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ON ULTRAPSEUDOCOMPACT
AI{D RELATED SPACES

T. NIEMINEN

Abstract. We investigate topological spaces, which at the same time satisfy
certain connection, disconnection and separation conditions. We find the spaces

X for which C(X) is a fleld, an integral domain, a local ring, a semi-local ring,
a semisimple ring, a Noetherian ring, an Artinian ring or a principal ideal ring.
The spaces in which every open or dense subset, or every subset is C-embedded,
are found. Weakly locally connected, semiconnected, locally irreducible and hered-
itarily connected spaces are defined and studied. Partition spaces are characterized
by 18 equivalent conditions. No separation axioms are assumed in the definitions
of a strongly O-dimensional space, an extremally disconnected space and a P-space.

The Zr-separation axiom is not a part of the definition of a Tr-, Tn- or 76-space.

1. Ultrapseuilocompact spaces. A topological space is ultrapseudocompact if
every continuous real-valued function on it is constant.

Theorem l. The following statemmts concerning a topological space X are
equioalent:

(l) X is ultrapseudocompact.

Qa) The only cozero-sets in X are A and X.

Qb) The only zero-sets in X are 0 and X.
(3a) Euery two nonuoid cozero-sets in X intersect.
(3b) The union of euery two proper zero-sets is proper.
(4a) Euery two nonuoid zero-sets in X intersect.
(4b) The union of eDery two proper cozero-sets is proper.

Proof. To show that (l) implies Qa),let A be a cozero-set in X. Then l:
:{x(Xlf(x)t0}, where f is a continuous real-valued function on X. By (1),

/ is constant. Thus I is empty or X.
Suppose that f (p)-.f(4), where f is a continuous real-valued function on X.

lf f(p)<a=f(q), then {xlf(x)=a} and {xlf(x)=a} are disjoint nonvoid
cozero-sets. Thus (3a) implies (1).

Suppose that a continuous function / admits two distinct values u and §.
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Then {xll(x):a} 316 {*lf @):F} are disjoint nonvoid zero-sets. Thus (4a)

implies (l).
The other implications are trivial.
By definition, a topological space X is strongly O-dimensional if it satisfies

the following equivalent conditions: (a)If AcU, where A is a zero-set and U a
cozero-set, there exists a clopen set Z such that AcVcU; (b) It the subsets I
and.B of Xare completely separated, there exists a separation (a,V) of X such

that AcU ar'd BcV, i.e., A and B have disjoint clopen neighborhoods.

Theorem 2. The following statements about a topological space X are equi-

ualent:
(1) X r's ultrapseudocompact.
(5) X ,r connected and strongly 0-dimensional.
(6) Eoery cozero-set in X is connected.
(7) Euery zero-set in X is connected,

Proof. If (l) holds, there are no continuous functions from X onto the discrete
space {0, l}. Thus X is connected. On the other hand, if AcU, where I is a
zero-set and U a cozero-set, then by (2b), A is empty or X. Thus either 0 or
X serves as a clopen set Y satisfying AcVcU. Hence X is strongly 0-dimen-

sional, and (l) implies (5).

Suppose (5) holds. Let f be a continuous real-valued function on X, and

let a and p be two distinct real numbers. Then the sets A:{xl"f(x):a} and
B:{xlf (x):p) are completely separated. Since X is strongly 0-dimensional,

there is a separation (U,l/) of X such that AcU and BcV. Since X is con-
nected, the separation is trivial. Thus either A or B is empty and, consequently,

/ is constant. So (5) implies (1).

Let (l) hold. By (5), X is connected. Thus (6) and (7) hold, because of Qa)
and (2b).

Let U and V be nonvoid cozero-sets. If (6) holds, then the cozero-set UvV
is connected. Since U and Y are nonvoid open subsets of UvV, we therefore
have [/h Y*0, and (3a) holds. In the same way it is seen that (7) implies (4a).

Let X be a topological space and C(X\ the ring of all real-valued continuous
functions on X. Forevery x in X, the set M,:{f<C(X)lf (x):0} is amaximal
ideal of C(X). On the other hand, nlM*lx€X\:(0). Thus C(X) is always a

radical free ring.

Theorem 3. For a topological space X, the following statements are equioalmt:
(l) X is ultrapseudocompact and nonuoid.

(8) C(X) is isomorphic to the field of real numbers.
(9) C(x) is a field.

(10) C(X) is an integral domain.
(11) C(X) is a local ring, i.e., it has a unique maximal ideal.
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Proof. The implication (1)=+(8) is easy and the implications (8)+(9)=+(10)
and (9)+(11) are trivial. On the other hand, every local radical free commutative
ring is a field, so (11)+(9) holds. Thus the proof is completåd if we show that
(10) implies (3b). Let A and B be zero-sets for which AvB:X. Then
A:{xl"f(x):0} and -B:{xlg(x):6}, where / and g belong to C(X). From
AvB:X it follows that fg:Q. Thus by (10), /:6 or g-0 and, consequently,
A:X or B:X.

It is well known that there exist infinite ultrapseudocompact regular spaces

([7]) and that a Ta]-space is ultrapseudocompact if and only if it is indiscrete.

2. Ultraconnected spaces. By definition, a topological space X is ultraconnected
if every two nonvoid closed subsets of X intersect, i.e. if X is a ft-space in a
trivial way ([16]). Ultraconnected spaces are studied in [1] and [2] under the name
of strongly connected spaces. In [16], strongly connected means the same as ultra-
pseudocompact in the present paper.

Theorem 4. For atopological space X, thefollowing conditions are equioalent:
(l) X is ultraconnected.
(2) Eaery closed subspace of X is ultraconnected.
(3) Euery closed subspace of X is connected.

(4) X is an ultrapseudocompact To-space.

Proof. (l)+(2): Let S be a closed subspace of X and let AIB:O, where
A alnd.B areclosedsubsetsof S. Then A and B are closedin X; hence A:0
or -B:0 and ^S is ultraconnected.

(2)+(3) is trivial.
(3)+(l): Let A and ,B be disjoint closed subsets of X. Then (A, B) is a

separation of the closed subspace AvB, which is connected by (3). Hence A:0
or B:4.

