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ASYMPTOTIC BE,HAVIOR OF
MEROMORPTilC FUNCTIONS WITH

EXTRE,MAL SPREAD II
ALBERT EDREI And WOLFGANG H. J. FUCHS

Introduction. This paper is a continuation of [3]. In view of our constant
reference to specific formulae, lemmas and theorems of [3], we write [A] instead of
[3] and use, with their obvious meaning, notations such as

(12.1 [A]), Lemma 4.1 [A], Theorem 3 [A].

The notational conventions of [A] are adopted without modifications and
strictly adhered to.

We supplement Theorems l, 2 and 3 of [A] by the more detailed information
contained in the theorems of the present paper.

In euerything tltat follows
(i) f(z) is a meromorphic function of lower order p

0<P<f-,
satisfying tlte ltypotheses ES at a sequence {r,,\7,:, of Pölya peaks of order y of T(r):
:T(r,f)l
(ii) 2P is tlte spread of * at tlte peaks {r,,} and

ö(-,"f):1-cos0/r, 0 = fr = rl2p;

(iii) 1,(s): {r: r^e-"=t'=r,d) (s=0), z1(s):[Jfr:,1.(s).

We first prove

Theorem 4. Let f(z) satisfy the hypotheses ES and let the positiue quantities

s, e,4 (q-<(ll2)min(11,"-fr)) be giuen.

It is then possible to determine a real sequence {c:,} and a point set I : E-(s, e)

which may be enclosed in disks with sum of diarueters not exceeding te-" r,n and ltauing

the following properties.
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I. If
(1) r(I.(s), reio § E*(s, e), m > nto,

then

@ loglf (rei{e+'-))l = tf(.) (§-rt = l0l = n),

and

(3) lroglf (rei<e+'^\l-n4sin p(B- i0»r(r)l = er(r) @ = l0l = §-tD.
ll. If v^ denotes the number of zeros of "f(z) in the sector

{reie : r(I*(s), l0-r*l = fr-q},
and n- the number of poles in the sector

{reie : r( I^(s), 4 = l0 - a^l = n\,
we haue

(4) r^*lt*: o(T(r*)) (m **).
Our next two theorems show that, under the hypotheses ES, two very different

types of behavior may occur in the sectors

{r€I-(s), § = 0-a* = 2n- fi}.
Theorem 5. Suppose that the hypotheses of Theorem4 are satisfied and that

(5) n-B:- nl2p.
Then

(6) loglf (reito+'-))l = -rf(.)
(r( 1,,,(s), fr +rt = l0l = n; ,"i(a^+o) 4 &-b, e, q); m = nt).

Here &,,(s, e, 4) is an exceptionql set which may be couered by a finite number of disks
the sum of whose diameters is less than ee-"r^.

If i^ denotes tlrc number of zeros of f(z) in

{reie: r(I*(s), fr+q = l0-a4,1< n},
we haue

(7) i*: o(T(r,,)) (nr * -;.
Remark I. Since p§=nf2, the condition (5) is satisfiedfor all p=1.
If ll2<p=1, (5) rs equiualent to

cos pB > sin pzr.

Remark Il. If (5) is satisfied, the relations (4) and (7) hold simultaneously.
Hence, almost all the zeros of f(z), in the annulus z QI-(s), lie in one or the other of
the two angles

(8) l0 - a** §l < q, l0 - c»*- Bl =. 4.

It is natural to expect that there wilt be approximately the same number of zeros in
each of these angles. This is in fact true.



Asymptotic behavior of meromorphic functions with extrernal spread II 143

More precisely, given m, ( (O<.(<.1) and q (0<.4<fr), denote by n+(u) the
number of zeros of f(z) in the sector

(9) (r^ -= lzl = u, a^* fi -rl = arg z = @^+ p +q.

If in (9) the restrictions on the argument are replaced by

(10) c»*-§-n < argz = a*-§I4,
we obtain a symmetrical sector and denote by n-(u) the analogous counting function
of the zeros of f(z) in this sector.

With the above definitions we may state our

Asymptotic symmetry. Let the assumptions of rheorem 5 be satisfied. Then

I. For euery s>0,

(ll) n(r'llf) /-7r! * u (r * -' r€ ul.))'

il. Giuen t such that

we haue 
o<t<min(l _(,sin4),

(t2) W * t«rit)p-(t-t)uj (nt *-1.

The relation (12) still holds if n+ is replaced by n-.

It is convenient to prove the asymptotic symmetry in the preceding form (a brief
sketch of the proof will be found in Section 13). Generalizations are immediate
and we may deduce from the above result the asymptotic equality of the number
of zeros in the two seetors for which lzl(I^(s) and argz is restricted as in (9)
and (10).

Theorem 6- If the hypotheses of rheorem{ are satisfied and (5) does not
hold, then (6) and (7) need not be true.

Assume that (6) doesnot hold; it is thenpossible tofindoninfinite set.// of posi-
tiue integers such that for m(,//, rel*(s), friry=l?l=n
(13) loglf(reie+i',)l<-KT(r*) (0= K: K(s,4): const.),

outside an exceptional set E^(s,e,r1) which can be enclosed in disks with sum of
diameters <ee-srm.

Theorems 4, 5 and 6 contain fairly detailed information about f(z). It is easy
to deduce from them

Theorem 7. Let the meromorphicfunctionf(z) satisfy the hypotheses ES then

f(z) has at most onefinite deficient ualue. There are nofinite deficient aalues if f(z)
satisfies the additional condition (5).
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Remark II shows that, in the annuli lzlel^(s) and under the hypothesis

(5), almost all the zeros lie in the angles (8). On the other hand, by Theorem 4,

in the same annuli, almost all poles lie in l0-a*l-.4. This is the'fork pattern'

of zeros and poles exhibited by the function tr (z) of the introduction of [A].
Hence Theorem 5 describes completely the situation in the case characterized

by (5) and is, in an obvious sense, "best possible".
If (5) is not satisfled and if ll2'<p< 1, we have, by Remark I,

and the line

intersects the arc

at
o - cos P{n - fi)

Then, as was shown in [1., pp. 244-219),

cos It§ = sin trrn,

)' : cos fifr

x2+))2-2xy cos ltrc - sin2 fifr, x > 0, ]' = 0

lo: cos p$.

l"'0"",

* zln''u), I12 = !-r < 1)) ,[s(,r = $ u

(/r - 1),

have deficient zeros and poles with

1 - ä (-, f) : cos lt§,
The spreads

o(- , f) - 2§,

1-ä(0, /) - cos p(rc- §).

o(0, f):2(n_ §),

are both extremal. But the zeros of f(z) are all real and negative, so that we cannot

have the fork pattern. It is also easy to verify that, for the above functions, (13)

holds for alllarge r.
It is now clear that Theorem 6 accurately describes the asyrnptotic behavior

in all cases not covered by Theorem 5. In order to pass from Theorem 4 to Theorem 5

it is necessary to make appropriate use of the condition (5).

