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A REAL-ANALYTIC QUASICONFORMAL
EXTENSION OF A QUASISYMMETRIC
FUNCTION

MATTI LEHTINEN

An increasing homeomorphism ¢: R—R is g-quasisymmetric if

m o= (px+1)—0X)/(e(x)—p(x—1)) =0

for all real x and ¢, £>0. It is well-known that every o-quasisymmetric function
can be extended to a K-quasiconformal mapping f: H-H, where H denotes
the upper half-plane. This was first shown by Beurling and Ahlfors [2] who gave
an explicit construction for an extension f. This extension is in the class C'(H).
In the present note we shall introduce an analytic kernel into the integerals which
define f and thus obtain a real-analytic solution of the boundary value problem.
The construction follows closely the one in [2]. Special attention, however, is paid
to the estimation of the maximal dilatation K. The elementary but laborious com-
putations in [2] leading to the estimate K<g? for ¢=>1 seem to contain some
slips. In fact, the same computations yield a somewhat sharper bound.

Remark. Recently Lehto [4] has demonstrated the existence of a real-analytic
solution of the boundary value problem for quasiconformal mappings by a different,
less explicit method. The maximal dilatation of his solution seems to be essentially
larger than that of ours.

We state our result as

Theorem. Every g-quasisymmetric function has a K-quasiconformal real-
analytic extension to the upper half-plane. There is a number ,(=1.925057...)
such that K<o*® if 1<gp<g, and K<30%4 if o0=o0,. '

Proof. Let ¢>1 and ¢ be a fixed o-quasisymmetric function. (Since a 1-
quasisymmetric function is linear, there is nothing to prove in the case ¢=1.) Our
construction is based on the functions wu,: H—R defined by

oo

Q) wx+iy) = [ w@ox+ynd, k=12, .,

— oo
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where
#(2) = ¢, exp (— (22)4k),

and the constant ¢, is so chosen that the integral of », over the real line equals
1/2. The convergence of the integral in (2) for any x+iy€ H is guaranteed by the
inequalities [3, p. 245]

3) U(t) =28 for 0=¢r=1,

) Y(@) =24 for 1 =1,

with A=log, (1+¢), B=log, (14+9¢7 1), holding for all p-quasisymmetric
normalized by ¥ (0)=0, y(1)=1. — For future use we note that (3) applied to
t—1—y(1—1¢) implies

) Y(1-2"9—y 2 = 1-4¢"/(e+ D", k=1,2,....
Lemma 1. The functions w, are real-analytic in H and
(6) zl}f?o ur(2) = ¢(x0)/2

for every real x,.

Proof. Fix x,+iy, in H. Inequality (4) implies the uniform and absolute
convergence of the integrals

oo

gz w) = [ w(t—2/w)e@)dt,

— oo

oo

[ alt=2wye@)dt, [ th(t—2)/w)e(r)dt
in a sufficiently small polydisc UcCXC, with center (x,, yo). It follows by a
standard argument that g, has complex derivatives with respect to z and w in
U. Hence g, is holomorphic at (x,, y,); since wu,(x+iy)=yg,(x,y) for x+iycH,
the function w, is real-analytic at x,+iy,. To prove (6), let x,+iy, with y,>0
converge to x, and apply Lebesgue’s convergence theorem to the integrals

oo

[ %@ (@Gt yat)— 0 (x) dt.
By (4) they are majorized by an integrable function and thus converge to zero as
n tends to infinity.
The following two lemmas contain the necessary estimates of the partial deriv-
atives of .

Lemma 2.

. (1), (2)] o—1
lim su 2 = ,
P @)@ = 20+ D
uniformly in H.
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Proof. Given z=x+iy€H, set
V() =@(x+yr), =244 and a,=y()—y(0).

Observe that 7—1x,(¢) takes its largest value at z,. Differentiation of (2) and
a subsequent integration by parts shows that

Y@ = [ @), yw)@ = [ t 0 dp).

— 0o

Because Y is increasing and »x, is positive, and because of (1),

[ a@av®) = [ %@ db@) = 1+ ans).

