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ON THE OUTER COEFFICIENT
OF QUASICONFORMALITY
OF A CONVEX DIHEDRAL WEDGE

OSSI TAARI

1. Introduction

Let D and D’ be domains in R® and f: D—~D’ a homeomorphism. The
numbers

Ki(f) = syp S0 Kol = spp 7

are called the inner and the outer dilatation of f. There M(I') and M(fT) are
the moduli of the curve families I' and fT and the suprema are taken over all
families which lie in D. The mapping f is quasiconformal if the maximal dilata-
tion max (K;(f), Ko(f)) is finite. Further, the inner and outer coefficients of
the quasiconformality of D with respect to D’ are defined by the numbers

K(D, D) =inf K, (f), Ko(D, D) =inf Ko (),

where f runs through all homeomorphisms f: D—D’. The case when D’ is a ball
or a half space is of particular interest.

The problem of determining the coefficients of quasiconformality and the
corresponding extremal mappings is fairly difficult and has been only solved for
a few domains. In this paper we shall consider the outer coefficient problem in the
case where D is a convex dihedral wedge in R® and D’ is a half space, still with
certain additional local conditions for the mapping at one arbitrary edge point.
Gehring and Véisdld have solved the corresponding problem for the inner
coefficient [2], p. 43 (see also Viisild [3], p. 133!). As for the theory of n-dimensional
quasiconformal mappings we refer to [3].

1 The definitions of dilatations in [2] are not exactly the same as in this paper and in [3].
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2. Additional conditions

Let (r,¥, @) be spherical coordinates in R? where the polar angle ¢ is
measured from the positive half of the x;-axis. A domain in R® is called a dihedral
wedge of angle «, O<a=2rn, if it can be mapped by means of a similarity trans-
formation onto the domain

Da={(r’l//’(P)|r>Os 0<y <aq, 0<(P<7T}

The inverse image of the x;-axis under this mapping is said to be the edge of the
dihedral wedge.

We consider now the subclass W of homeomorphisms f: D,—~D,, O<a<m,
f(0)=0, whose restrictions f|D, are quasiconformal mappings onto D, and
which satisfy the following conditions A and B at the origin.

A. There is a polar angle ¢,, 0<q@,<m/2, such that the limit

lim f(e)jt = k(e) = 0, =

exists for every e€D, with 0=(e, e5)=¢,, where (e, es;) denotes the actual angle
between the vectors e and es.

Let g,: D,~D, be the sequence, defined by

g,.(x) =nf(x/n), n=1,2, ...

We extend g, to a quasiconformal mapping of R® onto itself. First we map D,
onto D, by the folding A, A(r, ¥, @)=(r, ay/a, ). Then g,oh™! will be extended
to a quasi-conformal mapping #;: R®*—~R? by reflection. Finally, we define a map-
ping hy: RB—~R3 by hy(r, ¥, )=(r,{¥’, ¢), where

ap/n for 0=y=n

V= a+2nT-a(t//—n) for n=y =2mn.

Then g,=hoh;': R3—~R® is quasiconformal and §,|D,=g,.

Because (k(e), k(e5))=0 for a fixed f and every e, 0<(e, e))=q, (see [1],
Theorem 3.3), the sequence £, is by [3], 19.4 and 20.5 a normal family and thus
has a subsequence g;, i€JCN, which converges to the limit function g: R®*—~R3
uniformly on every compact subset of R®. By the condition A ¢ is a homeo-
morphism, since £(0)=0 and g,(es)=nf (es/n)—~k(es); see [3], 21.3. By [3], 37.2,
g=£|D, is quasiconformal and

Ko(g) =lim Ky(g,) = Ko(f).

n—oo

The condition A implies that for every e€D,, 0=(e, ¢5)=¢,, g maps the
ray {te|t>0} onto the ray {tk(e)|r>0} linearly, g(te)=tk(e). We set the following
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additional condition for f:

B. lim ( max (k(e), k(ey)/ min (k(e), k(ex) = 1.

e>0+ (e,

e o € (-1

This condition as well is local for f at the origin. We denote
KO(Da’ Dn; W) = lnf{K'O(f)IfE W}
and prove the following theorem.

Theorem 1. K,(D,, D,; W)=rn/o.
For &>0 let f¢W be a mapping such that

Ko(f) = KO(Da,Dn; W)+8

and g the limit mapping, associated with f by the above process. Then K,(g)
=K,(f) and thus also
@ Ko(8) < Ko(Dy, Dy; W) +e.

Next, to prove the Theorem 1 we consider the following curve families in D,.