To perform this step we use a modification of Carleman's identity. Our version

introduces a "central logarithmic mean" which is expressed in terms of the expected

contributions of zeros, poles and boundary values of lf(z)1. The presence of the

central mean (analogous to the central value in Jensen's formula) is useful for our
purpose. We prove

Carleman's identity for a sector. Let g(z) be nteromorphic in the sector

D : te-6 = lrl = teo (0 = o), lary zl = nl2c (. = rl2).
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tW - #1,", (,d (te-o = lal < t),
(15) ryWleiol-{ -

lffi-#) .o, (cE) Q=l,l=teo).

Denote by a a zero of Se) in D and by b one of its poles.

Then

(t4)

and

(16)

Let

(1 7)

* @'" + e-o") 7" los lsfte'u)l cos (co) doTE 
-nllc

c n/zc

_;J
'e -n/Zc

* Eury(b)-»ory@),

where Zu denotes summation ouer all poles b of g(z) in D and Zo summation ouer all
zeros a of g(z) in D.

Our last result concerns entire functions of lower order p>112. If we confine
our attention to such functions, the class for which Paley's relation is realized in
extremal form coincides exactly with the class satisfying the hypotheses ES. More
precisely:

Theorem 8. Let f(z) be an entire function which satisfies the hypotheses ES

at some sequence {r*}^ of peaks of order 1t of T(r,f).
Then, necessarily,

J,gW:TEw
Conoersely, if (L7) holds at a sequenc, {r*)^ of peaks of order 7t>1f2, then f(z) must
satisfy the hypotheses ES at the same sequence of peaks.

The fact that (17) follows from the hypotheses ES is an almost immediate con-
sequence of Theorem 3 [A]. - .'

To obtain the converse, use the above relation (17) in Lemma 1l.2l{l to prove
(with the notations of [A, § 16])

t; : o(T(r)), L-: o(re)),
as well as (15 [A]).
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After these points have been established, all the necessary arguments are simple
special cases of those in Sections 2, 3 and 4 below.

1. Recallof ffi anddefiritions. Let 4 (O=q=min(l, f,n-fr)) and s:(llrD
be given. Then, by Theorem 1[A], we may assert that, for

(1.1) t^€-"<t*rm€st m>mo(4),
we have

(r.2) + : #(r +ry(r)) (ln4)l = r, nt > mo(4, i),

(1.3) lN(t, fl-r(flcos ltBl <. qT(t),

(1.4) ln(t, f)-T(t)1tcos p§l <. qT(t).

Let p^ be the number of poles of f(z) in the sector

(1.5) {reig:r*e-" < t= tmd» 4= l0-ro*l=n)
and z- the number of zeros f(z) n the sector

(1.6) {reio:r*e-" <tarm€st l?-a*l= fr-q}.
By Theorem 3 [A] we know that the conditions (t.l) and a suitable choice of

moQ) imply
(1.7) p^* z* = qzT(r-) (m - moQ)).

The simple "diagona)ization" described in [A] enables us to select a positive sequence

{fl^} and an associated sequence {s-} defined by

and such that 
s^: ||fr^'

(t) 4-*0, s-*- (m**1;
(ii) if
(1.8) r'^< e-s^r*= 7 = gs^y*;E 7'i,

then (1.2), (1.3), (14) hold with 4 replaced by i*; as to (1.7) it takes the form

(1.9) (p** z-)s* = fi*T(r*).
Redefine r), rias

r'^: g-"^7-, r'[: gs^y^,

and disoard the former quantities ,i,, ,,i,. With the new notatiofrs, p^ and z* in
(1.9) denote, respectively, the number of poles of f(z) in the sector

(1.10) 9*- {reie : r'*= r = r'1, a^*fi-= 0 =2n*oh-4^\,
and the number of zeros of f(z) in the sector

(1.11) 9* : {reiq : r'* - r = r'in, @^-fr+i^= 0 = a^+ fr*rt^}.
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Let {bi\1, {a.;}.; denote,respectively,thepolesandthe zerosof f(z) anddeflne
the polynomials

(1.12) P^(z) : [! (l- zlb), Z^(z) - [[ (l- zla),
b j€gm aj€g 

^
of respective degrees pat zm.

It follows immediately from our definitions that

(1.13) E*(z): log l/(z)l+loelP*(z)l @€s)
is subharmonic, and that
(1.14) t*@): rP*(z)-loglz^(z)l
is harmonic in
(1.15) 9*: {rei, : r'*= r = r'[, a-*fi*= 0 = @*+P-i^]

as well as in the symmetrical sector 9$ with 0 restricted by

2n*a^- fr lfr* = 0 = 2n* ah-fr^.

Lemma 1.1. I. Let s>l be giuen and let

e^@): [ (L_zla)

be a polynomial of degree q^ such that each one of its zeros a satisfies the conditions

(1.16) rme-s-L = lal = r*€'*r.
Then, if
(1.17) lrl:r=r^e"+L,
we haue

(r.r8) * {ltoglQ-@eto)llae=10sq*.

II. For the polynomials P^(z) and Z*(z) defined by (1.12), the restriction

lzl < r^et^
implies

(1.19) loglP^(z)l <. q*T(r*), loglZ,"(z)l = q,nT(r,,),

1"(1.20) G I {ltoslP^(ret')ll+ ltog lz^(ret)ll} flQ '< r1,,r(r^).

lll Girsen, (0=;= l) it is possible to find sets E^(s, t) suclt that

(i) E^(s, e) is the union offinitely many disks with sum of diameters =(ll2)ee-"r*;
(n) the condition

z*{ E-(s, e)

implies

(1.21) loglP^(z)l > -4^T(r*), log lz*(r)l > -4*T(r-),
and

(1.22) toglQ*@)l > - q*(7s+log (Ue)).
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Proof of I. ln view of (1.16) and (1.17)

lzl = ezs+zlal
and hence

(1.23) loglQ*G)l = q^log(l *e2"+2) = 5sq*.

By Jensen's formula and (1.23)

+ i,trlOiryl* = * _i,årte*@e,,)tdo = ssq*,

and (1.18) r",,.*r.

Proof of II. The above proof is easily adapted to yield (1.19) and (1.20). For
instance, to treat P^(z), replace, in (1.23), s by s. and q^by p,,,T(r-). Since, by (1.9),

s*p,n*O, the analogue of (1.23) is

loglP*(z)l = Ss-p*T(r) : 4-T(r-) (lzl < r,,e"^).

