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REMARKS ON THE CLOSED MODEL
CATEGORY STRUCTURE

OT SIMPTICIAT SPECTRA

KAJ MALM

Introduction. The model category structure of 9p, the category of simplicial
spectra, has been studied by Hastings in [] and [2]. His method, in short, is to
find analogies in 9p for definitions and theorems presented by Quillen [5] in the
case of simplicial sets. As there seem to exist some slips in his proofs (cf. Remarks
2.9 and 2.12), but mainly because his method does not easlrv allow generalizations,
we try here to give a definition of a homotopy structure whrih is based on the fact
that the spectra can be considered as a special kind of prespectra. In the proofs
we use as far as possible only the fact that the components of the prespectra belong
to a model category. We shall return to the more general problem of prespectra
over model categories in the future.

1. Closed model categories. We recall Quillen's definition of a closed model
category [6] and some related concepts.

Definition l.l. A closed model category is a category g vtith three classes

of morphisms in G, called fibrations, cofibrations and weak equivalences, satisfying
the following axioms:
CMl. G is closed under finite limits and colimits.
CM2. If f and 8, are morphisms in G such that gf is deflned and two of f, g,
and g1f are weak equivalences, the third is also a weak equivalence.
CM3. If a morphism f is a retract of a morphisf, g, and if g is a fibration,
cofibration, or weak equivalence, then f is also a fibration, cofibration, or weak
equivalence, respectively.
CM4. Given the commutative diagram

A f ,E
l,l,+o+x " , B,
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in which i is a cofibration and p is a fibration, there exists a lifting, i.e. a morphism

h: X-E such that f:hi and g:ph if
(i) p is a weak equivalence, or
(ii) i is a weak equivalence.

CM5. Any morphism f h G can be factored as f:pi, where p is a fibration
and i acofibrationand
(i) p is a weak equivalence, or
(ii) , is a weak equivalence.

If the lifting exists in the diagram of CM4, we say that i has the left lifting
property with respect to p, and p has the right lifting property with respect to i.
More generally, provided I is ar,y class of morphisms in G, we say that i has

the left lifting property with respect to I if i has the left lifting property with
respect to every morphism in 9. Dually, p has the right lifting property with
respect to I if it has the right lifting property with respect to every morphism

in 9. A morphism which is both a fibration and a weak equivalence is called a

trivial fibration, and a trivial cofibration is defined in a corresponding manner.

Lemma 1.2. Suppose that i: A*X is a trilsial cofibration, I: B*Y a weak

equiualence and that the inner square in the commutatiue diagram

Y

is a pushout. Thm the induced morphism i: Z*Y is a weak equioalence.

Proof. Factor k as krkr, where kr: B*Z' is a trivial cofibration and

k2: Z'*Z is a fibration. By CM4 there exists a morphism m: X*Z' such that
k2m:g and. mi:ktl Thus there exists a morphism r: Z*Z' such that rk:kt
and /rrr:Id. Hence & is a retract of the weak equivalence /r, and by CM3 k
is a weak equivalence, too. Then by CM2 7 is a weak equivalence.

2. The closed moilel category structure of 9p. We give definitions of cofibra-

tions, fibrations and weak equivalences in 9p in such a manner that the axioms

CMI-CMS are satisfied and the resulting homotopy category Ho 9p is the
usual one (i.e. the homotopy category of Kan spectra) up to an equivalence. We

recall that there is a functor Ps:9p*@3 from the category of simplicial spectra

to the category 9s of ss-prespectra such that

2.1. Psp(X),: {xe Xldeg x:n-k, ds...d,x: * , dlx: x , i-nl.
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Definition 2.2. The morphism f: X*Y in 9p is
(i) a weak equivalence if Psp(f) is a weak equivalence for every integer k,
(ii) a fibration if Psr(f) is a fibration for every &,

(iii) a cofibration if Psr(f) is a cofibration for every k.

Lemma 2.3. In the pushout diagram

2s9

,sPso (x) §Pst("f) 
,

I
I

I
Psu + 1(X) ------ --_-'+

,SPsp

I
Zr*

Y)(

1

Psr + r(Y),

where f is a cofibration and S is the suspension, j**, is a cofibration for euery

integer k.

