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ASYMPTOTIC BEHAVIOR OF
MEROMORPHIC FUNCTIONS WITH
EXTREMAL SPREAD II

ALBERT EDREI and WOLFGANG H. J. FUCHS

Introduction. This paper is a continuation of [3]. In view of our constant
reference to specific formulae, lemmas and theorems of [3], we write [A] instead of
[3] and use, with their obvious meaning, notations such as

(12.1[A]), Lemma 4.1 [A], Theorem 3 [A].

The notational conventions of [A] are adopted without modifications and
strictly adhered to.

We supplement Theorems 1, 2 and 3 of [A] by the more detailed information
contained in the theorems of the present paper.

In everything that follows
(1) f(z) is a meromorphic function of lower order u
0 - l,[ - + oo’

satisfying the hypotheses ES at a sequence {r,}_, of Pélva peaks of order it of T(r)=

m=1
=T(r.f):
(i) 2B is the spread of <= at the peaks {r,} and

O(so, f)y=1—cosfu, 0<p =n2u;
(iii) 1 (5)={r: rue™> <r=rue’} (s=0). A(s)=Us_, L, (s).
We first prove

Theorem 4. Let f(z) satisfy the hypotheses ES and let the positive quantities
s, & n (n=(1/2) min (8, n—p)) be given.

It is then possible to determine a real sequence {w,,} and a point set &=26,,(s, ¢)
which may be enclosed in disks with sum of diameters not exceeding ee™*r,, and having
the following properties.
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L If
€)) reL,(s), re?¢&,(s,8), m=>my,
then
@ log | (re® )] = eT(r) (B—n = |0] = ),
and

©)] |log | f(re!®+ em)| ~mpusin u(B— 0D T(r)| = eT() (1 = |0] = p—7).
II. If v, denotes the number of zeros of f(z) in the sector
{re® : rel,(s), |0—w,| = B—n)},
and ,, the number of poles in the sector

{re:rel,(s), n = [0—0w,| ==},
we have

“ Vit T = 0(T (1)) (m — o).

Our next two theorems show that, under the hypotheses ES, two very different
types of behavior may occur in the sectors
» {rer,(s), p < 0—w,, < 2n—p}.

Theorem 5. Suppose that the hypotheses of Theorem 4 are satisfied and that
%) n—pf = n/2u.

Then
(6 log |f(re'®*em))| = —eT(r)

(reL,(s), +n = 10| =n; rélent?¢ &, (s, 6, 1); m = ).

Here &,,(s, € 1) is an exceptional set which may be covered by a finite number of disks
the sum of whose diameters is less than ge™5r,,.

If 9,, denotes the number of zeros of f(z) in

{relo: rEIm(S)a B_'_rl é 'e—wmi é n}’
we have

@) V= 0(T(r,)) (m — ).
Remark I. Since uf=mn/2, the condition (5) is satisfied for all p=1.
If 12<u=1, (5) is equivalent to
cos uf = sin um.
Remark II. If (5) is satisfied, the relations (4) and (7) hold simultaneously.

Hence, almost all the zeros of f(2), in the annulus z€I,(s), lie in one or the other of
the two angles

It is natural to expect that there will be approximately the same number of zeros in
each of these angles. This is in fact true.
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More precisely, given m, & (0<&<1) and n (0<n<p), denote by nt(u) the
number of zeros of f(z) in the sector

(9) irm< |zl§u, wm+ﬂ"’7§afg2§wm+ﬁ+’1~
If in (9) the restrictions on the argument are replaced by
(10) wm—ﬁ_” =argz = wm_ﬁ—l_n:

we obtain a symmetrical sector and denote by n~(x) the analogous counting function
of the zeros of f(z) in this sector.
With the above definitions we may state our

Asymptotic symmetry. Let the assumptions of Theorem 5 be satisfied. Then
1. For every s=0,

(11)

1. Given t such that

n(r, 1/f)

7)1 (e red().

0<t<min(1—-¢, siny),
we have

) =) a
T(rm) - E {(1+t) —(l_t) } (m - oo)

The relation (12) still holds if n* is replaced by n~.

(12)

It is convenient to prove the asymptotic symmetry in the preceding form (a brief
sketch of the proof will be found in Section 13). Generalizations are immediate
and we may deduce from the above result the asymptotic equality of the number
of zeros in the two sectors for which |z|€7,(s) and argz is restricted as in (9)
and (10).

Theorem 6. If the hypotheses of Theorem 4 are satisfied and (5) does not
hold, then (6) and (7) need not be true.

Assume that (6) does not hold; it is then possible to find an infinite set M of posi-
tive integers such that for me, rel, (s), B+n=|0|=n

13) log|f(re®*iom)| < —KT(r,) (0 <K = K(s,n) = const.),

outside an exceptional set &, (s, e, n) which can be enclosed in disks with sum of
diameters <ee™*r,,.

Theorems 4, 5 and 6 contain fairly detailed information about f(z). It is easy
to deduce from them

Theorem 7. Let the meromorphic function f(z) satisfy the hypotheses ES then
S(2) has at most one finite deficient value. There are no finite deficient values if f (z)
satisfies the additional condition (5). :
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Remark II shows that, in the annuli |z|€/,(s) and under the hypothesis
(5), almost all the zeros lie in the angles (8). On the other hand, by Theorem 4,
in the same annuli, almost all poles lie in |0 —w,|<#. This is the ‘fork pattern’
of zeros and poles exhibited by the function 2 (z) of the introduction of [A].

Hence Theorem 5 describes completely the situation in the case characterized
by (5) and is, in an obvious sense, “best possible”.

If (5) is not satisfied and if 1/2<p=1, we have, by RemarkI,

cos uff = sin um,
and the line
y = cos ufs
intersects the arc
x4+ y?—2xycosur = sinun, x=0, y=0
at
Xo = cos p(n—f) y, = cos ufi.

Then, as was shown in [1, pp. 244—249],

f(2) = g(xg™*2)/g (= yi'*2) (g(Z) = ]j(l Lz, 12 < u < 1)],

f@ =1 (1+re] =D,

s nlog?n
have deficient zeros and poles with
1—6(00,f):COSﬂB, 1_5(0af) :COS#(TC—B)'

o'(oo,f) =2ﬁ, U(O’f) :2(77.'“ﬂ),

The spreads

are both extremal. But the zeros of f(z) are all real and negative, so that we cannot
have the fork pattern. It is also easy to verify that, for the above functions, (13)
holds for all large r.

