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ON THE EXISTENCE OF AUTOMORPHIC
QUASIMEROMORPHIC MAPPINGS IN R’

O. MARTIO and U. SREBRO

1. Introduction

Let G be a Mobius group in R"=R"U{e}, n=2, and D a domain in R"
A mapping f: D—~R" is said to be automorphic with respect to G if fis continuous,
open, discrete, sense-preserving, and jfo g=f for all g€G. Note that if G has
automorphic mappings f: D—~R", then G is discrete and D is invariant under G.
Discrete Mobius groups which have invariant domains are called function groups.

A mapping f: D—~R" is called quasiregular, abbreviated gr, if f is continuous,
ACL", and
(1. If'(ol" = KJ(x, f)

a.e. in D for some K€[l, ). If f: D—~R" then the ACL" condition and (1.1)
can be checked at f~1(ss) by means of auxiliary M&bius transformations. If these
conditions hold the mapping is then said to be quasimeromorphic, abbreviated gm.
If n=2 and (1.1) holds with K=1, then fis meromorphic.

The purpose of this note is to prove

1.2. Theorem. Let G be a discrete Mibius group acting on B", n=2, with
V(B"/G)<-oo. Then G has gm automorphic mappings f: B">R"

In the above theorem V(B"/G) denotes the hyperbolic volume of the orbit
space B"/G, see [4].

The proof is constructive. It is based on a modification of the method of Alexan-
der [1], on basic properties of M&bius groups, see Chapter 3, and on the properties
of radial strecthings, see Chapter 2. We shall not estimate the dilatations of f in
terms of G. For the sake of simplicity we shall restrict ourselves to the case n=3.
The same method applies to n=3 and to n=2.

It is known that every function group in R® has meromorphic automorphic
mappings. We do not know whether function groups in R", n=2, have gm auto-
morphic mappings, nor we know whether the condition V(B"/G)<-< in Theorem 1.2
is essential. We have examples, see [4, 4.2], of gm automorphic mappings f: B"—~R"
for infinite groups with V(B"/G)= ce.
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The notation and terminology will be as in [4]. In particular we denote
X=Xy, .. X)) =2 x;¢; for x€R", B'(a,r)={x€R": |x—a|<r}, B"(r)=B"(0, r),
B"=B"(1), S$"'(a,r)=0B"(a,r), S" 7 (r)=S""1(0,r), S*l=8""Y(1), H"(h)=
={x€R": x,>h}, and H"=H"(0). For Mdobius groups G acting on B" we let
Fix G={x€B": g(x)=x for some gcG\ {id}}.

2. Radial stretchings

2.1. In this chapter we consider a special class of bi-lipschitzian mappings.
A mapping f: A—~R", ACR", is called bi-lipschitzian if

(22) x=yI/L = |f)=f()| = Lix—y|

for all x and y in 4 and for some L=1. The smallest L for which (2.2) holds will
be denoted by L(f).

2.3. A bounded domain DcR" is said to be strictly star shaped if each ray
L from 0 meets D at exactly one point. It follows that 0¢D and that the mapping
@*: 9D—~S""! which sends LndD to LNS"! is a homeomorphism. We let
¢: R"—>R" denote the radial linear extension of ¢*, i.e. ¢(x)=x¢*(x*)/|x*|, x=0,
and ¢(0)=0 where {x*}=0D n{rx: r=0}. This mapping ¢ which is an auto-
morphism of R" and maps D onto B" will be called the radial linear stretching defined
by D.

2.4. Lemma. Suppose that D is strictly star shaped and ¢*: dD—~S"1 s
bi-lipschitzian. Then ¢ is bi-lipschitzian.

Proof. Let M=sup {|x|: x€0D} and m=inf {|x|: x€dD}. Let x, ycR"
We may assume that x#0 and that ¢(x)=x ie. ¢*(x*)=x* since otherwise we
consider the mapping ¢ o F, where F,(z)=|x*|z. Then F, is bi-lipschitzian with
L(F,)=max (M, 1/m), ¢ o F,(x)=x, and ¢ is bi-lipschitzian if and only if poF,
is. Let «€[0, 7] denote the angle between the vectors x and y.If y=0 we set a=0.
We claim that

(2.5) le() =yl = (L") +1)a/m.

