Annales Academia Scientiarum Fennica
Series A. I. Mathematica
Volumen 3, 1977, 229-246

QUASICONFORMAL EXTENSIONS
OF MAPPINGS IN #-SPACE

DAVID B. GAULD and M. K. VAMANAMURTHY

Abstract. Let D be a Jordan domain in R". Then a homeomorphism #4: §D—
—~S"1 extends to a homeomorphism 4: D—~B" so that A|D is quasiconformal
if and only if each point of dD has a neighbourhood in D over which % extends
quasiconformally. One consequence of this is a quasiconformal version of the
generalised Schoenflies theorem. Another consequence of the methods is that if
D is a domain in R" and h:9D—B"! is a homeomorphism, then /# extends
to a quasiconformal homeomorphism of R” if and only if each point of D has
a neighbourhood over which % extends quasiconformally.

1. The main results. This paper consists essentially of two parts. The major
result in the first part is Theorem 1 concerning the flattening of a locally flat boun-
dary. As the result is already known in the topological case, it is stated and proved
in the quasiconformal context, the proof being an adaptation of that of Connelly [3].

The major result of the second part is Theorem 3 which concerns the structure
of the interior of a set given that the boundary is already nice. The technique used
to prove Theorem 3 is a modification of Brown’s proof in [2] of the generalised
Schoenflies theorem. As observed in [14, p. 139, Remark 1], Brown’s proof of the
generalised Schoenflies theorem makes use of non-quasiconformal homeomorphisms.
We modify his proof using a technique developed in [1] and [5] and we make use
of only quasiconformal auxiliary homeomorphisms. Hopefully the technique will
be of use elsewhere.

Please refer to § 2 for the definitions and notation used in the following results.

Theorem 1. Suppose D is a Jordan domain in R* and that 0D is locally
quasiconformally flat in D. Then 0D is quasiconformally flat in D.

A two-sided version of Theorem 1 is formulated in §6.
In the case where the domain D is non-Jordan, we can still formulate a suitable
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definition of (local) quasiconformal flatness as well as a more general version of
Theorem 1: details appear in § 4. Also in § 4 we prove the following result.

Theorem 2. Suppose X is a subset of R* and h: X—~B""' is a homeomorphism.
Suppose further that % is a cover of X by open subsets of R so that for each
UcU, hlUnX extends to a quasiconformal embedding hy: U—~R". Then h extends
to a quasiconformal embedding of a neighbourhood of X in R".

Theorem 3. Let e: N—R" be an embedding where N is a neighbourhood of
S"' in B". Then e|S"! extends to an embedding é: B"—~R" with e(N)cé(B").
If e|NnB" is quasiconformal, then so is é|B".

Theorem 3 is° Gehring’s Theorem 1 in [6], but whereas Gehring uses the ideas
of Mazur [10], we adapt the ideas of Brown’s completely different proof [2].

Corollary 4. A Jordan domain D in R" is quasiconformally equivalent to
B" if and only if 0D is locally quasiconformally flat in D.

Corollary 5. Suppose that D is a domain in R" whose boundary, 0D, is
homeomorphic to the (n—1)-ball B"~! by a homeomorphism h:9dD-B""' so that
Jor each point x of 0D, h extends to a quasiconformal embedding of a neighbourhood
(in R") of x in R". Then h extends to a quasiconformal homeomorphism of R".
In particular, D is quasiconformally equivalent to B".

Remark. For n=3, a slightly stronger version of Corollary 5 holds: see
(7], [11].

Corollary 6. Let e: S" '—R" be an embedding: thus by the Jordan—Brouwer
separation theorem [9, p. 80] R"—e(S™™Y) conmsists of two components, each being
a Jordan domain. Suppose that e~' is locally quasiconformally flat in each of these
Jordan domains. Then e extends to a quasiconformal homeomorphism of R".

Corollary 6 is a quasiconformal version of the generalised Schoenflies theorem.
Of course, one can delete all mention of quasiconformality in the above results
(except the ‘only if” part of Corollary 4) and still have valid results (cf. Remark 1
on p. 139 of [14]).

2. Preliminaries. The following notation is used. R* denotes euclidean n-space
with the Pythagorean metric: if x=(xy, ..., x,)€R", let [|x[|=(x2+...+x%)''?; then
the distance from x to y in R" is |[x—y|. R" denotes the one-point compacti-
fication of R"; R"=R"U{}. If x€R", reR, then rx€R” is obtained by multiplying
each coordinate of x by r.