It is now clear that Theorem 6 accurately describes the asymptotic behavior
in all cases not covered by Theorem 5. In order to pass from Theorem 4 to Theorem 5
it is necessary to make appropriate use of the condition (5).

To perform this step we use a modification of Carleman’s identity. Our version
introduces a “‘central logarithmic mean” which is expressed in terms of the expected
contributions of zeros, poles and boundary values of | f(z)|. The presence of the
central mean (analogous to the central value in Jensen’s formula) is useful for our
purpose. We prove

Carleman’s identity for a sector. Ler g(z) be meromorphic in the sector

D:te? =]zl =te® (0<o), largz|=n/2c (c=>1/2).
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Let
t
- _ _C_ ” yceac _L]
20) = 5 { J el (5~ vy
(14) -
w0 tceac— yc ) }
+/ log [g(e y)l( e dylyr,
and
a ceac tC
| ltc oo )cos (cp) (te™° =la| <),
(15) n(lale®) =y . . c
e |a] .
( aF T ac) cos (co) (¢ = |a] = te”).
Denote by a a zero of g(z) in D and by b one of its poles.
. Then
¢ 7/2¢
(16) — (e t+e™) [ log lg(te™)| cos (c6) dO

—m/2¢
7/2¢

== [ loglg(reme)g(te )] cos (c6) dO-+E (~7/26) +3 (r20)

—7/2¢
+an(b)—2an(a)9

where X, denotes summation over all poles b of g(z) in D and X, summation over all
zeros a of g(z) in D.

Our last result concerns entire functions of lower order u=1/2. If we confine
our attention to such functions, the class for which Paley’s relation is realized in
extremal form coincides exactly with the class satisfying the hypotheses ES. More
precisely:

Theorem 8. Let f(z) be an entire function which satisfies the hypotheses ES
at some sequence {r,} of peaks of order u of T(r,f).

Then, necessarily,

. logM(r,, )

17 lim ——"2=~ = qpu.
an L T B
Conversely, if (17) holds at a sequence {r,,}, of peaks of order p=1/2, then f(z) must
satisfy the hypotheses ES at the same sequence of peaks.

The fact that (17) follows from the hypotheses ES is an almost immediate con-
sequence of Theorem 3 [A].

To obtain the converse, use the above relation (17) in Lemma 11. 2 [A] to prove
(with the notations of [A, § 16])

Ly =o(T(ry), L,=o(T(rn),
as well as (15[A)).
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After these points have been established, all the necessary arguments are simple
special cases of those in Sections 2, 3 and 4 below.

1. Recall of [A] and definitions. Let n (0<y<min (1, B, z—p)) and s=(1/n)
be given. Then, by Theorem 1[A], we may assert that, for

8 e~ < 12 1, M= o),
we have

a2 TO _ T (140 @) (0] = 1, m> mon, ),
13 NG £)~T(0) cos ub| < nT(®)

a4 In(t, £)~T () cos uf| < nT(®).

Let p,, be the number of poles of f(z) in the sector
(L.5) {re®:rpeS<t=r,es, n=0—0,l=nr}
and z,, the number of zeros f(z) in the sector
(1.6) {re®:rpes<t=r,e, 0—w,| = p—n}

By Theorem 3 [A] we know that the conditions (1.1) and a suitable choice of
mq (1) imply
(17) pm+Zm = 2Tv(rm) (m = mo(’?))

The simple “diagonalization” described in [A] enables us to select a positive sequence ‘
{fi.n} and an associated sequence {s,} defined by

sm = l/fl’mﬂ
and such that
@ fim >0, 5, >0 (M —>o);
@) if
(1.8) P = e7Smr, St = eSmr, = T,

then (1.2), (1.3), (14) hold with # replaced by 7,,; as to (1.7) it takes the form

(1.9) (Pt 20) S = Tl T (1)-
Redefine r,, r,, as

P = € SmFy, T = €mr,,

and discard the former quantities r,,, r,.. With the new notations, p,, and z,, in
(1.9) denote, respectively, the number of poles of f(z) in the sector

(1.10) Py={re® rm<r=rn, Optiim=0=204+0,—Tn}
and the number of zeros of f(z) in the sector

(1.11) Z,={ré® i <r=rp, O,—B+i,=0=0,+B—T}
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Let {b;};, {a;}; denote, respectively, the poles and the zeros of f(z) and define
the polynomials
(1.12) P,(2) = /i (I—z/bp), Z,(2)= ][ (1—z/ay,

bjE m af€5m

of respective degrees p,,, z,-
It follows immediately from our definitions that

(1.13) Pu(2) = log|f(2)|+1log [P, (2)] (z€Z,)

is subharmonic, and that

(1.14) Yu(2) = ou(z)—log|Z,(2)|

is harmonic in

(1.15) Dy =A{re® i1, <71 = Fry O+l =0 = Oyt P—Tlm}

as well as in the symmetrical sector &, with 6 restricted by
2n+ @y, — B+, =0 = 21+ 0, —,.
Lemma 1.1. I Let s=1 be given and let
0n(2) = [[ (1—2z/a)

be a polynomial of degree q,, such that each one of its zeros a satisfies the conditions

(1.16) rpeSTL=|a| = refth
Then, if
1.17) lz| =7 = r,estl,
we have
1 : i0 -
(1.18) 51;_”] |log |0, (re)|| df = 10sg,,.

II. For the polynomials P,(z) and Z,(z) defined by (1.12), the restriction

lz| = 1, em

implies
(1.19) log [P, (2)] < T (). 10g |2, (2] < 1 T (1),
1 7 ; ;
(1.20) 5= [ {llog| Pn(re®)][+[log|Z,,(re")|[} d0 < n,, T (ry).

1. Given ¢ (0<e<l1) it is possible to find sets &,(s, e) such that
(i) &,(s, &) is the union of finitely many disks with sum of diameters =(1/2)ee™"r,;
(ii) the condition

Zn§ (s, €)
implies
(1.21) log |P,(2)| = =1 T (1), 10g|Z,(2)| = =1, T (1),
and

(1.22) log |0,,(2)| = — ¢,,(7s+1og (1/¢)).
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Proof of 1. In view of (1.16) and (1.17)

= e2s+2

a

and hence
(1.23) log |0,,(2)| = g,,log (1 +e**2) = 5sq,,.

By Jensen’s formula and (1.23)

1 i0 =
~ j | gy | 0= 5 [ 108 10,0140 = 554,

and (1.18) follows.

