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QUASTCONFORMAT EXTENSTONS
OF MAPPINGS IN n.SPACE

DAVID B. GAULD and M. K. VAMANAMURTHY

Abstract. Let D be a Jordan domain in R'. Then a homeomorphism å: åD*
+§r-1 extends to a homeomorphism k:D*B' so that fi\O is quasiconformal
if and only if each point of 0D has a neighbourhood in D over which å extends
quasiconformally. One consequence of this is a quasiconformal version of the
generalised Schoenflies theorem. Another consequence of the methods is that if
D is a domain in R' and h:|D*B'-r is a homeomorphism, then å extends
to a quasiconforrnal homeomorphism of R' if and only if each point of åD has
a neighbourhood over which å extends quasiconformally.

l. The main results. This paper consists essentially of two parts. The major
result in the first part is Theorem I concerning the flattening of a locally flat boun-
dary. As the result is already known in the topological case, it is stated and proved
in the quasiconformal context, the proof being an adaptation of that of Connelly [3].

The major result of the second part is Theorem 3 which concerns the structure
of the interior of a set given that the boundary is already nice. The technique used
to prove Theorem 3 is a modification of Brown's proof in [2] of the generalised
Schoenflies theorem. As observed in [4, p. 139, Remark l], Brown's proof of the
generalised Schoenflies theorem makes use of non-quasiconformal homeomorphisms.
We modify his proof using a technique developed in [1] and [5] and we make use

of only quasiconformal auxiliary homeomorphisms. Hopefully the technique will
be of use elsewhere.

Please refer to § 2 for the definitions and notation used in the following results.

Theorem l. Suppose D is a Jordan domain in R" qild that 0D is locally
quasiconformally flat in D. Then 0D is quasiconformally flat in D.

A two-sided version of Theorem I is formulated in § 6.

In the case where the domain D is non-Jordan, we can still fonnulate a suitable
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definition of (local) quasiconformal flatness as well as a more general version of
Theorem 1: details appear in § 4. Also in § 4 we prove the following result.

Theorem 2. suppose X is a subset of R' and h: X*-B'-L is a homeomorphism.

Suppose further that % is a couer of X by open subsets of R" so that for each
(I(%, hlUnX extends to a quasiconformal embedding hu: (J-R". Then h extends

to a quosiconformal embedding of a neighbourhood of X in Rn.

Theorem 3. Let e: N*Rn be an embedding where N is a neighbourhood of
S"-r in -H. Then el5'-t exrcnds to an embedding a:Bn-R" with e(N)cc(E').
If elNaB" is quasiconformal, then so is AlB".

Theorem 3 is Gehring's Theorem I in [6], but whereas Gehring uses the ideas

of Mazur [10], we adapt the ideas of Brown's completely different proof [2].

Corollary 4. A Jordan domain D in R' is quasiconformally equiualent to
B' if and only if 0D is locally quasiconformally flat in D.

Corollary 5. Suppose that D is a domain in -N whose boundary, 0D, is

homeomorphic to the (n-l)-ball B"-L by a homeomorphism h:|D*Bo-r so that

for each point x of 0D, h extends to a quasiconformal embedding of a neighbourhood
(in -N) of x in N. Then h extends to a quasiconformal homeomorphism of R".
In particular, D is quasiconformally equitsalent to B'.

Remark. For z:3, a slightly stronger version of Corollary 5 holds: see

[7], [1r].

Corollary 6. Let e: ^S'-1*P be an embedding: thus by the Jordan-Brouwer
separation theorem [9, p. 80] R'-e(S'-l) consists of two components, each being

a Jordan domain. Suppose that e-r is locally quasiconformally flat in each of these

Jordan domains. Then e extends to a quasiconformal homeomorphism of -R".

Corollary 6 is a quasiconformal version of the generalised Schoenflies theorem.
Of course, one can delete all mention of quasiconformality in the above results
(except the 'only if' part of Corollary 4) and still have valid results (cf. Remark I
on p. 139 of [1a).

2. Preliminaries. The following notation is used. R' denotes euclidean n-space

with the Pythagorean metric: if x:(x1, ..., x,)€R.', Iet llxll:(ri+...*xl)tl?1' then
the distance from x to y in R' is ll.rr-yll. F denotes the one-point compacti-
fication of R'; Rn:Rou{-}. If x(R', r€R, then rx€Ru is obtainedbymultiplying
each coordinate of x by r.

For a,ä€R with o<a<b, let

(a, b) - {r€R'la - llxll = b},
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with obvious analogous meanings for la, å) and (a,b). In particular, fa,al:fal,
[0, l;:3', [0, 11:6' and [, 1]:[]:§'-1.

Intervals in R will be denoted by lfa,bf, I(a,b), etc.

