central angle β lies in D whenever $x \in \partial D$. Note that if D satisfies the β -cone condition, then D is strictly star shaped.

2.7. Lemma. Suppose that D satisfies the β -cone condition for some $\beta > 0$. Then φ^* is bi-lipschitzian.

Proof. Let $x, y \in \partial D$. Then

$$|\varphi^*(x) - \varphi^*(y)| \le |x - y|/m$$

where $m = \inf \{ |z| : z \in \partial D \}.$

To prove the other inequality we may assume that $\varphi^*(x) = x$ and $|y| \leq |x|$. Let $\alpha \in (0, \pi]$ denote the angle between x and y. Suppose first that $\alpha \geq \pi/2$. Then

$$|\varphi^*(x) - \varphi^*(y)| \ge \sqrt{2} \ge |x - y|/\sqrt{2}.$$

Suppose now that $\alpha < \pi/2$. Since y is outside the cone $C(x, \beta)$, elementary trigonometry yields

$$|x-y| \leq |y| \sin \alpha / \sin \beta \leq |\varphi^*(x) - \varphi^*(y)| / \sin \beta,$$

and the lemma follows.

Since every bi-lipschitzian mapping of R^n is quasiconformal, see [3], the above lemmas imply:

2.8. Corollary. Suppose that D satisfies the β -cone condition for some $\beta > 0$. Then the radial linear stretching $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ defined by D is quasiconformal.

2.9. Remarks. (a) We shall mainly use Corollary 2.8 to show that the homeomorphism $\varphi|D$ onto B^n is quasiconformal.

(b) It is easy to see that if D is strictly star shaped, then φ is bi-lipschitzian if and only if D satisfies the β -cone condition for some $\beta > 0$. Moreover, for n=3 the cone condition is equivalent to the boundary condition of [3, 5.3].

(c) We shall later use the following elementary property of linear stretchings: Let D_1 and D_2 be strictly star shaped domains and φ_1 , φ_2 the corresponding linear stretchings. Define $\varphi = \varphi_2^{-1} \circ \varphi_1$. Suppose that $x, y \in \partial D_1$ and E(x) = y for some $E \in O(n)$. If $|\varphi(x)| = |\varphi(y)|$, then $E \circ \varphi(x) = \varphi \circ E(x)$.

3. Fundamental polyhedra for Möbius groups

3.1. Normal fundamental polyhedra. Let G be a discrete Möbius group acting on B^n . Then G is countable and thus $B^n \setminus \text{Fix } G \neq \emptyset$. The normal fundamental polyhedron P centered at a point $x_0 \in B^n \setminus \text{Fix } G$ is defined by

$$P = \{ x \in B^n : d(x, x_0) < d(x, g(x_0)) \text{ for all } g \in G \setminus \{ \text{id} \} \}.$$

Here *d* denotes the hyperbolic distance in B^n . *P* is a convex polyhedron in the hyperbolic sense, possibly with infinite number of faces. Each (n-1)-face, considering only $\partial P \cap B^n$, lies in a hyperbolic (n-1)-plane

$$H(A, x_0) = \{x \in B^n : d(x, x_0) = d(x, A(x_0))\}$$

for some $A \in G \setminus \{id\}$. Since $AH(A^{-1}, x_0) = H(A, x_0)$, the (n-1)-faces of P are pairwise G-equivalent. Note also that $H(A^{-1}, 0)$ is contained in the isometric sphere $I(A) = \{x \in \mathbb{R}^n : |A'(x)| = 1\}$ of A and $A = E \circ I$ where I is the reflection in $H(A^{-1}, 0)$ and E is an orthogonal transformation in \mathbb{R}^n . Indeed, $(I \circ A^{-1})B^n = B^n$ and $(I \circ A^{-1})(0) = 0$ and so $I \circ A^{-1} \in O(n)$. Therefore $A = E \circ I$ for some $E \in O(n)$, and |A'(x)| = 1 for all $x \in H(A^{-1}, 0)$. Finally, recall that if G is discrete and the hyperbolic measure $V(B^n/G)$ is finite, then, see [2], [5], or [6], every normal fundamental polyhedron P has finitely many faces and $\overline{P} \cap S^{n-1}$ is either empty, which happens only when B^n/G is compact, or consists of finitely many points, called *boundary vertices*. We summarize the above facts:

3.2. Lemma. Let G be a discrete Möbius group acting on B^n with $V(B^n/G) < \infty$. Suppose that $0 \notin \text{Fix } G$ and let P be a normal fundamental polyhedron centered at 0. Then P is of the form

$$P = B^n \setminus \bigcup_{i=1}^{2k} \overline{B}^n(x_i, r_i)$$

where each $S_i = S^{n-1}(x_i, r_i)$, i = 1, ..., 2k, is orthogonal to S^{n-1} , $r_i = r_{i+k}$, and $T_i S_i = S_{i+k}$ for some $T_1, ..., T_k \in G$. Furthermore, each T_i , i = 1, ..., k, is of the form $T_i = E_i \circ I_i$ where I_i denotes the reflection in S_i and $E_i \in O(n)$.

3.3. Simple fundamental polyhedron. Let G be a discrete Möbius group acting on B^n with $V(B^n/G) < \infty$. A normal fundamental polyhedron P for G is said to be simple if no two boundary vertices of P are G-equivalent. In other words, P is simple if and only if for each boundary vertex $p \in \overline{P} \cap S^{n-1}$ all the (n-1)-faces of P which meet at p are pairwise G-equivalent. By [4, Lemma 3.5], G has always simple fundamental polyhedra. To understand the action of G near a boundary vertex p of a simple fundamental polyhedron P centered at $x_0 \in B$, choose a Möbius transformation A with $AB^n = H^n$, $A(p) = \infty$, and $A(x_0) = e_n$. Then $P_1 = AP$ is a simple fundamental polyhedron centered at e_n for the group $G_1 = AGA^{-1}$ with a boundary vertex at ∞ . The (n-1)-faces of P_1 which meet at ∞ are pairwise equivalent via elements of G_1 which generate the stabilizer $G_{\infty} = \{g \in G_1: g(\infty) = \infty\}$. Each g in $G_{\infty} \setminus \{id\}$ is a similarity in \mathbb{R}^n with a unique fixed point at ∞ and acts on each (n-1)-plane $\partial H^n(h)$, h>0, in the same manner, see [4]. The normal fundamental polyhedron P_2 for G_{∞} centered at e_n is of the form $P_2 = Q \times (0, \infty)$ where Q is a finite bounded convex euclidean (n-1)-dimensional polyhedron. There exists $h_0>0$ such that $P_1 \cap H^n(h) = P_2 \cap H^n(h)$ for all $h \ge h_0$.

For the sake of notational simplicity we shall from now on restrict our considerations to the case n=3. The extension to the general case n>3 and n=2 is quite straightforward.

3.4. Lemma. Let G be a discrete Möbius group acting on B^3 with $V(B^3/G) < \infty$. Suppose that G has a simple fundamental polyhedron P centered at 0. Then there exist a finite convex euclidean 3-dimensional polyhedron $Q \subset B^3$ with all its vertices in S^2 and a homeomorphism $h: \overline{P} \to \overline{Q}$ such that

(i) h|P is quasiconformal,

(ii) $h \circ T_i(x) = E_i \circ h(x)$ for all $x \in S_i \cap \partial P$, i = 1, ..., k, where S_i , T_i , and E_i are as in Lemma 3.2.

Proof. Case 1: B^3/G is compact. Let $z_1, ..., z_m$ be the vertices of P and let φ_1 and φ_2 be the radial linear stretchings defined by P and the euclidean polyhedron Q which is spanned by $\varphi_1(z_1), ..., \varphi_1(z_m)$, respectively. Then $h = \varphi_2^{-1} \circ \varphi_1$ is the required mapping. Indeed, h maps \overline{P} homeomorphically onto \overline{Q} , and since P and Q satisfy the β -cone condition for some $\beta > 0$, φ_1 and φ_2 are quasiconformal by Corollary 2.8 and consequently so is h|P. For (ii) let $x \in S_i \cap \partial P$. Then by Lemma 3.2

$$h \circ T_i(x) = h \circ E_i \circ I_i(x) = h \circ E_i(x).$$

Since $|x_i| = |x_{i+k}|$ and $r_i = r_{i+k}$, it follows by the nature of $h|\partial P$ and E_i , see 2.9 (c), that $h \circ E_i(x) = E_i \circ h(x)$ and so (ii) follows.