Proof of 1. The above proof is easily adapted to yield (1.19) and (1.20). For
instance, to treat P, (z), replace, in (1.23), s by s,, and g,, by p,, T(r,,). Since, by (1.9),
SnPm—0, the analogue of (1.23) is

log [P, (2)] = 55 P T(ry) = 1, T(r) (2] = 1€°m).

The remaining inequalities of assertion II are now obvious. [For sake of clarity,
we remind the reader of the convention that {#,} is a sequence of real numbers
tending to 0 as m— o, not always the same at each occurrence; #,, is independent
of the variables ¢, r, 0.]

Proof of II. 1t will be sufficient to examine Q,,(z). By the Boutroux—Cartan
lemma and (1.16)

|z—al [ h )q"‘

N = _ = |— r'qme—qm(s‘l'l)

[Qm( )[ .{]‘ Ial 4e m

outside circles the sum of whose diameters does not exceed 4. Choose

h= Eee‘srm.

It follows that, outside a set &,,(s, ¢), we find

IOg [Qm(z)l = qm(logs—-Zs—S),
and (1.22) follows.

2. Upper bounds for ¢,,(z), lower bounds for ¥, (z). A subharmonic function
Q(z) cannot exceed the average of @ over the area of a disk with center at z.
We use this elementary property in the following form.

Lemma 2.1. 1. Let Q({) be subharmonic in the sector

Q21 rest=[{|=rett (s=0), 0,=0=arg{=0, (0<0,—0;,<2m).
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Assume that, for some =0,

res+1

1 oo
- ¢ =
2.2) 5 re_ll xdxo;[ Q*(xe?)do = 6.

Then, given n (0<n<min {(8,—0,)/2, 7/6}), we have

26 exp (25)

23) Q) = T

throughout the sector
2.4 re S =[{|=res, O0;+n=0=0,—n.

B

1. Assume that Q) is harmonic in the sector (2.1) and that, in addition to (2.2),
we have

1 res+1 92 )
2.5) Em_‘!jl xdx 9! {—Qxe?)}tdop = 6.
Then
20e*
(2.6) RO = Tsinty

throughout the sector (2.4).
Proof. Let te” lie in the sector defined by (2.4). It is then clear that the whole disk
Ir={{:|{—te" = ¢tsinn}
lies in the sector defined by (2.1). Hence, in view of (2.2)

1 1 (1+y) 0y )
Efo*’(C)dA =5 [ xdx [ Q+(xe?)dp =5 (1= sinn),
T t(1—yx) 0,

where dA is the element of area. By the behavior of the average of the subharmonic
function Q%({), we now have

1

2.7 Q*() = TEsmin

28
{fm(g) 4= o

and (2.3) follows.
To prove assertion II notice that, in addition to (2.7),

26
2sin%n

(2.8) -0} =

From (2.7) and (2.8) we deduce (2.6) and thus complete the proof of the lemma.
Lemma 2.2. Let s=>0 and n

(2.9) 0 <=#n < min(B/2, n—p, 7/6),

be given and let z be confined to the annuli

(2.10) e S, = |zl = eTr,.
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Then, the following inequalities hold uniformly in z:
2.11 2er T 0 2
( . ) Dm (Z) = SH’12—(1’1/2,) (r/rm) (rm) (11 =UV—-wo, =+sn—Hn, m= mO(rh S)),

2.12) On(2)=n,T(r) B+n=0-0,=2r—F—n,1,>0),
(2.13) Vn(2) ==0,T(r,) (1 = |0—0,| = p—n, 1, > 0).
Proof. Let 0,<0,<06;+2n and let
J={0:6,=0=0,}.
Then, our definitions (1.13), (1.14) and the inequality (1.20) imply

[
Q1) o [ 0ECeNd0 = mlr, £ )1, T(0) (el (s+2),
0,

1 ,
(215) % f {"‘/jm(relo)}-'-de = m(r> llfa J)+’1mT(rm) (i'EIm(S+2))
6,
In particular, from (2.14) we deduce

2]
s [ 0RO = T) 4, T(r) = 260 Tr) (€ Ly(5+2), m > o),
0,

re 0,
in [ xdx [ oi(xe®)d0 = e+ 2r2(rfr, Y T(r)  (r€L,(s+1), m = my).
6,

re-1
Since ¢,,(z) is subharmonicin £, (defined by (1.10)) wemayuse Lemma 2.1 with
0, = wm+ﬂ/2’ 02 = 27'C+60m—7[/2

and thus deduce (2.11) from (2.16). _
To prove (2.12) and (2.13) we return to [A] and focus our attention on Lemma
16.1 [A] from which we immediately deduce

@) [ me 5 [ont B ot 20— B) Xy 1) drfr = 1, T (),
@18) U (0B, 00t BYXC, 1) drfr = 1, T(r,)

with
rrh

_m T
P2 (7 + 1)z >rn2exp(—3(s+2)y—25—6) [y=_)_

(2.19) 712- X(r,r,)= ;
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Using (2.19) in (2.17) and (2.18) we find

(2.20) Tt f; [0+ B, opt2n—B) dr = 1,75 T (),
rpe-s-2
221) T rm, Uf; [on—B, ont-BD dr = nur3T(.

By Lemma 2.1 we deduce (2.12) from (2.14) and (2.20). Similarly (2.15) and (2.21)
imply (2.13). The proof of Lemma 2.2 is now complete.

3. An upper bound for ¢,(z) on lines §=constant. Apply Lemma 11.2[A] to
Sf(ze@rem) with given n (0<n<p). The sector P, defined in (11.23 [A]) has to
be replaced by

I,={z:rm<r=ry, op+n—P=0=w,+n+p}
We thus obtain

log [f(rer* )| = 32 [ m(t, f3 [ +n—B, o 41+ B) X (e, 1) def

3.0 ; . ~
+ 2 H(bje o, 1)+ 8, (v =n/p).

byET,,
By (11.25[A)]), if rel,(s),
IS = 56ye{(r/ 1) T(2ron) + @l ) T2ri)} + K(s +10g 130) < 1 T (-

We next add log [P (re'®* )| to both sides of the inequality (3.1) and find

(32 Pu(reton) =2 [ m(t, X, 1) dtft+Ey 1, T (),
with "
33 Ep= 2 H(be o, r)+log|Py(re*en)].

Now take into account the obvious cancellation between some of the logarithmic
poles introduced by the sum in the right-hand side of (3.3) and some of the poles
introduced by log |P,,|.

