Annales Academiz Scientiarum Fennice
Series A. I. Mathematica
Volumen 3, 1977, 247-255

TAYLOR’S FORMULA FOR MAPS:
THE REVERSE PROBLEM

ARTHUR SARD

1. Introduction. Suppose that X, Y are Banach spaces and that QcX is
an open set such that the line segment [0, x]JcQ whenever x€Q. Denote by
L(X, Y) the space of multilinear continuous operators on XX ...X X (i factors)
to Y, with the Banach norm, and by S;(X, Y) the subspace of symmetric oper-
ators.

If £:Q-Y is a CP-map, p=1, then f and its derivatives satisfy the Taylor
formulas:

A F50) = apd oo b2l xP*1+j'“_”"kl¢oﬂxrnm

(r— k (p—k—1)!
k=0,...,p—1; x€Q,
where
2 o =f:Q~S,(X,Y)

is the p-th derivative of f, and

=fi(0)eS;(X,Y), i=0,..,p—1
[1,2,3]
Now consider the reverse problem. Suppose that we are given a C°%map of
Q into the symmetric continuous multilinear operators of order p

V:Q—-S,(X,Y)
and symmetric continuous multilinear operators
beS;(X,Y), i=0,...,p—1;
and suppose that we define the map g:Q2—Y by the relations

3 g(x) = by+.. +(b 1)'xP 1—{—r(x)
) () = f“ W dr, xeo.

What can we say about the derivatives of g and r?
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Proposition 1 below implies that r?=y if and only if { is the p-th derivative
of a map. Proposition 3 implies that, if y€C?, then y is the p-th derivative of
a map if and only if the first derivative !, which is a map into S, (X, S,(X, Y)),
is symmetric in its p-+1 arguments, that is, if and only if Yl(x)€S,.,(X, Y),
X€Q.

It is worthwile, I think, to study the behaviour of g and r in the case in which
¥ is not a p-th derivative. For example, ¥ may be known to be an approxima-
tion of the p-th derivative of the unknown map f: Q—Y. We may take g as an
approximation of f, based on ¥ and the approximate initial values by, ..., b,_;.
We would then be interested in the extent to which the derivatives g* approximate
7* k=p. Formulas (22), (23), and (19) below give the errors g*—f* in terms of
b;—a,, i<p, and Y’ —¢’, j=k, in the case in which ¥, p€C*. These errors are
appraised in terms of the norms of b,—a; and Y/—¢’ in Section 7.

Formulas (16), (10) give the derivatives r*, k=p, in terms of ¥, Y3, ..., ¥~

2. The case in which / is a p-th derivative.

Proposition 1. If § is the p-th derivative of a map on Q to Y, then recC?,
g€C?, and

rP=gl=1y,
©) 1o ke

Conversely, if g or r is in CP, then the other is also, and

{r” =g (0 =y(0),

©) *0)=0, g0 =b, k=p;

however r? need not equal .

Proof. Say that y=f?. Then f€C?, since Yy €C° By (1) and (4),

r(x) = f(x)—ag—...— (;i"ll)!x”'l, xX€Q.

Hence
bp—l_ p—1 -1

g(x) =f(x)—!-bo——a0+...+——(—p_f)! xP-1

and
g2 (x) = f2(x) = Y (x) = rP(x).

Furthermore,
. k Ap—1 —k-1 _ ' (1_t)p-k-1 -k
rrx)=f (x)_ak_m__(p_——_k——_l)Txp = mlll(tx)x" dt, k<p,
by (1).

Conversely, if g or reCP?, then so is the other and gf=r?, by (3).
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By (4),

v Ir(l =

el g

where, in a special notation,

¥, xIl = sup [y (zx)] <<,
t€fo,1]

because the segment [0, x] is compact. On the other hand,

1

rP~1(0) (1—pp-t
8 =r(0)+...+——=xP" 1+ | ————rP(tx)xP dt.
®) @)= Oty P [ Gy e
This with (7) implies that

r*(0) =0, k<p,
and

g“(0) = b +r*(0) = by.
Furthermore (4) implies that
r(x)—y(0)x?/p! = 0(x)x?, x€Q,

where 6(x)—~0 as x—0. By (8), a similar relation holds with (0) replaced by
r?(0). Hence r?(0)=y(0), and (6) is established.