The remaining inequalities of assertion II are now obvious. [For sake of clarity,
we remind the reader of the convention that {4^} is a sequence of real numbers

tendingto 0 as m+@, not always the same at each occuffence; ry. is independent

of the variables t, r, 0.]

Proof of IIL IT will be sufficient to examine Q*@).By the Boutroux-Cartan
lemma and (1.16)

lQ*(41 : { # = *)'^ 
"'1n 

e- qn(s +1\

outside circles the sum of whose diameters does not exceed /2. Choose

,1h:iee-"l^.

It follows that, outside a set E-(s, e), we find

log lQ^Q)l > q*(log e - 2s - 5),

and (1.22) follows.

2. Upper bounds for E*(z)r lower bounils for tlt^(z). A subharmonic function
O(z) cannot exceed the average of O over the area of a disk with center at z.

We use this elementary property in the following form.

Lemma 2.1. l. Let O(() be subharmonic in the sector

(2.1) re-'-r = l(l= re"+r (s =0), 0r= 0 : arg( a 0z (0 -< 9r-fu=2n).
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Assume that,for some 6=0,

(2.2) + '"j. * a* j' o*1*r'*1itE = ö.
'tv ,"-s-l or

Then, giuen ry (O=4=min {(0r-0')l2,nl6\), we haue

e.3) o*(o= ffi,
throughout the sector

(2.4) re-s=l!l=re", ?r*tl=0=02-4.
III. Assume that AG) is harmonic in the sector Q.1) and that, in addition to {2.2),
we haue

(2.s) + 'lj. 
* a* j' {-o1,,*7\+ dq = ö.

-,v ,"_e_a 0L

Then

(2.6) l«z(ol = ffi,
throughout the sector (2.4).

Proof. Let teiq Tieinthe sector defined by Q.0.It is then clear that the whole disk

I: {C:l(-tetel= tsin4}

lies in the sector defined by (2.1). Hence, in view of Q2)

* il n.rr) dA = f- '7" * o* j' e+(xeiol dq = 6 (x : sin 4),
-'" t(r-i 0r

where dA is the element of area. By the behavior of the average of the subharmonic
function Q*(O, we now have

(2.7) o*(o=#Ao+«)ctA=&,
and (2.3) follows.

To prove assertion II notice that, in addition to Q.7),

(2.8) {-o(O}+ =-&
From (2.7) and (2.8) we deduce (2.6) and thus complete the proof of the lemma.

Lemma 2.2. Let s=0 and q

(2.9) 0 = 4=min(fi12, n-8, nl6),

be giuen and let z be confined to the annuli

Q.l0) e-"-LF^= lrl = e"*'t-.
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Then, the following inequalities hold uniformly in z:

Q.ll) q^(r) = ffiQlr*)pr(r) (4 = 0-o-^= 2n-q, m = mo(n, )),

(2.L2) q*(z) = n*T(r) (§+rt = 0-a*= 2n- fr-I, 4*= 0),

(2.13) t*@)=--tt^T(r^) Qt = l0-a^l= fr-rt,q*= 0).

Proof. Let 0r<0r<0r*2n and let

t: {0:0r= 0 = 0r\.

Then, our deflnitions (I.13), (1.14) and the inequality (1.20) imply

Q.t4) * f 
E*?eio)d0 = m(r,f; J)*4^T(r*) (r(I^(s*2)),

Q.r» * j' {-rl,-Q"")}* d0 < m(r, tlf ; J)*4*T(r*) (r€l-(s+2)).

In particular, from (2.14) we deduce

r2,
t,, I Ei@eio) d0 = T(x)+n^T(r) < 2(xlr-)uT(r^) (x(I*(s*2), m > m),.," 0,

Q.t6)
tflz

+ I x dx J E*@e") d0 < e,+zrz(rf r.)PT(r-) (r€I.(s+l), m = mo).
-'" re-\ 0r

Since tp^(z) is subharmonicin g*(defined by (1.10)) wemayuse Lemma 2.1 with

01 : a**4f2, 0z: 2n*a.-ql2

and thus deduce (2.11) from (2.16).

To prove (2.12) and.(2.13) we return to [A] and focus our attention on Lemma
16.1 [A] from which we immediately deduce

lmea+2

Q.L7) f m(r, f ;frr'** §, co**2n- Bl)X(r, r^) drlr = q^T(r*),
t-e! "-z

fnea +2

(2.18) f m@,llf;lcrt^-0,a*1-Bl)X(r,r-)drlr 4q^T(r*)
t^e!'-z

with

Q.ts) i *rr, rS : Zähf > r;2exp(-:G+z)y- 2s-6) (, : fr)
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Using (2.19) in (2.17) and (2.18) we find

rme6+2

Q.2O) f rm@,1; lrr.-+ fi, a*t2n- Bl) dr = q*rlT(r),
t^2!o-z

tmd+z

Q.zL) I rm@, tlf ; frl.*- fi, a*+ Pl) dr = q.rz^T(r-).
ffre-s-2

By Lemma 2.1 we deduce (2.12) from Q.l4) and Q.20).Similarly (2.15) and (2.21\

imply (2.13). The proof of Lemma 2.2 is now complete.

3. Anupper bounrlfor <p-(z) on lines 0:constant. Apply Lemma 1l'2[A] to
f(zei('r+')1, with given q (0<.4<.8). The sector 9-defined in (11.23[A]) has to
be replaced by

f* : {z : r'^ = r = r'f,, a-*q - f = 0 = 
(D-+n+ p),

We thus obtain 
r^

loglf(rsit',+-))l = y' [ *Q, f ; lrr.**q- §, ot--lq* fr])X(t, r) dtlt

(3.1) 
tn

+ ) H(bie-t(n+o*), r)+,§, (y : nlil.
bt( f^

By (11.25 [AD, if r€I*(s),

| 
§ | = 56y e't { (r'^ I r )t T (2r'*) + (r * I /i)t T (2ri)\ + K (s + lo g r 

^) -. 
q *T (r ^).

We next add log lP(rettt+-s11to both sides of the inequality (3.1) and find

t^

(3.2) q*(rei(n+'^)) = y' [ ^Q,fiX(t,r)ittlt+E--14*T(r-),rm

with
(3.3) E*: ) H(b1e-t(4+@n), r)+log lP^(rei{n+'^t11.

bJ€t^

Now take into account the obvious cancellation between some of the logarithmic
poles introduced by the sum in the right-hand side of (3.3) and some of the poles

introduced by log lP.l.
Let @^ be the complement of 9^ in the annulus ri=.lzl=-vi (O- is defined

in (1.10». No pole in O* contibutes a factor to P*(z) (for m large enough). Let

1y'^: 0^Å f 
^,

and let /*b" the complement of /*in 3^. Then we may write

(3.4) E* : Xr* Xz* Xs
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with
(3.5) Xr: ) H(bie-t(n+a^t,r),

bj€gm

(3.6) *r: 
url*{r(bre-i(n+.^),r)alogll-rei(a+-^)lbil),

(3.7) Xz: Z loell-rei{n+.)1b,1.