Proof. ln the category of simplicial sets the cofibrations are precisely the in-
jections.

Remark 2.4. The definition of weak equivalences does not coincide with
the classical one given e.g. in [3, Def. 3.3]. However, as we shall see later, the corre-
sponding homotopy categories are equivalent.

Proposition 2.5. The category 9p equipped with the weak equioalences,

cofibrations and fibrations of Definition 2.2 is a closed model category.

Proof. As CMI and CM2 are clear we proceed to CM3. Here it is sufficient
to apply Psp to the retraction diagram.

For CM4 suppose we have a commutative diagram

A I *E
l'l'r I-I' n.

where f is a cofibration and p a trivial fibration. The problem is to find a lifting
X*8. For every &>0 we can find a lifting in the diagram

Ps{A) 

- 
Psi(E)

I

{
Psn(x)

I

I



260 Kar Maru

Psp*r(X) 
-* 

Psr+r(E)

commutes for ft>0, they define a morphism X*E which solves our problem.

Suppose, then, that hy: Pso(X)*Pso(E) has been constructed for &:0, ...,il-l
in such a way that the diagram commutes for these values of k. Let Z, be a push-

out in the following diagram:
.§Ps,-r(l) 

-* 
Psn(A)rltt+t

,SPs,-r(X)

By Lemma 2.3 the induced morphism Z,*Ps,(X) is then a cofibration. On the

other hand, the diagram

^SPsn -L{A) 

- 

} Ps, (A) to 
' Ps, (A)

If the morphisms Pso6) * Ps*(.E) can be

such that the diagram
,SPse 6) 

-->I

I

+

chosen in a compatible manner,

,SPso (E')
I

I

I

I

I
Psn@)

rltt{t
,SPs,, -L(X) Zn

I

Isft"-t
i

SPs,-r(E)

commutes, and so there is a morphism Z,*Psn(E) rendering the subdiagrams

commutative. Thus we obtain the commutative diagram

Ps"(E)l'" II"" I
Ps"(X) Ps,(.B),

and as 7, is a coflbration and the other vertical morphism a trivial fibration, there

exists a morphism h,: Ps,(X)*Ps,(E) which is a lifting in the preceding square.

Combining these results we see that the restriction of hn to SPs,-r(X) is 4-t.
The same argument applies with minor modifications if i is supposed to be a trivial
cofibration and p a fibration. In fact all the steps prior to the last one remain un-

affected; if i is a weak equivalence, then by Lemma 1.2 i, is one, too, and the

lifting h, exists by CM4 (ii).
To prove CM5 we use the fact that the cofibration - trivial fibration factoriza-

tion can be performed in a canonical manner in the category of simplicial sets (cf.

t5l). We prove only CM5 (i) as the proof of the other half is quite similar. Suppose,

then, that f: X-I is a morphism in 9p. For every integer n we construct the

canonical factorization p,i,, whete i,: Psn(X)*Zn is a cofibration and P,i Z,'
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*Ps,(f) a trivial fibration. Now the problem is solved if we manage to find a
spectrum Z and morphisms i: X*2, p: Z* I such that Ps,(Z):Zn, Ps,(i):in
and Ps,(p):p,. But as is easily seen, wPs,a1(T):Ps"(T) for every spectrum
T, and, conversely, the existence of Z follows if wZo*r=Z, for every integer
z (for the definition of p cf. [4, p. 36]). Thus it is enough to prove the following:

Lemma 2.6. Let X L Z !- y b" the canonical factorization of a morphism

f: X*Y in the category of simplicial sets. Then w(p)w(i): wX-wY is isomorphic
to the canonical factorization of w(f).

Proof. Recall that Z is defined as colimn=-rZo, where Z-L:X, po:f and
Z', n>-0, is defined recursively by the pushout diagram

IlÅ(q) * IJ/@,),ltal
rl

7l_' _ )',
where the index set I is the set of commutative diagrams

Å(qo1- 7"-r
I lo"-,+l

/@)- Y, eo>-0.