That r? need not equal y is to be expected, since the differential of x need
not be collinear with the segment [0, x]. It is sufficient to cite one instance. Take
X=R?*=Q, Y=R, p=1, and ¢ the map of R® into S;(R% R)=L,(R% R) for
which

Y(u)x = uyx,, u = (up,u)€R%, x=(x, x,)€R2
Then

1
r(x) = f 1X1 X0 At = X1X/2,

0

and
rr(x)h = (hyx,+x,h,)/2, h =dx = (hy, hy)ER2

On the other hand

Y (x)h = x,h,.
Thus rl(x)=y(x), unless x=0.

3. The derivatives of . Since Y is a map into S,(X, Y), the value y/(x)

of the j-th derivative, if existent, is an element of Sj(X, S, (X, Y)) and $o may

be identified with an element of L;,,(X, Y). It need not be true, however, that
Y (€S, 4, (X, Y).

Proposition 2. If for some x€Q, the first derivative Y (x) exists and is
symmetric in its p+1 arguments, then all subsequent derivatives which exist at x
are symmetric in all their arguments.
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Proof. By hypothesis, Ay, x,, ..., X,€X may be permuted arbitrarily in
Yr(x)hyx, ... x,€Y.
If Y*(x) exists, it follows that #,, x,, ..., x, may be permuted arbitrarily in
. YE(X)hy(hyxy ... X)€Y, hy =dxeX.
But this element equals
YE(x)hyhex, ... X,

since a derivative is symmetric in its differentials. Thus hy and therefore hy, x4, ..., X,
may be permuted arbitrarily.
Iterating, we see that if ¥/ (x) exists, then
Y (X)hy ... hjxy ... x5, Ry, By Xp, ., X€X,
is invariant under permutations of the j+p arguments.

Proposition 3. Suppose that Yy €C*. Then a necessary and sufficient condition
that Yy=r? is that the first derivative Yy* be symmetric in its p+1 arguments.

Proof. Necessity is immediate: If y=rP, then yY'=rP*!, being a (p+1)-th
derivative, is symmetric in its p-+1 arguments.

Sufficiency. By Leibnitz’ rule, which is valid because the segment [0, x] is
compact,
(1—1)p-t

ri(x) = WDx[tp(tx)x"]dt, x€Q.

In evaluating the interior derivative, we shall work with differentials, since the
position of differentials of x is critical and may not be changed arbitrarily. Note
however that p,t, and dt are scalars and commute with all other factors. Now

® d [ (tx) xP] = Y (1x)d xP +[d Y (1)) %P
= pY(tx)x?P" h+ 0y (tx)hx?, h=dxeX, x€Q, 0=t=1.
Our present hypothesis implies that
Y (x) hxP = Y (tx)xPh.

Hence
D, [y (tx)xP] = py (tx) xP=1 + 0 (£x) xP
and
1
(l - t)p_l -1
r(x) = _(j;_:l)_'[pl/l(tx)xp +rpi(tx)xPldt, x€Q.
R !
Transforming the second term by parts, with d, (tx) =y (tx)x dt, we see that
¥ (x), if p=1,
P =1 (1=t

W l[/(tx)x"‘ldt, if p= 2.
o
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It follows that *»=y, by induction on p.

4. The transposes. In order to treat the case in which ¥ is not a p-th derivative,
we introduce i (u), the k-transpose of y/(u), defined as follows.

