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A REAL.ANALYTIC QUASICONFORMAL
EXTE|{SIO|{ OF A QUASISYMMETRIC

FUNCTIONI

MATTI LEHTINEI{

An increasing homeomorphism E: R--'f, is q-quasisymmetric if

Q-1 = (E(x* t)-E@))l@@)-E(x-l» = a

for all rcal x and t, t+0. It is well-known that every p-quasisymmetric function

can be extended to a K-quasiconformal mapping f : H * H, where I/ denotes

the upper half-plane. This was first shown by Beurling and Ahlfors [2] who gave

an explicit construction for an extension I This extension is in the class C1(I1).

In the present note we shall introduce an analytic kernel into the integerals which

define / and thus obtain a real-analytic solution of the boundary value problem.

The construction follows closely the one in [2]. Special attention, however, is paid

to the estimation of the maximal dilatation K. The elementary but laborious com-

putations in [2] leading to the estimate K<qz fot q>l seem to contain some

slips. In fact, the same computations yield a somewhat sharper bound.

Remark. Recently Lehto [4] has demonstrated the existence of a real-analytic

solution of the boundary value problem for quasiconformal mappings by a different,

less explicit method. The maximal dilatation of his solution seems to be essentially

larger than that of ours.
We state our result as

Theorem. Euery p-quasisymmetric function has a K-quasiconformal real-

analytic extension to the upper half-plane. There is a number Qo(:1.925 057...)

such that K<.qslz if l=p-.qo and K<3qzl4 if q=-qo.

Proof. Let q>l arrd rp be a fixed q-quasisymmetric function. (Since a l-
quasisymmetric function is linear, there is nothing to prove in the case Q:1.) Our

construction is based on the functions uy: H*R defined by

(2) ur(x*iy) : i xr$)E@*yt)dt, k:1,2, ...,

(1)
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where
x1,(z) : co exp (- (22)+"),

and the constant co is so chosen that the integral of ro over the real line equals
ll2. The convergence of the integral in (2) for any xliy(H is guaranteed by the
inequalities 13, p. 2451

(3) r!(t)=2tB for 0<r<1,
(4) rlt(t) < (2t)a for I = t,

with A:log, (l * e), B:lo*z (1 + a-t), holding for all q-quasisymmetric ,1,

normalized by r/(0):4, tQ):I. - For future use we note that (3) applied to
t*l -*(l -t) implies

(5) ,!O-2-o)-rlrQ-r)= l-4qkl(p*l)k, k:1,2, ....

Lemma l. The functions u1, dre real-analytic in H and

(6) )yy""rQ): E@s)12

for eoery real xo.

Proof. Fix xoliys in H. Inequality (4) implies the uniform and absolute
convergence of the integrals

t
in a sufficienfly small polydisc UcCXC, with center (xo, yo). It follows by a
standard argument that gr has complex derivatives with respect to z and w in
U. Hence g* is holomorphicat (xo,yo); since u*(x*ty):yg*(x,y) for x*iyeH,
the function zo is real-analytic at xo*iys. To prove (6), Iet xn*iy, with y,>0
converge to xo and apply Lebesgue's convergence theorem to the integrals

_f *rr,r(*rx,* y,t)-cp(xo)) dt.

BV (a) they are majorized by an integrable function and thus converge to zero as

z tends to infinity.
The following two lemmas contain the necessary estimates of the partial deriv-

atives of ze.

Lemma 2.

sx(2, w) - f ,r(t, - z) I w) E (t) dt ,

)i;((t - z)lwl*i-, 0,, i ,*r(tt - ,)lw)EU) dt

uniformly in H.
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Proof. Given z-x*iy€H, set

tG) : 9(x*yt), t1, : (2.4k4-k)-1, and a* : rlt(t)-rlr(0).

Observe that t*tx*(l) takes its largest value at /0. Differentiation of (2) and
a subsequent integration by parts shows that

y (u)*(z) _ t xxQ) d,! (t), y (u*)y(z) - f tuk|) d,! (t).

Because ,t, is increarir;lru %k is positive, and o;;r, of (l),

t x*(t) drtt (t) = _j. 
xx(t) d,rl, (t):,- (t + a -r) aoxx4).