If X is any subset of R', we let X, int(X) atd åX denote, respectively,
the closure, interior and frontier of X, all with respect to R'. A domain is a non-
empty connected open subset of R', a Jordan domain being a domain in R' whose
frontier is homeomorphic to ,Sn-1. We use the words "embedding" and "homeo-
morphism" in their usual topological senses: homeomorphisms must be surjective.

Let h: D*D' be a homeomorphism between two domains in Ro. Then å

is quasiconformal if and only if

trräX11x - ylt =, llh(x) - h (y)ll

min1lx -ylt =, llh(x) - h (y)ll

is bounded. Other equivalent definitions of quasiconformality appear in [14].

Definition.Let D beaJordandomainin R' and h:|D*Sn-r ahomeo-
morphism. Then å is locally quasiconformally flat in D if and only if there is
a real number a, O<a<l, and a cover al of 0D by open subsets of D so that
for each a€.q/, the map hlUnDD extends to a homeomorphism

hu: A * {rz€Wla = r = I and zQh(UalD)\

so that hulUaD is quasiconformal.
We say that h is quasiconformally flat in D if and only if the cover 0?l above

may be chosen to contain just one element.

The boundary 0D is (locally) quasiconformally flat in D if and only if there
exists a homeomorphism h:0D*5"-1 which is (locally) quasiconformallyflat.

We now comment on the above definition. The ideal situation would not assume
the local extendability of a global homeomorphism å: |D*So-r; cf. the deflnition
of locally quasiconformally collared in [14, p. 54]. If we could replace "flat" by
"collared" in Theorem I then we would'be able to improve Corollary 4 to give
us a generalisation to R' of Gehring's Theorem 4 in [6]. Of course Väisälä's defini.
tion of global quasiconformal collaring is the same as our definition of (global)
quasiconformal flatness, so that if one wanted to improve Theorem 1 above by
replacing "flat" by "collared", one would need to find such a homeomorphism å.
In fact, an affirmative answer to the following conjecture is precisely what we need.

Conjecture. Let D be a Jordan domain r'n R'. Suppose that for each x€|D
there is an open neighbourhood U of x in D and an embedding hu of U in B"
so that å;11S'-t1: Ua\D,

hr(A) : {rz(R'l ll2 = r = 1 and z€hu(U nlD))

and ht)lUnD is quasiconformal, Then there is a homeomorphism g:|D*S'-r so

that for each x€\D there is an open neighbourhood V of x in D and an extmsion

23t

lr. D-{-, h-L(".)}}{,,-,,0
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of glVnLD to a homeomorphism 8v of V onto

{rz€Wlll} = r 
< I and zcg(V^lD)}

so that gylVnD is quasiconformal.

This conjecture is true fot n:3, see [6, Theorem 4].

The topological version of this conjecture (i.e. that obtained by deleting quasi-

confonnality) is trivial, for we may let g:0D*5"-r by any homeomorphism,

and for each (1, let faQz):7g7;1(z) for ll2=r=l and z(hu(AnåD)' Now

let gu:fuhu.

3. Flattening the boundary of a Jordan ilomain. In this section we prove Theorem

l, so suppose that D is a Jordan domain in R" and that 0D is locally quasicon-

formally flat in D.
Use the notation of the definition of locally quasiconformally flat; we will

assume that q:ll3 in the definition. Since åD is compact, we may assume that

4l is frnite, say öll:{Ur,...,U*}. Abbreviate hv, to hi.

Let D* be the topological space obtained from the disjoint union of D and

LD>.IU,3l2l by identifying x€»DcD with (x, |)(.ID]XIU,3l2l, (see Figure 1).

We want to impose a collar on 0D lying inside D. D" is D together with a collar

on 0D. The idea is to push this collar inside D.

aD xIi,,å]

D

äD = 3D xilj

we will define a homeomorphism e.: D*D*: the extension of h to a neigh-

bourhood of 0D in D required by the definition of quasiconformal flatness will
use the product structure of 0DXI(1,312), the neighbourhood in question being

e;t(»DxI(t,312)).
Let tt:Uiv(Utn0D)Xlll,3l2l, and extend å, to

h!: Ul * {rz€Pl l13 < r = 312 and zah(UnlD)}

by letting h!(x,t):1ft1v1 when x€Ura|D and t€I\,3l2l.
Define the "projections" Pit U!*Uia\D and q1: Ul*11113,3121 by

pt@):h-!(z) and qi(x):r if x€Ui with hi(x):ry for ll3<r= I and

z€h(UnlD), änd if (x, t)€(Utn0D)YJ[1,312], let

Figure I

pi(x, t) : x and Ti(x, t) - t.
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Let
{,ti: S'-t * Ill,llli : l, ...,*}

be a smooth partition of unity subordinate to the cover

{h(UtalD)li : l, ..., m}

of ,S'-1 [8, p. 17], and define ).r:lD-IlD,ll2l by

A;(x) : (l 12) ),i h(x), x(LD.