Once Z" is defined we obtain p,: Z"*Y in the obvious way; p is then colimn po

and i is the injection into the colimit. Let wX*Y*wY be the canonical fac-
torization of w(f); then Z:colimn Z', where Zn is defined in the same way
as Z', with a morphism qn: Vn*wY in the same role as p,. Finally let g' be

the index set in this case. We prove by induction that wZ":V" and. w(pn):qn
up to an isomorphism, fl> - l. For n: -l the assertion clearly holds; suppose

it holds for n- l. Let the diagram D,

d'

I

I 
t(P" - t)

Br+' --* wY

belong to 9'. lf p'(60):o, where äo is the generator of /(q), then o can be

identified with a 4*l-simplex of I such that dr*t(o):x and do...doo:*t
where x is the basepoint. In the same way the simplices u'(diår) can be identi-
fied with 4-simplices of Z"-1. Then we can define morphisms fr: /(q4l)*Y
and a: Å(q+l)*Z"-r such that

fr(ö): o

q,(di) : 
{o 

,o;u,r, ',1'ri{,

/ (q)

I

+

Å (q)
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where ä is the generator of Å (q+ 1). fn this way we obtain an element

Å(q+1) 
o *Zn-L

llPn-,li
Å(q+1) n , Y

of g, and thus also a commutative diagram

A(q+ l) 
-,> 

A(q+ l)1,, Il+
zn-t __,> z" .

then obtain a commutative diagram

/ (q) 
---> 

Å (q)rl
l"' I++

WZ"- 1--+ WZn

By the definition of a we

and finally an induced morphism from the pushout Yo *wZn. Clearly this morphism
is monic. To prove it to be epic it is enough to consider a simplex o€wZ' represented

by the generator ör(Å(q\, q=0, where /(q) is associated with the element

of g. By assumption u(dnön)

an element

ZN_L
I

I

Bl
Y

and a(do . . . dq-, är) - * , and thus we obtain

Å@)

I

+

::^

Å(q-l) '' --
I

I+B'
Å (q- l)

wZn-t

I
wY

of 9'. The simplex rQYn represented by äo-r clearly maps onto o. Finally
the relation w(pn):q, follows by the universal property of the pushout.

We remark that in the case of fibrations CM3 can be deduced from the fact
that the class of fibrations can be characterized as the class of morphisms which
have the right lifting property with respect to a suitably chosen class of morphisms.
It is well known that such classes are closed with respect to retracts. Recall that
I/(k,l) is the simplicial subset of /(k) generated by diör, i*1, O=i=k. To
obtain ttre corresponding inclusion in 9p we employ the functor .f defined in
pl. Recall that (fA),:colimo (SkA)n+x, and the face and degeneracy operations
are induced by those of l.
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Lemma 2.7. For euery spectrum X and euery couple k,t of integers,

Psp§'(X) : Ps**,(X).

Proof. An immediate consequence of 2.1.

Proposition 2.8. A morphism f: XtY in 9p is a fibration if and only if
it has the right lifting property with respect to the inclusion Sefv(k,l)-Spf /(k)
for ersery integer p, k>0, O=l=k.

Proof. Suppose / is a fibration and let the following diagram be commutative:

sPrv(k,t1-" * ytt,
srrlt&) , . 1,.

Applyng Ps-o one obtains, by [4, Lemma 4.7] and Lemma 2.7, the commutative
diagram

Y(k,t)g Ps-o(x)

I I Ps-,(t)

tlkl "-"0' ' r'-lrrl'
By assumption Ps-r(/) is a flbration, and by [5, Def. II. 2.1] this implies the
existence of a lifting Å(k\*fs-01y1. Returning to the category gp we obtain
a commutative diagram

sp rv(k, l) 

-) 
,sp/-Ps _o(x) 

- 
,F

tttl{+
sp rÅ(k) 

- 

spl-Ps _o(Y) E+

X

t,
Y

with a lifting Sef /(k)*SpfPs-o(X); the horizontal morphisms on the right
hand are natural injections. As it is easy to see that the horizontal composites are

a and å, respectively, the desired lifting has been found.
Conversely, suppose / has the right lifting property with respect to every

canonical inclusion SefV(k,D*Sef Åk). We claim that Ps,(f) is a fibra-
tion for every integer t. By definition we have to prove that there exists a lifting
in the commutative diagram



264 Kar Maurt

for every integer t, k>0 and O=l=k Applying f we obtain the diagram

rv(k,l) 
-* 

P§t(x) -----* s,xlttt+I
rA&) 

-* 
Pst(Y) 

- 
S'r

and further, because the suspension is invertible in 9p, the diagram

S-tfv(k'l)-* 'S-'i-Ps'(X) + X
lrr+Jl

^s-trÅ(k) + s-'rPs,(I) 
-* 

y.