-tk

, On the other hand,

j" ,*r(t) d{t (r) - i ,ro(t) d,tr(r) = i ,*o(t) d,t(r).
-tk

The integral ,;-,n. right hand ;r of (7)is smaller than

(8) x*(t) i , hlt (t)*x*@ j t d{t(r) + x*(t)(,t, (1 - t)-,t(rJ)
'tk o

* ?tr,(l - t*) Qar,* axrr Tn%r,(nt*) Qn .

By alemma of Beurling and Ahlfors ,i', 671

t ta$@: q$Gt*)- I ,t,Oa,
'tk 'tk

= -+(Le)-$(-tk1= ffi,
and similarly

j.,oru, =L++.
Bv (3),

rlr (l - t *)l - rlr (t r) - 2 (t Qt k) - tL G )) 0 - 2t )B = 2a,, q (t - 2t )r .

The left hand side of (7) can be estimated from below in the same way. Combining
the estimates, dividing by oo, and observing that t1,, x{0) and xoQ) tend to
l/2 while xr(l-to) and the infinite s rm in (8) tend to zero as k*-, we obtain
the desired inequality.



2to Marrr LEnrnrN

Lemma 3. If ),:ll2 or -112,

limsun (u*),(x*)"y*iy) 
= n---i*;' (u),(x-iy*iy) - "'

uniformly for x*iy€H.

Proof.We may suppose Ä:112. Then, with ry' as in the previous lemma and
by (5) and (l),

y (u ),(x - y I 2 + i y) = x r(2- l - 2-o) (,1, e 2- o) 
-,1, e I + 2 -))

> Q- 
L xk(z- | - z-r) (r - 4 so I @ + t)rX/ (l) _ f (0».

In the other direction we have

(9) y(up)*(x.tyl2+iy) =. xoQ)(lt(t)-/(0»
+,4 kQ- t) (! (r + 2- \ - {/ (t) + {, (0) -,t/ G z- o))

* xo(2-t { 2-o)(,t, Q) -,t, 0) + u (0) - / ( - l»

+2(t/O-{/ (0» ; xe(2-t1n1qn+t.

Bv.(3) and (l) 
v(r+2-k)-*ul = 2.2-o,s(t (r)-/(0»

and
{t(0)-{t(-2-r) = e(*Q-9-l(0» = z.z-roq(*(l)-,i (0».

To obtain the asserted inequality it now suffices to combine the estimates, divide
bV t|)-t(O) and observe that xe(2-L+2-o) and the infinite sum jn (9) tend
to zero as &* -.

We now proceed to the definition of the quasiconformal extension. To this
end, set ao(z):uo(zlyl2), froQ):ueQ-yl2) (z:xtiy) and

fo : u1,* p1,*ir(uo- p),

where r is a positive parameter. By the chain rule, the partial derivatives of c*
and §o are

(a)*(z) : (u)*(z+ylz), (fr).(r) : (u)*(z- yl2),

(a)r(z) : (u) *(z + y I 2) I 2 + (u p) r(z * 1, I 2),

(§ )r(z) : - (u o) *(z - y I 2) | 2 + (u ),(z - y I 2).

Lemma 4. There is a ko such that for k>ko fo: H*H is a bijection.

Proof. one easily sees that f1, is one to one if and only if the pair of equations

(10) u{x*iy): a

(11) §r,@+ty): b

has one and only one solution for all a,b with a>b. But (10) and (ll) define
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for x=E-L(2a) resp. x=g-t(2b) a decreasing resp. increasing curve !:g*(x\,
y:h*(x). These intersect certainly tt -Si and hlr are bounded above. But

- sl@) : (t I 2 + (u k),Q + t I 2) I @ *),(z * y I 2))-1,
and

h!1,@) : (t12_(u)y(z_ ylz)l@)_(z_ yl2))-,,

so that the assertion follows from Lemma 2.

We have shown that fk is - for k large enough - a real-analytic homeo-
morphism with correct boundary values. Next we want to estimate the maximal
dilatation of -fx. Denote the ratios (o)rl(o),, (f)rl(§)*, (ao)*l(§o\*, evaluated

at z, by (,tl,L respectively. lf q'=q is arbitrary we can, by Lemmas 2 and 3,

frx a k>k, such that ( and 4 lie between (1*e)-1 and Q'(l+q'1-r for all
z(H. We denote f* by f and its dilatation quotient at z by D. As in [2] we com-
pute

I(12) D+D-t : 
2r(e +4) 

(r(r +<r)+r-1(1+4r))(l +r2)+2(t-trio-rr)).