Define 1t,:\D*I\O, lf2f, i:0,...,m, by

pi(x): å 
^,(*), 

x(LD.
j:L

Note that lto(|D):O and P*(0D):112.
Using induction on k and a modification of a construction due to Connelly

[3], we now construct embeddings eo: D*D*, k:0, ...,m, to satisfy the following
properties:
(i) e* (D) : |- v {(x, t) €0 D x llt, 3 I 4l t 

= 
I + tt*(x)} ;

(ii) For every J:1,...,ffi, the embedding hleo is quasiconformal on the interior
of its domain, i.e. on the interior of e*r(U!).
Induction begins at k:0 by letting eo be the inclusion. Then eo(D):D so

(i) is satisfied, and for each i:1,...,ffi, the domain of hjeo is U, on the interior
of which hjeo:hs is quasiconformal.

Suppose now that e*-, has been constructed so as to satisfy the conditions.

Define e1 as follows:

(a) if e*-t(x\€D*-Uf or if er-r(x)QU* and l/3 = e*e*-r(x) < ll2, let

e*(x): e*-Jx);

(b) if e*-{x)cu{ afi' ll2= qoeo-r@)(=312), let

e *(x) : of , (lu r, r -,@) * ffi hp oe r *,@)) .

The effect of part (b) of this definition is as follows: map x to the point

h[er-r@) in the "nice" region

{rz€R'l ll2 = r = 312 and z(h(U1,n0D)1,

apply a radial diffeomorphism to the image, this radial diffeomorphism stretching,

for each zQh(UynlD), the radial line

{rz(R'l I 12 = r = | * pr-rh-r (z)\
onto the radial line

{rz€R'l I 12 = r = I * prh-t (z)),

and then apply hf-l. (See Figure 2.)



234 D.qvn B. G.q.urp and M. K. VaUaNAMURTHY

Well-definition
assumption (i),

and since also

we have that

"graph" \otuk )

t'graphtt 
\

of u*- 
1,[

(x) += Q*€*-r(x) .% = r*tt*pxe*-'(x).

Since I * popx€*-, (x) =312, we see that

l,orr-,(x).%r hpoex-Jx)

is in the image of the embedding hX, so (b) makes sense.

of €xi if €*-t@)(UI and ll2=Qxer,-r(x), then by inductive

l12 = Qx€x-r(x) = l*ttr,-rpr,€r,-r(x),

0 = lxpr,€r,-r(x) = ll2- Fx-rpx€*-t(x),

(UknaD), rIr,*]
hi

///// c e*-,(D)

,.\\\\ = e*(D) - e*-, tD)

Figure 2

If eo-r(x)( tJ1, and l*e*-t(x):112, then the left inequality of (x) becomes

an equality, and definition (b) of ee(x) reduces to

hi-r((U2)hpker,-Jr.))

: h;' (q r, e r - {x)' hP v e v * {x))
: e*-r(x),

so definitions (a) and (b) are compatible.
If e1-r(x)(Uf and ll2=qoe*-r(x), then, provided P*ex-t(x) is sufficiently

close to the frontier of U60D in 0D, we have )'ypyey-1(x):0; this being so

because the partition of unity p,ili:t,...,*l is subordinate to the cover

lh(U;n0D)li:1,...,m1. In this case, definition (b) of e1(x) again reduces to
e*-, (x).

I
I
I

I

lro
I

)

The radial line AC. is stretched

to AD keeping the portion AB fixed.



Quasiconformal extensions of mappings in z-space 235

Thus e* is continuous. Furthermore, ek is clearly injective, so, being a con-
tinuous injective function from a compact space to a Hausdorff space, it is an

embedding.
We must ver§ that e1 satisfies the properties (i) and (ii).

(1) We need only verify the truth of the equality when restricted to Uf, since

only here do eo-, and er, and p1,-, ffid p* differ. By inductive hypothesis (i),
g*ex-r(x) can be as large as l*pt0-rpr,e*-t(x\, in which case the right inequality
of (x) becomes an equality. Thus the frontier of eo-r(D) has been pushed, in Uf ,

out as far as {(x,t)€0DXl[,3l21lt:l+ttk@)} to construct eo(D-).

Clearly eo(D) also includes everything out to this frontier, so property (i)
is satisfied.
(ii) Again we need only verify this statement inside eo!r(U[), since e1 agrees

with eo-, otr e;:JUI). Let 7 be an integer between I and m. Referring to de-

finition (b) of e1, we see that hjep:(h]åi-1)o(stretching diffeomorphism)o(hf,er-),
a composition of three maps. By inductive assumption (ii), hI 

"o-, 
is quasiconformal ;

any diffeomorphism is quasiconformal provided mild conditions are satisfied (see

[4, p.48]; these conditions are satisfied in our situation); \ and h;t are quasi-

conformal, hence so is their composition hrh;L where defined. An hfi(Uinu)-
-(UonU,)1, h;hi-' is the identity, which is quasiconformal. Thus h;h|-' is
quasiconformal, and we have expressed hl e1, as a composition of three quasi-

confonnal mappings, so h! e* is quasiconformal.
This completes our inductive construction of the embeddings e*.