For a,b€R with O0=a=b, let

[a, b] = {x€R|a = ||x|| = b}
(a,b) = {xeR"|a < x| < b},
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with obvious analogous meanings for [a, b) and (q, b]. In particular, [a, a]=]a],
[0, )=B8", [0,1]=B" and [I, 1]=[1]=S""".

Intervals in R will be denoted by I[a, b], I(a, b), etc.

If X is any subset of R", we let X, int(X) and 0X denote, respectively,
the closure, interior and frontier of X, all with respect to R". A domain is a non-
empty connected open subset of R", a Jordan domain being a domain in R™ whose
frontier is homeomorphic to S"~*. We use the words “embedding” and “homeo-
morphism” in their usual topological senses: homeomorphisms must be surjective.

Let h: D—~D’ be a homeomorphism between two domains in R". Then #4
is quasiconformal if and only if

i max, =, [|A(x)—h(y)] e h=1(en
{hr?foup ity s TR RO |~ 0L B M

is bounded. Other equivalent definitions of quasiconformality appear in [14].

Definition. Let D be a Jordan domain in R” and #4: dD—~S""! a homeo-
morphism. Then £ is locally quasiconformally flat in D if and only if there is
a real number a, 0<a<1, and a cover % of dD by open subsets of D so that
for each Uec%, the map h|UnoD extends to a homeomorphism

hy: U~ {rzéR"a=r =1 and ze€h(UnoD)}

so that Ay |UnD is quasiconformal.

We say that & is quasiconformally flat in D if and only if the cover % above
may be chosen to contain just one element.

The boundary 9D is (locally) quasiconformally flat in D if and only if there
exists a homeomorphism #4:dD—S""' which is (locally) quasiconformally flat.

We now comment on the above definition. The ideal situation would not assume
the local extendability of a global homeomorphism A: dD—~S""*; cf. the definition
of locally quasiconformally collared in [14, p. 54]. If we could replace “flat” by
‘collared” in Theorem 1 then we would be able to improve Corollary 4 to give
us a generalisation to R" of Gehring’s Theorem 4 in [6]. Of course Viisild’s defini-
tion of global quasiconformal collaring is the same as our definition of (global)
quasiconformal flatness, so that if one wanted to improve Theorem 1 above by
replacing “flat” by ““collared”, one would need to find such a homeomorphism 4.
In fact, an affirmative answer to the following conjecture is precisely what we need.

Conjecture. Let D be a Jordan domain in R". Suppose that for each x€dD
there is an open neighbourhood U of x in D and an embedding hy of U in B
so that hz'(S"H=UnaD,

hy(U) = {rzéR"|1)2=r =1 and z€hy(UnoD)}
and hy|UnD is quasiconformal. Then there is a homeomorphism g: dD—~S""* so
that for each x€OD there is an open neighbourhood V of x in D and an extension
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of g|VndD to a homeomorphism g, of V onto
{rzeR"|1/2=r =1 and z¢g(VnoD)}
so that g,|\VnD is quasiconformal.

This conjecture is true for n=3, see [6, Theorem 4].

The topological version of this conjecture (i.e. that obtained by deleting quasi-
conformality) is trivial, for we may let g:dD—S""! by any homeomorphism,
and for each U, let fy(rz)=rghy*(z) for 1/2=r=1 and z€hy(UndD). Now

let gy=fuhy-

3. Flattening the boundary of a Jordan domain. In this section we prove Theorem
1, so suppose that D is a Jordan domain in R" and that 9D is locally quasicon-
formally flat in D.

Use the notation of the definition of locally quasiconformally flat; we will
assume that a=1/3 in the definition. Since @D is compact, we may assume that
 is finite, say #={U,, ..., U,). Abbreviate hy to #h;.

Let D* be the topological space obtained from the disjoint union of D and
dDXI[1, 3/2] by identifying xcdDcD with (x, 1)€dDXI[1, 3/2], (see Figure 1).
We want to impose a collar on 9D lying inside D. D* is D together with a collar
on 9D. The idea is to push this collar inside D.

Figure 1

We will define a homeomorphism e,,: D—~D*: the extension of & to a neigh-
bourhood of 9D in D required by the definition of quasiconformal flatness will
use the product structure of dDXI(1, 3/2], the neighbourhood in question being
ent(0DX1I(1, 3/2)).