The estimat " 
bt€9^

(3.8) xs= P*log(1+e"+"-;

fo[ows at once from (1.g). 
5 p'(s*s'+ 1) =- 4*T(r^)

To estimate X, we require

Lemma 3.1. If (:l(leto and

(3.e) l0l = nly (? = l), l(l = 0,

then

(3.r0) I]-§,1=r.
I t-1' 1

Proof. The function
1-r
ffi (? : l(lteite)

is single-valued and regular in the angle deflned by (3.9). on the sides of the angle
we have

ll-('l : l+l(l?.

Consequently, the maximum modulus principle shows that

I t-r | = t+l(t -,It-6tl- t+16', -''
throughout the angle (3.9). This proves Lemma 3.1.

Now apply (3.10) with

and 
(:rlbre-i('r+""1 (r=0)

largbi-@*@)l=§:nly.
We thus find, for bi€/,,

toglt - rsi(n +.^, 
I b rl *br ffi = bg 2;

consequerrtly

log ll - y sitn +, ) I b jl + H (b, e - i(,r +. 
^), r) < log 2 *log (Qb jlr + r\ I lb jl\,

and, in view of (1.9),

(3.11) Xz< p*flog2f log(11srt"+"-r;|: q^T(r^).
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We still have to estimate Xr.We may supposethatm is so large that

(ll2)a > 4*.

(4- is ttre number occurring in the definition of 9* in 1t.tO;.) Then, for b€&*,
we find

(3.12) l{b,e-i(n+'^)}?-r7l > (lb jlv +rv)siny4l4.

We now prove

Lemma 3.2. If e>O and O-<4<8, then

(3.13) E* < (rf r*)uT(r-){np cos (Bp) tan(Bpl2)-le},

prouided r(I-(s), m>tno.

Proof. Let o (O<o=1) be a parameter to be selected later.
From Theorem I [A] we conclude that

(3.14) n(ez.r, f)-n(e-.r, f): (ezott-e-dp)T(r)pcos (§p)+q(if (r) (r€1.(s)).

Choose o so small that (3.14) implies

(3.15) n(e2o r, f) -n(e-' r, 1 -= {el$log(l/sin (ql4))))T(r) (r€1.(s), m = m).

We next appeal to Lemma l3.l [A] and take x:u:r; this yields

_. Z H(lbtl,r)* ^ Z ,,H(lbtl,r)
(3.16) 

r'n<lbrl=re-o re2'<lbilsr;

= (r f r -)P T (r *) {n p cos (B 1t) tan (F p I 2) + q ;.
By (3.12) and (3.15) we flnd

Z H (b, e- t(n +'), r) = {n (e\o r, f) - n (e-' r,/)} log (l I sin (r1 I $)
br€4^e-or2tbit4ez6r 

< @la)TQ) < @13)T(r,,)Q.lr,,)u,

and, in view of (3.16), we obtain

Xr< (rf r^)PT(r-){npcos (Bp) tan(Bpl2)+el2).

Using the above inequality, (3.11) and (3.8), in (3.4), we deduce (3.13). This
completes the proof of Lemma 3.2.

Lemma 3.3. Giuen e>0, 4 (O-<r1<.8) and s>0, we haue

rp^(rei(n+,^\) = (np sin (Bp)+e)(rf r^)pT(r*),
prouided

r(I^(s), m > mo(e, 11, s).
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Proof. By (1.2), (1.3) and r€I*(s), we have

r) ,',,

yz { m(t, f) x(t, r) cltlt : yz { {r@- N(t, f))x(t, r) dtlt

(3.17) 
rtn r'"

,'i

= (1 *q*)(1 -cos §tDy'T(r*)(rlr*)r { Qlr)uX(t, r) dtf t,
,r"

and

yz { U,nux(t, r) dtlt < y f ru : *.
,'^ 

\-t ' '/ ' ! (l + u)z sin (BP) '

Using (3.17), (3.18), and (3.13) in (3.2) we obtain the desired result.

4. The behavior of g*(reiq) in l0 - a*l= B.

Lemma 4.7. Let e=0, rl (0=ry=min (§,r-fr)) and s>0 be giuen. Then,if

(4.1)

we haue

(4.2)

rQI*(s), 11 = l0l = §, m > mo(e,4, s),

q,n(reiq+ia*,1 = {nlrsin pr (P- lOD+ e}(rlr*)uT(r*).

rl' = ql2, zp sin Qrrfi = el5,

Proof. We consider only the interval 17=0=8. The proof for -§=0=-q
is exactly the same.

To prove the lemma we apply Lemma 2.1 l{l, in a suitable sector, to the sub-
harmonic function E*@).

Since we consider one such sector at'a time we suppose, for simplicity of writing,
that c»*:Q. If this is not initially the case, replace f(z) by f(zei'*1.

We now apply Lemma2Jl|l to E,,Q) with

Q: lt, l: e-sf^, R: est*r. y :nlfr =2lt;
,S>0 and an additional parameter rl'=0 are selected as follows.

We take 4':q'(e,4) to be the largest number such that

and ,S-,S(e, rt, s) to be the smallest number such that

(4.4) ,s>s+1, 6e-(s-',r(ffi++*"u)=+.
Put

ot: e', oz: §*rl', B - ffir;t,T(r*).

(4.3)

(4.5)

Lemm a 2.2 with 
^r + 1 replaced by S' shows that, for

(4.6) t'*e-§= l(l = r*€s,
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and

we have

(4.7)

(4.9)

(4.1 1)

Proof. By 12;

0r,E atg| - 0 = 0r, m> mo(7', S),

E*«) = sl(lu,

E*(l|lr",) s 4*T(r*) = @l$e-su sin (Bp)T(r*)

= el4 sin (BP) r;t'T(r*)l(l' : hrl(lu.

Similarly, for m large enough, (4.6) and Lemma 3.3 imply

(4.9) E^(l(let',) = (np+efi)sin(Bp)r;pT(r^)l(l' : hrl(lo.

In view of (4.5), (13.3 tA]) and (13.4 [A]) we also have

(4.10) 0r-0r:fr:nly, y=1, Y-t-t=lt>0.
The relations (4.7), (4.8), (4.9) and (4.10) enable us to apply Lemma 2.1 [A].

We thus find that, under the restrictions (4.1), (2.7 [A]) yields

q*(z) = {rlr*\pT(r^){{nu*rlO) sin rt(§*rt'-il+@la) sin p,(0-q')

I gs- (s - s),r (#» . i * 
" 
r)|.