(1)+(a): From (l) it at once follows that X satisfles the condition (3a) in
Theorem 1. On the other hand, X is trivially a Zr-space.

(4)=+(t): Let A and ,B be disjoint closed subsets of X. Since X is a Tn-

space, there exists a continuous function / admitting the value 0 on ,4 and the
value I on .8. Since X is ultrapseudocompact, / is constant. Hence either I
or ,B is empty, and (1) follows.

3. Weakly locally connected spaces

Theorem 5. The following statements about a topological space X are equi-

oalent:
(l) hsery point of X has a connected open neighborhood.
(2) Eoery point of X has a connected neighborhood.
(3) Euery component of X is open.

(4) Eoery quasi-component of X is open.
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(5) X is the sum of its quasi-components.

(6) X is the sum of its components.
(7) X is (homeomorphic to) a sum of connected spaces.

(8) A subset of X is clopen if and only if il is the union of a family of com-
ponents of X.

(9a) Eoery union of clopen subsets is closed.

(9b) hery intersection of clopen subsets is open.

Proof. (l)+(2)+(3) and (6)=+(7) are trivial. Every quasi-component is the
union of a family of components. Thus (3) implies (4). If X is the union of a dis-
joint family of open subsets, then X is the sum of this family. Thus (4) implies (5).

(5)+(6): By (5), every quasi-component is open and, consequently, a com-
ponent. Hence (6) holds.

(7)=(8): From (7) it follows that X is the union of a disjoint family (U)ier
of nonvoid open connected subsets. EachU, is then a nonvoid clopen connected
subset and, consequently, a component. Thus every component of X is open.
From this it follows that if A (and thus also X\l) is a union of components,
then A is clopen. Conversely, a clopen subset is always a union of components.

(8)+(9a)=+(9b) are trivial.
(9b)=+(a): Every quasi-component is an intersection of clopen sets.

(a)+(l): As an open set, each quasi-component is a component. Thus each

component is an open connected neighborhood of any of its points.
We say that a topological space is weakly locally connected if it satisfies the

equivalent conditions of Theorem 5. In a weakly locally connected space the com-
ponents and the quasi-components are identical. The converse does not hold, as

is seen by the following example. Let X be the one point compactification of the
discrete countably infinite space. Each quasi-component of X is a singleton and,
consequently, a component. Thus the component of the particular point is not
open; hence X is not weakly locally connected.

4. Weakly locally ultrapseudocompact spaces. By definition, a topological space

X is a P-space (31, U3l, [9], [4D if it satisfies the following equivalent conditions:
(a) Every cozero-set is closed. (b) Every countable intersection of cozero-sets is

open. (c) Every cozero-set is C-embedded. (d) lf f(C(X), then every point x(X
has a neighborhood on which / is constant. (e) C(X) is a regular ring. (f) If a se-

quence of continuous real-valued functions on X converges at every point of X
to a function / then ,f is continuous.

It is well known, that a Ta!-space is a P-space if and only if it satisfies the
following condition: (g) Every countable intersection of open subsets is open. In
the general case, (g) trivially implies (b). The converse does not hold. In fact, an
uncountable set X together with the cofinite topology is ultrapseudocompact and
thus trivially satisfies the condition (a). On the other hand, a countably infinite
subset of X is not closed, although every singleton is.
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In a P-space the concepts of a cozero-set, a zero-set and a clopen set coincide.
Thus every P-space is trivially strongly O-dimensional.

Theorem 6. The foltowing properties of a topological space X are eqruiualent:

(1) X is a weakly locally connected P-space.

(2) X is weakly locally connected and strongly 0-dimensional.

(3) X is (homeomorphic to) a sum of ultrapseudocompact spaces.

(4) Euery component of X is open and ultrapseudocompact.

(5) Euery point of X has an ultrapseudocompact clopen neighborhood.
(6) Euery point of X has an ultrapseudocompact neighborhood.
(7a) A subset of X is a cozero-set if and only if it is a union of components-
(7b) A subset of X is a zero-set if and only if it is a union of components,
(8a) Eaery intersection of cozero-sets is clopen.
(8b) Euery union of zero-sets is clopm.
(9a) Eaery intersection of cozero-sets is open.

(9b) Euery union of zero-sets is closed.

Proof. (l)+(2): Every P-space is strongly 0-dimenstonai.
(2)+(3): BV (2) and Theorem 5, X is the sum of its components. As a clopen

set, each component is C-embedded in X and thus, by Q), strongly O-dimensional.
As a connected strongly 0-dimensional space, each component is ultrapseudocom-
pact, by Theorem 2.

(3)+(a): By (3), X is the union of a disjoint family (Ut),e, of nonvoid open

ultrapseudocompact subspaces. As an ultrapseudocompact set, each U,' is connected
and as a nonvoid clopen connected set, a component of X.

(a)=+(5)==+(6), (7a)e(7b), (8a).<+(8b), (9a)<+(9b) and (7b)+(9b) are trivial.
(6)+(l): From (6) it follows at once, since an ultrapseudocompact space is

connected, lhat X is weakly locally connected. Let A be a zero-set in X. Then

A:{xlf (x):0}, where f is a continuous real-valued function. By (6), every point
x of A has an ultrapseudocompact neighborhood U in X. Then / is constantly
zero on U; hence UcA ar,d, consequently, A is open. Thus X is a P-space.

(1)=+(7a): Since X is a P-space, each cozero-set in X is clopen and, con-
sequently, a union of components. Conversely,let A be a union of components.
Then the same holds true for X\,4. Since X is weakly locally oonnected,'each
component is open. Thus I is clopen and, therefore, a cozero-set.

(9b)+(8b): From (9b) it follows, since every cozero-set is a union of zero-sets,

that every cozero-set is closed and, consequently, every zero-set is open. Thus every
union of zero-sets is open and hence clopen, by (9b).

(8a)+(1): From (8a) it follows that every intersection of clopen subsets is

open. Thus X is weakly locally connected. On the other hand, a countable inter-
section of cozero-sets is open by (8a), i.e., X is a P-space.