Case 2: B^3/G is non-compact. Since now P does not satisfy the β -cone condition for any $\beta > 0$, we first map P quasiconformally onto a domain $R \subset B^3$ which satisfies the β -cone condition and then proceed as in Case 1.

Let p_1, \ldots, p_q be the boundary vertices of P. For each $j=1, \ldots, q$ choose a Möbius transformation A_j with $A_j B^3 = H^3$, $A_j(p_j) = \infty$, and $A_j(0) = e_3$. Pick

h>0 such that $A_j^{-1}(H^3(h)) \cap A_l^{-1}(H^3(h)) = \emptyset$ for $j \neq l$ and so that $\bigcup A_j^{-1}(H^3(h))$ does not contain any vertex of P. By 3.3 each set $C_j = A_j(P) \cap H^3(h)$ is of the form $Q_j \times (h, \infty)$ where Q_j is a convex, bounded, and finite 2-dimensional euclidean polyhedron containing 0. Let $\psi_j^* \colon R^2 \to R^2$ be the radial linear stretching defined by Q_j and let $\psi_j \colon R^2 \times [h, \infty) \to H^3$ be the mapping $\psi_j(x, s) = (\psi_j^*(x), s-h)$. Then ψ_j is bi-lipschitzian and hence quasiconformal and maps C_j onto the semi-infinite cylinder $Z = B^2 \times (0, \infty)$. Next we construct a quasiconformal mapping of Z onto a finite cylinder.

Let (r, φ, x_3) and (t, φ, Θ) denote the cylinder and spherical coordinates of \mathbb{R}^3 , respectively. The polar angle is measured from the positive half of the x_3 -axis. The mapping $f_1: \mathbb{Z} \to \mathbb{B}^3 \cap \mathbb{H}^3$ which is defined by $t = e^{-x_3}$, $\varphi = \varphi$, and $\Theta = \pi r/2$ is quasiconformal, see [3, p. 47], surjective, and maps the discs $\mathbb{B}^2 \times \{x_3\}$, $x_3 > 0$, onto the hemispheres $S^2(e^{-x_3}) \cap \mathbb{H}^3$. Let f_2 denote the reflection in the sphere $S^2(e_2/3, 2/3)$. Then f_2 is anti-conformal and maps $\mathbb{B}^3 \cap \mathbb{H}^3$ onto $\mathbb{H}^3 \setminus \overline{\mathbb{B}^3}(e_2/2, 1/2)$, $\mathbb{B}^3(1/3) \cap \mathbb{H}^3$ onto $\{x \in \mathbb{H}^3: x_2 < -1/3\}$ and the 2-planes through the x_3 -axis onto the spheres centered on the line $L = \{x \in \partial \mathbb{H}^3: x_2 = -1/3\}$ and passing through the points $e_2/3$ and $-e_2$. Using cylinder coordinates (r, φ, x_1) with L as the axis of symmetry and φ measured from the direction of the vector $-e_2$ to the direction of e_3 , we define a mapping $f_3: \mathbb{H}^3 \to \mathbb{H}^3$ by

$$f_3(r, \varphi, x_1) = (r, \pi/2 + \varphi/4, x_1), \quad 0 \le \varphi < 2\pi/3,$$
$$= (r, \varphi, x_1), \quad 2\pi/3 \le \varphi < \pi.$$

Then f_3 is quasiconformal, maps $H^3 \setminus \overline{B}^3(e_2/2, 1/2)$ onto $\{x \in H^3: x_2 > -1/3\} \setminus \overline{B}^3(e_2/2, 1/2)$, maps each sphere which is centered on L and which passes through the points $e_2/3$ and $-e_2$ into itself, and maps half-planes through L rigidly into half-planes through L.

Finally, let $\psi = f_1^{-1} \circ f_2^{-1} \circ f_3 \circ f_2 \circ f_1$. Then ψ maps the semi-infinite cylinder Z quasiconformally onto the finite cylinder $Z' = B^2 \times (0, \log 3)$ and has the following properties:

(a) ψ has a homeomorphic extension to \overline{Z} denoted again by ψ ,

(b) $\psi(x) = x$ for $x \in \partial Z \cap \partial H^3$, and

(c) each plane through the x_3 -axis is mapped into itself in the same manner.

