QUASISYMMETRIC FUNCTIONS WITH DILATATION ONE

MATTI LEHTINEN

In a recent paper [3] Strebel introduced the dilatation of a homeomorphism of a Jordan curve onto another as follows: Let G_j , j=1, 2, be Jordan domains and $\varphi:\partial G_1 \rightarrow \partial G_2$ a sense-preserving homeomorphism. Consider all ring domains $A_j \subset G_j$ such that one boundary component of A_j is ∂G_j , and quasiconformal mappings $f: A_1 \rightarrow A_2$ such that $f |\partial G_1 = \varphi$. The infimum of the maximal dilatations of all such mappings is called the interior dilatation of φ . The exterior dilatation is defined similarly using ring domains in the complements of G_1 and G_2 . If ∂G_1 and ∂G_2 are analytic, the interior and exterior dilatations of φ coincide. We then call their common value the dilatation of φ and denote it by $L(\varphi)$.

Assume $L(\varphi) < \infty$ and denote by Q_{φ} the class of all quasiconformal mappings $g: G_1 \rightarrow G_2$ such that $g | \partial G_1 = \varphi$. Making use of a well-known extension theorem [2, p. 96] one easily concludes that $Q_{\varphi} \neq \emptyset$. The class Q_{φ} contains one or more extremals, i.e. mappings with smallest possible maximal dilatation in Q_{φ} . Denote this dilatation by $K(\varphi)$. It was shown by Strebel that if $L(\varphi) < K(\varphi)$, then Q_{φ} contains only one extremal, which is a Teichmüller mapping. In particular, then, if $L(\varphi) = 1$, the extremal is always unique, and either conformal or a Teichmüller mapping.

Strebel [3, p. 469] obtained a necessary and sufficient condition for φ to have dilatation one in the case $G_1 = G_2$ = the unit disc. There is, however, some interest in carrying Strebel's characterization over to the case of the upper half-plane, the boundary mappings then being the familiar quasisymmetric functions.

Now let $\varphi: \mathbf{R} \to \mathbf{R}$ be an increasing homeomorphism. It gives rise to a function $q_{\varphi}: H \to \mathbf{R}_+$, defined by

$$q_{\varphi}(x+iy) = \frac{\varphi(x+y) - \varphi(x)}{\varphi(x) - \varphi(x-y)}.$$

Thus φ is k-quasisymmetric if q_{φ} is bounded above by k and below by 1/k. Whether φ has dilatation one depends on the behavior of q near the real axis:

Theorem 1. An increasing homeomorphism $\varphi: \mathbf{R} \to \mathbf{R}$ has dilatation one if and only if $q_{\varphi}(z)$ tends to one as z tends to the real axis in the spherical metric.

Proof. To prove the sufficiency part, we utilize the construction of Beurling and Ahlfors [1]. Given an arbitrary $\eta > 1$, there exist positive numbers m, M such that

$$\eta^{-1} < q_{\varphi}(z) < \eta$$

for all z in the subset E of H whose elements satisfy |Re z| > M, Im z < m, or Im z > M. For all $z = x + iy \in H$ set

$$\alpha_j(z) = \int_0^1 \varphi(x + (-1)^j yt) dt, \quad j = 0, 1.$$

Then α_i is differentiable, and its partial derivatives are

(1)
$$(\alpha_j)_x(z) = (-1)^j (\varphi(x + (-1)^j y) - \varphi(x)),$$

(2)
$$(\alpha_j)_y(z) = \int_0^1 (-1)^j t \, d\varphi \big(x + (-1)^j y t \big).$$

Now set

$$f(z) = (1/2) \big(\alpha_0(z) + \alpha_1(z) + i \big(\alpha_0(z) - \alpha_1(z) \big).$$

It follows from the hypothesis and the continuity of q_{φ} that φ is k-quasisymmetric for some k. By [1], f is a quasiconformal homeomorphism of H, agreeing with φ on **R**. The dilatation quotient D of f at z satisfies