We say that a topological space is weakly locally ultrapseudocompact if it satisfies

the equivalent conditions of Theorem 6. In the terminology of [11], a topological
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space is locally ultrapseudocompact if it has a basis consisting of ultrapseudocompact
subsets. A locally ultrapseudocompact space is a locally connected P-space and
a locally connected P-space is weakly locally ultrapseudocompact. For both
statements the converse is false. To see this, let (X, r) be a topological space, p
a point not in X,X':Xv{p} and r':rv{X'). Then (X',r') is ultraconnected
and hence weakly locally ultrapseudocompact. On the other hand, (X', x') is locally
connected or locally ultrapseudocompact if and only if (X, r) has the same

property.

5. Semiconnected spaces

Theorem 7. For a topological space X, thefollowingconditions are equiualmt:
(l) X is the union of a finite family of connected subsets.

(2) X has only a finite number of components.
(3) X has only a finite number of quasi-components.

(4) X has only a finite number of clopen subsets.

(5) Euery disjoint family of nonuoid clopen subsets is finite.
(6a) The family of clopen subsets of X satisfies the maximum condition.
(6b) The family of clopen subsets of X satisfies the minimum condition.
(7) X is (homeomorphic to) the sum of a fi.nite family of connected spaces.

Proof. (l)+(2): By (l), X is the union of a finite family (Ar)re , of nonvoid
connected subsets. Choose a point x; from each Ai and denote the component
of x; by C,. Then ArcC, for every i€I and, consequently, (Cr)t<, covers

X. Thus it is the family of components of X, with possible duplications.
Every quasi-component is a union of components and every clopen set is a

union of quasi-components. Thus (2) implies (3) and (3) implies (a). The implication
(a)+(5) is trivial.

(5)+(6a): Suppose that (Ur,Ur,..-) is a strictly increasing sequence of clopen
subsets. Then (Ur\Ur, UNU,, ...) would be an infinite disjoint family of non-
void clopen sets, in contradiction to (5).

(6a)<+(6b): The complement of a clopen subset is clopen.
(6)=+(3): Let x be an arbitrary point of X. The family of clopen neighbor-

hoods of x has, by (6b), a minimal element K. Since the intersection of two clopen
subsets is clopen, K is the intersection of all clopen neighborhoods of Jr, i.e.,
K is the quasi-component of x. Thus every quasi-component of X is clopen.
Suppose (Kr, Kr, ...) were an infinite sequence of pairwise distinct quasi-com-
ponents. Then, by the above result, (i(r, KrvKr,...) would be a strictly increasing
sequence of clopen subsets, in contradiction to (6a). Consequently, (3) holds.

(3)+(2): From (3) it immediately follows, since every quasi-component is

closed, that every quasi-component is open and, consequently, a component. Thus

by (3), X has only a finite number of components.
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(2)+(7): From (2) it follows that each component is open. Thus X is the

sum of its components, and (7) follows.
(7)+(1) is trivial.
We say that a topological space is semiconnected if it satisfies the equivalent

conditions of Theorem 7.

A topological space X is Z-pseudocompact if it satisfies the following equivalent
conditions: (a) Every continuous integer-valued function on X is bounded. (b) There

exist no continuous functions from X onto Z. (c) Every disjoint open cover of
X has only a finite number of nonvoid members. (d) Every countable clopen cover

of X admits a finite subcover. (See [14] and [5]. In [15] a Z-pseudocompact space

is called mildty countably compact.) The next theorem is an improvement of 4.6

in [5]:

Theorem 8. For a topological space X, thefollowing conditions are equiualent:
(I) X ,J semiconnected.

(8) X ,s weakly locally connected and Z-pseudocompact.

Proof. (l)+(8): From (2) it at once follows that every component of X is

open. Hence X is weakly locally connected. Let (Ur)rq be a disjoint cover of
X by nonvoid open subsets. Then each U; is clopen; hence -I is finite by (5).

Thus X is Z-pseudocompact.
(8)=+(2): Since X is weakly locally connected, each component of X is open

(and nonvoid). Since X is Z-pseudocompact, it follows from this that X has

only a finite number of components (Postulate (c)).

It is obvious that a weakly locally connected space is not necessarily semi-

connected and thus not necessarily Z-pseudocompact. On the other hand, even

a compact space may fail to be weakly locally connected. In fact, we have seen

that the one point compactification of a countably infinite discrete space is not
weakly locally connected.

A pseudocompact space is trivially Z-pseudocompact. The converse does

not hold, since every connected space is Z-pseudocompact, by Theorem 8.

6. Semi-ultrapseudocompact spaces

Theorem 9. The following statements concerning a topological space X are

equiualent:
(l) Euery continuous real-ualued function on X assurnes only a finite number

of ualues.

(2) X is a pseudocompact P-space.

(3) X rs a Z-pseudocompact P-space.

(4) X is semiconnected and strongly O-dimensional.

(5) X has only a finite number of components and they are ultrapseudocompact.

(6) X is the union of a finite number of ultrapseudocompact subspaces.

If these conditions are satisfied, then the number of components of X is the largest

191
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possible number of oalues of a continuous real-oalued function and also the smqllest
number of members in a couer of X by ultrapseudocompact subspaces.

Proof. (l)+(2): From (1) it immediately follows that X is pseudocompact.
Let U be a cozero-set in X. Then U:{xlf(x)<.0}, where f is a continuous
real-valued function. By (1), / has the largest negative value, say' q. Then U:
:{xlf(x)=a}; hence U is closed. This shows that X is a P-space.

(2)+(3): Every pseudocompact space is Z-pseudocompact.
(3).+(a): Suppose that X has a disjoint infinite sequence ((Lr,Ur,...) of

nonvoid clopen subsets. Then each Y,:Ui=rUo is clopen, as well as each
X\Zr:Wr. As a clopen set, each Wn is a zero-set and, consequently, the same

holds true for lA:Oi=rW,. From this it follows, since X is a p-space, that
}/ is open. Thus (W,Ur,Ur,...) is an infinite disjoint open cover of X, in con-
tradiction to (3). Hence X is semiconnected. On the other hand, every P-space
is strongly O-dimensional.

@)+(5): By (4), X has only a finite number of components and they are
clopen. Every clopen subset of a topological space is C-embedded and every C*-
embedded subspace of a strongly O-dimensional space is strongly 0-dimensional.
Thus each component of X is connected and strongly O-dimensional, hence ultra-
pseudocompact, by Theorem 2.

