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TAYTOR'S FORMULA FOR MAPS:
THE REVERSE PROBTEM

ARTHT'R SARD

1. Introduction. Suppose that X, Y are Banach spaces and that QcX is

an open set such that the line segment [0,x]cf,2 whenever x€O. Denote by
Lr(X, Y) the space of multilinear continuous operators on XX ...XX (i factors)
to ts, with the Banach norm, and bV §(X, I) the subspace of symmetric oper-

ators.
lf f:Q*f is a Cp-map, p>1, then f and its derivatives satisfy the Taylor

formulas:

(r) Ir(x): ax*...*Affi *'-r-'* !ffi E(tx)xo-kdt,

where 
k : o' "'' P-li xcQ'

(2) q:JP:O*S,(X,I)
is the p-th derivative of I and

a, :/'(0)(§(X,Y), i : O, ..., p-l
U,2,3)'

Now consider the reverse problem. Suppose that we are given a Co-map of
O into the symmetric continuous multilinear operators of order p

{: A * Se(X,Y)

and symmetric continuous multilinear operators

b$S{X,Y), i :0, ... , P-li
and suppose that we define the map g: Q*Y by the relations

(3) g(x): bot... +ffi.r-1+r1x1,
nt a, - rtr-,(4) ,(i: 

J ffi {t(t,)xe il, x(Q.

What can we say about tle derivatives of g and r?
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Proposition I below implies that rp:rl if and only if r/ is the p-th derivative
of a map. Proposition 3 implies that, if ,!(C', then ry' is the p-th derivative of
a map if and only if the first derivative ry'1, which is a map into S1(X, ,Se(X, f»,
is symmetric in its p*l arguments, that is, if and only if {'(x)€Sr*r(X,Y),
x€Q.

It is worthwile, I think, to study the behaviour of g and r in the case in which
ry' is not ap-th derivative. For example, rL may be known to be an approxima-
tion of the p-th derivative of the unknown map f: Q* IZ We may take g as an

approximation of / based on $ and the approximate initial values bs,...,bp-r.
We would then be interested in the extent to which the derivatives f approximate

f*, k=p.Formulas (22), Q3), and (19) below give the errors {-fr in terms of
bi-ai, i<p, ar,d tt-qj,i=k, in the case in which t,E€Co- These errors are

appraised in terms of the norms of b1-ai and $i -qi in Section 7.

Formulas (16), (10) give the derivatives rk, k=p, in terms of t,t',...,r1r0.
2. The case in which t/ is a p-th derivative.

Prop o sition l. If ,1,

g QCP , and

is the p-th deriuatiue of a map on O to Y, then r€Cp,

,1, ,

(l - t)'-k-L
iF:fu1;1 t?x)x,-odt, k < P, x( Q'

rP (0) - {/ (0),

go(o) : bo, k < Pi

f€.C?, since ,1, e Co. By (l) and (4),

(5)
fro - gP:
l1
['o(') : I

Conuersel!, if g or r ,s in Co, then the other IJ also,, and

(r'P 
-_ oP

(6) t' ö)
t ro(o) : o,

howeuer rP need not equal ,lr.

Proof. Say that *:.fo . Then

Hence

and

Furthermore,

,k(x) - f 
k(x)- ak-

by (1).

Conversely, if

...- ffiyp*-l - !W*ux)ap-udt, 
k<p,

g or r€Cp, then so is the other and gP:rP, by (3).
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Bv (4)'

(7) tlr(x)lt = 
fg+Pff , x€dt,

where, in a special notation,

llry', xll :,sup,llry'(rx)ll =-,

because the segment [0, x] is compact. On the other hand,

(8) r(x): r(0)+....fi$} .,-,* iSSrtex)xedt.
This with (7) implies that

and 
re1ol:o, k=P,

ct(o) : br+rk101: br.

Furthermore (4) implies that

r (x) -rlr (0) x, I p! : O(x)x\, x€Q,

where 0(x)r0 as x*0. By (8), a similar relation holds with ry'(0) replaced by
ro(0). Hence re(0):r/(0), and (6) is established.