To map P onto a domain R in B^3 which satisfies the β -cone condition for some $\beta > 0$, define $\varphi: P \rightarrow B^3$ by $\varphi(x) = A_j^{-1} \circ \psi_j^{-1} \circ \psi \circ \psi_j \circ A_j(x)$ for $x \in P \cap A_j^{-1}(H^3(h))$, $j=1, \ldots, q$, and $\varphi(x) = x$ otherwise. Then φ is quasiconformal with a homeomorphic extension, denoted by φ , to \overline{P} . The image domain $R = \varphi P$ is obtained from P by cutting away balls tangent to S^2 at the boundary vertices and hence R satisfies the β -cone condition for some $\beta > 0$. Because of (c),

(3.5)
$$\varphi \circ E_i(x) = E_i \circ \varphi(x)$$

for every $x \in \partial P \cap S_i$.

Let $\{z_1, ..., z_m\}$ be the set of all vertices of P and let φ_1 and φ_2 be the radial linear stretchings defined by R and by the euclidean polyhedron Q which is spanned by $\{\varphi_1(z_1), ..., \varphi_1(z_m), p_1, ..., p_q\}$, respectively. Finally, let $h = \varphi_2^{-1} \circ \varphi_1 \circ \varphi$. Then h maps P quasiconformally onto Q with a homeomorphic extension to \overline{P} .

To prove (ii) note that, by Lemma 3.2 and by the symmetry of Q, see 2.9 (c),

$$h \circ T_i(x) = h \circ E_i \circ I_i(x) = h \circ E_i(x) = \varphi_2^{-1} \circ \varphi_1 \circ E_i(x) = E_i \circ \varphi_2^{-1} \circ \varphi_1(x) = E_i \circ h(x)$$

for $x \in \partial P \setminus \bigcup A_j^{-1}(H^3(h))$. Suppose now that $x \in \partial P \cap A_j^{-1}(H^3(h)) \cap S_i$ for some j and i. Then $h(x) = \varphi_2^{-1} \circ \varphi_1 \circ \varphi(x)$ and hence by (3.5) and Lemma 3.2, $h \circ T_i(x) = \varphi_2^{-1} \circ \varphi_1 \circ E_i \circ \varphi(x)$. By the same reason as above we can now interchange E_i and $\varphi_2^{-1} \circ \varphi_1$. This yields (ii) and the proof is complete.

4. Construction of a QM automorphic mapping in B^3

4.1. Simplices in \mathbb{R}^3 . Given a simplex $\sigma = (x^0, x^1, x^2, x^3)$ in \mathbb{R}^3 we let $|\sigma|$ denote the closed tetrahedron in \mathbb{R}^3 which is spanned by the vertices x^0, x^1, x^2, x^3 and let $\mathbb{C}|\sigma| = \overline{\mathbb{R}^3} \setminus \operatorname{int} |\sigma|$. All 3-simplices in \mathbb{R}^3 will be oriented by the sign of the standard determinant function associated with the basis e_1, e_2, e_3 .

4.2. Lemma. Given any two simplices $\sigma = (x^0, x^1, x^2, x^3)$ and $\tau = (y^0, y^1, y^2, y^3)$ in \mathbb{R}^3 there exists a sense-preserving homeomorphism $h = h_{\sigma\tau}$ from $|\sigma|$ into \mathbb{R}^3 such that

- (i) $h(|\sigma|) = |\tau|$ if σ and τ have the same orientation and $h(|\sigma|) = \mathbb{C} |\tau|$ otherwise,
- (ii) $h(x^i) = y^i$, i = 0, 1, 2, 3,
- (iii) $h|\partial|\sigma|$ is a piecewise linear homeomorphism,
- (iv) $h|int |\sigma|$ is quasiconformal.

Proof. If σ and τ have the same orientations, then the piecewise linear map of $|\sigma|$ onto $|\tau|$ which is defined by (ii) satisfies (i), (iii), and (iv).