(5)"=+(6) is trivial.
(6)+(l): By (6), X is the union of a finite number n>0 of ultrapseudocompact

subspaces At. If f is a continuous real-valued function on X, then f is constant
on each 1,. Hence the number of distinct values of / does not exceed z. On the
other hand, if Cr,,..,C^ are the components of X and if we set -f (x):i for
x in Ci, we get a continuous function / admitting exactly rn distinct values.
Thus z has the properties stated in our theorem.

We say that a topological space is semi-ultrapseudocompact if it satisfies the
equivalent conditions of Theorem 9. As to the postulates (2) and (4), it is to be
noted that a pseudocompact strongly 0-dimensional space is not necessarily semi-
ultrapseudocompact even in the case when it is a compact extremally disconnected
Zr-space. To see this we observe that the discrete space N of natural numbers is
extremally disconnected and, consequently, the same holds true for the Stone-
Öech compactification pN. Since every real-valued function on N can be extended
to a continuous function on BN, the space BN is not semi-ultrapseudocompact.

Theorem 70. For a topological space X, thefollowing conditions are equiualent:
(I) X is semi-ultrapseudocompact.
(7) X is the union of a finite number of semi-ultrapseudocompact subspaces.
(8) Eoery clopen subspace of X is semi-ultrapseudocompact.
(9) The number of cozero-sets in X is finite.
(l0a) The family of cozero-subsets of X satisfies the maximum condition.
(l0b) The family of zero-subsets of X satisfies the maximum condition.
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(lla) Eoery disjoint family of nonuoid cozero-sets is finite.
(llb) Eoery disjoint family of nonuoid zero-sets is finite.

Proof. (I)=+(7)+(6), (8)=+(I), (9)+(lOa) and (9)=+(10b) are trivial.
(I)+(8): Let U be a clopen subset of X and;f a continuous real-valued

function on U. Then / can be extended to a continuous function g on X. By
(l), g admits only a finite number of values and, consequently, so does I Hence
U is semi-ultrapseudocompact.

(I)=+(9): BV (2) and (4), X is a weakly locally connected P-space. Hence by
Theorem 6, every cozero-set is a union of components. By (4), the number of com-
ponents is finite. Consequently, (9) holds.

(l0a)==+(1la): Let (Ur,U2,...) be a disjoint sequence of cozero-sets. Denote

Vn:Uru...uUn for every n. Then (7r,1/r,...) is an increasing sequence of
cozero-sets. Hence by (lOa), Vn:Vn+r:... for some n. Then Un+r:Un+z:..,
...:0, and (lla) follows. (10b)=+(1lb) is shown in the same way.

(ll)+(l): suppose that (1) does not hold. As is readily seen, there then exist
a continuous real-valued function f and a sequence (xr,xr,...) ofpoints such
that f (xr)=f (xr)-... . Let ar<f (xr)<ur<f (xr)<..., and denote (J*:
:{xlau<f@)=a*+t} and Ay:{xla2y=f(x)==aro..r} for every k. Then
(Ur,Ur,...) is a disjoint family of nonvoid cozero-sets and (Ar,Ar,...) a disjoint
family of nonvoid zero-sets, in contradiction to (lla) and to (llb).

Theorem ll. Let x be a topological space and c(x) the ring of all continuous
real-ualued functions on x. Then the following statements are equiualent:

(D X is semi-ultrapseudocompact.
(12) c(x) is isomorphic to the product ring R" for some nonnegatiue integer n.
(13) C(X) is semisimple, i.e. radical free and Artinian.
(14) C(X) is an Artinian ring.
(15) C(X) is a Noetherian ring.
(16) C(X) is a principal ideal ring.
(17) c(x) is a semi-local ring, i.e. it has only afinite number of maximal ideals.

If x is semi-ultrapseudocompact, then the exponent n in (12) is unique and equal
to the number of components of x and to the number of maximal ideals of c(x).

Proof. (I).+(12): By (4), the family (x)ier of components of x is flnite and
x is the sum of this family. Hence c(n is isomorphic to the product ring
IIrerC(X,). By (5), each X, is ultrapseudocompact (and nonvoid). Thus by
Theorem 3, each c(x,) is isomorphic to the field of real numbers. The uniqueness
of n follows from the fact that the rings R' and rR' are isomorphic only, if m:n.

(12)+(13)=+(14) are trivial.
(ta)==+(l5): By Hopkins's theorem, an Artinian ring with identity is Noetherian.
(15)+(lla): Suppose that (Ur,Ur,...) is a disjoint infinite sequence of non-

void cozero-sets. Let U,:{xlf,(x) l0}, where .f,<C(X), and let .f, be the ideal
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of C(ä generated by {fr,...,f,}. By (15), there exists an z such that J,:J,*r.
Then f,",1:hft*...*gnfn, where each gkCC(X). As a consequence, f,*1(x):0
for every x in (In*r, i.e., Un+r:g. This contradiction shows that (lla) holds'

(12)+(16): A finite product of principal ideal rings is a principal ideal ring.

(16)+(15): Every principal ideal ring is Noetherian.
(12)+(17): The ring R' has precisely z maximal ideals.

(17)+(l): Let n be the number of maximal ideals in C(X), f an element of
C(X), h,...,.1, distinct values of f, and f (x):)'r (k:1,...,m). Each Mr:
:{SCC(X)IS(x*):0} is a maximal ideal of C(X). The ideals Mo are mutually

distinct, since f-).1,€Mk if and only if h:k. Thus m=n, and (l) holds.

7. Extremally disconnected P-spaces. By definition, a topological space X
is extremally disconnected if it satisfies the following equivalent conditions: (a) The

closure of every open subset of X is open. (b) Every dense subset of X is C*-

embedded. (c) Every open subset of X is C*-embedded. (d) Every two disjoint

open subsets are completely separated.

For the next lemma we recall that a C*-embedded subset of a topological

space is C-embedded if and only if it is completely separated from every zero-set

disjoint from it. (See [4], 1.18.)

Lemma. A C*-embedded subset A of a P-space X is C-embedded.

Proof. Let AnB:0, where B is a zero-set in X. Since X is a P-space,

B is clopen. Thus the characteristic function of .B is continuous and, consequently,

A and B are completely separated. From the theorem mentioned above it then

follows that A is C-embedded.