For 0=j=k=p and u€Q, yi(u) is the element of L,,;(X, Y) determined
by the relation
(10) Ck,;‘/’i(u)v’ﬁ Xp—r+jhy - By

== Z ll/ (u)h,-l... ij 1...xp_k+jh1...ﬁi1...ﬁ,~j "‘hk’

1=ij<..<i;=k

hyy ooy By Xq,5 ooy Xy g4 j€X, where the numbers C ; are binomial coefficients.
There are C, ; terms in the summation. In particular,

1D i) =y°(w) =y (), k=p, ucQ,
and
YR xy oo xphy b = YRRy Xy X, By, By, Xy, X € X

Thus () exists if Y/ (u) exists. Since Y’ (x) is symmetric in its first j ar-
guments and in its last p arguments, it follows that () is symmetric in its last
k arguments and in its first p—k+j arguments.

Note that '

WA @l = [ Wl
and
(12) Wi -y @l =2y W, 0=j=k=p, ucQ.
If the first derivative y!(x) is symmetric and if ¥’(u) exists, then
W) =yi), 0=j=k=p, ucQ
This is because /() is symmetric, by Proposition 2.
5. The derivatives of r. Suppose that Y €C* By Leibnitz’ rule,

1(1 — -
(p—1!

In evaluating the interior derivative, we again use differentials. Thus (cf. (9)),
(14)
diy (tx0)x?) = D) PYi(tx) 2 Ry hyxPRIRy LRy

o<j=k (P— k+ )! 1siy<..<i;sk J

hy =dx€X,...,h=dxcX, x€cQ, 0=t=1, 1=k=p.

(13) rk(x) = | ~——=—DE[y(tx)xP]dt, x€Q.

hka

For j=0, the inner sum is the solo term x? %A, ... h,.
We now introduce the k-transposes, in order to arrange that the differentials
hy, ..., b occur at the extreme right of each term. By (10),
di [y (1x)x?] = Z o, YL (tx)x?~*+ by By, xEQ,

0=j=k
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where
_ plk! .
- o = Gkt OFI=kED
Hence
Di[y(tx)xP) = 3 oy ;Hyf(tx)x?~**i, 0=k=p
0=j=k
Thus, from (13),
k ] (I—prt Pk
(16) rf(x) = DT o Z o, ;1 Y (1x) x ide, xeQ, k=p,
if yecCk

6. The deviations of r*. It is convenient to define r,, the pseudo k-th deriv-
ative of r, and s, the deviation of r* from r,, as follows:

r, = Wa
a7 N

r(x) = mlﬁ(tx)x"”‘dt, x€Q, k<p;
(18) sc(x) = r*(x)—r(x), x€Q, k=p.

In the one-dimensional case X=R, we have s,(x)=0, x€Q, k=p. In all cases,
5¢(0)=0, k=p, by Proposition 1. And

Si(X)hy ... b =0, x€Q, 1=k=p,

whenever the differentials 4,, ..., A, are all collinear with x, that is, whenever
hi=a;x, @;€R, i=1, ..., and k. As we do not use this fact, we omit its formal
proof.
Theorem. If Y €C*, then for all x€Q,
SO(x) = 0,
19) 1(1 (1 —pp-?
(%) = oD, Z o UL (tx) — i (1x)]xP*+ide, 1=k = p.

Furthermore, one may replace  in (19) by Y —¢, where ¢ is the p-th derivative
of any CP**-mapon Q to Y.

Proof. That s,=0 is immediate, by (17) and (4).
Suppose that k=1. We first show that

—fp-1
1 t)l)' S a P x)xP R idn, xeQ, k=p,
0=j=k

20 = f(

an identity similar to (16).
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One may transform the right member by parts, proceeding from y*(tx)x dt=
=d,y*"1(tx) to Y (¢x). The boundary terms will in fact vanish and the integrations
terminate in (20). Instead of dealing with the sequence of integrations and the
boundary terms, however, one may argue as follows.

The relation (20) holds for all ¥ which are p-th derivatives, by (5), (16), and
(17), since in this case Y/ (x)€S,+;(X, ¥), x€Q. It follows that (20) holds for all
Y, whether p-th derivatives or not, as we now show.