Let UX=Uu(U;ndD)XI[1,3/2], and extend #h; to

h¥: UF - {rz€R"|1/3 < r = 3/2 and z€h(U;ndD)}

by letting A} (x, t)=th(x) when x€UndD and t€l[l,3/2].

Define the “projections” p;: UF—~UnndD and gq;: UF—1(1/3,3/2] by
pi(x)=h"(z) and ¢ (x)=r if x€U; with h(x)=rz for 1/3<r=1 and
2€h(U,ndD), and if (x, t)€(U;ndD)XI[1, 3/2], let

pi(x,t)=x and gq;(x,7) =1
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Let
{A: s"1 > 110, 1]]i = 1, ..., m}

be a smooth partition of unity subordinate to the cover
{h(U;ndD)|i =1, ..., m}
of S™' [8, p. 17], and define A;: dD—I[0, 1/2] by
2i(x) = (1/2)A  h(x), x€0D.
Define p;: dD—I[0, 1/2], i=0, ..., m, by

u;(x) = Zl' Aj(x), x€aD.
i=
Note that uy,(0D)=0 and u,(0D)=1/2.

Using induction on k and a modification of a construction due to Connelly
[3], we now construct embeddings e,: D—~D*, k=0, ..., m, to satisfy the following
properties:
() e,(D)=Du{(x, t)€dDXI[1, 3/2]| t=1+p(x)};
(i) For every j=1,...,m, the embedding /e, is quasiconformal on the interior

of its domain, ie. on the interior of e;*(U}).

Induction begins at k=0 by letting ¢, be the inclusion. Then eo(D)=D so
(i) is satisfied, and for each j=1, ..., m, the domain of 4je, is U; on the interior
of which #je,=#h; is quasiconformal.

Suppose now that e,_, has been constructed so as to satisfy the conditions.
Define ¢, as follows:

(a) if e_;(x)eD*~Uf orif e,_,(x)€U, and 1/3 < gye,—1(x) = 1/2, let
e (x) = -1 (x);
(b) if e, ()EUF and 12 = geep_; (¥)(=3/2), let

AePrei—1(X)(2q e -1 (x)— 1)
; 1424 — 1 Prei—1(%) ]hpkek-—l(x)]-

The effect of part (b) of this definition is as follows: map x to the point
hie,_,(x) in the ‘“nice” region

{rz€R"1/2 = r = 3/2 and z€h(U,ndD)},

e (x) = byt ([qkek—l(x)+

apply a radial diffeomorphism to the image, this radial difftcomorphism stretching,
for each z€h(U,n0D), the radial line

{rzeR|12 =r = L+, h71(2)}
onto the radial line
{rzeR"|12 =r = 1+ h~1(2)},

and then apply A; ' (See Figure 2.)
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Well-definition of e.: if e,_,(x)€U; and 1/2=g,e,_,(x), then by inductive
assumption (i),
1/2 = grep1(x) = 1+ 1 Prer-1(%),
and since also
0= Apeer-1(x) = 12—y prep—1(x),
we have that

1 Akpkek—l(x)(zqkek—l(x)—1)

—_—= = .
(%) 5= qrex—1(x)+ T+ 2002 P 1 (0) = 14+ prex-1(x)

Since 1-+ppre—1(x)=3/2, we see that

/lkpkek_l(x)(2qkek—1(x)_ 1) ] hp.e;—1(x)

e -1(x)+
[qk k-1 (%) 142p 1 prex-1(%)

is in the image of the embedding A;, so (b) makes sense.

ngraph"

of By

grapht }

of ¥y
/ ~ B B s
//// < Ck-lw) The radial line AC'.\S stretched
\\\\\ = ek(T)') - °k-x(6) to AD keeping the portion AB fixed.

Figure 2

If e,_,(x)€U, and ge,_,(x)=1/2, then the left inequality of (%) becomes
an equality, and definition (b) of e,(x) reduces to

he=2((1/2) hpe,_1(x))
= hk—l(qkek—l(x) . thek—1(x))
= ek—l(x)9
so definitions (a) and (b) are compatible.

