Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 3, 1977, 207-213

A REAL-ANALYTIC QUASICONFORMAL EXTENSION OF A QUASISYMMETRIC FUNCTION

MATTI LEHTINEN

An increasing homeomorphism $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ is ϱ -quasisymmetric if

(1)
$$\varrho^{-1} \leq (\varphi(x+t) - \varphi(x)) / (\varphi(x) - \varphi(x-t)) \leq \varrho$$

for all real x and t, $t \neq 0$. It is well-known that every ϱ -quasisymmetric function can be extended to a K-quasiconformal mapping $f: H \rightarrow H$, where H denotes the upper half-plane. This was first shown by Beurling and Ahlfors [2] who gave an explicit construction for an extension f. This extension is in the class $C^1(H)$. In the present note we shall introduce an analytic kernel into the integerals which define f and thus obtain a real-analytic solution of the boundary value problem. The construction follows closely the one in [2]. Special attention, however, is paid to the estimation of the maximal dilatation K. The elementary but laborious computations in [2] leading to the estimate $K < \varrho^2$ for $\varrho > 1$ seem to contain some slips. In fact, the same computations yield a somewhat sharper bound.

Remark. Recently Lehto [4] has demonstrated the existence of a real-analytic solution of the boundary value problem for quasiconformal mappings by a different, less explicit method. The maximal dilatation of his solution seems to be essentially larger than that of ours.

We state our result as

Theorem. Every ϱ -quasisymmetric function has a K-quasiconformal realanalytic extension to the upper half-plane. There is a number $\varrho_0(=1.925\ 057...)$ such that $K < \varrho^{3/2}$ if $1 < \varrho < \varrho_0$ and $K < 3\varrho^2/4$ if $\varrho \ge \varrho_0$.

Proof. Let $\varrho > 1$ and φ be a fixed ϱ -quasisymmetric function. (Since a 1quasisymmetric function is linear, there is nothing to prove in the case $\varrho = 1$.) Our construction is based on the functions $u_k: H \rightarrow \mathbf{R}$ defined by

(2)
$$u_k(x+iy) = \int_{-\infty}^{\infty} \varkappa_k(t) \varphi(x+yt) dt, \quad k = 1, 2, ...,$$

doi:10.5186/aasfm.1977.0313

where

$$\varkappa_k(z) = c_k \exp\left(-(2z)^{4^k}\right),$$

and the constant c_k is so chosen that the integral of \varkappa_k over the real line equals 1/2. The convergence of the integral in (2) for any $x+iy \in H$ is guaranteed by the inequalities [3, p. 245]

(3) $\psi(t) \leq 2t^B$ for $0 \leq t \leq 1$,

(4)
$$\psi(t) \leq (2t)^A \text{ for } 1 \leq t,$$

with $A = \log_2(1+\varrho)$, $B = \log_2(1+\varrho^{-1})$, holding for all ϱ -quasisymmetric ψ normalized by $\psi(0)=0$, $\psi(1)=1$. — For future use we note that (3) applied to $t \mapsto 1-\psi(1-t)$ implies

(5)
$$\psi(1-2^{-k})-\psi(2^{-k}) \ge 1-4\varrho^k/(\varrho+1)^k, \quad k=1, 2, \dots$$

Lemma 1. The functions u_k are real-analytic in H and

(6)
$$\lim_{z \to x_0} u_k(z) = \varphi(x_0)/2$$

for every real x_0 .