If y=0 then (2.5) is trivial. Suppose y=0. Now

loM =yl = |ylle* (") —y*|/Iy*|
= pl(le* (") —x*[+ [y*—x*|) /m
= l(le* () = @* (M) + L") |o* () — 9* (x*)]) /m

= [yl(a+L(p*) ) /m
and (2.5) follows.
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To prove that | (x)—¢ (¥)|=K|x—y| suppose first that a=n/2. Then |x—y|=
|y] and (2.5) yields

[P —eW/x—y| =1+n(L(p")+1)/m.
If a<mn/2, then |x—y|=|y|sin« and (2.5) implies
()= )|/|x—y| = 1+a(L(@")+1)/(msin )
<1+4+n(L(e*)+1)/m.
To prove the opposite inequality let x, y€ R"™\ {0}. Then
lo()—e )| = |Ix|* N/ [x* =y e* M) y*]| = |x—y|/M

and since this inequality is trivial when x=0 or y=0, the lemma follows.
2.6. Let D be a bounded domain in R" with 0€D and let S€(0, n/4]. We
say that D satisfies the f-cone condition if the open cone

C(x, p) = {z€R": |z—x| < |x|, (x—2)+x > |x—z||x| cos B}

with vertex x and central angle f lies in D whenever xcgD. Note that if D satisfies
the B-cone condition, then D is strictly star shaped.

2.7. Lemma. Suppose that D satisfies the [-cone condition for some [=0.
Then @* is bi-lipschitzian.

Proof. Let x,y€0D. Then

lp* () —¢* ()| = [x—y|/m

where m=inf {|z|: z€dD}.
To prove the other inequality we may assume that ¢*(x)=x and |y|=|x|.
Let «€(0, ] denote the angle between x and y. Suppose first that o=n/2. Then

0* () —0* ()| = V2 = [x—y|/V2.

Suppose now that a<m/2. Since y is outside the cone C(x, f§), elementary
trigonometry yields

=yl = ly|sinafsin B = |o*(x)—@* (v)|/sin B,
and the lemma follows.

Since every bi-lipschitzian mapping of R" is quasiconformal, see [3], the above
lemmas imply:

2.8. Corollary. Suppose that D satisfies the [-cone condition for some B=0.
Then the radial linear stretching ¢: R"—R" defined by D is quasiconformal.

2.9. Remarks. (a) We shall mainly use Corollary 2.8 to show that the homeo-
morphism ¢|D onto B" is quasiconformal.
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(b) It is easy to see that if D is strictly star shaped, then ¢ is bi-lipschitzian
if and only if D satisfies the f-cone condition for some f=0. Moreover, for n=3
the cone condition is equivalent to the boundary condition of [3, 5.3].

(c) We shall later use the following elementary property of linear stretchings:
Let D, and D, be strictly star shaped domains and ¢;, ¢, the corresponding linear
stretchings. Define ¢ =¢;'o¢,. Suppose that x,y€dD; and E(x)=y for some
EcOm). If lp)|=|p(y)], then Eocq(x)=¢oE(x).

3. Fundamental polyhedra for Mobius groups

3.1. Normal fundamental polyhedra. Let G be a discrete Mobius group acting
on B". Then G is countable and thus B™\ Fix G#0. The normal fundamental poly-
hedron P centered at a point x,€ B™\ Fix G is defined by

P ={x€B": d(x, xo) = d(x, g(xp)) for all geG\{id}}.