As alreadynoted, p-(0D):1f2, so property (i) of e. tells us that e^(D):D*,
i.e. e^ is a homeomorphism. Let

U: e;t(lDXIU,3l2D.

Then U is a neighbourhood of 0D in D. Define

by
H: fJ * Ulz, ll

H(x) - (Qe*(x)- rl2)hpe*(x),

where p:0DxIU,3l2l*2p and q:0DxI[1,314*IU,3l2] are the standard
projections.
(I) H is a homeomorphism with the above range. In fact, ä is the composition
of three homeomorphisms: e^, taking U onto lDXIU,3l2l; the obvious radial
extension of h to a homeomorphism from IDY.IU,3l2l onto the annulus U,3l2l
in Rn (cf. the extension of ht to hl); and a radial shrinking of ll,3l?) to lll2,ll.
(ID ä extends h. lf x€\D, then one can easily see from definition (b) of e1

that eo(x):(x, l+p1(x)), so that e^(x):(x,312), and hence

pe^(x): x and qe^(x):312.

Thus l/(x):å(x) as required.
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(III) ä is quasiconformal on UnD. This follows from inductive assumption (ii).
For any j:1,...,r/t, by (ii), hte^ is quasiconformal on (I^D^e;t(U;). Since

on such a set H is the composition hj e^ followed by the shrinking, ä is quasi-

conformal on UaDae-t(Ul). Thus fI is quasiconformal since

{U nD n e;r(Ui)U : l, ..., m}

is a finite open cover of UoD.
By (I), (II) and (IID, äD is quasiconformally flat in D as required. U

Remark. We can assume that li is the identity on a given compact subset

K of h(UrnåD). In this case, the mapping 11 will agree with h, on Vt:Ua

^pLrh-L(K), 
so that we can extend the collar hrlY, to the whole of 0D.

4. The boundary of a non-Jordan domain. Suppose D is some domain in R' and
AD is a topological (z-l)-manifold without boundary. Provided we can find
a model for 0D which is nicely embedded in R', the techniques of § 3 generalise

to such a D. The main criterion for "niceness" of the model, say M, is that there
is an embedding of Mxll,l) in R' whose restriction to MX{0} is the projection
on M. The [0, l) factor of this embedding plays the same role in this case as

did the radial structure of R' in the previous case. As an example, the 2-torus
T2:S1XS1 has a nice embedding in RB obtained by revolving the circle

(x-2)2 * 22 : l, ./ : 0

around the z-axis. Given a domain D in Rs whose boundary åD is homeomorphic
lo 72, we can speak of local quasiconformal flatness of 0D in D and the tech-
niques used to prove Theorem I carry over to this case to prove that if åD is locally
quasiconformally flat in D then åD is quasiconformally flat in D.

In certain cases where åD is not an (n- l)-manifold we can still use the above
techniques to go from local flatness to global flatness, an example being provided
by Theorem 2.

Proof of Theorem 2. We slit R' along X to obtain a space Y and a subset
Z of Y corresponding to the slit X. Z is locally quasiconformally flat in Y,

so by Theorem I is quasiconformally flat in I. This flatness structure gives us

the desired extension of å.

Precisely, let

F: F',-Xlu(txx{-1, 1}ll[(x, -l) - (x, 1) for x(å-t(§r-z)]).

Define z: I*R' by n(y):y if y€R'-X and n(x, t 1):x if x(X. The func-
tion zr, the identity on R'-X, closes up the slit.

By Möbius transformations, R'-.8' and R'-Bo-l are, conformally, open
half space and slit space respectively. Let q: R,-,B'*R' be such that q folds
the half space R'-B' quasiconformally onto R4-Br-1. Then R'-B' is essentially
R' slit along B'-1 and g closes up this slit in the same way as z closes the slit X.
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Lat Z:n-r (X) with the quotient topology inherited from XX{-l, l}, and
choose a homeomorphism g: Z-5"-r so that the following diagram commutes:

Y *-) Z n , Sr-1 (., R,-.8,
lt
l'hl'
R'. lX "- 

B-tr-l (-*Ru.

In fact, h has only two such liftings: either one will do.
For each U(4/, we can extend gln-l(U)aZ uniquely to an injective function

gu: r--t(U) * [r-32
which lifts år, making the following diagram commute:

y * ) n-L(U) ---!."-.-* n,-.8,l"ll,
1{'-, J '" -*'.