Let &, be the complement of 2, in the annulus r,<l|z|=r,, (2, is defined
in (1.10)). No pole in &, contributes a factor to P,(z) (for m large enough). Let

In=Pp Ty,
and let #, be the complement of %, in 2,,. Then we may write

(3.4) ’ Em =X1+X2+X3
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with
3.9 X, = 3 H(bje i+ow ),
b€ P,
(3.6) X2 = 2 {H(bje—-i("+w’"), r)'l_ ]Og Il —rei("+wm)/bj|},
b;€F,,
3.7 Xy = 2 log|l—rei*enp|.
b€ Fm

The estimate
X3 = pplog(1+e'+sm)

(3.8)
= pm(s+sm+1) = ﬂmT(rm)

follows at once from (1.9).
To estimate X, we require

Lemma 3.1. If {=|(|e" and

(3.9) Ol==/y =1, [[I=0,
then
1-¢

Proof. The function
1-¢ v — |7y liw
is single-valued and regular in the angle defined by (3.9). On the sides of the angle

we have
1= = 14¢].

Consequently, the maximum modulus principle shows that

1-¢
1=

_ 1+l
= TP
throughout the angle (3.9). This proves Lemma 3.1.

Now apply (3.10) with
C — r/bje—i(n+wm) (,. - 0)

2,

and
larg b;—(n+w,)| = B = n/y.
We thus find, for b;€4,
. bl
1 1 — peiti+o,) b.l+1 - | J 1 2,
oL e b o8 e e =T~ ¢
consequerntly

log [ —re'm* )b |+ H(b;e~ '+ om) 1) < log 2+log (b1 +r)/1b,]7),
and, in view of (1.9),

(3.11) Xy < puflog 2+log (1 +e+s))) = 4, T(r,).
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We still have to estimate X;. We may suppose that m is so large that

(1/2)n = .

(,, is the number occurring in the definition of £, in (1.10).) Then, for b¢ 2.,
we find

(3.12) [{b;e it emyr—p?| = (|b; [’ +57) sin yn/4.
We now prove

Lemma 3.2. If ¢=0 and O<n<p, then

(3.13) E,, < (r[ry)* T(ry) {mu cos (Bp) tan (Bu/2)+ &},
provided rel,(s), m=m,.

Proof. Let 0 (0<o<1) be a parameter to be selected later.
From Theorem 1 [A] we conclude that

(B.14) n(e*r, f)—n(e°r, f) = (€ —e )T () pcos Br)+n(MT(r) (reL,(s)).
Choose o so small that (3.14) implies

(.15 n(e*r, fy—nle=r, f) < {e/(4log (1/sin (n/A))} T(r) (r€1,(s), m = my).
We next appeal to Lemma 13.1 [A] and take x=u=r; this yields

2 H(ijla 7‘)—!— 2 " H(|b1|9 7‘)

ra<lbjl=re=< re?e<|b,|=rp,

= (1)1 T () (st cos (B) tan (Biy/2) +1,).
By (3.12) and (3.15) we find

(3.16)

2> H(bje~i0+om) 1) = {n(e*r, f)—n(e=r, f)}log(1/sin (1/4))

b€ P,
e‘°r<lbj|§ez"r

= (DT ) = )T ) /rn)"

and, in view of (3.16), we obtain

Xy < (/) T(r) {mpt cos (B tan (Byy/2) +¢/2).

Using the above inequality, (3.11) and (3.8), in (3.4), we deduce (3.13). This
completes the proof of Lemma 3.2.

Lemma 3.3. Given ¢=0, n (O<n<p) and s=0, we have

o P (re’ 1t em) < (mpsin (Bp)+e) (r/r)* T (),
provide

rEIm(s)r m= mO(ss ’1’ S)'
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Proof. By (1.2), (1.3) and ré€l,(s), we have

2 /mm(t, DX P dift =7 f (T()— NG, )YX(, 7) dit

m

(3.17) }
= (L) (1 —cos B * T (r) (/) [ /1) X (2, 7) d,
and } -
. i u F Ut dy T
(3.18) ’ | @rrxa dt/t<y0f T =

Using (3.17), (3.18), and (3.13) in (3.2) we obtain the desired result.

4. The behavior of ¢,,(r¢”) in |0 —w,,|<p.
Lemma 4.1. Let ¢>0, n (0<n<min (B, n—p)) and s=0 be given. Then, if

“.1) rel,(s), n=101=p, m=myn,s),
we have
(4.2) P (re®*iom) = {musin u(B—|0)) +e} (r/r)* T (1)

Proof. We consider only the interval n=60=p. The proof for —f=0= -y
is exactly the same.

To prove the lemma we apply Lemma 2.1 [A], in a suitable sector, to the sub-
harmonic function ¢,,(z).

Since we consider one such sector at a time we suppose, for simplicity of writing,
that ,=0. If this is not initially the case, replace f(z) by f(ze=).

We now apply Lemma 2.1 [A] to ¢,,(z) with

Q=N l:e—srma R=esrma '))=TE/,8§2/J,

S=>0 and an additional parameter # =0 are selected as follows.
We take #'=#n"(e, ) to be the largest number such that

4.3) n' =n/2, nusin(uy’) = ¢/5,
and S=S(,n,s) to be the smallest number such that

4.4 S=s+1, 6e~ -9 [.—25“:,—2—+—8—+nu] =2
sin®(’/2) 2 4
Put
2eu+2
=y = ’ Pt —
(45) 61 n, 92 ﬁ+’7 s B Sil’l2 (’1//2) m T(rm)

Lemma 2.2 with s+1 replaced by S shows that, for

(4.6) rme” S = || =r,e5,
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and .
elé argC =9§ 62, m>m0(’7,’ S)a
we have ‘
4.7) ‘ on(0) = B[C],
@8) on([C]€%) = 4, T(r,,) = (e/4) e sin (B) T ()

= ¢/4sin B " T (ry) [T = ho|C]".
Similarly, for m large enough, (4.6) and Lemma 3.3 imply

4.9 P (] €®) = (npu+e/4) sin (B ry" T (ry) [CI* = Ry [
In view of (4.5), (13.3[A]) and (13.4 [A]) we also have
(4.10) ‘ 0,—0,=B=nfy, y=1, y—p=p=0.

The relations (4.7), (4.8), (4.9) and (4.10) enable us to apply Lemma 2.1 [A].
We thus find that, under the restrictions (4.1), (2.7 [A]) yields

Pn(2) = {r/ra}* T (rm) {(ﬂu +¢/4) sin u(B+n"—0)+(e/4) sin u(6—7")

2et+2 € ]}
—(S-s)p =& +—+
6e [ sin2(’/2) 2 TH)f-

Taking (4.3) and (4.4) into account we obtain (4.2).
Our next lemma is an immediate consequence of a result which we have used
repeatedly [2; Lemma III].