The right hand side of (12) is invariant under the transformation (E,q,o
*(4,€,(-r). Hence it suffices to consider the case (>4. With this condition one
easily sees that for (,4, and r fixed, the right hand side of (12) is maximized by
(- p'. lt follows that

D+D-l < a((,Dr+b(C,tir-r - F(C,4,r),
where

and

a((,ri:

b((,tt):%#t
The problem is to minimize with respect to r the maximum of .F in the triangle
T:{(t,?»lfo' +l)-r=4=(=q'(q'*l)-t}. A routine computation shows that F
can attain its maximum in 7 only at the vertices of 7. Denote

F((q'+l)-',(Q'+l)-',r) - 4(r) : atr+brr-,,
r(s'(q'+l)-', (q'* 1)-t, ,) - Fz?) : azr*bzr-',

F(q'(q'+l)-t, Q'(Q'+1)-',r) - r'r(r) : a.r+b'r-L,
where

bt: Q'4 +4Q'' *7 q'z *2q' +2
4Q'' * 4Q' )

bz: Q'+Q'-r,

, 2Q'4 +2Q'' *7 g'2 + 4q' * |
DB:

(Q' - 1)'+ (q'( *ri'
2e'(( +rt)

Q'3 - Q'2 +2wt 4Q' )

Q'n+7
f,qz - Q'3+ 2,Q''* Q' '

2Q''-Q'+l
o3 : 4a'2 ,

2tt
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Every 4 is minimized at ri:(bJa1)r/2 and the only poossible positive root
rii of the equation FiQ):pr1r1, i;*n satisfies

rli: (b;b)l@i-ot).

It is clear that max {Fr, Fr, .Fr} is minimized by some rr or some 4;. We observe

that br>br>å, for all q'>1. We first cdmpare .F, and Fr. Acomputation shows

that rr>r, for all e'=1. It follows that max {Fr,Fr} is minimized at r2 if
rrz=rz, at rp if rz<\z<.r! and at r, if rr=rp or /rs is imaginary. The first
alternative is found out to hold for Q'sQz:1.387 808..., the second for qr=q'=.
<Qt:1.969351..., ffid the third for 4'>gr. Further calculations show that rrt
is real only for Q'=1.959413...<h. Thus if e'=Qr, then Fr(r)>-Fr(r) for all
r. On the other hand the inequalities tz<rzs and r.r=r* are found out to hold
for all g'=l for which r* is real. It follows, in particular, that Fr(rr)=fr(rJ
and Fr(rrr) =Fa(rrz) for l<q'<gr.

Altogether, we have shown that the maximal dilatation K of f satisfies the

inequalities
K+K-t = Fr(rr) :2(azb)rtz, for Q' 3 Qz,

K+ K- 1 = Fr(rrr) _

for Qz < Q' = Qt, and

azbr- atb,
((or- a)(br- br))'''

K + K-1 < r', (rr) - z(ar,br)'t',

Now if Q'= Qz the inequality K< Q'\tz holds if

for Qrs Q'

A computation shows that
K<.cQ'z is satisfied if
(l 3)

4arbz = Q'3 + Q'-3 +2.

the inequality is indeed valid. For Q' = Qr the inequality

4ar,br = cz Q'4 + c- 2 
Q' -n + 2.

If (13) is written explicitly one sees that it is satisfied by any c=ll2 for g' large

enough and for all p'=q, e.g. by c:314. The computations are rather complicated

in the case qr<q'<qr. It turns out that the inequalit! K<.q'tlz holds for
Q'=eo:1.925057... while for QoiQ'=Qt the inequality K=cQ'z holds with
c:314. Since q'=g was arbitrary, the proof of the theorem is completed.

Remark. The above estimation of i( is valid, with q' replaced by q, for
the original extension of Beurling and Ahlfors. As pointed out in the proof, actually
K=.c(q)qz with limq*- c(p):112. In view of the universal bound K=88, due

to Reed [5], this is, however, of little interest.
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