(3)
$$D+D^{-1} = \frac{5(1+\xi_0^2)\zeta + 5(1+\xi_1^2)/\zeta + 6(\xi_0\xi_1-1)}{4(\xi_0+\xi_1)}$$

where

$$\zeta = (\alpha_1)_x(z)/(\alpha_0)_x(z), \quad \xi_j = (-1)^j (\alpha_j)_y(z)/(\alpha_j)_x(z),$$

j=0, 1. The right-hand side of (3) is continuous in ξ_0, ξ_1, ζ and takes the value 2 for $\xi_0 = \xi_1 = 1/2, \zeta = 1$. In order to have *D* arbitrarily close to one it thus suffices to have ξ_0 and ξ_1 sufficiently close to 1/2 and ζ sufficiently close to 1. Now $\zeta = 1/q_{\varphi}(z)$ so that $1/\eta \leq \zeta \leq \eta$ holds in *E*. We next estimate ξ_0 . By a lemma of Beurling and Ahlfors [1, p. 137]

(4)
$$\frac{1}{1+\eta} \leq \xi_0(x+iy) \leq \frac{\eta}{1+\eta},$$

provided φ is η -quasisymmetric in the interval (x, x+y). This is certainly true if the triangle with vertices x, x+y, x+y/2+iy/2 is contained in *E*. Suppose then that this is not the case. First assume $x \ge -M$, $y \ge 2M$. By (1) and (2),

$$\xi_0(x+iy) = \frac{\int_0^1 \left(\varphi(x+y) - \varphi(x+ty)\right) dt}{\varphi(x+y) - \varphi(x)},$$

and since $x+iy \in E$,

$$\eta^{-2}\xi_{0}(x+iy) \leq \frac{\int_{0}^{1} \left(\varphi(x+y+yt) - \varphi(x+y)\right) dt}{\varphi(x+2y) - \varphi(x+y)} \leq \eta^{2}\xi_{0}(x+iy)$$
$$\eta^{-2}\xi_{0}(x+iy) \leq 1 - \xi_{0}(x+y+iy) \leq \eta^{2}\xi_{0}(x+iy).$$

or

Our assumption implies that $\xi_0(x+y+iy)$ satisfies (4), and hence

$$\frac{1}{\eta^2(1+\eta)} \leq \xi_0(x+iy) \leq \frac{\eta^3}{1+\eta}.$$

If $x \le -M$, $y \ge 2M$, we may write

$$\xi_0(x+iy) = 1 - \frac{\int_0^1 (\varphi(x+yt) - \varphi(x)) dt}{\varphi(x+y) - \varphi(x)},$$

and a similar argument yields

$$\frac{1+\eta-\eta^3}{1+\eta} \leq \xi_0(x+iy) \leq \frac{\eta^3+\eta^2-1}{\eta^2(\eta+1)}.$$

Completely analogous estimates hold for ξ_1 . It follows that given K>1, we can always find *m* and *M* such that *f* is *K*-quasiconformal outside the trapezoid with vertices $\pm M + im$, $\pm (3M-m)+2Mi$. By definition, then, $L(\varphi)=1$.

On the other hand, assume $L(\varphi)=1$. Let $\eta>1$ be arbitrary. By a lemma of Strebel [3, p. 469] there exists a $\delta>0$ such that

(5)
$$\eta^{-1} \leq q_{\varphi}(x+iy) \leq \eta$$

as soon as $0 < y < \delta$. We thus have to estimate $q_{\varphi}(z)$ only for $\operatorname{Im} z \ge \delta$ and |z| large. There is no loss of generality in supposing $x \ge 0$. By assumption, there exist positive numbers m, M such that φ can be extended to an η -quasiconformal mapping f of the set E considered in the first part of the proof. Further let E_j , j=0, 1, be the simply connected domain obtained from E by removing the closed rectangle with vertices $0, (-1)^j M, (-1)^j M + im$, im. We consider three cases: (i) $0 \le x \le M$, (ii) x > M and x > y, (iii) x > M and $x \le y$.