That rp need not equal ry' is to be expected, since the differential of x need
not be collinear with the segment [0, x]. It is sufficient to cite one instance. Take
X:R2:{2, Y:R, p:1, and ry' the map of R2 into ^Sr(rR',R):Zr(R2,Å) for
which

*(u)x: urxz, u : (u1, r.r)€R2, x: (rr, xJ(.R2.
Then

r(x) : l rrr*rdt : xtxzl2,

and
r|(x)h : (hrxr*xrhr)12, h : dx : (hr, h)<R'.

On the other hand
rtt(x)h : xrhr.

Thus r1(x)+ry'(x), unless r:0.
3. The derivatives of ry'. Since ry' is a map into Se(X, Y), the value ry'i(x)

of the 7-th derivative, if existent, is an element of ^Sr(X, Sr(X, Y)) and so may
be identified with an element of L1+r(X, n. It need not be true, however, that
tiG)e,s;*r(x, Y).

Proposition 2. If for some xQd), the first derioatiae rltt(x) exists and is
symmetric in its p*l arguments, then all subsequent deriuatipes which exist at x
are symmetric in all their arguments.
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Proof. By hypothesis, hr, xyt ...; xrQX may be permuted arbitrarily in

{tt(x)h1x1 ... xoeY.

If r!z(x) exists, it follows that h1, xyt ... t xe may be permuted arbitrarily in

*r(x)hr(hrx, ... xe)€.Y, hz : dx€ X.

equalsBut this element

(e)

{rz(x)hrhrxl ... xo,

since a derivative is symmetric in its differentials. Thus h, andtherefore h2, x1, ... , x1,

may be pennuted arbitrarily.
Iterating, we see that if ry''(x) exists, then

tt(x)hr... hrxr... xo, hr,...,hi, xt,..., xo€.X,

is invariant under permutations of the 7*p arguments.

Proposition 3, Suppose that rlt€CL. Then a necessary and suficient condition

that {:7c is that the first deriuatiae rlr' be symmetric in its p*L arguments.

Proof. Necessity is immediate: lf r!:7t, then r|r:rp*t, being a (P+l)-th
derivative, is symmetric in its p+l arguments.

Sufficiency. By Leibnitz' rule, which is valid because the segment [0, x] is

compact, 
r

"t*): ! ffio.lrlr(tx)x4dt' x€Q'

In evaluating the interior derivative, we shall work with differentials, since the

position of differentials of x is critical and may not be changed arbitrarily. Note
however that p, f, and dt are scalars and commute with all other factors. Now

d.l,l, Gx) xPl : rL Ux)d*xP +ld** (tx)lxo

- pv (rx) rP-Lh+trlrL(tx)hxr, h - dx€x, xe Q, 0 = t = 1.

Our present hypothesis implies that

Hence

and

t,$x)hxP - *r(tx)xPh.

D"lrl, Gx) xpf : p{ (tx) xp-L + filt'(tx) xo

r'(x) : 
!ä# 

bt(rx) yp-,+tg,(tx)xef dt, x( Q.

Transforrring the second term by parts, with dr$(tx):9t1tx)x dt, we see that

Irb@), if p: t,

rr(x) : 
l! W{tQx)xt-titt, ir p=2.
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It follows that rp:t, by induction on p.

4. The transposes. In order to treat the case in which ry' is not a p-th derivative,
we introduce *l@), the &-transpose of ry'i(z), defined as follows.

For 0=j=<k<p and u<O, fr@) is the element of Lrai(X,I) deterrrined
by the relation
(10) Cy,irlr{(u)xr...xp-1,aih1... h1,

: 2 ti(u)h,,...hrxr... xp-1,aih1 ... h,r...fru ...ho,
1=il<...<ij=k

hr,...,hr,xr-,...,xp-1,ai(X, where the numbers Co,, are binomial coefficients.
There are Cr,.i terms in the summation. In particular,

(ll) *2@): rlro(u): rlr(u), k a P, u€Q,
and

tf@) x, ... xrh, ... h* : *o (u)hr. ... hox, .. - xo, hr, ..., hy, xt, ..., xpe. X.