Taking (4.3) and (4.4) into account we obtain (4.2).

Our next lemma is an immediate consequence of a result which we have used

repeatedly [2; Lemma III].

Lemma 4.2. Let e>0 and s=0 be giuen. It is possible to determine

ä:ä(e, s)>0 such that, if E is a measurable set and if

then 
lEl < ä, r(I*(s), m > mo(e, s),

* 1 tt 
rt lf ?"'\ll+ llog lP-(rere)l I

+ llog lz*(rn'u)tl\ ag < tT(t*).

322, Lemma IIII (applied to both f and I lfl and (1.2)

I ",- .^.,r -^ +

+ I llog l/(rero)ll d0 = 45(2rlr,)uä(l +log (1/ä))7(r,)

(4'12) 
(r€I.(s), rn = mo(e, s)).

The lemma now follows from (4.12), (1.20) and the remark that

a(r +råg (1/ä» * o (ä * 0*).

In the following lemma we confine our attention to values of 0 in lrr.*,n*rt^);
the interval l-n*a^, «r,] is treated by symmetry.
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Lem ma 4.3. The functiort

(4.13) Q*(r) : {/*(r)-Qrllr,,}uT(r*)rcpsin p(p_0*o.t*)
is harntonic in g,n (defined by (1.15)).

Giuen s>-0 and r=0, we haue

(4.14)

prouided

r(I*(s*l), ru>mo(e,s).

P rooJ'. The harmon icity of e *(z) follows from the harmonicity of { *(z) (deflned
in (1.14)) and the remark that

- lzlP sin p(B - 0) : Im{4t e-iPF}.

[For simplicity of writing we assume that a4:0.1
Usin g Lemm a 4.2, w e firstdetermine q : q (e,s) = 0 such that under the conditions

€I*(s* 1), m > mo(e, s), lEl, = 5r7,

* ! flloe lf@n'u)li+llos lP,*(re")ll
Lrtv 

E 
' I

+ llog !2,,,(rn")ll+"pr(s+1)p f @)| d,0 - (ee-G+t)uf l4)T(r*),
where ,E is a measurable set of arguments.

From Lemma4.l, (1.20) and (4.16) we readily see that

(4.17) 
^! ! 

QlQeto) d0 < (el6)T(r-) (r(I.G+ t), m > m)
as well as

(4.1g) m('' I; F §, -rD < @lr*)uT(t ) {(1-cos frp)12+ee-<"+r)u114}

we next show that 
(r€I'(s+ l)' nt = rn)'

t fi-n(4.19) * I n^<reie1d0=-(el6)T(r^) (r(I.(s+ t),m>m).

If this *"." ror1rre, there would be arbitrarily large values of Q-Q^ such that
r 9-n(4.20) 

^L 
I o-@eie)d0 =-(el6)T(r*) (e: o*Q.r^7s+1)).

By the definition 
'o, 

O*14and (1.20), rhe above inequality implies

l P;o* .- r §-'t+
; J rotlf|1<e,')l d0 = L I tårllf@et\l d0

(4.21) 4 -'- 4

* (q I r *)p T (r 
^) 

(t - cos s p) I z + (_ (el 6) + ry *) r ? ).

t 0*coo,

fr I lQ*(rr")l d.o < tT(r,n),
cDln

(4.15)

(4.16)
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Now
+++

lo e ll I f | = { - {, 
^} 

* + lo s I 
P *(z)l *lo s ll I Z 

^(z)1,
and hence, bv (1.20) and (2.13), (4.21) yields

(4.22)

m(q, f ; Vt, fl-?tD = @lr,)r{(l-cos Bfil2-(ef 6)e-<"+r)u*ry*}T(r,,) (m > m).

Using (2.12) instead of (2.13), we see that

(4.23) m(q, f ; W+rt, Zn- P -?tD = tt^T(r^).

We now choose in (4.16)

E : l- 4, ql v l§ - rl, fr + rl1 v I2n - fr - rt, 2" - fll
and combine the resulting relation with (a.18) (with r replaced by e), (4.22) and'

(4.23). This leads to

m(Q-, f) = @^lr)rT(r-){1-cos Bp-@143)e-(s+r)p} (m > mo)

trr,yt!ff= (1-cosBp) (r€I.(s+ 1)).

The latter inequality rewritten as

fi-s'P{(L /) > cos Ptt (r€I'(s*1))'r*-' T(t)

contradicts (16lAD and hence shows the impossibility of (4.20). We have thus
proved (4.19).

Using (4.16) once more, we find

,B
)- f a*g"tu) d0 =--@13)T(r*) (r(1,,(s* l), m = mo)
)rJ

which, combined with (4.17), yields

.tp
@12)T(r^) = E I (afi@eto)+ {-Q,,,(reio))-) cl7 (r(1.(sf l), rn = mo),

and, (4.14) follows. fnl proof of Lemma 4.3 is now complete.

5. Proof of Theorem 4. PafiII of Theorem 4 is already part of the assertions

of Theorem 3 [A].
Consider now the given quantities s, e, 4 which appear in Theorem 4. The

definition of E,n and (2.12) yield

(5.1) loglf (ret9)l-.loglllP*(reie)l+ry*T(r,,) (§+rl = l0l = n, r€I,,(s)).

Taking into account (1.21) and (1.2), we see that (5.1) implies (2).
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To prove (3) we note that, by Lemma 4.3

(s.2) *o_.^?:,," le*(reio)ld0 = e'T(r^) (r€1.(s+ t), m = mo(e', l),

where we have chosen
6' : (ef 2) sinz (r1 I 2) e- (4+r)§ - 2.

Using (5.2) in Lemma 2.1 we obtain

lQ^(r)l = @12)e-"r'T(r-) (*^+rt < e < o** fr-4, r€I,(s)

and hence, by (4.13), (1.13) and (1.14)

Ilog lf (z)l-(rlr*)PT(r*)ntrrsin p(B- 0* .)l = @12)e-"t'T(r^)

+ ltos lP -(z)l | + ltog lz^(dl.
Taking (1.19) and (1.21) into account, we readily complete the proof of (3)

and, consequently, of Theorem 4.

6. Proof of Carleman's identity for a sector. We may consider

(6.1) G(z) : sk) uII Q- zlb),

and tueat separately G(z) andthe polynomial in (6.1). Then, as in all such identities,
the final result is obtained by subtracting the formula for the polynomial from the
formula for G.

We confine our attention to the special case c: I ; using an elementary change

of variable we then obtain the general case.

The preceding simplifications enable us to assume that g(z) is regular in the
sector

D.:Re Z>-0, I < lzl= R (l : te-o, R: teo);

the zeros of g(z) in D, are ar:larlei'i (j:1,2, ...,il).
Consider the auxiliary function

(6.2) U(z) : s(z)s(t2 z-L)
which is regular in

Dr:Rez>-0, t=lzl<R.
The boundary 0D, will be used as contour of integration; taken in the positive

sense, it will be denotedby %.