In case (i), take $y \ge 2M$ and consider the quadrilateral $E_1(x-y, x, x+y, \infty)$. The mapping $\zeta \mapsto (\zeta - x)/y$ transforms it into a quadrilateral $E_z(-1, 0, 1, \infty)$ without changing the conformal module. It is clear that as $y \to \infty$ the distance of any point lying on the side of E_z with endpoints -1, 0 from the line segment joining the same points approaches zero. By the continuity of the module (see e.g. [2, p. 26]), mod E_z tends to mod $H(-1, 0, 1, \infty) = 1$. In case (ii) the spherical distance of the side of E_z with endpoints $-\infty$, -1 from the ray $(-\infty, -1)$ tends to zero as $|z| \to \infty$. (Observe that we assume $y \ge \delta$.) Consequently mod $E_1(x-y, x, x+y, \infty) = \mod E_z(-1, 0, 1, \infty) \to 1$. In case (iii), a similar argument yields mod $E_0(x-y, x, x+y, \infty) \to 1$ as $|z| \to \infty$. The same argument also shows that mod $f(E_j)(\varphi(x-y), \varphi(x), \varphi(x+y), \infty)$ (where j=1 in cases (i) and (ii), and j=0 in case (iii)) tends to mod $H(\varphi(x-y), \varphi(x), \varphi(x+y), \infty)$ as $|z| \to \infty$. Thus for |z| large enough

$$\eta^{-3} \leq \eta^{-2} \mod E_j \leq \eta^{-1} \mod f(E_j)$$
$$\leq \mod H(\varphi(x-y), \varphi(x), \varphi(x+y), \infty)$$
$$\leq \eta \mod f(E_j) \leq \eta^2 \mod E_j \leq \eta^3.$$

But this means that for |z| large enough

$$\lambda(\eta^3)^{-1} \leq q_{\omega}(z) \leq \lambda(\eta^3),$$

where λ is the distortion function defined in [2, p. 81]. As $\lim_{t\to 1} \lambda(t) = 1$, and because of (5), the theorem is proved.

It follows at once from the extension theorem of Beurling and Ahlfors or from the above proof that k-quasisymmetric mappings with a small k necessarily have a small dilatation. It is, however, easy to construct examples showing that the converse is not in general true:

Theorem 2. There exist homeomorphisms $\varphi: \mathbf{R} \to \mathbf{R}$ with $L(\varphi) = 1$ and $\max_{z \in H} q_{\varphi}(z)$ arbitrarily large.

Proof. Given M > 0, set

 $\psi(x) = 8M(x^3 - x^4), \qquad 0 \le x \le 1/2,$ $\psi(x) = M - \psi(1 - x), \qquad 1/2 < x \le 1,$ $\psi(x) = \psi(1 - (x - 1)/(3M)), \qquad 1 < x \le 3M + 1,$

and $\psi(x)=0$ otherwise. Then ψ has a continuous second derivative, and $\psi'(x) \ge \ge \psi'(1+3M/2) = -2/3$. Set $\varphi(x) = x + \psi(x)$. Then $\varphi: \mathbb{R} \to \mathbb{R}$ is increasing, $\varphi(1) = 1 + M$, $q_{\varphi}(i) = M + 1$. Let K be an upper bound for ψ'' . Then $q_{\varphi}(x+iy) = = \varphi'(\xi_1)/\varphi'(\xi_2)$ is bounded above by $(\varphi'(x)+Ky)/(\varphi'(x)-Ky)$ and below by $(\varphi'(x)-Ky)/(\varphi'(x)+Ky)$, whence $\lim_{y\to 0} q_{\varphi}(x+iy) = 1$, uniformly in x. It is clear that $q_{\varphi}(z)$ tends to one as $|z| \to \infty$. By Theorem 1, $L(\varphi) = 1$.

References

- BEURLING, A., and L. V. AHLFORS: The boundary correspondence under quasiconformal mappings. — Acta Math. 96, 1956, 125—142.
- [2] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, Berlin — Heidelberg — New York, 1973.
- [3] STREBEL, K.: On the existence of extremal Teichmueller mappings. J. Analyse Math. 30, 1976, 464—480.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 9 February 1977