By assumption there is a lifting S-'f Å(k)*X, and applying P.r, we obtain by

[4, Lemma 4.71the commutative diagram

v(k, l) 
-_*I

I

+

a (k) 
---,>

Id
Ps,(X ) Ps,(X)lriro+
Ps,(Y) --* Ps,(Y)

with a lifting / (k)-Ps,(X).

Remark 2.9. Hastings claims (in t2l) a similar characterization of fibrations
(cf . 12, Prop. 5.6 and Prop. 5.10). In fact he defines objects Åk and Vk,' in the
category of big spectra such that /k is generated by a simplex äo in dimension
fr, where k is an integer, and no restrictions are imposed on the faces, i.e. d;ä*
is nondegenerate for all i >0. In the case /: X* x this reduces to the assertion
that every Psy(X) is a Kan set if and only if every diagram

Vk,l 

---r>
I

)r
has a lifting. However, this seems to be contradicted by the following:

Example 2.10. Let X be a Kan spectrum (satisfying the local finiteness con-
dition) such that X,: * for z<0 and Xo contains at least one nondegenerate
simplex o. Such an X is easy to find, e.g. X:Ff Å0) where F is the free group
functor defined in [3]. Define a morphism iD:VLt*X by setting tL(d76r):o,
i*1. Then @ is a simplicial map because dk0(dJör): x for every k>0, j*1.
Suppose (D': Åk-X is a lifting of @. Then o':iD'(6r) is a simplex of X having
the property dio':o for every ilk, wbich contradicts the local fniteness con-
dition.

We now turn to the adequacy of the definition of weak equivalences given earlier.
As we noted the classical definition of weak equivalences is different from ours,

--+

X

l,o
+

X
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namely, weaker. However, the homotopy categories defined by the different notions
of w.e. are equivalent. Let Ho gp be the homotopy category (in the sense of Quillen)
defined by the model structure of Definition 2.2.

Proposition 2.11. There exists an equioalence Ho 9p=(9p)1,, where (/pr)n
is the homotopy category of Kan spectrq. Moreooer Ho gpxgpfn-tl, where n
is the class of classical weak equioalences.

Proof. The latter statement follows from the former by the remark on p. 4l
of [4]. To prove the former we recall that an object X of a model category is fibrant
if X*x is a fibration. By [5, Theorem I. 1.1] there is then an equivalence

Ho 9px Ho 9p1, where 9p1is the full subcategory of fibrant objects. But in 9p X
is fibrant if and only if Ps*(X) is fibrant for every integer å, if and only if P*(X)
is a Kan set for every /c. Thus 7pr:/pr, and in this category a morphism /
is a weak equivalence if and only if Ps*(f) is a weak equivalence for every integer

k by [3, Prop. 9.2]. Thus the two definitions of weak equivalences coincide in 9pr.
On the other hand Ho ?psx(?pr)o by [4, Theorem 4.1?).

Remark 2.l2.ln [1] and [2] Hastings claims that f: X*Y is a weak equivalence
(in the classical sense) if and only if Pso(f\ is a weak equivalence for every k.
This of course is valid for Kan spectra, but not in general. Take for instance the

sphere spectrum f Å@). By [3, Prop. 5.3] the map n*fÅ(n)-n*FfÅ@) is an
isomorphism. Because Ff Å@) is a Kan spectrum by [3, ExampleT.S], nrFf Å(n):
:nyalPsrFf Å@) for every , such that k+t=O. If the result mentioned above
held we would have

colim, zo * rS' Å 7n1 : colim, z* *, Ps, r Å 6) : n1"*, Ps, I Å (n) : no * rS' Å (n)

for every , such that k+t>O. But this would not seem to hold; choose for in-
stance n:1, k:3, /:3. Of course the error lies in the fact that a theorem, [2,
Prop 4.7f, proved only for Kan sets is applied to the general case ([2, Prop. 4.8]).
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