Theorem 12. For a topological space X, the following statements are equiltalent:

(1) X ,s an extremally disconnected P-space.

Q) Eaery dense subset of X is C-embedded.

(3) Eoery open subset of X is C-embedded.

Proof. (1)+(2): Let A be a dense subset of x. since x is extremally dis-

connected, A is C*-embedded. From this it follows, by the Lemma, that /{ is

C-embedded.
(2)=+(3): Let U be an open subset of x. As a clopen subset of A: uu(x\u),

u is c-embedded in A. As a dense subset of X, A is c-embedded in x by

(2). Thus by transitivity, t/ is C-embedded in X.

(3)+(l): By (3), every open subset of x is c*-embedded and every cozero-set

is C-embedded. Thus X is an extremally disconnected P-space.

By definition (see [6] and [8]), a topological space x is a hyper-Ta-space if
it satisfies the following equivalent conditions: (a) X is an extremally disconnected

Zu-space. (b) If the subsets A and B of X are separated, then they have disjoint

closed neighborhoods. (c) If the subsets .,4 and B are separated, then they are
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completely separated. (d) Every subset of X is C*-embedded. (e) X is a Z;-space

and every subspace of X is extremally disconnected. (f) X is a ft-space and every

closed subspace is extremally disconnected. The condition of X being a Za-space

cannot be omitted from (e). This is seen by considering an infinite set together with
the cofinite topology.

Theorem 13. For a topological space X, thefollowing conditions are equioalent:
(1) X ,s a P-space and a hyper-Tn-space.

Q) Euery subset of X is C-embedded.

Proof. (1)+(2): Let A be a subset of X. Since X is a hyper-7'n-space, A
is C*-embedded. From this it follows, by the above Lemma, that I is C-embedded.

(2)+(1): By (2), every cozero-set is C-embedded and every subset is C+-em-

bedded. Thus X is a P-space and a hyper-7'n-space.

8. [reducible spaces. By definition (see []), a nonvoid topological space X
is irreducible if it satisfies the following equivalent conditions: (a) Every two non-
void open subsets of X intersect. (b) X is not the union of a flnite family of closed

proper subsets. (c) Every nonvoid open subset of X is dense. (d) Every open subset

of X is connected. (In [6] an irreducible space is called hyperconnected.)

Theorem 14. For a nonuoid topological space X, the following conditions

are equioalent:
(1) X is irreducible.
(2) X is ultrapseudocompact and extremally disconnected.

(3) X is connected and extremally disconnected.

(4a) The only regular open subsets of X are X and 0.

@b) The only regular closed subsets of X are X and A.

Proof. (l)>(2): From (a) it immediately follows that X satisfies the con-

dition (3a) in Theorem I and it is thus ultrapseudocompact. Let U be an open
subset of X. By (c), U is either empty or X and hence open. Thus X is extremally
disconnected.

(2)+(3): Every ultrapseudocompact space is connected.
(3)+(4a): Let U be a nonvoid regular open subset of X. Since X is extremally

disconnected, U is clopen (and nonvoid). Thus U:X, X being connected.

Hence U:intU:X.
(aa)+(ab) is trivial.
(4b)+(l): Let U be a nonvoid open subset of X. Then U is a nonvoid regular

closed set. Hence U is dense by (ab).

The condition of X being extremally disconnected cannot be omitted from
(2) in Theorem 14. In fact, even an ultraconnected Zr-space may fail to be irreducible.
An example of this is the three point space {a, b, c}, in which the nontrivial open

subsets are {al, {å} and {a, b}. On the other hand, by choosing the same sets
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as the nontrivial closed subsets, we get an irreducible space which is not ultra-
connected.

Theorem 15. For a nonuoid topological space X, the following conditions

are equiualent:
(l) X ,s an irreducible Tn-space.

(2) X is ultraeonnected and extremally disconnected.

(3') X is a connected extremally disconnected Tu-space.

Proof. (l)+(2): Let A and ,B be disjoint closed subsets of X. Since X is

a 7n-space,thereexistdisjointopensets U=A and. V)8. Since X isirreducible,
either t/ or Z is empty; hence either A or B is empty. Thus X is ultraconnected.

On the other hand, X is extremally disconnected by Theorem 14.

(2)+(3): Every ultraconnected space is a connected Zn-space.

(3).+(l) follows from Theorem 14.

Theorem 16. For a topological space X, thefollowing statements are equiualent:
(1) X ,s an irreducible Tr-space.

(2) X is indiscrete and nonuoid.

Proof. (l)+(2): Let (I be a nonvoid open subset of X and x a point of [/.
Since X is a Zr-space, there exists an open set Z such that x€VcVcU. As

a nonvoid open subset of an irreducible space Z is dense. Thus [/:X and, con-

sequently, X is indiscrete.
(2)+(1) is clear.
A lr-space is irreducible if and only if it is a singleton. This does not hold

for [-spaces, as we see by considering an infinite set together with the coflnite

topology. On the other hand, an ultraconnected Zr-space is empty or a singleton.

Irreducible Zu-spaces will be considered later in this paper.

By definition, a point x of a topological space X is generic if {x} is dense

in X. For later reference we state the following

Theorem 17. Let X be a topological space. If X has a generic point, then

it is irreducible. If the topology of X is finite, then X is irreducible if and only if it
has at least one generic point.

Proof. lf a topological space has a generic point x, then x belongs to every

nonvoid open subset, and (a) holds. Conversely, let X be an irreducible space

with only a finite number of open subsets. Then the intersection of all nonvoid

open subsets of X is nonvoid and every point of this intersection is a generic point
of X.

9. Semi-irreducible spaces. By definition ([17]), a topological space X is semi-

irreducible if it satisfies the following equivalent conditions: (a) Every disjoint family
of nonvoid open subsets of X is finite. (b) X is the union of a finite number of
irreducible subspaces.
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Since every irreducible space

space is semi-ultrapseudocompact.
set together with the excluded point
but it is not semi-irreducible.