Proof. Fix $x_0 + iy_0$ in *H*. Inequality (4) implies the uniform and absolute convergence of the integrals

$$g_k(z, w) = \int_{-\infty}^{\infty} \varkappa_k ((t-z)/w) \varphi(t) dt,$$
$$\int_{-\infty}^{\infty} \varkappa'_k ((t-z)/w) \varphi(t) dt, \quad \int_{-\infty}^{\infty} t \varkappa'_k ((t-z)/w) \varphi(t) dt$$

in a sufficiently small polydisc $U \subset \mathbb{C} \times \mathbb{C}$, with center (x_0, y_0) . It follows by a standard argument that g_k has complex derivatives with respect to z and w in U. Hence g_k is holomorphic at (x_0, y_0) ; since $u_k(x+iy) = yg_k(x, y)$ for $x+iy \in H$, the function u_k is real-analytic at x_0+iy_0 . To prove (6), let x_n+iy_n with $y_n>0$ converge to x_0 and apply Lebesgue's convergence theorem to the integrals

$$\int_{-\infty}^{\infty} \varkappa_k(t) \big(\varphi(x_n + y_n t) - \varphi(x_0) \big) dt.$$

By (4) they are majorized by an integrable function and thus converge to zero as n tends to infinity.

The following two lemmas contain the necessary estimates of the partial derivatives of u_k .

Lemma 2.

$$\limsup_{k \to \infty} \frac{|(u_k)_y(z)|}{(u_k)_x(z)} \leq \frac{\varrho - 1}{2(\varrho + 1)},$$

uniformly in H.

Proof. Given $z = x + iy \in H$, set

$$\psi(t) = \varphi(x+yt), \quad t_k = (2 \cdot 4^{k4^{-k}})^{-1}, \text{ and } a_k = \psi(t_k) - \psi(0).$$

Observe that $t \mapsto t \varkappa_k(t)$ takes its largest value at t_k . Differentiation of (2) and a subsequent integration by parts shows that

$$y(u_k)_x(z) = \int_{-\infty}^{\infty} \varkappa_k(t) \, d\psi(t), \quad y(u_k)_y(z) = \int_{-\infty}^{\infty} t \varkappa_k(t) \, d\psi(t).$$

Because ψ is increasing and \varkappa_k is positive, and because of (1),

$$\int_{-\infty}^{\infty} \varkappa_k(t) \, d\psi(t) > \int_{-t_k}^{t_k} \varkappa_k(t) \, d\psi(t) > (1+\varrho^{-1}) a_k \varkappa_k(t_k).$$

On the other hand,

(7)
$$\int_{-\infty}^{t_k} t \varkappa_k(t) \, d\psi(t) < \int_{-\infty}^{\infty} t \varkappa_k(t) \, d\psi(t) < \int_{-t_k}^{\infty} t \varkappa_k(t) \, d\psi(t).$$

The integral on the right hand side of (7) is smaller than

(8)
$$\begin{aligned} \varkappa_{k}(t_{k}) \int_{-t_{k}}^{0} t \, d\psi(t) + \varkappa_{k}(0) \int_{0}^{t_{k}} t \, d\psi(t) + \varkappa_{k}(t_{k}) \big(\psi(1-t_{k}) - \psi(t_{k}) \big) \\ + \varkappa_{k}(1-t_{k}) \varrho a_{k} + a_{k} t_{k} \sum_{n=2}^{\infty} n \varkappa_{k}(nt_{k}) \varrho^{n}. \end{aligned}$$

$$\int_{-t_k}^0 t \, d\psi(t) = t_k \psi(-t_k) - \int_{-t_k}^0 \psi(t) \, dt$$
$$\leq -\frac{t_k}{\varrho+1} \left(\psi(0) - \psi(-t_k) \right) \leq \frac{-t_k a_k}{\varrho(\varrho+1)},$$

and similarly

$$\int_{0}^{t_{k}} t \, d\psi(t) \leq \frac{t_{k} a_{k} \varrho}{\varrho + 1} \, .$$

By (3),

$$\psi(1-t_k)-\psi(t_k) < 2(\psi(2t_k)-\psi(t_k))(1-2t_k)^B \leq 2a_k \varrho(1-2t_k)^B.$$

The left hand side of (7) can be estimated from below in the same way. Combining the estimates, dividing by a_k , and observing that t_k , $\varkappa_k(0)$ and $\varkappa_k(t_k)$ tend to 1/2 while $\varkappa_k(1-t_k)$ and the infinite sum in (8) tend to zero as $k \to \infty$, we obtain the desired inequality.