If e_,(x)€U} and 1/2=g;e,-,(x), then, provided p,e,_,(x) is sufficiently
close to the frontier of U,ndD in 9D, we have Ap,e;,_,(x)=0; this being so
because the partition of unity {/|i=1,...,m} is subordinate to the cover
{h(U;ndD)|i=1, ...,m}. In this case, definition (b) of e,(x) again reduces to
€ —1(%).
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Thus e, is continuous. Furthermore, ¢, is clearly injective, so, being a con-
tinuous injective function from a compact space to a Hausdorff space, it is an
embedding.

We must verify that e, satisfies the properties (i) and (ii).

() We need only verify the truth of the equality when restricted to U, since
only here do e,_, and ¢, and y,_; and p, differ. By inductive hypothesis (i),
qr€x-1(x) can be as large as 1+4p;_;pre—1(x), in which case the right inequality
of (%) becomes an equality. Thus the frontier of e,_,(D) has been pushed, in U,
out as far as {(x, £)€0DXI[1, 3/2]|t=1+p(x)} to construct e, (D).

Clearly ¢, (D) also includes everything out to this frontier, so property (i)

is satisfied.
(il) Again we need only verify this statement inside e;%,(UJ), since e, agrees
with e,_, off e;};(Uf). Let j be an integer between 1 and m. Referring to de-
finition (b) of e, we see that h}e,=(h}h,~")o(stretching diffeomorphism)o (% e, _,),
a composition of three maps. By inductive assumption (ii), #; e,_, is quasiconformal;
any diffeomorphism is quasiconformal provided mild conditions are satisfied (see
[14, p. 48]; these conditions are satisfied in our situation); #4; and h;' are quasi-
conformal, hence so is their composition A;4;' where defined. On /i [(UfnU})—
—(UunU)), BiRE™Y is the identity, which is quasiconformal. Thus Ajk™" is
quasiconformal, and we have expressed Aje, as a composition of three quasi-
conformal mappings, so /] e, is quasiconformal.

This completes our inductive construction of the embeddings e,.

As already noted, u,(0D)=1/2, so property (i) of e, tells us that e, (D)=D*,
ie. e, i1s a homeomorphism. Let

U = ez (ODXI[L, 3/2)).
Then U is a neighbourhood of dD in D. Define
H:U~[1/2,1]

H(X) = (qem (X) - 1/2) hpem (X),

where p:dDXI[1,3/2]-0D and gq:0DXI[1,3/2]—-1[1,3/2] are the standard
projections.

() H is a homeomorphism with the above range. In fact, H is the composition
of three homeomorphisms: e,, taking U onto dDXI[1, 3/2]; the obvious radial
extension of 4 to a homeomorphism from @D XI[1, 3/2] onto the annulus [1, 3/2]
in R* (cf. the extension of A; to A}); and a radial shrinking of [1, 3/2] to [1/2, 1].
(I) H extends h. If x€0D, then one can easily see from definition (b) of ¢
that e, (x)=(x, 1+ (x)), so that e,(x)=(x,3/2), and hence

by

pe,(x) =x and g¢e,(x) = 3/2.
Thus H(x)=h(x) as required.
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(II) H is quasiconformal on UnD. This follows from inductive assumption (ii).
For any j=1,...,m, by (i), hje, is quasiconformal on UnDne,;l(Uf). Since
on such a set H is the composition /}e, followed by the shrinking, H is quasi-
conformal on UnDne,, 1(U}*). Thus H is quasiconformal since

{UnDne*(UHlj=1,...,m}

is a finite open cover of UnD.
By (I), (II) and (III), 9D is quasiconformally flat in D as required. (O

Remark. We can assume that A] is the identity on a given compact subset
K of h(U;noD). In this case, the mapping H will agree with 4, on V,=Un
Apyth™'(K), so that we can extend the collar /4, |V; to the whole of dD.

4. The boundary of a non-Jordan domain. Suppose D is some domain in R" and
0D is a topological (n—1)-manifold without boundary. Provided we can find
a model for 9D which is nicely embedded in R", the techniques of §3 generalise
to such a D. The main criterion for “niceness” of the model, say M, is that there
is an embedding of M X[0, 1) in R” whose restriction to M X {0} is the projection
on M. The [0,1) factor of this embedding plays the same role in this case as
did the radial structure of R” in the previous case. As an example, the 2-torus
T2=S81X S' has a nice embedding in R3® obtained by revolving the circle

(x=22+z2=1, y=0

around the z-axis. Given a domain D in R® whose boundary dD is homeomorphic
to T?, we can speak of local quasiconformal flatness of 9D in D and the tech-
niques used to prove Theorem 1 carry over to this case to prove that if 9D is locally
quasiconformally flat in D then 9D is quasiconformally flat in D.