— oo —t

On the other hand,

) [ ooy ap@) < f e () dy (1) < [ a0 dy (1),

-1

The integral on the right hand side of (7) is smaller than

0

®) () [ 1Y)+, [ 1dy O+ )1 —6) ¥ (1)

—t

+e, (1 —t)0a,+at, 22' na, (nt,)o".
e
By a lemma of Beurling and Ahlfors [I, p. 67]

Jiav®) =nyp(r)— [v@at

—l I

I
o+1

—tkak
e+’

= —

YO -y (=n)=
and similarly
. _ haco
Oj ray () = 2k
By (3),

YA =1)—y (1) < 20 21— (1)) (1 =21)° = 2a,0(1-21)°.

The left hand side of (7) can be estimated from below in the same way. Combining
the estimates, dividing by a,, and observing that 7., %,(0) and x,(z,) tend to
1/2 while »,(1—¢#) and the infinite sum in (8) tend to zero as k—<, we obtain
the desired inequality.
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Lemma 3. If A=1/2 or —1)2,

. () (x+Ay +iy)
lim su —— =0,
ke ? (), i—Ay+iy) - ©

uniformly for x-+iy€H.

Proof. We may suppose A=1/2. Then, with  as in the previous lemma and
by (5) and (1),

YU (x—=p/2410y) = 3,271 =279 (Y (=27H) =y (= 1+27%)
= 071,271 =275 (1=40"(e+ D) (¥ (D= (0)).
In the other direction we have
N Y(uR(x+y/2+iy) < 2, (0) (Y (1) - (0))
+, 2 A+27) = (D +Y 0 —y (—27)
+1 271+ 27 (W Q) =y (D +Y (0 —y (- 1)

“('“1)‘*“0))2 %214 m) " 1,
By (3) and (1)
(27— (1) = 22748 (y (1)~ (0))

YO —¥ (=27 = o(W 27~y (0)) = 2-27 g (Y (1)~ (0)).

To obtain the asserted inequality it now suffices to combine the estimates, divide
by Y (1)—¢(0) and observe that x,(27'+27%) and the infinite sum in (9) tend
to zero as k— .

We now proceed to the definition of the quasiconformal extension. To this
end, set o (2)=u(z+y/2), B(z2)=u(z—y/2) (z=x+iy) and

S = et Betir(a—pBy),

where r is a positive parameter. By the chain rule, the partial derivatives of
and B, are

and

@x(2) = W:(z+¥/2),  (B:(2) = (U0 (z—y/2),
@y (2) = W (z+¥/2)/2+ (), (2 +y/2),
(B, (2) = — () (2= y/2)/2+ (wy)y (z— y/2).
Lemma 4. There is a k, such that for k=k, f,: H—~H is a bijection.
Proof. One easﬂy sees that f is one to one if and only if the pair of equations
(10) (x+iy) =a
(11) Bu(x+iy) =b
has one and only one solution for all a,5 with a>b. But (10) and {11) define
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for x<¢@~1(2a) resp. x=>¢~1(2b) a decreasing resp. increasing curve y=g;(x),
y=h,(x). These intersect certainly if —g, and A, are bounded above. But

— gk () = (1/2+ W)y (z+y/D/ ()= (z + y/2)) 7,
hi (x) = (1/2— (), (2= y/2)/ (D)< (z—y/2))

so that the assertion follows from Lemma 2.

We have shown that f;, is — for k large enough — a real-analytic homeo-
morphism with correct boundary values. Next we want to estimate the maximal
dilatation of f;. Denote the ratios (o), /(0h)x> (B)y/(Bu)xs (4)x/(Bi)x, evaluated
at z, by &, n,{, respectively. If ¢’>p is arbitrary we can, by Lemmas 2 and 3,
fix a k=k, such that ¢ and 75 lie between (1+¢)~! and ¢'(1+9") ! for all
z€ H. We denote f; by f and its dilatation quotient at z by D. As in [2] we com-
pute

and

1
2r(&+n)