Lemma 4.2. Let ¢=>0 and s=>0 be given. It is possible to determine
6=0(g, s)=0 such that, if E is a measurable set and if

IE| = 5’ VEIm(S), m = mo(ﬁ, S):
then

3 J{log s e[+ fog P, o)

4.11) n {Iog IZm(reio)ll}dH < eT(r,).

Proof. By [2; 322, Lemma III] (applied to both f and 1/f) and (1.2)

%Ef |log | f(re®)|| 46 = 45Q2r/r,)* (1 +1§g(1 )T (7,)

4.12)
(reI,(s), m = mye, s)).

The lemma now follows from (4.12), (1.20) and the remark that
+
5(1+log(1/8)) -0 (6 —~0+).

In the following lemma we confine our attention to values of 6 in [w,,, T+®,];
the interval [-7n+w,, ®,] is treated by symmetry.
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Lemma 4.3. The function
(4.13) 2 (2) = (D)= (zl/r)* T (ry) musin p(B—0+w,,)

is harmonic in 9, (defined by (1.15)).
Given s=>0 and ¢=0, we have

B+o,,
(4.14) 717; [ 19.(re®)] do < oT (1),

Om

provided
rel,(s+1), m=> mye, s).

Proof. The harmonicity of Q,,(z) follows from the harmonicity of ,, (z) (defined
in (1.14)) and the remark that

— [z[*sin u(f—0) = Im{z+e~ b},

[For simplicity of writing we assume that 0,,=0.]
Using Lemma 4.2, we first determine #=n(e, s)=0 such that under the conditions

(4.15) rel,(s+1), m=my(e,s), |E|=5y,

5= [ Allog e[+ [tog [P e

(4.16) ,
+log|Z,,(re") ||+ mue + PR T (r,)} 6 < (ee=C+D/14) (),

where £ is a measurable set of arguments.
From Lemma 4.1, (1.20) and (4.16) we readily see that

B
4.17) % J i) d0 = 66T () (reLy(s+1), m = my)

as well as
=P —nl) = (/) T (r - —(s+1u
@.18) m(r, f5 [= B, =) = (#/r,)* T (r,) {(1 —cos Bu)/2+ee /14)

(r€L,(s+1), m = my).
We next show that

B—n
4.19) % f Q,(re) do = —(¢/6) T (r,,) (reL,(s+1), m > ).
n
If this were not true, there would be arbitrarily large values of g=yp, such that
1P .
(4.20) 3 ] n(ee”)d0 < —(/6)T() (0 = on€l,(s+D).
n

By the definition of Q,,(z) and (1.20), the above inequality implies

1 Bono+ ] 1 7+ ;
37 ] Toelf(eelan < o J togtif(eey] o

“.21)
+(e/ra)* T (ry) (1 —cos Bu)/2+(—(e/6) +1,) T (1,).
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Now
1og [1f| = ()" +10g [P (2)] +10g [1/Z, ()
and hence, by (1.20) and (2.13), (4.21) yields
(4.22)
m(o, f; [n, B—n)) = (o/rw)*{(1 —cos Bu)/2—(e/6) e+ 0, } T(r,)  (m > my).
Using (2.12) instead of (2.13), we see that
(4.23) m(e, f3 [B+n, 2n—F—n)) = 1, T ().
We now choose in (4.16)
E=[-nnv[B—n, f+n]lv2n—p—n,2n—f]

and combine the resulting relation with (4.18) (with r replaced by o), (4.22) and
(4.23). This leads to

M Qs ) = (Qu/Tw)* T (ry) {1 —cos fu—(e/43)e=CTD4} (m = my)

lim glf% < (I—cosBu) (rel(s+1D).

The latter inequality rewritten as
- N, f)
111’51_,8;1 P T(r)

contradicts (16 [A]) and hence shows the impossibility of (4.20). We have thus
proved (4.19).
Using (4.16) once more, we find

=>cosPu  (rel,(s+1)),

]
L [ 2a(e®)d0 =—(@/HT () (reLu(s+1), m=>my)
27 ¢
which, combined with (4.17), yields

]
EDT() = 5 [ Qe+ (-0, (re D)) dO (T, +1), m = o),
0
and (4.14) follows. The proof of Lemma 4.3 is now complete.

5. Proof of Theorem 4. Part II of Theorem 4 is already part of the assertions
of Theorem 3[A].

Consider now the given quantities s, ¢, # which appear in Theorem 4. The
definition of ¢,, and (2.12) yield
(5.1)  log|f(re®)| < log [1/P,(re?) |+, T () (B+n = 0] = 7, r€L,(5)).

Taking into account (1.21) and (1.2), we see that (5.1) implies (2).
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To prove (3) we note that, by Lemma 4.3

1 B+o,,—n/2

(5.2 5 / |2, (re®)|d0 = &' T(r,) (rél,(s+1), m=my(e,s)),

@ +1/2

where we have chosen
¢ = (g/2) sin2 (y/2) e~ +ms-2,

Using (5.2) in Lemma 2.1 we obtain
[2,(2)] = (/e T (1) (0n+1 =0 = 0+ p—1, 1€1,(5))
and hence, by (4.13), (1.13) and (1.14)

llog | f(2)|— (r/r)* T (ry) mu sin p(B—0+w,,)| = (¢/2) e~ T (r,,)
+ [log |P,,(2)]| + [log |Z,,(2)]]-

Taking (1.19) and (1.21) into account, we readily complete the proof of (3)
and, consequently, of Theorem 4.

6. Proof of Carleman’s identity for a sector. We may consider
6.1 G(2) = g(2) bg) (1—z/b),

and treat separately G (z) and the polynomial in (6.1). Then, as in all such identities,
the final result is obtained by subtracting the formula for the polynomial from the
formula for G.

We confine our attention to the special case ¢=1; using an elementary change
of variable we then obtain the general case.

The preceding simplifications enable us to assume that g(z) is regular in the

sector
Di:Rez=0, I=|z]=R (I=te™° R =te;

the zeros of g(z) in Dy are a;=la;|e"s (j=1,2,...,n).
Consider the auxiliary function

(6.2) U(z) = g(2)&(*z7")
which is regular in
D,:Rez=0, t=|z|=R.

The boundary 9D, will be used as contour of integration; taken in the positive
sense, it will be denoted by .

We assume first that f(z) has no zeros on 9D, and no zeros of modulus t. At this
stage of the proof these restrictions are essential.