In certain cases where 9D is not an (rn—1)-manifold we can still use the above
techniques to go from local flatness to global flatness, an example being provided
by Theorem 2.

Proof of Theorem 2. We slit R" along X to obtain a space Y and a subset
Z of Y corresponding to the slit X. Z is locally quasiconformally flat in Y,
so by Theorem 1 is quasiconformally flat in Y. This flatness structure gives us
the desired extension of 4.

Precisely, let

Y =[R"— X]u([XX{-1, I}]][(x, —=1) ~ (x, 1) for x€h=1(S"~?))).

Define n:Y-R" by n(y)=y if yéR"—X and =n(x, £1)=x if x€X. The func-
tion 7, the identity on R"—X, closes up the slit.

By Mobius transformations, R"—B" and R"—B""! are, conformally, open
half space and slit space respectively. Let ¢: R"—B"—R" be such that ¢ folds
the half space R"—B" quasiconformally onto R"—B"~'. Then R"—B" is essentially
R" slit along B! and ¢ closes up this slit in the same way as 7 closes the slit X.
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Let Z=zn"1(X) with the quotient topology inherited from XX {-1,1}, and
choose a homeomorphism g: Z--S""! so that the following diagram commutes:
Yz L, g1, R_p

, le
J B _ S
R X —— Bl — R".
In fact, 4 has only two such liftings: either one will do.
For each U€%, we can extend g|n~(U)nZ uniquely to an injective function
gy: n~Y({U) - R"—B"

which lifts 4;, making the following diagram commute:
Y «—) 2= }(U) "% R —B"

#u 1 la

R" ) U — . R

Topologise Y by declaring the union of the following two families to be
a basis:
{(VcR"—X|V is open in R"};

{gg'(V)|Uc and V is open in R*—B"}.

The effect of this is to slit any open subset of R™ along X into two open sets, one
on each side of the slit. Under this topology, g is a homeomorphism and each
gy is an embedding. Since the topology on the subspace Y—Z=R"—X of Y
is the usual topology, one may speak of quasiconformality of the functions
gul(Y—Z)nn=1(U). In fact these functions are quasiconformal since they agree
with 0 1Ay |(R"—X)NU. Thus {g,|Uc%)} provides a local quasiconformal flatness
structure for Z in Y. The techniques of Theorem 1 can now be applied to extend
g to an embedding g: N—R"—B", where N is a neighbourhood of Z in Y (and
hence g(N) is a neighbourhood of S"' in R"—B"), so that g[(Y—Z)nN is
quasiconformal.

Define h: n(N)—R" by h(x)=90gn 1(x). Then h extends 4 and is an em-
bedding of the neighbourhood 7(N) of X in R". Moreover h is quasiconformal
on n(N)—X and hence on n(N), since B""! is of finite (n—1)-measure, [14]. O

5. Inside a Jordan domain. In this section we give our proof of Theorem 3.
Brown’s proof in [2] consists essentially of two distinct steps, (cf. [12, p. 48]).

Step 1. Let N=[1/2, 1], a neighbourhood of S$""! in B", and suppose
e: N-R" is an embedding. Let C denote the component of R"—e(S"Y) for
which e(N)cC. Then there is an embedding f: B"-R" so that f(B")u
ve((1/2, 1))=C. (See Figure 3.)



238 Davip B. GauLp and M. K. VAMANAMURTHY

Step II. Given embeddings e and f as in Step I, there is an embedding
é: B">R" for which é(x)=e(x) whenever x€S""!, and é(B")=C.

Step I involves the use of non-quasiconformal embeddings even when e is
quasiconformal. However, in the proof of this step in Lemma 7 below, we see that
the embedding f is quasiconformal when e is quasiconformal.

Figure 3

It is at Step II that the non-quasiconformality referred to by Viisila arises,
since Brown’s proof of this step involves an interplay between the radial structures
of e(N) and of f(B"), the embedding é being the limit of a sequence of em-

beddings
e S""1X[0,1] - R"

where e (x,0)=e(x) for x€S"':lim,__e, is an embedding off S*ix {1}
and sends S"7'X {1} to a single point. Since S"7'X[0, 1]/S""1x {1} is naturally
homeomorphic to B", we may think of lim,__ e, as being an embedding of B"
in R". Now each e, may be assumed quasiconformal if e and f are (to give this
meaning, we may identify S$"7'X[0, 1] with [1/2, 1] in a natural way) but the
limit of the e,’s need not be: each e, is, say K,-quasiconformal, but lim, . K,
may be infinite (contrast 37.3 on p. 125 of [14]).