Topologise I by declaring the union of the following two families to be
a basis:

{I/cn'-XlZ is open in R,};

{gaL(V)lUqaU and V is open in R'-.8'}.

The effect of this is to slit any open subset of R' along X into two open sets, one
on each side of the slit. Under this topology, g is a homeomorphism and each
g, is an embedding. Since the topology on the subspace Y-Z:R"-X of Y
is the usual topology, one may speak of quasiconformality of the functions
gul(Y-Z)nn-'(U). In fact these functions are quasiconformal since they agree
with Q-Lhal@'-X)nU. Thus {grlu«t\ provides a local quasiconformal flatness
structure for Z in Y, The techniques of Theorem I can now be applied to extend
g to an embedding g: N*R'-Br, where tr[ is a neighbourhood of Z in I(and
hence g(N) is a neighbourhood of ,Sn-1 in R'-B'), so that §l(Y-Z)nN is
quasiconformal.

Define [: z(i/)*[' by h1x1:qgz-.(x). Then [' extends h and is an em-
beddingof theneighbourhood zr(//) of X in R'. Moreover I isquasiconformal
on z(N)-X and hence on z(l/), since B'-1 is of finite (z-l)-measure, [14]. 1]

5. Inside a Jordan domain. In this section we give our proof of Theorem 3.

Brown's proof in [2] consists essentially of two distinct steps, (cf. [2, p. 48]).

Step l. Let N:U12, ll, a neighbourhood of ^S'-1 in Bn, and suppose
e: N*R' is an embedding. Let C denote the component of R'-e(,S'-l) for
which e(/[)ce. Then there is an embedding f:B"*R" so that f(B")v
ve(1t12,1)):c. (See Figure 3.)
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step lr. Given embeddings e and / as in step I, there is an embedding
A: B'*R' for which A@):s1*1 whenever x€Sn-r, and C(B\:e.

step I involves the use of non-quasiconformal embeddings even when e is
quasiconformal. However, in the proof of this step in Lemma 7 below, we see that
the embedding f is quasiconformal when e is quasiconformal.

r(En) /

f (sn-') * --
*-- 6 (frJ)

Figure 3

It is at Step II that the non-quasiconformality referred to by Väisälä arises,
since Brown's proof of this step involves an interplay between the radial structures
of e(N) and of f (B\, the embedding ä being the limit of a sequence of em-
beddings

e*: S,-1X[0, l] * R'

where ep(x,O):e(x) for x(Sn-1.limo*_eo is an embedding off ,S'-rX{l}
and sends .S'-rX{1} to a single point. Since S,-1X[0, l]/^S,-1X{l} is naturally
homeomorphic to B', we may think of limo*- eo as being an embedding of B"
in ['. Now each eo may be assumed quasiconform al if e and f are (to give this
meaning, we may identify ,S'-rX[0, 1] with Ul2,ll in a natural way) but the
Iimit of the eo's need not be: each eo is, say .fii*-quasiconformal, but limo*-r(*
may be infinite (contrast 37.3 on p. 125 of tla).

Below we split Brown's step II into two parts; see Lemmas 8 and 9. The first
part is essentially Brown's construction of e, and the second part is an adaptation
of ideas in [5]. we will find that if e and / are quasiconformar then so is ä.

Lemma 7. Let e: Ulz,
of [n - e (,S'-t) -for which
satisfying

U *R" be an embedding and denote by c the component
e(lllz, l))cc. Then there r.§ an embedding f: B"*R'

f (8")v e((tlz, 1)) : C.

If e is quasiconformal, then so is f.
Proof. wite N:Ul2,ll. By perforrning a (conformal) transformation if

necessary, we may assume that -€e((U2,1\),\e(N)cB" and 0€C2, where C,
denotes the bounded component of R'-e((l l2)s"-'). Let c, denote the bounded
component of F'-e(§'-l). Then CrvCncB. (See Figure 4.)
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B
4

f '(u)

f
--------I>

.r' 
-- 1-f-r(u) = ff '(u)

f'--.-ITili.lTT,,ur,

f
-4

«o
l"

Figure 4
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Let a:lll2,l]*B" be the radial stretching given by a(rx):12t-l)x for
ll2=t=1, llxll :1. Then se-1 has anatural continuous extension over C, which
sends C, to 0. Next, let fi: Rn*R' be a quasiconfonnal mapping which is tåe
identity on R'--Bn so that f(ae-1(-;):9.
Define /: R'*R' by

for x*Ct
for xe c:.

lf xQ0C1 then ae-l(x)€S'-r where p is the identity, so for such x, I@):*.
Thus I is continuous. Although / is an embedding only on *'-er, and I is
not quasiconformal on R'-er, when e is quasiconformal f is quasiconformal
on each compact subset of R'-e, which is all we will need.