Lemma 3. If $\lambda = 1/2$ or -1/2,

$$\limsup_{k \to \infty} \frac{(u_k)_x (x + \lambda y + iy)}{(u_k)_x (x - \lambda y + iy)} \leq \varrho,$$

uniformly for $x+iy \in H$.

Proof. We may suppose $\lambda = 1/2$. Then, with ψ as in the previous lemma and by (5) and (1),

$$y(u_k)_x(x-y/2+iy) > \varkappa_k(2^{-1}-2^{-k})\big(\psi(-2^{-k})-\psi(-1+2^{-k})\big)$$

$$\geq \varrho^{-1}\varkappa_k(2^{-1}-2^{-k})\big(1-4\varrho^k/(\varrho+1)^k\big)\big(\psi(1)-\psi(0)\big).$$

In the other direction we have

(0) ·

(9)
$$y(u_{k})_{x}(x+y/2+iy) < \varkappa_{k}(0)(\psi(1)-\psi(0)) + \varkappa_{k}(2^{-1})(\psi(1+2^{-k})-\psi(1)+\psi(0)-\psi(-2^{-k})) + \varkappa_{k}(2^{-1}+2^{-k})(\psi(2)-\psi(1)+\psi(0)-\psi(-1)) + 2(\psi(1)-\psi(0))\sum_{n=1}^{\infty}\varkappa_{k}(2^{-1}+n)\varrho^{n+1}.$$

By (3) and (1)

$$\psi(1+2^{-k})-\psi(1) \leq 2 \cdot 2^{-kB} \varrho\left(\psi(1)-\psi(0)\right)$$

and

$$\psi(0) - \psi(-2^{-k}) \leq \varrho(\psi(2^{-k}) - \psi(0)) \leq 2 \cdot 2^{-kB} \varrho(\psi(1) - \psi(0)).$$

To obtain the asserted inequality it now suffices to combine the estimates, divide by $\psi(1) - \psi(0)$ and observe that $\varkappa_k(2^{-1} + 2^{-k})$ and the infinite sum in (9) tend to zero as $k \rightarrow \infty$.

We now proceed to the definition of the quasiconformal extension. To this end, set $\alpha_k(z) = u_k(z+y/2)$, $\beta_k(z) = u_k(z-y/2)$ (z=x+iy) and

$$f_k = \alpha_k + \beta_k + ir(\alpha_k - \beta_k),$$

where r is a positive parameter. By the chain rule, the partial derivatives of α_k and β_k are

$$\begin{aligned} &(\alpha_k)_x(z) = (u_k)_x(z+y/2), \quad (\beta_k)_x(z) = (u_k)_x(z-y/2), \\ &(\alpha_k)_y(z) = (u_k)_x(z+y/2)/2 + (u_k)_y(z+y/2), \\ &(\beta_k)_y(z) = -(u_k)_x(z-y/2)/2 + (u_k)_y(z-y/2). \end{aligned}$$

Lemma 4. There is a k_0 such that for $k \ge k_0$ $f_k: H \rightarrow H$ is a bijection.

Proof. One easily sees that f_k is one to one if and only if the pair of equations

(10)
$$\alpha_k(x+iy) = a$$

(11)
$$\beta_k(x+iy) = b$$

has one and only one solution for all a, b with a > b. But (10) and (11) define

for $x < \varphi^{-1}(2a)$ resp. $x > \varphi^{-1}(2b)$ a decreasing resp. increasing curve $y = g_k(x)$, $y = h_k(x)$. These intersect certainly if $-g'_k$ and h'_k are bounded above. But

 $-g'_{k}(x) = (1/2 + (u_{k})_{v}(z+v/2)/(u_{k})_{x}(z+v/2))^{-1},$

and

$$h'_k(x) = \left(\frac{1}{2} - \frac{(u_k)_y(z - y/2)}{(u_k)_x(z - y/2)}\right)^{-1},$$

so that the assertion follows from Lemma 2.