We assume first thatf(z) has no zeros on 0D1 and no zeros of modulus r. At this
stage of the proof these restrictions are essential.

The collection of zeros of U(z) in D, is easily described; it is formed by
(i) all those points a, such that t-<la;l=iR, and
(ii) all the points tzf d, slch that l-<lail<t.
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We now follow, step by step, some simple proof of Carleman's theorem; for
instance the one given by Titchmarsh [4; pp. 130-131].

We consider the integral

(6.3) L f bgu(z)(tlz2+llRz)dz:1,
27il d

and start the integration at z:it with the real determination of the logarithm.
There is such a determination since

log(I(tei\ : loglg?ei\l' ?nl2 <- 0 = nl2)'

Using this relation in (6.3) we see that the contribution of the portion of the

integral corresponding to the semicircle of radius t is

(6.4) -+ _i,' 
rosls(tet\l{e-ielt+teiolR2\ d0.

For the large semicircle we obtain

(6.s) * /.' ,or{g(Rete)§(te-t\)cos0 d0.

-ilz

For the two intervals of the imaginary axis we find

rf(6.6) * ! ^r{s(iy)sei»E(it'lDE?it'l1)}-Qly'-tlRz)dy.
Using (6.4), (6.5) and (6.6) in the evaluation of I, we are led to

(6.7) ReI: -(tlt+tlRz)+ _j,'tosls(tete)lcoslctl

*# _i,' 
log lg(Re'o)s (teio)lcoso do

rj
+ * [ log lg(,y)g(- iy)l(tlt'z-tzly2R2) d1'

* | ! "r b4y) se iy)10 I y' - 1 I R') cty.

An integration by parts yields another evaluation of I:

(6.8) 2nil : {(_tlz+ zlRz)togu(r)}r+ I {Ql z- zlR'z)(U'(z)lU() dz}.

By the argument principle, the integrated term of the right-hand side of (6.8) is a
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real quantity and hence we deduce from (6.8):

Re.r : *"fi [ el z - zln 11r' 1r11u1r11 ar]
(6.e)

: *" {,=,ä,e - #) *,=,ä* ta-+tt
The last expression has been obtained by an elementary evaluation of residues.

From (6.7) and (6.9) we deduce (16) in the special case c:1. ff g(z) has zeros
on the imaginary axis (but not on the three circles lzl:1, lzl:7, lzl:R) we may
following Titchmarsh, make small indentations round these zeros and proceed
to the limit. It is immediately verified that the validity of (16) is not affected in
this case.

If g(z) has zeros on the circular arcs of radii l,l, Å, we apply (16) with l, t, R
replaced, respectively, by

l' : l(l-e), t' : t(l-e), A' : R(l -a) (0 < e = l),
and then let e*0*. The elementary, continuity arguments which justify this step
offer no difficulties and will be left to the reader.

To pass from the case c: I to the general one, we apply the special case of
the identity to the function

w(O - s(?t), z - (rtc.

To obtain (16) we eliminate from the final form of the
variable ( and the auxiliar}, function W(0.

1. Consequences of Carleman's identity for a sector. Our
ately yields simple and precise inequalities for the logarithmic
by H(t). We prove

Lemma 7.1 . Let SQ) be regular and let

(7.1) lsk)l=M (M=0),
throughout the sector

ue-Zo l lrl= ae'", -nl2c < S - argz < nf2c (u = 0, o =0, c >-ll2),
Put

identity the auxiliary

identity (16) irnmedi-
mean denoted below

H(t):*

Z(tlu)" H(u)+(1 -2(tld") (loe M)lnc = H(t)

= (U2)(ult)" H(u)+(t - (rl2)(rlt)") (1og M)lnc (u = t = u€o),

2(ult)" H(u)+(l -2(rlt)") (1og M)lrcc = H(t)

= (tl2)(tlu)" H(u)+(1 -(1 12)(tlu)"(log M)lnc (un-o < t = u).

n/2c

t los ls1,")l cos (co) do.
-nlZcI. Then

(7.2)

(7.3)
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II. There are, in the sector

Å* : {z : oe-o < lzl = ue", -nl2c1 <- 0 =- nl2ct) (c1> c),

no more than

(7.4) n*l< 4ceo'lcos(ncl2c)(l-u-zoc;l(log M)lnc-H(u)|,
zeros of g(z).

Proof of I. We establish (7.2) in the special case M:1, for which

(7.5) H(t)=O (ue-2"=t=ae2).

The general form of (7.2) follows at once from the special one. Let

(7.6) s:log(t/u)=0.

By (16), (7.1), (7.5), (7.6) and the remark that ),r1@)=0, we find

2e""H(tt)= H(ue): H(t) (0 = s =2o),
as well as

2e""H(oe)= H(u) (0= s< o).
Hence

2(tlu)" H(u) = H(t) = (llz)(ult)" H(u) (u = t < ae),

which is Q.2) in the special case M:1.
The same arguments, with insignificant modifications, yield (7.3) and thus

complete the proof of assertion I.

Proof of II. We start from (1 6) with g (z) replaced by e e)l M; I is to be replaced
by u and o by 2o. Then

(7.7) Z. rt(o) = 2,4(a) < 2ce2'"17t l'" roflMl g(ueto)lcos(c0) d0,
a€/* _njzc

where

(7.8) q (a) 
= 

(soc - e-o) cos (ncl2c) (a (/*).

The bound in (7.4) follows at once from (7.7) and (7.8).

Lemma 7.2. Let g(z) be meromorphic in the whole z-plane.

I. Assume that
(i) g(z) is regular in the sector

Å : {2. t)e-zo-s-L = r = Dezo+s+1, -nf2c = 0 < nl2c}

(2o> s*l = l, u>0, c> ll2);

,(ii) for some giuen M>L and B=0, thefollowing inequalities are satisfied

(7.e) lg(z)l=M (z(Å),

(7.10) m(rr llg) = Be(-o+s+L)t' (ue-o-"-r = r = ae-o+s+L).
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Then, if
(7.11) l)e-"-L ax< t)e"+t,

and if H is defined as in Lemrua7.l,.we haue

(7.12) -H(x) *2Be"k-pt+(s+r)rt12"oc1ot114.

II. g(z) has no more thart

(7.13) ,'- -y: , (3e'"logM*2Beo("-p'+(s+1)r)
cos \ltcl zcl)

zeros in lhe sector

Å' : {z: e-"-LD = r = e"+ru, -nf2cr< 0 < nf}cr} (cr = c).