Let p:f (e2) and let UcV and lttt be balls with U and V centred. at
p, V of twice the radius of (1, so that Vce(1t12,t7), W cenfied at 0 so that
WcCr. Let y: R'*R' be a quasiconformal mapping which maps the annulus
R'-1UuW) onto the annulus V-U leaving points of Uu{0} fixed.

Now define the required function / by

if x€e ((t lz, 1l) u C,
if x€I-r(U).

Then / is an embedding satisfying f (B')ve(1t12,t11:9. Moreover, if e is
quasiconformal on (ll2,l) then f is quasiconformal on .B'. n

Lemma 8. Let e and f be as in Lemma 7. Then there exist real numbers a, b, c
and an embedding f: B'-R' satisfying:
(0 0<a<b<.1, lf2<s<.1;
$i) j(b,1l)ce((c, r));
liil J@lce((Uz, c)).
(iv) For euery x(S"-r, f(x1:77x1.
Further, if e is quasiconformal then so is f.

Proof. Let C and C, be as in Lemma 7. We may assume that e is bounded
and that f (O)€Cr.

Now /(§'-LYce(1t1Z,l)), so there exists å with å<l such that /([å, l])c
ce(1t12,1)). Thus e(ltl2))cf((0,b)), so there exists c with tl2<c such that
e(lll2, cl)c/(0, å). Since f(0)€Cr, there exists a with 0=a such that
f (lO, al)cCr. See Figure 5.

Define s:[0,1]*[0,c] to be that homeomorphism which fixes [0,112] and
radially shrinks |l2,ll to lll2,cl, and define o: [0, l]*[0, l] to be that homeo-
morphism which stretches [0, a] radially to [0, å] and shrinks [a, l] radially to
[å, l]. Define ,S,.8: e *e by

if x€e (U 12, l)),

otherwise,

f (x): 
{ 
': '§on-'(x)

r (x):{';'vI@)

( ese-t (x)
,s(x) : l,
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and

Clearly S and »
embedding f (cf.

r(x) : {'y-'(x) Ir#l(B)'
satisfy the quasiconformality conditions.

Figure 6) by

A.- ff@) if f(x)€e(lc, lD,
J lx) - t ,Sr,S -rf (x) otherwise.

Define the required

Then f satisfies the required conditions. tr

Figure 5

f(0)

I

I

I

I

" rål

I

-,rl.s'i I

.rl

efc)-f(u) f(1) e(t)

\

i\
,:i \"t \

{1

e(l)

I

I

I

I

Lemma 9. Let e: lll2, 1]*R'
satisfying:
(i) 0= a<b<1, ll2-c= l;
(ii) lb, llce((c, l));
(iii) lalcr((t12, r)).

o, b and c be real numbers

i

rl

t\

I

si
I
I

f (b) u'// ..-/ -'y' .-/ .'
I - t / r' I r ,t

",1,1 i(o) *(.) rlui=i1r.,r iir: er l
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Then there is an embedding ö: B".--Rn
if e ,§ quasiconformal then so fs A.

Proof. Choose d€I(112, c) so that
Let %, A, p: An---R' be the

the following:

such that C(x)-e(x) tf llxll =c. Moreouer,

lalce(1t12, d)).
natural radial homeomorphisms doing

x ([0,ll2D: [0, c]; x (U12, cl) : [c, l];
,1 ([0, b]) : [0, a]; ), ([b, t]) : fa, tl, ,1 ([], -]) : [], -];
p $0, dD : [0,d]; p (d, tD : ld, cl.

Define the embedding ä: [1/2, 1]*R' (see Figure 7) by

I"@) if llxll = c,

E(x) : 
I 

epe-L )"ex(x) if llxll = c and ),ex(x)(e([d, t)),
l Tex(x) if ).ex(x)(e(U12, itl)v[O, a].

llell-definition of E:
(a) lf ll2=llxll=c then z(x)([c, l] which is in the domain of e, so ex(x) is
defined and hence so is ,l'ez(x). If, further ).ex(x)€e([d, r]), then

so 
e-L iex(x)€ld,l],

pe-L Äex(x) g ld, cl

which also lies in the domain of e, so epe-r)"ex(x) is defined.
(P) If Aex(x) e e (ds"-'), then e-L ),ex(x) e dso-', and so

epe-r iex(x) - ee-L Äex(x) - Lex(x).

Thus a is well-defined on %-r e-t A-L e (ds"-t).
(y) If llxll - c, x (x)€ S'-t, so by (ii), ex (x) q y,
and hence Aex(x) - ex (x). Thus

epe-L Aex(x) - epe-r ex,(x) - epx(x) - e(x).

Thus e is well-defined on c,S'-l.