Below we split Brown’s Step II into two parts; see Lemmas 8 and 9. The first
part is essentially Brown’s construction of e; and the second part is an adaptation
of ideas in [5]. We will find that if e and f are quasiconformal then so is é.

Lemma 7. Let e:[1/2, 11-R" be an embedding and denote by C the component
of R"—e(S™Y) for which e([1/2, 1))cC. Then there is an embedding f: B"—~R"
satisfying

f(BYue((1/2, 1) = C.

If e is quasiconformal, then so is f.

Proof. Write N=[1/2,1]. By performing a (conformal) transformation if
necessary, we may assume that <€e((1/2, 1)), de(N)cB" and 0€C,, where C,
denotes the bounded component of R"—e((1/2)S"""). Let C; denote the bounded
component of R"—e(S"""). Then C,uC,cB". (See Figure 4.)
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Let «:[1/2,1]-B" be the radial stretching given by «(zx)=(2t—1)x for
1/2=t=1, |x|=1. Then ae~! has a natural continuous extension over C, which
sends C, to 0. Next, let f: R"—~R" be a quasiconformal mapping which is the
identity on R"—B" so that B(xe~1(=))=0.

Define f:R"-R" by
ea " foe"1(x) for x¢C,,

](x):{x for x€C;.

If x€dC, then ae~'(x)€S™"' where B is the identity, so for such x, f(x)=x.
Thus f is continuous. Although f is an embedding only on R"—C,, and [ is
not quasiconformal on R"—C,, when e is quasiconformal f is quasiconformal
on each compact subset of R"—C, which is all we will need.

Let p=f(C;) and let UcV and W be balls with U and ¥V centred at
p, V of twice the radius of U, so that Vce((1/2,1)), W centred at 0 so that
WcC,. Let y:R"~R" be a quasiconformal mapping which maps the annulus
R"—(UuW) onto the annulus V—U leaving points of Uu{0} fixed.

Now define the required function f by

Fhfx) if xee((1/2,1])uCy,
f(x)={x if xef ).

Then f is an embedding satisfying f(B")ue((1/2, 1))=C. Moreover, if e is
quasiconformal on (1/2,1) then f is quasiconformal on B". [O

Lemma 8. Let e and f be as in Lemma 7. Then there exist real numbers a, b, ¢
and an embedding f: B"~R" satisfying:
(i) O<a<b<l, 12<c=<l;
) £, 1Dce((e D);
(iii) (a)<e((1/2, c)).
(iv) For every x€S™ %, f(x)=f(x).
Further, if e is quasiconformal then so is f.

Proof. Let C and C, be as in Lemma 7. We may assume that C is bounded
and that f(0)€C,.

Now f(S"Y)ce((1/2, 1)), so there exists b with b<1 such that f([b, 1])c
ce((1/2,1)). Thus e([1/2)<f((0, b)), so there exists ¢ with 1/2<c such that
e([1/2, ehcf((0, b)). Since f(0)€C,, there exists a with O<a such that
f(0, a])cC,. See Figure 5.

Define s:[0, 1]-[0, c] to be that homeomorphism which fixes [0, 1/2] and
radially shrinks [1/2, 1] to [1/2, c], and define o: [0, 1]-[0, 1] to be that homeo-
morphism which stretches [0, a] radially to [0, ] and shrinks [a, 1] radially to
[b, 1]. Define S,X: C—~C by

ese”1(x) if xce([1/2,1]),
x otherwise,

S(x) ={
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and _

fof71(x) if xef(B"),

Z(x) = { .

x otherwise.
Clearly S and X satisfy the quasiconformality conditions. Define the required
embedding f (cf. Figure 6) by

7 )_{f(x) if f(x)€e (e, 1],

= 1szs-1 f(x) otherwise.

Then f satisfies the required conditions. [
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Lemma9. Let e: [1/2, 1]-R" be an embedding and a, b and ¢ be real numbers
satisfying:
(i) O=<a<b<l, 12<c=<1;
i) [6, 11ce((c, 1);
(i) [alce((1/2, ¢)).
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Then there is an embedding é: B"—~R" such that é(x)=e(x) if ||x|=c. Moreover,
if e is quasiconformal then so is é.

