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THE COEFFICIENTS
OF QUASICONFORMALITY
OF CONES IN »-SPACE

KARI HAG and M. K. YAMANAMURTHY

1. Introduction. In this paper we extend some results of Gehring and Viisild
[6] to n-space. The outer coefficient of a cylinder and that of a convex cone have
been obtained by them in 3-space. We show that their methods can be modified
to obtain outer coefficients of increasing convex as well as nonconvex cones and
include cylinder as a limiting case of a convex cone. The problems of characterizing
domains with finite coefficients and that of determining these coefficients are rather
complicated in spaces of dimension greater than 2. Some results in this direction
have been obtained in [1], [2], [3], and [6].

The authors wish to thank Professor F. W. Gehring for many helpful dis-
cussions.

2. Notation. We refer to [10] for all definitions and notations not explicitly
stated here.

For each positive integer p, we let Q, denote the p-dimensional Lebesgue
measure of B? and w,_, denote the (p—1)-dimensional Lebesgue measure of
SP~'. We observe that w,_,=pQ,=2n"*/T",,,, where I' is the classical Gamma
function.

We let (r, 0, x,) and (¢, 0, ) denote the cylindrical and spherical coordinates
of x=27_,xe; in R". Here,

0=(0:,0,,...,0,_5), r=0, t=0, 0=¢, 0,=mn,

l=i=n—3 and 0=0,_,<2n. These coordinates are related by the formulas:
X,=1C0Ss @, r=tsin @, x;=r cos 0y, x,=r sin 0, cos 0,, x;=r sin 6, sin 6, cos O, ...,
X,_o=rsinf;sinB,...cos0,_,, x,_;=rsinf,sinf,...sinf,_,. A domain D in
R™ is called a cone of angle a, O0<a<mn, if D can be mapped conformally onto

€)) C,={10,9): 0=0¢<a},

while D is called a cylinder (cone of angle 0) if it can be conformally mapped
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onto
) Co={(r,0,x,): r<1}.

If 0=a=mn/2, the cone is convex, while if n/2<a<mn, it is nonconvex.
The inner, outer, and maximal coefficients of the ordered pair (D, D’) of
domains in R", are defined as
3 K, (D,D’) = inf K,(f), Ko(D,D’) = inf Ko(f),
K(D, D) = inf K(f),

where the infima are taken over all homeomorphisms f of D onto D’. It follows
from (3) that
1=K;(D,D), Kyo(D,D)= o,

Q) K (D, D) = Ko(D', D),
K,(D, D) = K3~'(D, D),

and that the coefficients are finite if and only if there exists a quasiconformal map-
ping from D onto D’. In this case we say that D and D’ are quasiconformally
equivalent.

The following notation is used throughout the paper:

2

¢ —n
2(¢) =f (inu)y'du, 0O=¢=n,
0

0<oa<pf <m, given constants,

) ,
c=qB/q@), q@)=cq(p), for 0=¢=a, and
_ sing’ — = oaa
s(p) = 0o for 0<g@p=a, s50)=c"L

3. The results.

Lemma 1. Given O<a<1 and b>—1, let f,g,h be functions on [0, ]
defined by

fo) = f' (sin u)? du,

g =faf (1)),

and
sin ¢

h) = sin g(tf

for t#0,

h(Q)=a YV, Then h is continuous and decreasing.

Proof. Continuity follows from L’Hospital’s rule applied to the (b+1)-th
power of A(t) as t—0. Next for monotonicity, by differentiating /4(¢) and simplify-



The coefficients of quasiconformality of cones in n-space 269

ing, we get

oo _ COstcosg()
W) = (sin g(W

where G(t)=(sin g(¢))" 'sec g(H)—a(sin 1)’ 'sec s, and G’(f)=a(sin 7)°(tan®g(r)—
—tan?7). Now, on (0, n/2), since g(¢)<t, it follows that G’, G and A’ are all
negative. Next, on [rn/2, g7%(n/2)], h 1is clearly decreasing. Finally, on
(g7 (n/2), ), G’ is positive, whence G and A’ are negative. 0O

G,

Theorem 1. Given 0=a<f<n, let D, D" be cones of angles o« and B, resp-
ectively. Then

) L)

(6) Ko(D,D) = (

where for a=0, the right side is replaced by its limit as «a—0, that is,

) q(By~*((n—1) (sin p)¥/@-V)2-".
Proof. We may assume that D=C, and D’=C, as in (1). First let a>0.
Let ff/=f: C,—~C; be defined by

', 0,9) =f(0, p), where

n-2

9(¢") = cq(9), logt’ = c(s(@) *logt,

®

¢, s as in (5). Then f is a difftomorphism whose stretchings at a point (¢, 6, @)
are proportional to

c(s(a))m, c(s(qo))"Tl and s(o),

where s(¢) occurs (n—2) times. From Lemma 1 it follows that the maximum
of these stretchings is c(s(9))""®/"~Y, whence

2—-n
® Ko(f) = "2 (s (@),
and (6) follows for a=0.