The right hand side of (12) is invariant under the transformation (&,#,{)
—(n, €&, {~1). Hence it suffices to consider the case &=#. With this condition one
easily sees that for &£, 5, and r fixed, the right hand side of (12) is maximized by
{=p’. It follows that

D+D_1 = a(é, r])r+b(é’ 11)’.—1 = F(éa n, r)7

(12) D+D7' = (CA+E)+T1 A+ A+ +2(1=En) (1 1)

where
_ (@ =1)*+(e’¢+n)?
a(tm) = 20°(E+m)
and
’ 2 rE N2
b, ) = EFD+@E—m)

20°(¢+m)

The problem is to minimize with respect to » the maximum of F in the triangle
T={¢& |+ D =n=,(=0"(¢’+1)"'}. A routine computation shows that F
can attain its maximum in 7 only at the vertices of 7. Denote

F((@+D™L (¢’+ )74 r) = Fy(r) = ayr+byr,
F(o'(@'+ D)4 ('+ 1)L, 1) = F(r) = ayr+byr~,
F(o'(@’+ D)7 @ (¢’ +1)"4, 1) = Fy(r) = agr+byr~3,

where

o = 9/3_QI2+2 b _ Q,4+4Q,3+7Q,2+2Q,+2

1= 491 H 1 4Q,2+4Q, s
e"+1
= e—— b, = o ’-—1’

as Q’3+2Q12+Q’ 2 Q +Q

o = 20— +1 be — 20" 4203 +70%2+40" +1
3 — 49/2 ’ 3 4Q/3+4Q/2 .
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Every F; is minimized at r;=(b;/a;)"* and the only poossible positive root

r;; of the equation F;(r)=F;(r), i=j, satisfies

rizj = (bi_bj)/(aj_ai)'

It is clear that max {F,, F,, F3} is minimized by some r; or some r;;. We observe
that b,>b,>b, for all ¢’>1. We first compare F, and F,. A computation shows
that r;>r, for all ¢’>1. It follows that max {F;, F,} is minimized at r, if
Fig=rs, at ry, if ro<ryp<r, and at r, if ry=r, or ry, is imaginary. The first
alternative is found out to hold for @’=g,=1.387 808..., the second for g,<pg'<
<0,=1969351..., and the third for ¢’=g,. Further calculations show that ry
is real only for ¢ <1.959413...<g,. Thus if ¢ >g,, then F,(r)=F3(r) for all
r. On the other hand the inequalities r,<r,; and r,<r,; are found out to hold
for all ¢’>1 for which r,; is real. It follows, in particular, that F,(ry)=>F5(ry)
and Fy(rys) >F3(ryp) for 1<g'<e;.

Altogether, we have shown that the maximal dilatation K of f satisfies the
inequalities

K+K™1 = F,(r,) = 2(a,by)V2, for ¢ = g,

asb;—a, b,

((@z—ay) (by—by))¥*

K+K™1= Fy(ry) =

for g,< @ <g,, and
K+Kt= F(r) = 2(a;b)V%, for o, =¢".
Now if o’'<g, the inequality K<g’®* holds if
da,b, < "3+ 0 7342.

A computation shows that the inequality is indeed valid. For @’=>g,; the inequality
K<cp™ is satisfied if

(13) 4a,b, < 2o’ +c720 142,

If (13) is written explicitly one sees that it is satisfied by any ¢=>1/2 for o’ large
enough and for all ¢’>g, e.g. by ¢=3/4. The computations are rather complicated
in the case g@,<o <g,. It turns out that the inequality K<o®* holds for
0’ <0,=1925057... while for g,=¢"<p, the inequality K<ce? holds with
c=3/4. Since ¢’>¢ was arbitrary, the proof of the theorem is completed.

Remark. The above estimation of K is valid, with " replaced by g, for
the original extension of Beurling and Ahlfors. As pointed out in the proof, actually
K<c(0)g* with lim _ _ c(¢)=1/2. In view of the universal bound K<8p, due
to Reed [5], this is, however, of little interest.
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