By U71, a topological space X
subspace of X is semi-irreducible.

is ultrapseudocompact, every semi-irreducible
The converse does not hold. In fact, an inflnite
topology (see [16], Example 14) is ultraconnected,

is semi-irreducible if and only if every open
A related result is

Theorem 18. For a topological space X, thefollowing statements are equiualent:
(l) X is semi-irreducible.
(2) Euery open subspace of X is Z-pseudocompact.

Proof. (l)+(2): Every open subspace of a semi-irreducible space is semi-
irreducible and hence Z-pseudocompact (Theorem 9).

(2)+(1): Let (Vr)r, be a disjoint family of nonvoid open subsets of X. By
(2), V:UierVi is Z-pseudocompact. Hence 1 is finite and, consequently, X
is semi-irreducible.

10. Locally irreducible spaces. By definition, a maximal irreducible subspace

of a topological space X is an irreducible component of X. Every irreducible sub-
space of X is contained in an irreducible component and, consequently, X is

the union of its irreducible components (see []).

Theorem 19. The following statements about a topological space X are
equioalent:

(1) X has a basis consisting of irreducible subsets.

(2) Euery point of X has an irreducible neighborhood.
(3) Euery point of X has an irreducible open neighborhood.

(4) X is the sum of its irreducible components.
(5) Euery component of X is open and irreducible.
(6) Eoery irreducible component of X is open.

(7) X is (homeomorphic to) a sum of irreducible spaces.

(8) X ,§ weakly locally connected and extremally disconnected.

Proof. (l)+(2) is trivial.
(2)+(3): By (2), every x in X has an irreducible neighborhood A. Let

x€UcA, where U is open. As a nonvoid open subset of the irreducible space

A, the set U is irreducible.
(3)+(a): For every x in X, let V* denote the union of all irreducible open

neighborhoods of x. By (3), V, is an open neighborhood of x. On the other
hand, since every two neighborhoods of x intersect, each V* is irreducible. Thus
each V, is a maximal open irreducible subset of X.

If V*aZ, is nonvoid, then V*vV, is irreducible and open; hence V,:Y,
by the maximality of Y" and of Zr. Thus the family of all distinct sets V* is
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a partition of X. Consequently, each V, is clopen and X is the sum of the family
of all distinct subspaces 2,. As a clopen set, each Y, is a union of irreducible

components. Hence x(AcV, for some irreducible component A. By the maximal-

ity of A we then have A:V"; hence each V* is an irreducible component of X.

(a)+(5): Each component A of X is the union of a family / of irreducible

components. From (4) it follows that A is open and that it is the sum of the family
9. By the connectedness of A, the family I thus consists of only one set. Hence

,4 is irreducible.
(5)+(6): An irreducible component A of X is contained in a component

B of X. Since .B is ireducible by (5), we then have A:8. Hence by (5), ,4 is

open.
(6)=+(7): Since the union of two intersecting open irreducible subsets is irreduc-

ible, it follows from (6) that the family of all irreducible components of X is a
partition of X. Thus X is the sum of this family.

(7)+(8): Every irreducible space is connected and extremally disconnected.

Thus it follows from (7) that X is a sum of connected spaces, i.e. weakly locally

connected, and that it is a sum of extremally disconnected spaces and hence extre-

mally disconnected.
(8)+(3): Since X is weakly locally connected, every point x of X has a con-

nected open neighborhood U. As an open subspace of an extremally disconnected

space U is extremally disconnected. As a connected extremally disconnected space

U is irreducible.
(3)+(l) is clear, since a nonvoid open subset of an irreducible space is

irreducible.
We say that a topological space is locally irueducible if it satisfies the equivalent

conditions of Theorem 19. The equivalence of the postulates (1) and (3) shows

that the concept of a "weakly" locally irreducible space is superfluous. A locally

irreducible space is locally ultrapseudocompact. The converse does not hold. This

is seen if we consider the three point space {a, b, c}, in which the nontrivial open

subsets are {a\, {b} afi {a,b}.
Every locally irreducible space is an extremally disconnected P-space. We could

not prove the converse. Presumably it does not hold.

Since a nonvoid open subset of an irreducible space is irreducible, every open

subspace of a locally irreducible space is locally irreducible.

Theorem 20. For a nonuoid topological space X, the following conditions

are equiualent:
(D X it irreducible.
(4') X is connected and locally irreducible.

Proof. (I)+(a): An irreducible space is connected. On the other hand, X is

an irreducible neighborhood of any of its points. Thus it is locally irreducible.
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(a)+(I): As a nonvoid locally irreducible space X is the sum of a nonvoid
family of irreducible spaces. Since X is connected, this family consists of only
one space. Thus X is irreducible.

11. Locally semi-irreducible spaces. Let X be a topological space. Since every
open subspace of a semi-irreducible space is semi-irreducible, the following statements
are equivalent:

(a) X has a basis consisting of semi-irreducible subspaces.
(b) Every point of X has a semi-irreducible open neighborhood.
(c) Every point of X has a semi-irreducible neighborhood.

We say that X is locally semi-irreducible if it satisfies these equivalent conditions.
On the basis of Exercise 6 of § 4 in [1], we may state the following

Theorem 21. A locally irreducible space is locally semi-irreducible. For a locally
semi-irreducible space X, the following conditions are equiualent:

(I) X is locally irreducible.
(9) The quasi-components and the irreducible components of X are identical.
(10) The components and the irreducible components of X are iderutical.

(ll) Eoery quasi-component of X is irreducible.
(12) Euery component of X is irreducible.
(13) Eoery two distinct irreducible componeflts of X are disjoint.
In the general case none of the conditions (9) through (13) implies (I). An exam-

ple to show this is a nondiscrete space in which every quasi-component is a singleton.