The collection of zeros of U(z) in D, is easily described; it is formed by

(i) all those points a; such that r<|a;|<R, and

(i) all the points 72/a; such that /<|a;|<t.
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We now follow, step by step, some simple proof of Carleman’s theorem; for
instance the one given by Titchmarsh [4; pp. 130—131].
We consider the integral

(6.3) ZLM (gf log U(z)(1/z2+1/R¥) dz = 1,

and start the integration at z=it with the real determination of the logarithm.
There is such a determination since
log U(te®®) = log |g(te)? (—n/2 =0 = 7n/2).
Using this relation in (6.3) we see that the contribution of the portion of the
integral corresponding to the semicircle of radius ¢ is

/2
(6.4) - % f log |g(te')| {e~"/t+ te'/ R?} dO.

—m/2
For the large semicircle we obtain
1 /2
i i & —if
(6.5) —= [ log{g(Re®)g(le=")} cos 0 df.

—m/2

For the two intervals of the imaginary axis we find

R
(6.6) % [ log{g(iy) g(—iy)a(ry)g(—it*l»)}(1/y*—1/R*) dy.

Using (6.4), (6.5) and (6.6) in the evaluation of I, we are led to
/2

6.7) Rel = —(I/t-!—t/Rz)% [ log |g(te®)]| cos 0 40

—n/2
/2

1 i6 i0
+-7§ f log |g(Re™®) g(le®)| cos 6 dB

—7/2

1 i [ 5 2 3
+§1?/ log [g(iy)g(—iy)|(1/y*—=1/R*) dy.
An integration by parts yields another evaluation of I:

6.8)  2nil={(~1/z+2z/R)log U@}e+ [{(1/z—2/R)(U'(2)/U(2)) dz}.
€

By the argument principle, the integrated term of the right-hand side of (6.8) is a
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real quantity and hence we deduce from (6.8):

Re I = Re {% [ ()z— /R (U’ (2)U(2)) dz}

- 5 &_Ji) (i_ﬂﬂ
Re{z<1azj|<,[lz 5jR2 +t<[azj['<R a; Rr2))
The last expression has been obtained by an elementary evaluation of residues.
From (6.7) and (6.9) we deduce (16) in the special case c¢=1. If g(z) has zeros
on the imaginary axis (but not on the three circles |z|=/, |z|=t, |z|=R) we may
following Titchmarsh, make small indentations round these zeros and proceed
to the limit. It is immediately verified that the validity of (16) is not affected in
this case.
If g(z) has zeros on the circular arcs of radii /, #, R, we apply (16) with /, ¢, R
replaced, respectively, by

I'=I(l—-g), t'=t(l—-¢), R=R(1—-e) O=se=<1),

(6.9)

and then let ¢é—~0+. The elementary, continuity arguments which justify this step
offer no difficulties and will be left to the reader.
To pass from the case c¢=1 to the general one, we apply the special case of
the identity to the function
WQ) =g(¥), z=00

To obtain (16) we eliminate from the final form of the identity the auxiliary
variable { and the auxiliary function W({).

7. Consequences of Carleman’s identity for a sector. Our identity (16) immedi-
ately yields simple and precise inequalities for the logarithmic mean denoted below
by H(t). We prove

Lemma 7.1. Let g(z) be regular and let

(7.1) gD =M (M= 0),
throughout the sector

ve™* = |z| = ve, 47:/20 =f0=argz=n/2c (v=0,0=0, c=>1/2).
Put
l 7/2¢ .
- i0
H(t) = 5 [ log g (te®)] cos (c0) do.

—7/2¢c

1. Then

72 2(t/v)° H(v)+(1—2(t/v)°)(log M)/nc = H(?)

= (1/2) (/) H®)+(1—(1/2) (v/1)°)(log M)/nc (v = t = ve?),
2(v/t)° H(v)+(1—2(v/t)°)(log M)/mc = H(?)

7.3
(7.3) = (1/2)(t/v)  Hw)+(1—(1/2) (t/v)°(log M)[nc  (ve=° = t = v).
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1I. There are, in the sector
A* = {z:ve7° = |z| = ve’, —7/2¢c; = 0 = 7/2¢;} (¢q > ©),

no more than
(7.9 n*[= 4ce°¢[cos (me/2¢y) (1 —e~2°)]{(log M)/mc— H(v)},
zeros of g(z2).

Proof of I. We establish (7.2) in the special case M=1, for which
(7.5) HH) =0 (ve=* =1t = ve®).
The general form of (7.2) follows at once from the special one. Let
(7.6) s = log (t/v) = 0.
By (16), (7.1), (7.5), (7.6) and the remark that >/ ,7(e)=0, we find

2¢H(v) = H(ve®) = H(t) (0 =s = 20),
as well as
2¢H(ve’) = H(v) (0 =s = o).
Hence
2@t/v)°Hw) = H@) = (1/2)(v/H)°H@) (v =t = ve°),

which is (7.2) in the special case M=1.
The same arguments, with insignificant modifications, yield (7.3) and thus
complete the proof of assertion I.

Proof of 1. We start from (16) with g(z) replaced by g(z)/M; t is to be replaced
by v and ¢ by 20. Then

n/2¢
7.7 EZA* n(a) = Z,n(a) = 2ce®/n f log | M/g(ve')| cos (cO) d0,
where e
(7.8) n(a) = (e’“—e~"°) cos (nc/2¢,) (ac4d*).

The bound in (7.4) follows at once from (7.7) and (7.8).

Lemma 7.2. Let g(z) be meromorphic in the whole z-plane.
I. Assume that
(1) g(2) is regular in the sector

A= {z:ve 5"t = =0 ™SH —q/2¢ = 0 = 7/2c)
Q2o=s+1=1,v=0, c=>1/2);
.(ii) for some given M=1 and B=O0, the following inequalities are satisfied
(7.9) g =M (zc4),

(7.10) m(r, 1/g) = Bel=c+s+Dr (pe=0=5-1 = p = pg=c+s+l),
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Then, if

(7.11) ve 37l = x = vet T,

and if H is defined as in Lemma 1.1, we have

(7.12) — H(x) = 2Beoc—m+(+Dr 4 900¢ Jog M.
1I. g(2) has no more than
BelstDe
(7.13) n < cos (Re/2e) (3e°¢log M +2Beo(c— W +(s+ 1w

zeros in the sector
A ={z:e s lv=r=eTl, —71/2c; = 0 = 1/2¢,} (¢;>c).
Proof of 1. The definition of 4 and (7.11) enable us to use (7.3) with ¢ replaced
by xe~° and v replaced by x; this yields
H(xe °) = (1/2)e~**H(x)+(log M)/nc,

1 n{2c + ) R
— H(x) = 2e° (E‘C— j log ]1/g(xe“’e"’)|d0)+2e"‘ log M.