Here d denotes the hyperbolic distance in B". P is a convex polyhedron in the hyper-
bolic sense, possibly with infinite number of faces. Each (n—1)-face, considering
only dPnB" lies in a hyperbolic (n—1)-plane

H(A, xo) = {x€B": d(x, xo) = d(x, A(x,))}

for some A<GN\J{id}. Since AH(A™', xp))=H(A, x,), the (n—1)-faces of P are
pairwise G-equivalent. Note also that H(A7!,0) is contained in the isometric
sphere I(A)={x€R": |4'(x)|=1} of 4 and A=FEol where [ is the reflection in
H(A7%,0) and E is an orthogonal transformation in R". Indeed, (/o4 !)B"=B"
and (IoA71)(0)=0 and so ToA~'€O(n). Therefore A=Eol for some E€cO(n),
and |A’(x)|]=1 for all x€H(A4A~*,0). Finally, recall that if G is discrete and the
hyperbolic measure V(B"/G) is finite, then, see [2], [5], or [6], every normal funda-
mental polyhedron P has finitely many faces and P nS""* is either empty, which
happens only when B"/G is compact, or consists of finitely many points, called
boundary vertices. We summarize the above facts:

3.2. Lemma. Let G be a discrete Mobius group acting on B" with V(B"/G)< .
Suppose that 04 Fix G and let P be a normal fundamental polyhedron centered at 0.
Then P is of the form

2k
P =B\ U Bn(xi’ ry)
i=1

where each S;=S""'(x,,r), i=1,...,2k, is orthogonal to S"7', r;=r,,, and
T,S;= S;+x for some Ty, ..., T, €G. Furthermore, each T;, i=1,...,k, is of the

form T,=E,ol, where I, denotes the reflection in S; and E;€O (n).
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3.3. Simple fundamental polyhedron. Let G be a discrete M&bius group acting
on B" with V(B"/G)<e<. A normal fundamental polyhedron P for G is said to
be simple if no two boundary vertices of P are G-equivalent. In other words, P is
simple if and only if for each boundary vertex p€P nS" ' all the (n—1)-faces
of P which meet at p are pairwise G-equivalent. By [4, Lemma 3.5], G has always
simple fundamental polyhedra. To understand the action of G near a boundary
vertex p of a simple fundamental polyhedron P centered at x,€B , choose a M6bius
transformation A4 with AB"=H", A(p)=<, and A(x,)=e,. Then P;=AP is
a simple fundamental polyhedron centered at e, for the group G,=AGA™' with
a boundary vertex at . The (n— 1)-faces of P, which meet at o are pairwise equiv-
alent via elements of G, which generate the stabilizer G_={g€G;: g(eo)=-}.
Each g in G_\{id} is a similarity in R" with a unique fixed point at > and acts
on each (n—1)-plane dH"(h), h=0, in the same manner, see [4]. The normal fun-
damental polyhedron P, for G, centered at e, is of the form P,=Q X (0, «=) where
Q is a finite bounded convex euclidean (n—1)-dimensional polyhedron. There exists
hy=0 such that P,nH"(h)=P,nH"(h) for all h=h,.

For the sake of notational simplicity we shall from now on restrict our con-
siderations to the case n=3. The extension to the general case n=3 and n=2 is
quite straightforward.

3.4. Lemma. Let G be a discrete Mébius group acting on B® with V(B?|G)< .
Suppose that G has a simple fundamental polyhedron P centered at 0. Then there
exist a finite convex euclidean 3-dimensional polyhedron QC B* with all its vertices
in S? and a homeomorphism h: P—~Q such that

(1) A|P is quasiconformal,

(i) hoT(x)=E;oh(x) for all x€S;n0P, i=1,....k, where S;, T;, and E;

are as in Lemma 3.2.

Proof. Case 1: B®/G is compact. Let z, ..., z, bethevertices of P and let ¢,
and ¢, be the radial linear stretchings defined by P and the euclidean polyhedron
Q which is spanned by ¢,(z)), ..., ¢1(z,), respectively. Then h=¢@; o, is the
required mapping. Indeed, # maps P homeomorphically onto @, and since P and
Q satisfy the B-cone condition for some f=0, ¢, and ¢, are quasiconformal by
Corollary 2.8 and consequently so is /|P. For (ii) let x€S; ngP. Then by Lemma 3.2

hoT;(x) = hoEioIi(x) = ho E;(x).