We have shown that f_k is — for k large enough — a real-analytic homeomorphism with correct boundary values. Next we want to estimate the maximal dilatation of f_k . Denote the ratios $(\alpha_k)_y/(\alpha_k)_x$, $(\beta_k)_y/(\beta_k)_x$, $(\alpha_k)_x/(\beta_k)_x$, evaluated at z, by ξ, η, ζ , respectively. If $\varrho' > \varrho$ is arbitrary we can, by Lemmas 2 and 3, fix a $k \ge k_0$ such that ξ and η lie between $(1+\varrho')^{-1}$ and $\varrho'(1+\varrho')^{-1}$ for all $z \in H$. We denote f_k by f and its dilatation quotient at z by D. As in [2] we compute

(12)
$$D+D^{-1} = \frac{1}{2r(\xi+\eta)} \left((\zeta(1+\xi^2)+\zeta^{-1}(1+\eta^2))(1+r^2)+2(1-\xi\eta)(1-r^2) \right)$$

The right hand side of (12) is invariant under the transformation $(\xi, \eta, \zeta) \mapsto (\eta, \xi, \zeta^{-1})$. Hence it suffices to consider the case $\xi \ge \eta$. With this condition one easily sees that for ξ, η , and r fixed, the right hand side of (12) is maximized by $\zeta = \varrho'$. It follows that

$$D + D^{-1} \leq a(\xi, \eta)r + b(\xi, \eta)r^{-1} = F(\xi, \eta, r),$$

where

$$a(\xi, \eta) = \frac{(\varrho' - 1)^2 + (\varrho'\xi + \eta)^2}{2\varrho'(\xi + \eta)}$$

and

$$b(\xi, \eta) = \frac{(\varrho'+1)^2 + (\varrho'\xi - \eta)^2}{2\varrho'(\xi + \eta)}.$$

The problem is to minimize with respect to r the maximum of F in the triangle $T = \{(\xi, \eta) | (\varrho'+1)^{-1} \le \eta \le \xi \le \varrho' (\varrho'+1)^{-1}\}$. A routine computation shows that F can attain its maximum in T only at the vertices of T. Denote

$$F((\varrho'+1)^{-1}, (\varrho'+1)^{-1}, r) = F_1(r) = a_1r + b_1r^{-1},$$

$$F(\varrho'(\varrho'+1)^{-1}, (\varrho'+1)^{-1}, r) = F_2(r) = a_2r + b_2r^{-1},$$

$$F(\varrho'(\varrho'+1)^{-1}, \varrho'(\varrho'+1)^{-1}, r) = F_3(r) = a_3r + b_3r^{-1},$$

where

$$\begin{aligned} a_1 &= \frac{\varrho'^3 - \varrho'^2 + 2}{4\varrho'}, \qquad b_1 &= \frac{\varrho'^4 + 4\varrho'^3 + 7\varrho'^2 + 2\varrho' + 2}{4\varrho'^2 + 4\varrho'}, \\ a_2 &= \frac{\varrho'^4 + 1}{\varrho'^3 + 2\varrho'^2 + \varrho'}, \qquad b_2 &= \varrho' + \varrho'^{-1}, \\ a_3 &= \frac{2\varrho'^3 - \varrho' + 1}{4\varrho'^2}, \qquad b_3 &= \frac{2\varrho'^4 + 2\varrho'^3 + 7\varrho'^2 + 4\varrho' + 1}{4\varrho'^3 + 4\varrho'^2}. \end{aligned}$$