Proof ofl. The definition of / and (7.11) enable us to use (7.3) with r replaced

by xe-o and u replaced by x; this yields

H(xe-") = (ll2)e-'" H(x)+(log M)lnc,

- H (x) < 2eo " (* 
_ -i'"",[g 

fi l g @ e -' enll a 0) + ze' " tos M.

Using (7.10) we obtain (7.12).

Proof of II. We obtain (7.13) by using assertion II of Lemma 7.1 and (7.12)

with -r:u.

8. The two behaviors of E^(reie) in B= l0 - a^l=n. Let

(8.1) 0-4=Ql2)min(fr,n-fr).

Three auxiliary quantities c, c, and ( are defined:

(8.2) n-fr-413 : tl2c, n-B-2a13: nl2ct, ( : cos (ttcl2cr).

If the condition (5) is satisfied we impose on 4 the additional restriction

(8.3) a <. Ql2)(n- fl-"12P).
Hence we always have

(8.4) |f2'c=cr, 0<(<l;
if (5) is satisfied, we also have

(8.5) c < P.

Observe that (1.13) may be rewritten as

(s.6) E*(z):Loels-Q)l g^(z): f(z)P-(z)-

The function g^(z), meromorphic in the whole plane, satisfies in view of (1.20)

(8.7) m(r,llg) 5 m(r,llf)*m(t, llP^) = T(r)+r7-T(r^) (r = r^es^).
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Once more we simplify the notation by taking @n:O and examine

1 2n- fi -qle
timsup ffi ,*{,, e*(r*e',)cos (t(0-iT)) d0: xi

by (2.12)

and there are

(A)

and

(B)

x=0,
exactly two possibilities

lim inf h' r"l r''r 
**(r*n'u)cos (, (0 -,r)) cll = 0

1 ?rc- ll -tllZ

*g ah o*{,r 
Q,n(r*eig) cos ('(0-')) d0 :0'

9. Study of the case (A) and proof of part of Theorem 6. From (A) we deduce

the existence of a constant Ko:KoQ)>0 and of an infinite subsequence ''y'y' of

the positive integers such that

t 2r- B -rtlB
(9.1) + [ E*(r,n"'o) cos (c(0- n)) cl| = -2KoT(t,,,) (m€'1/)'. 

ZIE pqr41z

Let s>0 be given and use (2.12) to determine a sequence {4,,\^ (4,,=0,{,,*0)
such that

Q*(re") - E *(re") - fi *T (r,,) = 0
(9.2) n ,a\\-'-/ 

(r'€1,,(2(s-l- l)), §+ql3 = 0 = 2r-B-ql3)'

In view of (9.1) and (9.2). Lemma7.1 is applicable to the function

g''(z) e-n^r ('-\ 
'

Hence, using (7.2) and (7.3), we find

12r-P-4rZ t h-A-ry3
(9.3) + I Q.lre'u)nu=* I E,,lreio)cos(c(6-n'1)dd

tt'P+'nlz '" 0-,r.2

t 2n-B-,tl3

= (l12)e-"{"*" * o*{,, 
Q^(r',ne'o)cos (c(9-z)) 6lQ -: - Koe*"("+1)7(t',,)

Qn € -//. r'€ 1,, (s * 1)).

To pass from the "avefage" in (9.3) to a punctual inequality we use a result which

we have establi.shed elsewhere 12; 321, Lemma Il. We thus flnd

(9.4) loglf (ret)P-(reioll-4,,77t,,,) : Q,,,(r'eie) = - KrT(r',,,),

where Kr:6t(s,4)=0 and

r(I-(s), §+Zqll = 0 = 2n- p-2a13, m("'/'/.

It is now obvious that (9.4) and (1.21) lead to the inequality (13) of Theorem6.
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10. study of the case (B); proof of rheorem 6 completed. By assumption,
condition (B) now holds. Hence, with fi^ and. @^ as in (9.2), the condition may be
rewritten as

(10.1) +*-j-'* lL^@-e,r)lcos(c(o-z)) 4Q - 4*T(r*).-'" F+413

Lemma 7.1 is clearly applicable and leads from (10.1) to

t zft- B-ll3
(10.2) o = ;f I l\*?e,t)lcos (c(g-z)) d0 < 4^T(r^) (r(I_(s+ 1)).zft p+-rr,

Denote by q- the number of zeros of f(z) in the sector

(10.3) /^: {z: r(I^(s+l), fr+2q13 = 0 = 2r- §-2q13}.

Then, by (7.4), (9.2) and (10.1)

(10.4) q^ = r1^T(r_).
Let

Q*k) : ,II^Q- zla), (degree Q-: Q*),

where the a's denote the zeros of f(z). Obviously, the function

" (10.5) @*(z):loslf(z)l+loglP^(z)l-toele^e\

is harmonic in the sector /_.
From (10.2), (10.4) and Lemma 1.1 we conclude that

I2r-P^-2tt/3(10.6) ; I !O^(ret,1ld0 = 4,nT(r^) (re r.G+t).
" p+ärl

An appeal to Lemma2.1 transforms (10.6) into the punctual inequality

(10.7) l@^(ret\l = 4*T(r-) (r(1.(s), B+/t = 0 = 2n- B-a).

Using Lemma 1.1 once more we obtain an inequality such as (6). The preceding
conclusion depends on the condition (B) and makes no use of the hypothesis (5);
it clearly completes the proof of Theorem 6.

11. Consequences of (5) on the behavior of E^ee\ in B- ll_a_l<n.
Lemma 11.1. Let the condition (S) be satisfied and let s>1, e=0 and q be

giaen; it is assumed tltat 4 is restricted by (B.l) and (8.3).
Then

1 2r- p.-24/B

(ll.l) + I l@*(retf)ld0=32s{(r-) (r(I.(s+t), m>mo),L'L 
o+ärtls
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and there are no more than

(I1.2) q*< eT(r^) (m > mo),

zeros of f(z) in the sector /- (deflned in (10.3)).

Proof. Lemma 7.2 is to be applied to g*(z) (defined by (4.6)). The parameter

a of Lemma 7.2 will be chosen such that

(11.3) §$s(s+z)c"o(c-P)+(§+1)r < c(, 2o > s*li
this is possible in view of (8.5) (a consequence of (5)).

Consider g*(z) in the sector

Z^: {z : r(I^(3o), §+ql3 = 0 = 2n- B-rll3),

and let and let {4^\ be chosen such that

(11.4) @*(reit) - E*(rei)-fi*T(r^)=O (reiq1I*, i^= 0, i^*0);
this is possible by (2.12). [We remind the reader that (i) @*:0) (ii) the parameter

m>mo remains fixed throughout the following argument.]

Put
(11.5) 5: fi-T(r-), B:37(r^).