Since |x;|=|x;+x| and r,=r,y,, it follows by the nature of 4|0P and E;, see 2.9 (c),
that Ao E;(x)=E;oh(x) and so (ii) follows.

Case 2: B®/G is non-compact. Since now P does not satisfy the f-cone con-
dition for any f=0, we first map P quasiconformally onto a domain Rc B* which
satisfies the p-cone condition and then proceed as in Case 1.

Let py,...,p, be the boundary vertices of P. For each j=1, ..., ¢ choose a
Mgbius transformation 4; with 4;B*=H®, A;(p)=<, and A4;(0)=e;. Pick
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h=0 such that A7'(H?(h)) N4 (H?(h))=0 for j=I and so that UA;"(H?(h))
does not contain any vertex of P. By 3.3 each set C;=A;(P)nH?(h) is of the form
Q;X(h, =) where Q; is a convex, bounded, and finite 2-dimensional euclidean
polyhedron containing 0. Let 7}: R*-~R* be the radial linear stretching defined
by Q; and let ;1 R*X[h, «=)~H® be the mapping ;(x, s)=(y7(x), s—h). Then
Y; is bi-lipschitzian and hence quasiconformal and maps C; onto the semi-infinite
cylinder Z=B%X(0, ). Next we construct a quasiconformal mapping of Z onto
a finite cylinder.

Let (r, ¢, x3) and (¢, ¢, ©) denote the cylinder and spherical coordinates of
R, respectively. The polar angle is measured from the positive half of the x;-axis.
The mapping f;: Z—~B*nH® which is defined by t=e ™, p=¢, and O =nr/2
is quasiconformal, see [3, p. 47], surjective, and maps the discs B?X {x;}, x3=0,
onto the hemispheres S2(e™*) nH?®. Let f, denote the reflection in the sphere
S2(ey/3, 2/3). Then f, is anti-conformal and maps B> nH® onto H*\ B?(e,/2, 1/2),
B*(1/3) nH?® onto {x€H?®: x,<—1/3} and the 2-planes through the x,-axis onto
the spheres centered on the line L={xcdH®: x,=—1/3} and passing through
the points e,/3 and —e,. Using cylinder coordinates (r, ¢, x;) with L as the axis
of symmetry and ¢ measured from the direction of the vector —e, to the direction
of ey, we define a mapping f,: H®—~H?® by

f3(r> ?, xl) = (I‘, 77.'/2*{-@/4, xl)’ 0 = ¢ = 27[/3’
=(r!§05x1), 27T/3§(P<TC.

Then f; is quasiconformal, maps H*\B%(e,/2,1/2) onto {x€H®: x,>—1/3}
\.B?(e,/2, 1/2), maps each sphere which is centered on L and which passes through
the points e,/3 and —e, into itself, and maps half-planes through L rigidly into
half-planes through L.

Finally, let =f,""of, " of;0f;0f,. Then y maps the semi-infinite cylinder Z
quasiconformally onto the finite cylinder Z’=B2x(0, log 3) and has the following
properties:

(a) ¥ has a homeomorphic extension to Z denoted again by v,

(b) Y (x)=x for x€0ZndH?, and

(c) each plane through the x,-axis is mapped into itself in the same manner.

To map P onto a domain R in B* which satisfies the fi-cone condition for some
B=0, define ¢: P~B® by ¢(x)=Aj oy o oy;04;(x) for x€ P nA7 (H?(h)),
Jj=1,...,9, and ¢@(x)=x otherwise. Then ¢ is quasiconformal with a homeo-
morphic extension, denoted by ¢, to P. The image domain R=¢P is obtained from
P by cutting away balls tangent to S2 at the boundary vertices and hence R satisfies
the f-cone condition for some B=0. Because of (c),

3.5 poEi(x) = Ej0p(x)
for every x€0PNS,.
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Let {z,...,z,} be the set of all vertices of P and let ¢, and ¢, be the radial
linear stretchings defined by R and by the euclidean polyhedron Q which is spanned
by {@1(z)s > ®1(Zw)s P1s ... Py)» Tespectively. Finally, let h=@; op,0¢p. Then
h maps P quasiconformally onto Q with a homeomorphic extension to P.