12. Hereditarily connected spaces

Theorem 22. For a topological space X, the following statements are equioalent:
(l) Euery subspace of X is connected.
(2) Eoery two-point subspace of X is connected (i.e. nondisuete).
(3) X has no discrete subspace consisting of more than one point.
(4a) The family of open subsets of X is totally ordered by inclusion.
(4b) The family of closed subsets of X is totally ordered by inclusion.
(5) If the subsets A and B of X are separated, then either of them is empty.
(6) Euery norutoid subspace of X is irreducible.
(7) Ifthe induced topology of a nonuoid subset A of X is finite, then the closure

of A is identical with the closure of some point of A.
(8) The closure of eoery nonuoid finite subset of X is identical with the closure

of some point of X.t

Proof. (l)+(2) is trivial.
(2)+(3): Every subspace of a discrete space is discrete.

l The equivalence of (4a) and (8) has been proven in [0J.
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(3)=+(4a): Let tl and Z be open subsets of X. Suppose that there exist

points x€U\Z and y€Z\U. Then {r,y} would be a two-point discrete sub-

space of X, in contradiction to (3). Thus either of the sets U and Z is contained

in the other.
(4a)+(ab) is trivial.
(ab)+(5): Let A ard,B be separated. By (4b) we then have, say, ÄcB and,

consequently, A : AnÄc AnB :0.
(5)+(l): Let ,S be a subspace of X and (A,.8) a separation of ,S. Then

A and B are separated in X. Thus by (5), either of the sets A and.B is empty;
hence ,S is connected.

(1)+(6): Let A be a nonvoid subspace of X. By (1), every open

of A is connected; hence A is irreducible.
(6)+(7): By (6), A is irreducible. From this it follows, by Theorem

xnA-A for some x in A. Thus Ac.IcÄ and, consequently, Ä-t.
(7)+(8) is trivial.
(8)=+(2): Let A:{x,y} be a two-point subspace of X. By (8), xvy:fi:2

for some z it X. Then, say, z(i, i.e., x belongs to every neighborhood of z.

Let U be an open neighborhood of y. Since y(2, U is a neighborhood of z.

Hence x€U by the above result. Thus x belongs to every neighborhood of y
and, consequently, A is connected.

We say that a topological space is hereditarily connected if it satisfies the

equivalent conditions of Theorem 22.

Theorem 23. For a topological space X, thefollowing conditions are equiualent:

(I) X rs hereditarily connected.

(9) X is a connected hyper-To-space, i.e. a coruected extremally disconnected

Tu-space.

ff X is nonuoid, then (I) is also equiualent to the following statement:
(10) X is an irreducible Tu-space.

Proof. Since the empty space satisfies (I) and (9), we may suppose that X is

nonvoid. From Theorem 14 it then immediately follows that (9) and (10) are

equivalent.
(I)+(10): By (4a), every two nonvoid open subsets of X intersect. Thus X

is irreducible. On the other hand, it follows from (5) that X is trivially a 7u-space.

(10)=+(5): Let A and B be separated subsets of X. Since X is a 7u-space,

there exist disjoint open sets U=A and V=8. Since X is irreducible, either

U or V is empty. Hence either A or ,B is empty, and (5) holds.

By Theorem 23, a nonvoid hereditarily connected space is an irreducible Tn-

space. The converse does not hold. To see this, let X be the four point space

{a, b, c, d), it which the nontrivial open subsets are {a\, {a, b}, {a, c} and {a, b, c\.

It is not hereditarily connected, since it does not satisfy (4a). However, it is an

irreducible [-space, since every two nonvoid open (or closed) subsets intersect.

subspace

17, that
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By Theorem 23, ahereditarily connected space is an ultraconnected ?u-space.

The converse does not hold, as one sees by considering the ultraconnected lu-space
mentioned after the proof of Theorem 14.

Theorem 24. For a topological space X, the following statements are equiualent:
(I) X is hereditarily connected.
(ll) Euery subspace of X is hereditarily connected.

(12) Eoery nonuoid closed subspace of X is irreducible.
(13) Eaery subspace of X is ultraconnected.

(14) hery open subspace of X is ultraconnected.
(15) Eaery subspace of X is ultrapseudocompact.

Proof. (I)+(11)+(12), (ll)=+(13)+(14) and (13)=r(15)+(1) areclear. (14)=r(4b)

is seen in the same way as (12)+(4a) below.

Q\+@a):Let U and Y be two open proper subsets of X. Then 7:(X\U)u
v(X\Z) is nonvoid and closed; hence A is irreducible by (12). Since AnUnV:$,
we then have AnU:0 or AnV:0. If, say, AaU:0, then (X\Z)nU:0.
i.e. UcV.

The postulate "Every open subspace is ultrapseudocompact (irreducible)"

or "Every closed subspace is ultrapseudocompact (ultraconnected)" cannot be

added to the list of Theorem 24, In fact, the former postulate characterizes irreducible
spaces and the latter one ultraconnected spaces.

13. Partition spaces

Theorem 25. For a topological space X, the following conditions are equioalent:
(la) Euery open subset of X is closed.

(1b\ Euery closed subset of X is open.

@ If the subsets A and B of X satisfy ÄaB:0, then they haoe disjoint
( closed) neighborhoods.

(3) If the subsets A and B of X satisfy ÄoB:0, then they also satisfy

AaB:0.
(4a) The family of all open subsets of X is a Boolean lattice with respect to

inclusion.
(5) Euery component of X is open and indiscrete (i.e., a subset of X is open

if and only if it is a union of components).
(6) Euery quasi-component of X is open and indiscrete.

(7) Euery irreducible component of X is open and indiscrete.

(8) X is (homeomorphic to) a sum of indiscrete spaces.

(9) X is the sum of a basis of X, i.e., X has a disjoint basis.

(lO) The intersection U* of all neighborhoods of x is open for eoery x in
X and the distinct sets U, form a partition of X.

(ll) X has a basis consisting of indiscrete subspaces.

(12) Eaery point of X has an indiscrete neighborhood.
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(13) t is open and connected (and hence the component of x) for eoery x
in X.

(14) If q is the equiualence relation on X defined by

xay if and onlY if x:Y,

then the quotient space Xf q is discrete.

Proof. (la)+(lb) is trivial.
(lb)=+(2): lf ÄnB:0, then ÄaB:0, since .4- is open by (1b). Thus ,{

and B have disjoint clopen neighborhoods Z and .8.

(2).+(3): Let ÄaB:0. By (2), there exists an open set U such that AcU
and UaB:0. Then UaB:0 and, consequently, AnB:0.

(3)+(1a): Let (t be an open subset of X. Then .?pn(J:O and hence

(X\U)nU:0, by (3). Thus UcU, and U is closed.