Proof. Choose dcI(1/2, ¢) so that [adlce((1/2, d)).
Let »x, A, p: R">R" be the natural radial homeomorphisms doing
the following:

% ([0,1/2) =10, cl; = ([1/2,¢]) =[c, 1];
A0, ) =[0,a];  A(b, 1) =[a, 1], A([1, «]) =1, =];
1 ([0,dD) =[0,d]; p(d,1]) =[d,c].
Define the embedding é:[1/2, 1]-R" (see Figure 7) by

e(x) if x| =ec,
e(x) =yeue liex(x) if [x|=c and Zex(x)ce((d, 1)),
Aex(x) if  Aex(x)€e([1/2, d)U[O, a].

Well-definition of é:
(@) If 1/2=|x|=c then x(x)€[c, 1] which is in the domain of e, so ex(x) is
defined and hence so is JAex(x). If, further Aex(x)ce([d, 1]), then

e llex(x)e[d, 1],
S0
pue~1lex (x)€[d, c]

which also lies in the domain of e, so eue~llex(x) is defined.
B If Zex(x)ce(dS™ '), then e~llex(x)€dS™ !, and so

epe lex(x) = ee~lex(x) = lex(x).

Thus é is well-defined on x~le~!i-le(dS™Y).
O If lIxl=c, x(x)€S"", so by (ii), ex(x)¢B",
and hence Jex(x)=ex(x). Thus

epe~llex(x) = epe~tex(x) = eux(x) = e(x).

Thus e is well-defined on ¢S" 1.

Figure 7
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Combining («), (f), and (y), we see that & is well-defined.

It is easily verified that e is continuous; that it is an embedding follows from
the Jordan—Brouwer separation theorem and invariance of domain (18.6 and
18.9 of [9)).

Note that e enjoys the following properties:

(a) if x€[c,1] then e(x)=e(x);
(b) if ||x]|=1/2 then é(x)=(a/b)e(2cx).

Basically what we have done is to alter e in [1/2, ] to get &, which essentially
repeats on [1/2] the action of e on [c]. Following [5] we exploit this repetitive
feature of & to allow us to extend & to B".

For x€[1/2,1], we set é(x)=é(x), and let é(0)=0. Suppose x€(0,1/2].
Then for some non-negative integer k, (2¢)*x€[1/2,¢]. Let

é(x) = (a/b)~*e((2¢)*x).

a

By property (b) of e, é is well-defined, hence continuous except possibly at 0.
Continuity at 0 follows from the fact that a<b so (a/b) *—~0 as k—o.

That é is an embedding follows as for & above.

It remains to verify the quasiconformality of é when e is quasiconformal.
The embedding e is quasiconformal since each of the auxiliary functions x, 4, u
is quasiconformal; say & is K-quasiconformal. On each open annulus ((1/2)(2¢)7%,

c(2¢)7%), é is obtained from & by composing with two multiplications, which are
conformal. Thus é is K-quasiconformal on each such annulus. The exceptional set,

U +@o*sm10fo),

k=0 2

is of finite (n—1)-Lebesgue measure and hence is removable [14]. Thus é is K-
quasiconformal on B". (O

Remark. As in [5], one could replace R* and rB" (which are cones over
S"~1) by cones over more general spaces, although one might want to impose such
conditions as compactness, local connectedness and metrisability dictated to us
as in [5] by Proposition 3 of [5] and 1.7 of [13].

Proof of Theorem 3. Since N must contain some annulus, we may assume
N=[1/2,1]. Let a,b,c and f: B">R" be as in Lemma 8. Let &: [1/2, 1]-[1/2, c]
denote the natural (quasiconformal) homeomorphism fixing [1/2], and consider
the embedding &:[1/2, 1]-R" defined by e(x)=(l/a)f 'ed(x). By Lemma 8,
taking f=inclusion, there exist real numbers «, § and y and an embedding
¢: B">R" satisfying:

O<a<f<l, 12<y<1;

(B, M<e((r, D); ¢(eDce((1/2,9); ¢(x) =x for xes™ L.
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Define {:[1/2, 1]-R" by
¢7re(x) if Je(x)] =1,
{(x) = . _
e(x) if Jle(x)| = 1.
Then:
() O<a<B<l, 12<yp<I;
i) [, 11<¢((y, D);
(i) [AlL((1/2, 7). A
Hence by Lemma 9, there exists an embedding {: B"—~R" such that {(x)={(x)
if |x|=y. Further, { is quasiconformal if e is.
Now define the required embedding é: B*~R" by

sy {f(afc“l(x)) if x| =c
4O =1 it x = .

