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ON NEVANLINNA’S CHARACTERISTIC
FUNCTIONS OF ENTIRE FUNCTIONS
AND THEIR DERIVATIVES

SAKARI TOPPILA

We use the usual notation of the Nevanlinna theory. We shall consider the
following problem of Nevanlinna ([3], p. 104, [4], p. 239, Hayman [1] and [2],
Problem 1.21): Does there exist a function f transcendental and meromorphic
in the plane such that liminf,,_7(r,f)/T(r,f")=1? We prove the following

Theorem. There exists an integral function F of order 1 such that
liminf T'(r, F)/T(r, F) = 147/10".

Proof. Let k and m be positive integers. We denote r,=k if 3*"+l1=k=
=3¥"*1 and if 3#"'41=k=3%" then r,=—k. We set

3p+1
() &@ = [ (1—z/n)eh.
k=3P+1
We denote
3P+1
sp= 2 1/k.
k=3P+1

The sequence s, is increasing and lim,._ s,=log3. We choose a positive odd
integer p=5 such that

@) log 3—s, < 1/1000
and set
3 @) = 3" [T ().
Let n=p. We write r=3" and
@ 1@ = Hy@8,@)4,) 1T &)

where  H,(2) = [[}_ g1 (1=2/r),  Sy(2) =3[t s, e and  A,(2) =
=JT% ... (1—z/r). Let 2t=|z|=2r+1. We have

) log 5,(2) = = (g 3/2+ Sy )
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and get from .(2) :
(6) flog S, (z2)—(—1)*(zlog 3)/2] = |—z|/1000.
We have
Hy() = [T =i
k=3P +1

= |z|* JT Qt+1+k)k

= Gr+1)!/(]2P Qe+ 1)1 1),

and it follows from Stirling’s formula that

(7) log |H,(z)| = 2tlog3—tlog (4/3).
Let k=3t. Then
(3) log ((1—z/r) eme) = —(1/2) (z[r)*—(1/3) (z/r P — ...

and therefore
log [(1—z/ry e x| = (1/2)(|z/k|2+ |z/k]P+...) = 2|z/k]2

This implies that

©) log| JT g(@|=2zF 3 (1/k2 =53t
k=n+1 k=3t+1

If t+1=k=3¢ then |1—z/r,|=3 and we get

(10) log [4,(2)| = 2tlog 3.
Combining the inequalities (6), (7), (9) and (10), we see that
(1 log |f(z)| = 8.28¢

on 2¢=|z|=2t+1. It follows from the maximum principle that log |f(z)|=8.28¢
on |[z|=2t. This implies that log|f(z)|=13|z| on 2t/3=|z|=2t and therefore

(12) log |f(2)| = 13|z
for all large values of |z|.

Let ¢=3" 1If n is even then J,={x+iy: y=0, 2r+1/4=x=2t+3/4}, and if
nis odd then J,={x+iy: y=0, —2t—3/4=x=—2r—1/4}. Let z€J,. It follows
from (8) that

(13)

ﬁ (2| <1

k=n+1

We have [4,(2)| =[]}, .1 (z—r)/rn]=@)?/(31)!, and it follows from Stirling’s
formula that

(14) log|A4,(z)| = —3tlog3+2logt.

Combining the inequalities (6), (7), (13) and (14), we see that

(15) log |f(2)| = —1(log (4/3)—2/1000)+ O (log 7).
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This implies that
(16) log |f(z)| =—0.135|z|+0O(log |z|)
on J,.

The definition of fimplies that

nzf(2)f (—z) kﬁ (1= (z/k)?) = sin (nz)

and therefore

(17 f(Df(~2) = sin (n2)/P(2)
where P is a polynomial. Now it follows from (16) that
(18) log | f(2)| = 0.135|z|+O(log |z])
if —z€J,.

We denote F(z):ff)fz(w)dw. Note that f2(z)=0 on the real axis. Let »
be even and ¢=3". Tt follows from (18) that log f*(w)=0.27(2¢/3)+O(log t) for
—wé€d,_; and therefore
(19) log F(z) = 3z/100+ 0O (log z)

on the segment 2¢/3+1=z=6¢+1. Then (19) holds on the whole positive real
axis. Similarly, we see that log (— F(z))=3|z|/100+0O(log |z|) on the negative real
axis we conclude that ‘

(20) _ log |F(z)| = 3|z|/100+O(log |z|)

on the real axis.

Let «=1/300, —a=¢=0, and z=re’=x+iy. It follows from (17) that
| f(2)f(—z)|=]sin (nz)| for large values of r. Then either log |f*(z)|=mnr|sin | or
log | f2(—z)|=nr|sin ¢|. Let us suppose that log|f*(z)|=nr [sin ¢|. It follows
from the definition of f that |f(W)|=|f(w)| and |f(x+iy)|=|f(x+is)| if —|y|=
=s5=|y|. Therefore log | f2(w)|=7r [sin ¢| on the segment {w=x-+is: —[y|=s=|y[},
and we see that
@) F(2)| = [FGO|— Iy| exp {ar sin o).

We denote G (w)=|F(w)|/(14|F’(w)]). It follows from (21) and (20) that log G(2)=
=1.9|z|/100+O(log |z]) if log|F'(z)| = log|f*(z)| = nr[sin ¢|. Similarly, if
log | f2(—z)|=nr |sin ¢|, then we get log G(—z)=1.9|z|//100+ O (log |z]). Therefore

log* G(re'?)+log* G(—re'?) = 1.9r/100+0(log r)
if |p|=1/300. This implies that

2n
(22) B(r, F) = (2n)~! f log* G(ré'?) dep = 1.9r/(3n 10)+O(log 7).

0

It follows from the identity |F|=(1+|F"[)(|F|/(14+|F’])) that
log*|F|—log*|l/F| = log*G—log*((1+ |F’))/|F|)+log*|F’|.
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Since log* ((1+|F’|)/|F|)=log* |1/F|+log* |F'/F|+log 2, we get

log*|F| = log*G—log™ |F’/F|+log*|F’|—log 2.
This implies that
m(r, F) = B(r, F)—m(r, F'|F)+m(r, F")—log 2.

Here m(r, F'/F)=0(1)T(r, F) because F is of order 1. Therefore we get
(23) T(r, F) = (14+0(1)(B(r, F)+T(r, F’))

where 0(1)~0 as r—c. It follows from (12) that T(r, F')=26r, and we see
from (22) that
B(r, F) = 7T (r, F')/10"+0(log r).

Therefore we get from (23)
liminf T'(r, F)/T(r, F') = 1+7/107,

and the theorem is proved.
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