(1a)<+(4a): The topology r of X, ordered by inclusion, is a distributive lattice,

in which inf(U, Y):UaV and sup(U,V):UvV for all U and V and in
which g is the least and X the greatest element. If t/nV:O and UvY:X,
then Z:X\U, and conversely. Thus z is a complemented lattice if and only

if the complement of every open set is open, i.e. if and only if (la) holds.

(1)+(5): Let C be a component of X. By (1b), C is open. Let U be a non-

void open subset of C. Since C is open, U is open in X and hence clopen by

(la). Since C is connected, we thus have U:C. Hence C is indiscrete.

(5)<+(6)<+(7): If the component or the quasi-component or some irreducible

component of a point of X is open, then all three sets are identical.
(5)=+(S): Since every component of X is open by (5), f is the sum of its

components.
(8)+(9): By (8), X is the sum of a family olt of indiscrete subspaces. Let

V be an open subset of X. If UnV*O for some U in Ql, then Uc V by the
indiscreteness of U. Thus Ql is a basis of X.

(9)+(I0): By(9), X isthesumof abasis 0 of X. Let x beapointof X.

Then x belongs to a unique B in 0. Since ,B is an open neighborhood of x,

we have (J*cB. Let U be an open neighborhood of x. Shce 98 is a disjoint
basis of X, we then have x(BcU. Hence BcU, and, consequently, U,:8.
Thus (10) holds.

(10).+(ll): Let x€U, where U is open. Then U*cU. Since each U* is

open by (10), it follows from this that the family of the sets tl is a basis of x.
Let y(Vc(],, where Z is open in U" and thus in X. Then UrcVcU, and

hence [Ir:V-U, by (10). Thus each [/, is indiscrete.

(11)=+(12) is trivial.
(12)+(la): Let U be an open subset of X and let x be a point of X\U:1.

By (12), x has an indiscrete neighborhood z. since AnY is a nonvoid closed

subset of V, we then have x€VcA. Thus ,4 is open and U is closed.
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(5)+(13): Let C be the component of .r. Since C is closed, we have x-cC
and hence i:C, because C is indiscrete by (5). Thus x is connected and

open by (5).

(13)==+(14): From (13) it follows that the equivalence class of x is r. In fact,

rf y€i, then lci and hence f:x-, since ! is clopen and x is connected.

Thus X/g is the set of the distinct sets x and each f is an open subset of X,
saturated with respect to q. Since {x} is the canonical image of the set *, it
follows from this that {x} is open in Xlq. Thus X/q is discrete.

(la)+(8): Let f be the canonical map X*Xlq. The family of the sets .f-'(x'),
x' in Xf q, is a partition of X. By (14), each of these sets is clopen and, con-

sequently, X is their sum. On the other hand, each subspace 7-r71s'1:A is in-
discrete. To see this, let x be a point of ,4. Then x-cl, since ,4 is closed. Con-

versely, if y(A, then /(y): x':f (x) and hence l€y:i. Thus x:,4, and so

I is indiscrete, as asserted.

A topological space is a partition space, if it satisfies the equivalent conditions

of Theorem 25.

For the next theorem we recall that a In-space X is a perfectly Tn-space if
every closed subset of X is a Gr-set.

Theorem 26. For a topological space X,
(I) X ,s a partition space.

(15) X ,§ a weakly locally connected

a locally irreducible Tr-spoce.

(16) X is a Tr-space and the intersection of eoery family of open subsets of
X is open.

(L7) X is a P-space and a perfectly Tn-space.

Proof. (l)+(15): By (5), every component of X is open. Thus X is weakly

locally connected. By (1b), the closure of an open subset is open. Thus X is extre-

mally disconnected. By (1a), every open neighborhood of every point is closed. Thus

X is a Ir-space.
(15)+(5): Let C be a component of X. Since X is weakly locally connected,

C is open. Let U be a nonvoid open subset of C and let x be some point of
U. Since C is open, U is open in X. Since X is a 7r-space, there exists an oPen

set Z such that x€ Y and VcUcC. Since X is extremally disconnected, 7
is clopen. Since C is connected, we thus have V:C. Hence U:C and, con-

sequently, C is indiscrete.
(I)+(16): By (15), X is a Zr-space. On the other hand, from (la) and (lb)

it immediately follows that the intersection of every family of open subsets of X
is open.

(16)+(1b): Let U be an open subset of X and x a point of U. Since X
is a [-space, there exists an open set Z such that x€VcTcU. Then X\7

the following conditions are equiualent:

extremally disconnected Tr'space, i.e.
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is an open neighborhood of X\U to which x does not belong. Thus \U is

an intersection of open sets and hence open by (16).
(I)+(17): From (16) it immediately follows that X is a P-space. If z{ and

B arc disjoint closed sets, then they are also disjoint open sets by (lb). Thus X
is a 2]-space. On the other hand, every closed subset of X is open and hence
a Gr-set. Thus X is a perfectly Q-space.

(17)+(1b): Let A be a closed subset of X. Since X is a perfectly Q-space,
A is a Gr-set and X is a ?s|-space. Since X is a P-space, it follows that A
is open.

Corollary. A partition space is a locally irreducible Tu-space.
The converse of the Corollary does not hold. In fact, every irreducible space

is locally irreducible. Thus every irreducible Zu-space, i.e. every nonvoid hered-
itarily connected space is a locally irreducible Iu-space.

In accordance with [2] we call a pseudometric d on a set X a strong ultrapseudo-
metric if for all x,yeX, d(x,y):Q or 1. As another corollary of Theorem 26 we
get the result of K. A. Broughan in [2]:

Theorem 27. For a topological space X, the following conditions are equiualent:
(I) X is a partition space.

(18) The topology of X can be defined by a strong ultrapseudometric.

Proof. (8)+(18): Let X be the union of a disjoint family olt of open indiscrete
subspaces. By setting d(x,y):g or l, depending on whether x and y belong
to the same set U€% or not, we get a strong ultrapseudometic d which defines
the topology of X.

(18)+(16): Let d be a strong ultrapseudometric compatible with the topology
of X and x a point of X. The open ball {yld(*,y)=l} is a neighborhood of
x contained in every neighborhood of x. From this it immediately follows that
the intersection of every family of open subsets is open. On the other hand, as a
pseudometric space, ,Y is a Zr-space.
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