Note that if [x|=c, then [é~(x)|=1, so that (é~1(x)=(&~1(x). In this
case,

e (x) = —}l-f“e(x)

which, by (iii) of Lemma 8, lies outside B". Thus

b1 () = 871 () = - e,
so that
f(ate (%) = e(x),
and é is well-defined.
Quasiconformality of é in the case where e is quasiconformal is readily
verified. 0O

Remark. As in [4] and [5], the constructions in Lemmas 7, 8 and 9 are canonical
in the sense that if we furnish the various function spaces with the compact-open
topologies, then the real numbers and embeddings constructed depend continuously
on the given data. For example, Lemma 7 constructs a continuous function (cf. [4])

&(1/2,1, RN - &B™", R"), e—f;
here &(X, Y) denotes the space of embeddings of X in Y with the compact-
open topology. Similar interpretations apply to Lemmas 8 and 9. Combining all

of these gives us a canonical (quasiconformal) Schoenflies theorem in the sense
of [4]. More precisely, we have the following

Canonical quasiconformal Schoenflies theorem. Let N be a neigh-
bourhood of S"' in B". Then there is a continuous function
e: &(N,R") - &(B", R"
such that for e€&(N,R"), e(e) extends e|S"*, and e(N)ce(e)(B"). Moreover,
if e is quasiconformal then so is &(e).
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6. Consequences. In this section we verify Corollaries 4, 5 and 6 and consider
two-sided flatness.

Proof of Corollary 4. Assume first that D is quasiconformally equivalent
to B". Then 9D is locally quasiconformally flat in D, by 17.20 of [14].
Conversely, by Theorem 1, 9D is quasiconformally flat in D, say

h:U~[a,1] (@a<1)

is a homeomorphism, where U is a neighbourhood of 9D in D, such that A|UnD
is quasiconformal. Let e: [a, 1]-R" be the inverse of 4. Then e|(a, 1) is quasi-
conformal so by Theorem 3 e|S"™ ! extends to an embedding é: B"—~R" so that
Ucé(B") and é|B" is quasiconformal. By [9, 18.8], é(B")=D, so é is a home-
omorphism from B" to D which is quasiconformal on B" to D. [

Proof of Corollary 5. This result follows from Theorem 2 and Corollary 4
as follows. By Theorem 2, & extends to a quasiconformal embedding #’: U—~R",
where U is a neighbourhood of 9D in R". Let E be an ellipsoid for which
B*'cEchk (U). Since E can be mapped onto B" by a linear quasiconformal
mapping, it follows that the exterior of A’~'(E) has a quasiconformally flat
boundary; hence by Corollary 4, h’|0h'"'(E) can be extended quasiconformally
as a mapping /£ of this exterior onto R"—E. The required quasiconformal home-
omorphism g of R" extending /4 is given by

K(x) if h(x)€E,
g = {ﬁ(x) otherwise. O

Proof of Corollary 6. We extend e over each of the complementary domains
as in the proof of the “if” part of Corollary 4. The resulting extension é: R*—~R"

A

must be surjective by [9, 18.8], so é is a homeomorphism of R". Since S"7! is

a

of finite (n—1)-Lebesgue measure, by [14, 35.1], é is quasiconformal on R". [

Two-sided flatness. Suppose D is a Jordan domain in R" and that A: 9D—~S"!
is a homeomorphism, that @ and b are real numbers with 0<a<1<b, and that
there is a cover % of dD by open subsets of R" so that for Uc%, the map
h|UnoD extends to a quasiconformal homeomorphism

hy: U~ {rzeR"\a <r <b and ze h(UnoD)}.

Thus h and 9D are locally quasiconformally flat on both sides: we might say
that 2 and 9D are locally quasiconformally flat in R”, with an obvious meaning
for “h and 90D are quasiconformally flat in R™”.

Corollary 6 shows us that local quasiconformal flatness in R™ implies quasi-
conformal flatness in R"; one treats each side separately and then combines the
resulting extensions. The same idea carries over to certain non-Jordan domains
as considered in § 4.
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