*r-ilrl'-ll
il

Figure 7

b

-ttl

å

I
-)

e.-'n-,-,
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Combining (a), (f), and (y), we see that e is well-defined.
It is easily verified tbat e is continuous; that it is an embedding follows from

the Jordan-Brouwer separation theorem and invariance of domain (18.6 and
l8.e of [e]).

Note that ä enjoys the following properties:
(a) if x€[c, 1] then ö(x):s1a1t
(b) if llxll:ll2 then e(x\:(alb)z(2cx).

Basically what we have done is to alter e in |12, cl to get Z, which essentially
repeats on lll2l the action of e on [c]. Following [5] we exploit this repetitive
feature of Z to allow us to extend E to P.

For x€Ul2,ll, we set A@\:s@1, and let ä(0):9. Suppose x((0,112).
Then for some non-negative integer k, (2c)kx€lll2,cl. Let

ö(x) : (alg-ke(Qc)kx).

By property (b) of ä, ä is well-defined, hence continuous except possibly at 0.

Continuity at 0 follows from the fact that a<b so (alb)-k*O as &*-.
That ö is an embedding follows as for ä above.
It remains to verify the quasiconformality of ä when e is quasiconformal.

The embedding Z is quasiconformal since each of the auxiliary functions x,l,lt
is quasiconformal; say ä is K-quasiconformal. On each open annulus (1t12112c1-k,
c(2c)-k), ä is obtained from ä by composing with two multiptications, which are
conformal. Thus ä is K-quasiconfonnal on each such annulus. The exceptional set,

1

Uo 2(2c)-r,s'-r u {o},

is of finite (n-l)-Lebesgue measure and hence is removable [14]. Thus ö is K-
quasiconformal on .B'. n

Remark. As in [5], one could replace R' and rB' (which are cones over
,S'-') by cones over more general spaces, although one might want to impose such
conditions as compactness, Iocal connectedness and metrisability dictated to us
as in [5] by Proposition 3 of [5] and 1.7 of [13].

Proof of Theorem 3. Since N must contain some annulus, we may assume
y:lll2,ll. Let a,b,c and f:8"*R" be as in Lemma 8. Let d: lll2,ll*[112,c]
denote the natural (quasiconformal) homeomorphism fixng lll2), and consider
the embedding e:lll2,ll*R' defined by e(x):(ll@f-red(x). By Lemma 8,
taking ,f:inclusion, there exist real numbers q, fi and y and an embedding

@:.8'*R' satisfying:
0=c< fl-1, ll2<y<. 1;

Q$P,ll)c s((y, 1)); @(al)c s ((tlz, y)); Q@) - x for x€.sn-r
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Define (: [ 12, I J-*R' by

((,) - { Q-'e (x) if lle (x)ll = l',\) - [e(x) if lle (x)ll = I.Then:
(i) 0=a<fr<|, ll2<y<l;
(ii) [8, l]c(((y, 1));
(iii) [a]c(((U2, y)).

Hence by Lemma 9, there exists an embedding t: .Bn*Rn such that (1x1:61x;
if llxll=y. Further, ( is quasiconformal if e is.

Now define the required embedding ä: B'*R' by

1f@ft-r1x1) if llxll = c,

'(x) 
: 

t r(x) if llxll = c.

Note that if llxll:c, then ile-'(x)ll:1, so that te-l(x):(ö-t(x). In this
case,

I
ed-l(x) : a ft"1*1

which, bV Gii) of Lemma 8, lies outside .Br'. Thus

i"-t6y: ed-r(x): L i-rr1*1,
so that

f(a(d-t(x)): e(x),
and € is well-defined

Quasiconformality of ä in the case where e is quasiconformal is readily
verified. tr

Remark. As in [4] and [5], the constructions in Lemmas 7, 8 and 9 are canonical
in the sense that if we furnish the various function spaces with the compact-open
topologies, then the real numbers and embeddings constructed depend continuously
on the given data. For example, Lemma 7 constructs a continuous function (cf. [a)

E(Ulz,l], R',) * E(fi"R',), e *r;
here E(X, f) denotes the space of embeddings of X in f with the compact-
open topology. Similar interpretations apply to Lemmas 8 and 9. Combining all
of these gives us a canonical (quasiconformal) Schoenflies theorem in the sense

of [4]. More precisely, we have the following

Canonical quasiconformal Schoenflies theorem. Let N be a neigh-
bourhood of 5"-t in 8". Then there is a continuous function

e: E(N,R') * d(B', E')

such that for e€E(N,R'), e(e) extends elS'-1, and e(N)ce(e)(B'). Moreouer,
if e is quasiconformal then so is e(e).
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6. Consequences. In this section we verify Corollaries 4, 5 and 6 and consider
two-sided flatness.

Proof of Corollary 4. Assume first that D is quasiconformally equivalent
to .B'. Then åD is locally quasiconformally flat in D, by 17.20 of ll4).