—m/2¢c
Using (7.10) we obtain (7.12).
Proof of II. We obtain (7.13) by using assertion II of Lemma 7.1 and (7.12)

with x=v.

8. The two behaviors of ¢, (r¢”®) in f<|0—w,|=n. Let

(CHY) 0 <7 < (1/2) min (8, 7 —p).
Three auxiliary quantities ¢, ¢, and & are defined:
(8.2) n—B—n/3 =n/2c, m—p—2n/3 =m/2¢c;, <= cos(nc/2c).
If the condition (5) is satisfied we impose on » the additional restriction
(8.3) n< /) (m—p—n/2p).
Hence we always have
(8.4) 12<c<c, 0<=C<1;

if (5) is satisfied, we also have
(8.5) c< [

Observe that (1.13) may be rewritten as
(8.6) On(2) = log |gn(2)],  gm(2) = f(2) P(2).
The function g, (z), meromorphic in the whole plane, satisfies in view of (1.20)

@87  m(r, /gy =m@, 1)+m@, 1/Py) = T()+n,T(r,) (r = r,em).
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Once more we simplify the notation by taking , =0 and examine

1 2n—B—n/3
. i 6—— — -
R e ,3+{3 Ou(rme®) c0s (e(0=m) 40 = 7

by (2.12)
=0,
and there are exactly two possibilities

2n—p—n/3

(A) lim inf ——— L / Op(rme®) cos(c(0—m)dd <0
e 2 T( '") B+n/3
and
1 2n—f—n/3 ,
B lim n(rme®) cos (c(0—mn))dd =0
(B) m»w2nT(m>,,+,,f,3 (1 e) cos (¢(0—m)

9. Study of the case (A) and proof of part of Theorem 6. From (A) we deduce
the existence of a constant K,=K,(n)=0 and of an infinite subsequence .# of

the positive integers such that
1 2n—f—n/3
©.1) = [ ou(rme)cos(c(@—m)dd = —2K,T(r,) (me.A).

2 s

Let s=0 be given and use (2.12) to determine a sequence {int,, (,>=0,7,—~0)
such that
(xbm(rew) = q)m(reie)_ﬁmT(rm) =0
(réL,2(s+1), p+n/3=0= 2n— B —n/3).
In view of (9.1) and (9.2). Lemma 7.1 is applicable to the function
g"l (Z) e—ﬁrn T(r’”)'

Hence, using (7.2) and (7.3), we find

9.2)

l 2n—p—n/3 1 ’rz—?—n/S
9.3) 5 / Pulre?) d0 = = j Gy (rei®) cos (¢ (0—m)) dO
B+n/3 -n/3
2n—pB—n/3

= (1/2)e—6(s+1)2_17{ f ‘*.bm ().meiG) cos (C(G - ﬂ)) do = _KOe—_C(S+1) T(rm)
B+n/3
(me.t, rel,(s+1)).
To pass from the “average” in (9.3) to a punctual inequality we use a result which
we have established elsewhere [2; 321, Lemma I]. We thus find

9.4) log | £(re®®) Py(re®)| i, T(ry) = B (re) = =K T(r,).
where K;=K;(s,n)=0 and
rel,(s), P+2n/3=0=2n—pF—-2n/3, me.d.
It is now obvious that (9.4) and (1.21) lead to the inequality (13) of Theorem 6.
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10. Study of the case (B); proof of Theorem 6 completed. By assumption,
condition (B) now holds. Hence, with #,, and @,, as in (9.2), the condition may be
rewritten as

1 2n—pf—n/3 ]
10.1) 5= [ @u(rne®|cos(c(0—mn)) dO = 4, T(r,).
2n
B+n/3
Lemma 7.1 is clearly applicable and leads from (10.1) to

2n—p—n/3

(10.2) 0= L f @, (re?)| cos (c(0—n)) dO = n,, T(r,) (rel,(s+ 1)).
2T s

Denote by g, the number of zeros of f(z) in the sector

(10.3) A, ={z:rel,(s+1), f+21/3 =0 = 2n— f—2n/3).
Then, by (7.4), (9.2) and (10.1)

(10.4) G = N T (F)-

Let

Qm(Z) = QIAI (1 _Z/a) . (degree Qm = qm),
where the a’s denote the zeros of f(z). Obviously, the function

(10.5) On(2) = log|f(2)|+1og |P,,(2)| —1og |0, (2)]

is harmonic in the sector 4,,.
From (10.2), (10.4) and Lemma 1.1 we conclude that

2n—p—2n/3

10.6) 51; [ 160, do = 1, T(r,) (re L(s+1)).

B+2n/3

An appeal to Lemma 2.1 transforms (10.6) into the punctual inequality
(10.7) 10, (ré®)| = 1, T(r,) (rel(s), p+n=0= 2n—f—n).

Using Lemma 1.1 once more we obtain an inequality such as (6). The preceding
conclusion depends on the condition (B) and makes no use of the hypothesis 5);
it clearly completes the proof of Theorem 6.

11. Consequences of (5) on the behavior of ¢,,(r¢”) in f<|0—w,|=7.

Lemma 11.1. Let the condition (5) be satisfied and let s=1, ¢=0 and n be
given; it is assumed that n is restricted by (8.1) and (8.3).
Then
1 2n—f—2n/3 )
(11.1) 3 f 10,,(re)| do = 32s¢T(r,) (r€lL,(s+1), m = M),

B+2n/3
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and there are no more than
(11.2) Gm<el(ry) (m=>my),

zeros of f(2) in the sector A,, (defined in (10.3)).

Proof. Lemma 7.2 is to be applied to g, (z) (defined by (8.6)). The parameter
o of Lemma 7.2 will be chosen such that

(11.3) 56elstRegole—m+s+Dr < gf g =>s+1;

this is possible in view of (8.5) (a consequence of (5)).
Consider g,,(z) in the sector

Fy=1{z:7€1,(30), B+n/3 = 0 = 2n—B—nJ3),
and let and let {7j,,} be chosen such that

this is possible by (2.12). [We remind the reader that (i) w,=0; (i) the parameter
m=m, remains fixed throughout the following argument.]

Put
(11.5) 8 =1,T(r,), B=23T(r,).