Suppose now that σ and τ have different orientations. We may assume that $0 \in \operatorname{int} |\tau|$. The radial linear stretching φ defined by $\operatorname{int} |\tau|$ is quasiconformal in \mathbb{R}^3 and has a quasiconformal extension to \mathbb{R}^3 with $\varphi(\infty) = \infty$. Let *I* denote the reflection in S^2 and $h_1: |\sigma| \to |\tau|$ the sense-reversing piecewise linear map which satisfies $h_1(x^i) = y^i$, i = 0, 1, 2, 3. Then it is easy to check that $h = \varphi^{-1} \circ I \circ \varphi \circ h_1$ is the required map.

4.3. Proof of Theorem 1.2 for n=3. Let P be a simple fundamental polyhedron for G centered at $x_0 \in B^3$. We may assume that $x_0=0$, otherwise consider first AGA^{-1} for some Möbius transformation A with $AB^3=B^3$ and $A(x_0)=0$.

Let T_i and E_i , i=1, ..., k, be as in Lemma 3.2 and Q and $h: \overline{P} \rightarrow \overline{Q}$ as in Lemma 3.4. Using planes through 0 triangulate Q so that any two E_i -equivalent faces in ∂Q have E_i -equivalent sub-triangulations. In this triangulation, call it K, identify E_i -equivalent faces in ∂Q and thus denote vertices of K which are E_i -equivalent

alent, $i=1, \ldots, k$, by the same symbols. Now K can be made fine enough so that all four vertices of any 3-simplex are distinct. Let $S = \{\sigma_1, \ldots, \sigma_\nu\}$ be the set of all 3-simplices in K and $\{0, x^2, \ldots, x^N\}$ the set of all vertices in K. Then each σ_i is of the form $(0, x^{i_1}, x^{i_2}, x^{i_3})$. Choose N points $0, y^2, \ldots, y^N$ in general position in \mathbb{R}^3 , i.e. no four points are coplanar, and associate with each 3-simplex $\sigma_i = (0, x^{i_1}, x^{i_2}, x^{i_3})$ in S the simplex $\tau_i = (0, y^{i_1}, y^{i_2}, y^{i_3})$. Now define $g: \overline{Q} \to \overline{\mathbb{R}}^3$ by $g ||\sigma_i| = h_{\sigma_i \tau_i}$ for $i=1, \ldots, \nu$. Here $h_{\sigma_i \tau_i}$ is as in Lemma 4.2. Finally let $f: \mathbb{B}^3 \to \overline{\mathbb{R}}^3$ be defined for $x \in T^{-1}(\overline{P}) \cap \mathbb{B}^3$, $T \in G$, by $f(x) = g \circ h \circ T(x)$.

Finally let $f: B^3 \to \overline{R}^3$ be defined for $x \in T^{-1}(\overline{P}) \cap B^3$, $T \in G$, by $f(x) = g \circ h \circ T(x)$. Then f is continuous by Lemma 3.4 (ii) and by the construction of K and g. f is automorphic with respect to G, and since $g \circ h$ is qm in P by Lemma 3.4 and Lemma 4.2, it follows that so is f in B^3 .

4.4. Remark. The automorphic mapping f constructed above has the property $N(A, f) < \infty$ where A is any fundamental set for G and $N(A, f) = \sup \operatorname{card} (f^{-1}(y) \cap A)$ over all $y \in \overline{R}^3$.

References

- [1] ALEXANDER, J. W.: Note on Riemann spaces. Bull. Amer. Math. Soc. 26, 1920, 370-372.
- [2] GARLAND, H., and M. S. RAGHUNATHAN: Fundamental domains for lattices in rank one semisimple Lie groups. - Proc. Nat. Acad. Sci. U.S.A. 62, 1969, 309-313.
- [3] GEHRING, F. W., and J. VÄISÄLÄ: The coefficients of quasiconformality of domains in space. -Acta Math. 114, 1965, 1-70.
- [4] MARTIO, O., and U. SREBRO: Automorphic quasimeromorphic mappings in Rⁿ. Acta Math. 135, 1975, 221–247.
- [5] SELBERG, A.: Recent developments in the theory of discontinuous groups of motions of symmetric spaces. - Proc. 15th Scand. Congress. Oslo 1968, Lecture Notes in Mathematics 118, Springer-Verlag, Berlin—Heidelberg—New York, 1970.
- [6] WIELENBERG, N.: On the fundamental polyhedra of discrete Möbius groups. To appear.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Technion — Israel Institute of Technology Department of Mathematics Haifa Israel

Received 10 March 1976