Conversely, by Theorem l, 0D is quasiconformally flat in D, say

6 g *fa,ll (a < l)
is a homeomorphism, where U is a neighbourhood of 0D in D, such that hlUnD
is quasiconformal. Let e: [4, l]*['be the inverse of å. Then el(a,l) is quasi-

conforrnal so by Theorem 3 elS'-l extends to an embedding ä:-B'*R' so that
Uc.ö(B') and AIB' is quasiconformal. By [9, 18.8], 0(8"):p, so ä is a home-
omorphism from .Bo to D which is quasiconformal on tr to D. D

Proof of Corollary 5. This result follows from Theorem 2 and Corollary 4
as follows. By Theorem 2, h extends to a quasiconformal embedding h': (J*Rn,
where U is a neighbourhood of åD in R'. Let E be an ellipsoid for which
B"-LcEch'(U). Since E can be mapped onto B' by a linear quasiconformal
mapping, it follows that the exterior of h'-t(E) has a quasiconformally flat
boundary; hence by Corollary 4, h'lAh'-L(E) can be extended quasiconformally
as a mapping fr of this exterior onto R'--8. The required quasiconformal home-
omorphism g of R' extending å is given by

g(x) -
if h'(x) €8,
otherwise.

Proof of Corollary 6. We extend e over each of the complementary domains
as in the proof of the "if" part of Corollary 4. The resulting extension ä: R'*R'
must be surjective by [9, 18.8], so ä is a homeomorphism of R'. Since ,So-1 is
of finite (z - l)-Lebesgue measure, by ll4, 35.\, e is quasiconformal on Ro. !

Two-sidedflaftess. Suppose D is a Jordan domain in Rn and that h: 0D* S"-r
is a homeomorphism, that a and b are real numbers with 0=a=l<å, and that
there is a cover Ql of 0D by open subsets of R' so that for U€Q/, the map
hlUa\D extends to a quasiconformal homeomorphism

hu: U * {rz€R"la < r < b and z(h(Ua|D)\.

Thus å and 0D are locally quasiconformally flat on both sides: we might say

that h and 0D are locally quasiconformally flat in R', with an obvious meaning
for "h and äD are quasiconformally flat in R"'.

Corollary 6 shows us that local quasiconformal flatness in Ro implies quasi-

conformal flatness in R'; one treats each side separately and then combines the
resulting extensions. The same idea carries over to certain non-Jordan domains
as considered in § 4.

I h'(*)

1fi,@) n



ttl

121

t3l

t4l
tsl

t6l

t71

t8l

teI

t10l
t I 1I

u2t
t13I

t 141

Davro B. Gauro and M. K. Va*raNaMURTHy

References

BRAKES, W. R.: An improved version of the non-compact weak canonical Schoenflies theorem.

- Trans. Amer. Math. Soc. 213, 1975, 6l-69.
BRowN, M.: A proof of the generalised Schoenflies theorem. - Bull. Amer. Math. Soc. 66,

1960,74-76.
CoNNer,r,v, R. : A new proof of Brown's collaring theorem. - Proc. Amer. Math. Soc. 27, l97l ,

180-182.
Gnur,», D. B.: The canonical Schoenflies theorem. - Ibid. 27, 1971, 603-612.
G.nur,o, D. B.: Local contractibility of spaces of homeomorphisms. - C-ompositio, Math. 32,

1976,3-ll.
GrNnrNc, F. W.: Extension theorems for quasiconformal mappings in z-space. - J. Analyse

Math. 19, 1967, 149-169.
GrunINo, F. W.: Quasiconformal mappings of slit domains in three space. - J. Math. Mech.

18, 1969, 689-704.
Gor,unrrsrv, M., and V. Gurr.r,Buru: Stablemappingsand theirsingularities. 

-Springer-Verlag,Berlin-Heidelberg-New York, 1973.

GnerNmnc, M. J.: Lectures on algebraic topology. - W. A. Benjamin, Inc., New York-
Amsterdam, 1967.

Mrzun, B. C.: On embeddings of spheres. - Acta Math. 105, 1961, l-17.
NÄrxI, RAIrr,ro, and M. K. VAMANAMUnTUv: Quasiconformal disks in 3-space. - Ann. Acad.

Sci. Fenn. Ser. A I 535, 1973, 1-10.
RustuNG, T. B.: Topological embeddings. - Academic Press, New York, 1973.

SrcrrNru.lNN, L. C.: Deformations of homeomorphisms on stratified sets. - Comment. Math.
Helv. 47, 1972, 123-163.

VÄIsÄrÄ, J.: Lectures on z-dimensional quasiconformal mappings. - kcture Notes in Mathe-
matics 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971,

University of Auckland
Department of Mathematics
Auckland
New Zealand

Received 23 August 1976