In order to justify our use of Lemma 7.2 we must venfy that the conditions (7.9) and
_ (7.10) hold. By (11.4)

(11.6) Pn(re?) =10g g, ()| = 7w T(r) =6 (2€4,).
By (8.7) and (1.2)

m(r, 1/g,) = 2/rn) +1,) T (r) = (24440, )T (1)
— e(—a+s+1)uT(rm)(2+nme(a—s—l)u) - 3e(—a+s+1)uT(rm)
(rpe St =r =r,e” 7L m = my),
and hence our choice of B in (11.5) leads to (7.10). By (7.12) we now find
2n—pB—n/3

—T (1) {267, + eV D1} = % f log |g,, (re™®)| cos (c(0—n)) dO

B+n/3

(’ E m (S + 1))9
and hence, by (11.3)

2n—pf—n/3
AT =5 [ log|ga(re)] cos (c(0—m) o
B+n/3

(I'E Im(s+ 1)7 m = mO)'
In view of (11.6), in the above integrand,
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so that
1 2n—pf—2n/3
— (@) T(r)—dfre=5— [ {log|g,(re?)|—d}cos (c(0—m)) do,
27[ p+2n/3
2n—f—2n/3
(L7 =@EMNT(r,) = 5= [ loglg(re®)|d0 (rel,(s+1), m = my).
& B+2n/3

To obtain (11.2) it is sufficient to combine (7.13), (11.3) and (11.7).
Assertion (1.18) of Lemma 1.1, applied to the polynomial Q,(z) of (10.5),
yields, in view of (11.2) and (11.7)
2n—f—2n/3

—@/ DT ()~ 105eT(r,) = 5~ [ 0, d0 (rel,(s+1), m = my),

B+2n/3
1 2n—f—2n/3

= [ (0,0} +0,(re) do

B+2n/3
(11.8) -
= UseT(rn)+— [ O:(re®) do.
p+2n/3

The definition (10.5), (11.4) and (1.18) show that the last integral in (11.8) cannot
exceed
(20se+7],) T (¥,)-

Hence (11.8) implies (11.1) and Lemma 11.1 is proved. It may be noticed that the
preceding proof only depends on the hypothesis (5) and that (10.4) and (10.6)
(proved under different assumptions) have not been used.

12. Proof of Theorem 5. The assertions of Lemma 11.1 involve a fixed &=0.
A new diagonalization enables us to replace ¢ by 7, so that (11.1) and (11.2) take,
respectively, the forms (10.6) and (10.4). Hence the proof of Theorem 5 follows from
the reasoning at the end of Section 10.

13. Proof of the asymptotic symmetry. We apply Jensen’s theorem three times:
to f(2z) and to each of the two functions of the complex variable {:

(13.1) f(rne@n=P(1+0)).

We make certain simplifying assumptions which do not affect the result. We take
1) ©,=0;
(i) we assume that f(z) has no poles in the sector defined by (9) and in its sym-

metrical ;

(i) f(r,e®)=0, f(r,e”#)=0.

The asymptotic formulae of Theorems 4 and 5 are invalid for certain values
of 0. We treat these values by an obvious use of Lemma III of [2]; the detailed reason-
ing will be omitted and simply indicated by the words “by the small arc lemma”.
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To prove (11) we first deduce from (2), (3), (6) and the small arc lemma
m(r, 1f) = 6T (r,) (reA(s), m = my(9));
the parameter >0 may be chosen as small as we wish. Hence (by Jensen’s formula)

lim inf YO

m inf =75 5 (reA(s).

Since 6=0 isarbitrary
(13.2) N, 1f) ~T(r) (r—~oe, reA(s))
and (11) follows by the tauberian argument used in [A] to derive (17 [A]) from
(16 [A]).

Put

FQ) = frne”*(1+0) (= [[|e).

Let n*(x) be the number of zeros of F({) in the disk |{|<x (by assumption
n*(0)=0). By Jensen’s theorem
n*

)Ex) dx+log |F(0)],

t
1" .
P — e =
2”df log |F(te'®)| do Of
and consequently

1 27

(13.3) 5 [ {log |F(te')|—log | F(ote™)} dp = n*(t)log (/o) (0 <o <1).

0
By assumption, the parameter ¢ is small enough to imply
(13.4) n* (1) = n= (rp(1+2))—n= (r,(1—1).

By (2), (3), (6) and the small arc lemma, we may given 5=0, deduce

1 2n ) T .
5= [ log [Fe)|do = (uT(r,)/2) [ Tm (142"} dg+n(r DT (),
0 0
with the error term such that
!n(rms t)| = 5 (m = mo)'
Hence, using (13.3) and (13.4), we find
— - _ _ T ip\H __ ip\u
n=(r,(1+0)—n=(r,(1—1) _ l—o Im{ (1 +1e9)*— (1 +ote'?) }d(p

T log (1/0) ; l—0¢
—28/log (1/6) (m = my).

We let m—oo with ¢ and § fixed. This yields a simple lower bound for

(13.5) lim inf n”(rn(1 +t:)r)(:m';“(rm(1 —1)

We next let §~0+ and follow this by ¢—~1—.

Ll
2

=B
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We thus find
’ B = (u/2) Im{f ute(1 +te""’)"‘1dqo} = (u/2) {(1+)*—(1—1)"}.

Similarly, by symmetry,

(136)  liminf "+(""'(1+’;}(:';+(rm(l_t)) = (/2 {1+ D=1 ="

If, in (13.5) or (13.6), it were impossible to replace liminf by lim, we would have

] {n*(rn(1+0)+n=(r, A+ D)} —{n*(rn(1=0))+n=(r.(1—-0)}
lim sup T

= p((L+0)F—(1—0)¥).

(13.7)

In view of (4) and (7),
(13.8) n*(w)+n~(u) = n, 1/f)—n(r,)+o(T(r,)),
uniformly as m—oe, and u is confined to the intervals
érp<u=eér, (=1).
Combining (11), (13.7) and (13.8) we obtain a contradiction which completes
the proof of the asymptotic symmetry.

14. Proof of Theorem 7. Assume first that (5) is satisfied. Then (13.2) is valid
and hence 0 is not a deficient value of f(z). No other finite value may be deficient
because we may treat f(z)—rt (tr=finite constant) exactly like f(z). To justify this
step we remark that if f(z) satisfies the hypotheses ES so does f(z)—t. [It may
clearly be necessary to modify the function #n(r) entering into the hypotheses ES.]

If (5) does not hold some 7t may be deficient. Then, (3), (13) applied to
f(z)—7, and the “small arc lemma” show that no finite 7"t may be deficient.
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