Thus r/i(z) exists if ry'i(z) exists. Since gi1u1 is symmetric in its first 7 ar-
guments and in its last p arguments, it follows that rlri@) is symmetric in its last
k arguments and in its first p-k+j arguments.

Note that

and ll/l(a)ll = llfi(u)ll

(12) llti@)-rl,i@)ll =2llrli(u)ll, 0 = 
j = k3 p, u€Q.

If the first derivative /'(a) is symmetric and if ry'i(z) exists, then

r!d@):rlti(u), 0=.rs k=p, u€Q.

This is because *i (u) ls symmetric, by Proposition 2.

5. The derivatives of r. Suppose that rleCk. By Leibnitz' rule,

(r3) ,r(i: I' ffi"1 blt(tixe)dt, x(e.

In evaluating the interior derivative, we again use differentials. Thus (cf. (9),

(14)

d\lrlGx)xpl: *ÄrC+Tilp gi(tx) 
,=,,å,,=0h,,...h,,xn-k*ihr...fr,,...fr,,...hr,

hr: dtx€.X, ...,h*: d*x(X, x(Q, 0 < , = 1, I = k< p.

For j:6, the inner sum is the solo term xp-khr...hr.
We now introduce the k-transposes, in order to arrange that the differentials

hr,....hr occur at the extreme right of each term. By (10),

dylrl, Gx) xpf : 
,åodk, i i {ti?x) xp-k+ i hL .. . hy, x€ Q,
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where

(1 s)

Hence

Thus, from

(16) rk (x)

if ,1, €Co.

6. The

ative of r )

(1 7)

(l 8)

pI kI
dk, j (p-k+ j)I jI (k- j)I' 0=j=k=p.

Dylrl, Qx) xol : 
r=?=odk, 

j F tilx) xp -* * i, Q = k = p.

(1 3),

:! (1 - t)o-r
ffi ,åodk,iiLi1x)vP-x+i dt, x(Q, k = p,

deviations

and sk,

f,_
[,0,,,

of rk. It is convenient to
the deviation of rk from

,1, ,

1

define rk, the pseudo k-th deriv-
rk, &s follows:

f (l 
- r\P-k-1:l ifut?x)yP-odt, x€e, k-p;

sr(x) : rk (x)- rx(x), x( Q, k < p.

x€Q, k=p. In all cases,In the one-dimensional case x: R, we have sr (x) - 0,
s,,(0)-0, k=p, by Proposition l. And

s1(x)å, ...h*:0, x€.Q, I = k= p,

whenever the differentials hr,...,hr are all collinear with x, that is, whenever
h1:aix1 ai€R, i:1,..., and k. As we do not use this fact, we omit its formal
proof.

Theorem. tf ,lr<Cr, thenfor all x€Q,

( 1e)
dk, jib\iGx)-{/i (rx)l yP-x+i dt, I < k = p.

in (19) by t -8, where E is the p-th deriuatiueFurthermore, one may replace ,1,

of any C?+k-map on O to Y.

Proof. That so:0 is immediate, by (17) and (4).
Suppose that k> l. We first show that

(20) rxuc): 
!h# o?nodk,itiViex)yp-k+i 

dt, x€e, k = 
p,

an identity similar to (16).
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One may transform the right member by parts, proceeding from rl/Qx)x dt:
:drrlro-'(tx) to rlt(tx). The boundary terms will in fact vanish and the integrations
terminate in (20). Instead of dealing with the sequence of integrations and the

boundary terms, however, one may argue as follows.
The relation (20) holds for all r/ which are p-th derivatives, by (5), (16), and

(17), since in this case ry'i(x)(Sp+.;(X, Y), x(Q. It follows that (20) holds for all
,lr, whether p-th derivatives or not, as we now show.

Denote the difference of the two members of (20) by ä(x). In ä(x) replace

the derivatives ry'i, j=k, by their Taylor expansions about the origin with integral
remainder in ,lrr. This, by Fubini's theorem, yields an identity:

(21) ä (x) : corl (0) gP- k + .. . c (t) rlro (tx) xP dt, x €. Q,

for all rlr; Q-S.(X, I), where c1(R,i<k, and c: [0, l]*4 is continuous.
By suitable choices of ry' which are p-th derivatives, we will deduce that c,:Q,

i<k, and c:0. Thus, take ly'(x):arxi, x(d), where f:0,..., of k-1, and
O*a1€So+t(X,Y). Since ry' is a p-th derivative, (21) reduces to

ä(x): 0: ciaixl-k+ii!, x(Q.