In order to justify our use of Lemma 7.2 we must verify that the conditions (7.9) and
(7.10) hold. By (11.4)

(11.6) E^(reil):loglg^(z)l=fi*T(r*):ö Q(Z*).
By (8.7) and, (1.2)

m (r, I I g 
^) = {2 (r I r ^)u 

a rt } T (r *) € (2s( - o + 
" 

+ t) p + 4 ) T (r *)

e( - o + s + L) p T (r,,) (2 * q 
^ 

e(o - § - 1) p) <. ! s( - o + s + r) u T (, _)

(frr€-o-"-' < f < tme-o+s+1, nt > ftro),

and hence our choice of ,B in (11.5) leads to (7.10). By (7.12) we now find

-T(r) {2e,"i^* 6eo(" - p)+(s+1)r} 
= +'" i''' log 1g,,1rr,o)l cos (c(e -fi) d0

f'.t,'*'»,
and hence, by (11.3)

- (e( I 8) T (r 
^) = + 

zft - P - 4 / 3 

b g fu *(r eie)l cos (c (0 - n)) d 0
'" P+ntz

(r€1,,(s*l), m>m).

In view of (l I .6), in the above integrand,

log lg.l-ä < 0,
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so that

- (e( 18) r (r-) - 6 I nc =- *' ,"u!),"" 
{,o* lg,,(rei^)l - ö) cos (c (0 - n)) d0 ,

(11.7) -(e(|7)T(r-l = *'"-l-"'' rorlg*(reie)ld0 (r(1.(s* t), m > m).
''" P+zq/B

To obtain (11.2) it is sufficient to combine (7.13), (11.3) and (11.7).

Assertion (1.18) of Lemma 1 l, applied to the polynomial Q^Q) of (10.5),
yields, in view of (11.2) and (11.7)

-(el7)T(r*)-t0sez(r-) = +'"-J'"t @^1re,r1d0 (r€1-(s+ t), m > nto),
zIt 

P+i''t/B

1 2d- B-Zqlzr f (l-ct r-.io
2- -l (t-s.('c ))+ *o j,(reto)) do

(l1.8) "'o+äwg

< I tser(r.) *+'"-r-"'' @;1rr,u7de.
ft B+ä'tft

The definition (10.5), (11.4) and (1.18) show that the last integral in (11.8) cannot
exceed

(20se*fi^)T(r*).

Hence (11.8) implies (11.1) and Lemma 11.1 is proved. It may be noticed that the
preceding proof only depends on the hypothesis (5) and that (10.4) and (10.6)
(proved under different assumptions) have not been used.

12. Proof of Theorem 5. The assertions of Lemma ll.1 involve a fixed e=0.
A new diagonalization enables us to replace e by 4,, so that (ll.l) and (11.2) take,
respectively, the forms (10.6) and (10.4). Hence the proof of Theorem 5 follows from
the reasoning at the end of Section 10.

13. Proof of the asymptotic symmetry. We apply Jensen's theorem three times:
to f(z) and to each of the two functions of the complex variable (:

f (r' n,ri(c't,ni P) ( I + ()).

We make certain simplifying assumptions which do not affect the result. We take
(i) o,:Oi
(iD we assume that f(z) has no poles in the sector defined by (9) and in its sym-

metrical;
(iii) f(r-efr) *0, f(r *e- to1 *0.

The asymptotic formulae of Theorems 4 and 5 are invalid for certain values
of 0. We treat these values by an obvious use of Lemma III of [2] ; the detailed reason-
ing will be omitted and simply indicated by the words ooby the small arc lemma".

( 13. 1)
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To prove (11) we first deduce from (2), (3), (6) and the small arc lemma

m(r, llf) = 6T(r-) (r€21(s), m = ms(ö));

the parameter ä >0 may be chosen as small as we wish. Hence (by Jensen's formula)

,,*.r§ip > 1-ä (rez(s)).

Since ä >0 is arbitrary

(r3.2) N(r, llfl /\, T(r) (, * -, t"€.A(g)

and (11) follows by the tauberian argument used in [A] to derive (17 [A]) from
(16 tAl):

Put
F(O : f (r*e-,n1t +O) (C : l(let'p).

Let n*(x) be the number of zeros of f($ in the disk l(l=x (by assumption

n+(o;:g;. By Jensen's theorem

2n

2"6* !" los lFTtei*)l ,tq: [ ry
-(')- 

dx*tos lr(o)1,

and consequently

2n

(13.3) 
l̂Tc 

6
', j" {log lFltei*)l-los lF(oreigl} clE = n*

By assumption, the parameter r is small enough to imply

(13.4) n* (t) < n- (,',,(1 + /)) - n- (r*(1 - 0).

By (2), (3), (6) and the small arc lemma, we may given ä =0, deduce

2r

2"6i f los lFlts'*)l ,tE - (ur (r)12) i ,*{(r + rciq)u} ctE *rt (r*, t)r (r*),

with the error term such that

lrt(r,,,t)l = ä (m=wo).

Hence, using (13.3) and (13.4), we find
7t

2 log (l lo) ,

'- (l + oteielu I r,^
l-o -ln*T (r*)

-2öllog(1lo) (m > mo).

We let m+@ with o and ä flxed. This yields a simple lower bound for

r1;rsr "-?;o+tP#WÅ- B(13.5)

We next let ä--*0+ and follow this by s-> 1 -.
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We thus find

B > (trlz)I

Similarly, by symmet
^{{ Fteiq(l + tei.),'-' d*l - fu12){(r + t)u -(1 - t)r}.

fY,

(13.6) l$1gf = Qtl2) {(1 +t)u-(l -t)u}.

If, in (13.5) or (13.6), it were impossible to replace liminf by lim, we would have

.. {r*(r*(t+t))+n-(r-(t+O)}-{n*(r*(t-t))+n-(r.(1-r))}

1rr.r1 

""'' T(r^)

= p((1 +t)P-(t-t)).
In view of (4) and (7),

(13.8) n*(u)+n'(u) : n(u,llfi-n((r*)*o(T(r-)),
uniformly zs tn+6; and rz is confined to the intervals

(r*<uSe"r^ (s=l).
Combining (11), (13.7) and (13.8) we obtain a contradiction which completes

the proof of the asymptotic symmetry.

14. Proof of Theorem 7. Assume first that (5) is satisfled. Then (13.2) is valid
and hence 0 is not a deficient value of f(z). No other finite value may be deficient
because we may treat f(z)-r (r:finite constant) exactly likef(z). To justify this
step we remark that if f(z) satisfies the hypotheses ES so does f(z)-r. [It may
clearly be necessary to modify the function ry(r) entering into the hypotheses ES.l

If (5) does not hold some r#- mäy be deficient. Then, (3), (13) applied to

f(z)-r, and the "small arc lemma" show that no finite {*t may be deficient.
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