To prove (ii) note that, by Lemma 3.2 and by the symmetry of Q, see 2.9 (©),

hoT,(x) = hoE;oIi(x) = ho E/(x) = @5 'o@,0Ei(x) = Eops oy (x) = Eoh(x)

for x€dP\\JA;"(H®(h)). Suppose now that x€dP NA7Y(H? (W) NS, for some j
and i. Then h(x)=¢; 0@, 0¢(x) and hence by (3.5) and Lemma 3.2, hoT;(x)=
=5 op,0E, 00 (x). By the same reason as above we can now interchange E;
and ¢;'oq,. This yields (ii) and the proof is complete.

4. Construction of a QM automorphic mapping in B*

4.1. Simplices in R®. Given a simplex o=(x° x',x% x%) in R® we let |o|
denote the closed tetrahedron in R® which is spanned by the vertices x°, x!, x2, x*
and let C|o|=R*\int |s|. All 3-simplices in R® will be oriented by the sign of the
standard determinant function associated with the basis ¢;, e,, e;.

42. Lemma. Given any two simplices o=(x% x', x2, x*) and ©=(3", y*, %, »*)
in R® there exists a sense-preserving homeomorphism h=h,, from |o| into R® such that
G) h(e)=lt| if ¢ and t have the same orientation and h(lo|)=Clz|
otherwise,
() h(xH=y, i=0,1,2,3,
(1i1) h|3[0| is a piecewise linear homeomorphism,
(iv) Alint |o| is quasiconformal.

Proof. 1f o and t have the same orientations, then the piecewise linear map of
lo| onto |t| which is defined by (ii) satisfies (i), (iii), and (iv).

Suppose now that ¢ and,t have different. orientations. We may assume that
Ocint |z|. The radial linear stretching ¢ defined by int |z| is quasiconformal in R®
and has a quasiconformal extension to R® with ¢(eo)=-oe. Let / denote the reflec-
tion in S? and /;: |o|—|t| the sense-reversing piecewise linear map which satisfies
hy(x)=»', i=0,1,2,3. Then it is easy to check that h=¢ 'olopoh, is the
required map.

4.3. Proof of Theorem 1.2 for n=3. Let P be a simple fundamental polyhedron
for G centered at x,€B°. We may assume that x,=0, otherwise consider first
AGA— for some Mobius transformation 4 with 4B*=B* and 4(x,)=0.

Let 7, and E;, i=1,...,k, be as in Lemma 3.2 and Q and A: P—~Q asin
Lemma 3.4. Using planes through O triangulate Q so that any two E-equivalent
faces in 0Q have E-equivalent sub-triangulations. In this triangulation, call it K .
identify E-equivalent faces in 0Q and thus denote vertices of K which are E-equiv-



130 O. MARrTIO and U. SREBRO

alent, i=1, ..., k, by the same symbols. Now K can be made fine enough so that
all four vertices of any 3-simplex are distinct. Let S={oy, ..., 6,} be the set of all
3-simplices in K and {0, x%, ..., x"} the set of all vertices in K. Then each o, is
of the form (0, x, x*, x). Choose N points 0,32 ..., 3" in general position
in R® ie. no four points are coplanar, and associate with each 3-simplex
0;=(0, x, x'2, x') in S the simplex 7,=(0, ", ¥, y). Now define g: 0 R®
by gllo)|=h,,., for i=1,..,v. Here h,, . is as in Lemma 4.2.

Finally let f: B®—~R® be defined for x€ T~*(P) nB®, T€G, by f(x)=goho T(x).
Then f is continuous by Lemma 3.4 (ii) and by the construction of K and g. f is
automorphic with respect to G, and since goh is gm in P by Lemma 3.4 and
Lemma 4.2, it follows that so is £ in B®.

4.4. Remark. The automorphic mapping f constructed above has the property
N (4, )= > where 4 is any fundamental set for G and N (4, f)=sup card ( f~(y) N A)
over all yeR?.
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