Hence c1:Q, i<.ft, and the right member of (21) reduces to its integral term.
It remains to show that c:0. Take O*xoQQ. Put .ft:span xs and Q:a

complement of .ft in x. Thus X:.R *Q ar,d -ft is one-dimensional. Denote
the projection of x on -R by x', x(X.

Take lla€Y. Extend the function c, by putting c(u):s111, ,=r, and
c(u):g791, ,=r. Define the map 0: Q*I by the relation

tl (1 _t\p+k-t
0(x): 0(x'): J tfu c(tx'fxo)x'e+kdt a, x€Q.

Here we consider elements of f; as scalars. Thus tx'/xo is a scalar and 0(x) is

a scalar multiple of a, hence an element of Y.

Now
6o +x (x)fu ... h o+* : c (x' I xo) ahi ... h!, *o, hr, ..., h 

e +r,€ X.

This is immediate, by partial differentiation relative to the decomposition X:R*Q.
For, from the definition of g, the pure partials of g relative to ,E are obtainable
from one-dimensional theory (Proposition 1 applied to maps on fi), in particular

O'a+r 0(x) : c(x'lxr)a,

and all other (p*k)-th partials vanish.
In (21), plt r!-Ae, a p-th derivative. Then ä(x):0, x€O. Put x:xo(f;.

Then x':xlo:xo,
go+*(tx)x(h, ... hr : r\k(tx)xeshr. ... hr : c(t)ax\hi ..- hi; hr, ..., hk€ X,

253
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and

ä (xo) hr ... hk

Hence
I

! l"{»)'at:0,

and c:0. Thus (20) is 
"rtuUtirnia.Now (18) follows from (16) and (20), since the term for ,/:0, eliminated from

the summation in (19), vanishes.

That one may replace t bV ,!-E, where g is ap-th derivative, follows
from the fact that gi:ei, O=j=k, since Ei is a (p *7)-th derivative and therefore
symmetric.

For p:1, the relation (18) agrees with the formula for rot qA in13, p.l44l.

7. Comparisonof f and g. In this section, we assume that {,g€Ci when-

evet {rt, Ei appear in a statement.
By (1) and (3),

co(x)-fr(x): b*-a** * Zä# *o-*-Lark(x)

' ,, .\D-k-l
f (t-t)r-*-' ,^tr_\_p_k )t v. o t. _ ^J E[-T E(tx)xP-k dt' x€Q' k = P'

Hence, by (18), Q7)), and 121,

- 0 : j c(t) c(t) ax\hi ... h'o dt.

(22)

go(x) -fk(x) - bk-arr* ..' bo-l- ao,'- vP-k-t'T@t'

; (1 
-/)P-k-1+ J ffi tt1x)-E(rx)l vP-kdt*sr(x), x( Q, k = p,

and
(23) gt(y)-fn(x): r|@)-q(x)+sr(x), x(Q.

These differences are readily appraised. In the first place, writing llz, xll for
suPre to,rr lle(lx)ll, we have

llso(x)ll = Z
2pI kI

ll(1l,i - Er, xll llxllP -k+ i(x) r#* @+ j)I (p-k+j) I (k- j)I

x€Q, l=k=p.
This inequality follows from (19) with r/ replaced by ,1,-E, and from (12), (15),

and the fact that 
r, {l_t1r_, ., ,. jl

J rp-fr tt dt : 
@+-j»-:-
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And. by (22), (23),

(*r ltgo(x)-.ft(x)il = tläo-a,ll+...+ft]fff-llxftr-t-r

.,uffi llxlle-r+llsr(x)ll, x€O, k < p,

and

(*) llso(x)-fo(x)ll = llf (x)-E(x)ll+lls,(x)ll, x€Q.

Added in proof. The results of the present paper hold for complex as well
as real Banach spaces X and Y.