3. The curve families I" and I';

We denote
Da(rl,rz; ﬂ’ (Po) = {(rslpa (,0)1"1 =r= r2’ 0< lp = aa B = (P =< Q)O}’
where r,>0, 0<f<@,. Let I' be the family of all arcs joining the plane parts
TO = Da(rla 7'2§ ﬁ’ 4’0)("{'// = 0}

Taz = Da(rla r2; B’ (Po)n{w = (Z}

and

of the boundary 0D, (ry, ra; By ®o) In D, (ry, rs; B, @)
Let o€ F(I') be arbitrary, i.e. fy ods=1 when y€I. Choose y€T, and
consider the horizontal circular arc

=y, 0)r=1y, 0=y =a ¢ =(e)}

where (y, eg) is the angle between the vectors y and e;. By Holder’s inequality
we obtain

a a
1= f or sin @ dy =f or?/3sin1/3 ¢ (r1/3 sin?3 @) dys
0 0

2/3

a 1/3 a
= (f o%r? sin(pdt//) (f ri/2 sinq)dx//}
0 0
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Hence
a

f 03r?sin @ dy = 1/(ar sin? )
0
and consequently

o3dV = jzdr f%dqo fgarzsin(pdt//
r B 0

Dy(ry,re; B, ¢9)

f f a2rs1n2 - = (1/0?) ———— sin (@, —p) log (ry/ry).

sin ®o 'sin @gsin

From the above it follows that

1 sin(p—p)

M) = a?  sin @, sin f

log (ry/ry).

Let I'; be the arc family joining the spheres |x|=r, and |x|=r, in the set

Da(r19r2; ﬁ)={(",lﬂ,(l’)["1<"<7‘2,0<'J/<°C, 0<q)<ﬂ}
Then
o n(2 2cos B)  a(l—cos f)

2n (log (ry/r))? ~ (log (rofr))*

lim M(D):M(Ty) = 1)245.
p—~0

MTy) =~

In particular,

We shall next consider the g-images I’ and I'; of the families I' and I;.

4. Upper bounds for M(I'") and M(I'])

We may assume that k(e;) lies on the positive xj-axis. Let

= min {lg(®)|||x| = r;, x€D,}

.
- _ (=12
7 = max {[g(x)|||x| = r;, x€D,},

where r; and r, are the radii of D,(r, r; B, @) and D, (ry, rs; ). Furthermore

we denote
Da(ﬂ,(oo) = {(r’lp9§0)lr>03 0< !l/<d, ﬂ< §0<(Po}

E = (gD, (B, ¢¢)) N (B*(F)\B*(ry)).

and
Define
1/(nrsing) for (r, ¥, @)€E

0 otherwise.

o(r, ¢, 9) ={
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We can suppose ¢, so small that for the above chosen mapping f (k(e), e5)<mn
when (e, e;)=¢,. Then

fg ds = fn(r sin ¢/(nr sin @)) dyy =1

for all y€I’, because ds=rsin ¢ dy for every curve element. Hence

, 1 f dA
M) = f *dv = f F1ad o sm3 =T f dr f risind¢
n ENS2(r) @

Denote by C,(B, ¢,) the subset

{(T,l//s¢)|0§|p§7z, ¢§-§0§¢'}

o —(eml)n (k(e), es)

of S%(r), where

and @’ is defined such that the area of C,(, ¢,) is equal to my(EnS2(r)). There
¢ and @’ are independent of r, since g maps each ray {te|t=>0}, (e, e5)=5,
onto a ray. From the inequalities

sindp ~ sild @’ sinif® — J sind¢’
) 70 H{) H{»

dd__ [ _d4 dA_ _ [ _d4

where
G(r) = EnS*(n)\C, (B, ¢o),

H(r) = C,(B, po)\EN S*(1),
it follows that

2 M(F')<_fdr fr351n3 =n13r d’f fsm2

B, ®o)

1 sin(9'—)

T Ssin®sind log (Fa/ry) =

Zsin® ———= log (Fy/ry).

To obtain a similar estimate for M(I';), we denote
Da(ﬁ)= {(r,t//,cp)|r>0, Oé'l/éa, 0§(P§ﬂ},
4,(B) = (gD.(B) N S2(r).

Let r, be so small that F,<r,. Choose

1/(r log (rof7y)) for (r, ¥, 9) € gD,(B)N (B3 (r)\B*()

0 otherwise.

o(r, ¥, @) ={
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Then
Iy
dr
P
Je J o)

for every y€Ij, ie. @€F(I';), and consequently

N e [ A ma(4,) dr
M(Fl) ~RJQ dV———f drAZ{;W = (l/log (rz/rl))i‘/‘ _—r2 -r—

If we denote

& = max (x, e;) = max e
xeA,(li)( > €) €D, {8) (k(e), es),
then

r

(3) M) = (log (ryfFy)) 2 f : n(1—cos ®) dr/r = 2n(sin ($/2))*(log (ro/F)) 2

5. Proof of Theorem 1
Keeping r; and r, fixed we let now B—0. By the condition B, the estimates
(2) and (3) imply
@ I M (L) M () = g (log (Fo/r)log (/7).
Since the extended mapping &: R3—R® is quasiconformal, Tﬁrl_,o (¥y/ry) is finite

and with a fixed r,
Jim (log (7,)/log (/7)) = 1.

The above estimate (4) is valid for every pair r;, r,>0 with small r,, and letting
r,—~0 with fixed r, we obtain

im (Iim M (") M (') = 1/27°.

r—~0

Thus the inequalities M(IN=K,(g)M(I'") and M ()= Ky (g)M(I7) imply

Ky(g) = nfa.
Because £>0 in (1) is arbitrary, it follows
Ko(D,, D, ; W) = n/a.

The example fEW, f(r, , z2)=(r, np/a, nz/x), given in cylindrical coordinates,
shows that
Ko(D,,D,; W) = nfa.
Thus the theorem is proved.
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