Every F_i is minimized at $r_i = (b_i/a_i)^{1/2}$ and the only possible positive root r_{ij} of the equation $F_i(r) = F_j(r)$, $i \neq j$, satisfies

$$r_{ij}^2 = (b_i - b_j)/(a_j - a_i).$$

It is clear that max $\{F_1, F_2, F_3\}$ is minimized by some r_i or some r_{ij} . We observe that $b_1 > b_2 > b_3$ for all $\varrho' > 1$. We first compare F_1 and F_2 . A computation shows that $r_1 > r_2$ for all $\varrho' > 1$. It follows that max $\{F_1, F_2\}$ is minimized at r_2 if $r_{12} \le r_2$, at r_{12} if $r_2 < r_{12} < r_1$ and at r_1 if $r_1 \le r_{12}$ or r_{12} is imaginary. The first alternative is found out to hold for $\varrho' \le \varrho_2 = 1.387$ 808..., the second for $\varrho_2 < \varrho' <$ $<math>< \varrho_1 = 1.969$ 351..., and the third for $\varrho' \ge \varrho_1$. Further calculations show that r_{23} is real only for $\varrho' < 1.959$ 413... $< \varrho_1$. Thus if $\varrho' > \varrho_1$, then $F_1(r) > F_3(r)$ for all r. On the other hand the inequalities $r_2 < r_{23}$ and $r_{12} < r_{23}$ are found out to hold for all $\varrho' > 1$ for which r_{23} is real. It follows, in particular, that $F_2(r_2) > F_3(r_2)$ and $F_2(r_{12}) > F_3(r_{12})$ for $1 < \varrho' < \varrho_1$.

Altogether, we have shown that the maximal dilatation K of f satisfies the inequalities

$$K+K^{-1} \leq F_2(r_2) = 2(a_2b_2)^{1/2}, \text{ for } \varrho' \leq \varrho_2,$$

$$K+K^{-1} \leq F_1(r_{12}) = \frac{a_2b_1-a_1b_2}{((a_2-a_1)(b_1-b_2))^{1/2}},$$

for $\varrho_2 < \varrho' < \varrho_1$, and

$$K+K^{-1} \leq F_1(r_1) = 2(a_1b_1)^{1/2}, \text{ for } \varrho_1 \leq \varrho'.$$

Now if $\varrho' < \varrho_2$ the inequality $K < \varrho'^{3/2}$ holds if

$$4a_2b_2 < \varrho'^3 + \varrho'^{-3} + 2.$$

A computation shows that the inequality is indeed valid. For $\varrho' > \varrho_1$ the inequality $K < c\varrho'^2$ is satisfied if

(13)
$$4a_1b_1 < c^2\varrho'^4 + c^{-2}\varrho'^{-4} + 2$$

If (13) is written explicitly one sees that it is satisfied by any c>1/2 for ϱ' large enough and for all $\varrho' > \varrho_1$ e.g. by c=3/4. The computations are rather complicated in the case $\varrho_2 < \varrho' < \varrho_1$. It turns out that the inequality $K < \varrho'^{3/2}$ holds for $\varrho' < \varrho_0 = 1.925057...$ while for $\varrho_0 \le \varrho' < \varrho_1$ the inequality $K < c\varrho'^2$ holds with c=3/4. Since $\varrho' > \varrho$ was arbitrary, the proof of the theorem is completed.

Remark. The above estimation of K is valid, with ϱ' replaced by ϱ , for the original extension of Beurling and Ahlfors. As pointed out in the proof, actually $K < c(\varrho) \varrho^2$ with $\lim_{\varrho \to \infty} c(\varrho) = 1/2$. In view of the universal bound $K < 8\varrho$, due to Reed [5], this is, however, of little interest.

References

- AHLFORS, L. V.: Lectures on quasiconformal mappings. D. van Nostrand Company, Inc., Princeton, N. J., 1966.
- [2] BEURLING, A., and L. V. AHLFORS: The boundary correspondence under quasiconformal mappings. — Acta Math. 96, 1956, 125—142.
- [3] KELINGOS, J. A.: Boundary correspondence under quasiconformal mappings. Michigan Math. J. 13, 1966, 235—249.
- [4] LEHTO, O.: On the boundary value problem for quasiconformal mappings. To appear.
- [5] REED, T. J.: Quasiconformal mappings with given boundary values. Duke Math. J. 33, 1966, 459—464.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 25 October 1976