Denote the difference of the two members of (20) by d(x). In d(x) replace
the derivatives ¥/, j<k, by their Taylor expansions about the origin with integral
remainder in y*. This, by Fubini’s theorem, yields an identity:

1
21 5(x)=c01//(0)x"""+...+ck_1l/1"‘1(0)x"'1+fc(t)t//"(tx)x"dt, x€Q,
0

for all y: Q—S,(X, Y), where ¢;€R, i<k, and c: [0, []-R is continuous.

By suitable choices of i which are p-th derivatives, we will deduce that ¢;=0,
i<k, and ¢=0. Thus, take ¥ (x)=a;x', x€Q, where i=0,..., or k—1, and
0#a,€S,,(X, Y). Since ¥ is a p-th derivative, (21) reduces to

5(x) =0 = c;a;xP~*+i!, xeQ.

Hence ¢;=0, i<k, and the right member of (21) reduces to its integral term.
It remains to show that ¢=0. Take 0#x,€Q. Put R=spanx, and Q=a
complement of R in X. Thus X=R+Q and R is one-dimensional. Denote
the projection of x on R by x’, x€X.
Take O0s2acY. Extend the function ¢, by putting c(u)=c(1), u=1, and
c(u)=c(0), u=0. Define the map 6: Q—Y by the relation

! ¢! _t)p+k—1

0(.76) = O(X,) = m

c(tx’|xg)x'?*kdt a, x€Q.
Here we consider elements of R as scalars. Thus ¢x’/x, is a scalar and 6(x) is
a scalar multiple of a, hence an element of Y.
Now
OP+5(x)hy ... hyy = c(X[x0)ahy ... Bpyy By, .o, By € X

This is immediate, by partial differentiation relative to the decomposition X=R+Q.
For, from the definition of 6, the pure partials of 0 relative to R are obtainable
from one-dimensional theory (Proposition 1 applied to maps on R), in particular

DF*0(x) = c(x'/xp)a,

and all other (p+k)-th partials vanish.
In (21), put ¥ =6, a p-th derivative. Then &(x)=0, x€Q. Put x=x,ER.
Then x'=x;=x,,

0p+k(txo)xgh1 ces hk = lpk(txO)xophl e hk = c(t)axgh; e h;‘; hl’ ey th X,
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and
1
S(x)hy ... e =0= [ c(tye(t)axgh; ... hi.dr.
0
Hence

1
NSO
0
and c¢=0. Thus (20) is established.

Now (18) follows from (16) and (20), since the term for j=0, eliminated from
the summation in (19), vanishes.

That one may replace Y by ¥—¢, where ¢ is a p-th derivative, follows
from the fact that ¢} =¢/, 0=j=k, since ¢’ isa (p+j)-th derivative and therefore
symmetric.

For p=1, the relation (18) agrees with the formula for rot ¢4 in [3, p. 144].

7. Comparison of f and g. In this section, we assume that ¥, 9€C’ when-
ever Y/, ¢/ appear in a statement.
By (1) and (3),

b —Aap- lxp —k— 1+r"(x)

g @) —f*(x) = by—a,+ .. +(P—k1—)'~

ot p-kd Q k
m(ﬁ(f.’C)X t, Xx€ < p.

Hence, by (18), (17), and (2),

b, a
g x)—f*(x) = by—a,+.. +__E_ii_'lxp k-1
(22) (p—k—1)
+/ = k)f’ D [W(tx)—p@x)]xP~*dt+5.(x), x€Q, k=<p,
and
(23) gP(x)—fP(x) =¥ (x)—o(x)+s5,(x), x€Q.

These differences are readily appraised. In the first place, writing ||z, x| for
Sup; g, 1 12(#X)ll, we have

2p! k! i ki)
() s = 2 e iy 1 e H e

x€Q, 1=k=p.

This inequality follows from (19) with { replaced by ¥ —¢, and from (12), (15),
and the fact that
U T |
(p—D! (P+Ht
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And, by (22), (23),

(x) I8 )~ = Ibi=al .+ L 22t genes
IG—0) %l
+ oot WP @I, xe@ k<p,
and
(+) 187~ = 1Y)~ 90l +ls, (], x€Q

Added in proof. The results of the present paper hold for complex as well
as real Banach spaces X and Y.
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