Next for =0 we use a limiting argument as follows. For each jEN, let
fﬂ’jj =f;: Cy;;—Cp be defined as in (8). Let S; be the radial stretching of R" given
by S;(x)=cot(f/j)x and T; the translation T;(x)=x—cot(B/j)e,. Then the
sequence of mappings

TjOSjij_l: Cﬂ ind Cﬁ/j—cot (ﬁﬁ)en
converges c-uniformly ([10]) to a mapping f~': Cy;—~C, and

Ko(f) = K, (f7) = lim Ko(f)) = q(B)"*((n—1)(sin py V)=,

and (6) follows for a=0. O
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We next proceed to prove that there is indeed equality in (6) for 0=o0< B=m/2
and for n/2=a<pf<mn. For this we need the generalizations of some modulus
estimates in [6] for curve families in a cylinder and in a cone.

Lemma 2. Let 2=p=n—1 andlet I =T, be the family of curves in B?(x, 1)
Jjoining its boundary S?~'(x,1) to a given point PEBP(x,1) and let o€ F(IN).
Then
(10) fg"“dmp =p'rQ,.

RP

Proof. We may assume P=0. For each y€SP~1 let 7, be the segment joining
0 and S?7'(x, 1) through y. Then Holder’s inequality yields

lé[fgds]

Yy

p+1 1(y,) yy) 1—p P
éf Q”“tl”ldt[f i p dt]
0

0

i(y,)

=1y p? [ ortir-tde,

0

or
iyy)
[ ertirtdr = prri(y,)
0

Integrating with respect to y we get
fg"“dmp = p! fl(yy)‘ldmp_l.
R? sp-1

On the other hand, Hélder’s inequality again yields

1
wm:[ fdmp_1]p+ = [ l(yy)"‘ldmp_l( f I(yy)“ldmp_ljp,
Spr-1 S

Sp-1 p-1

A

or
[ 1@y rdm,_, = p@,.
sp-1

Thus
fg”“dmp =p'"rQ,. 0
RP

Corollary 1. Given O<a<b, let C be the finite part of the cylinder C,,
bounded by the planes x,=a and x,=b, and let E be a connected set in C Joining
the bases of C. Let T be the family of curves in C joining E to the lateral surface
of C. Then
11 M) = w,-5(b—a)(n—1)'7",

with equality if E is the segment {te,: a<t<b}.
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Proof. Choose o€ F(I'). For each t€(a,b), the plane x,=¢ has nonempty
intersection with E and meets C in B" '(te,, 1). Thus (10) with p=n—1 yields

b

fg"dm,,éfdt fQ"dm,,_léw,,_z(b—a)(n—l)l’".
R™ a x,=t

Next if E is the segment {re,: a<t<b}, the function, o(x)=r®==D(p—1)-1

for x=(r,0,x,)€C and ¢(x)=0 for x¢C, is in F(I) and

[ e"dm, = @, _s(b—a)(n—1'"",
er

thus there is equality in (11). O
The proofs of the next lemma and its corollary are similar to those above and
hence omitted ([6], [7]).

Lemma 3. Given O<a=n/2, for t=0 let T=C,nS""'(t) and PcT. Let
I be the family of curves in T joining P and TndC,. Then @€F(I') implies
(12) [ oddmy =0, g "
sn1()

Corollary 2. Given 0<oa=n/2, 0<a<b, let C be the part of C, bounded
by S"Y(a) and S"*(b). Let E be a connected set in C joining the spherical
bases of C and let T be the family of curves in C joining E to the lateral surface
of C. Then

(13) M) = 0,29y log (2],
with equality if E is the segment {te,: a<t<b}. Furthermore, the latter result holds
for O<a<m.

Lemma 4. Suppose that f: Co\{eo}~C,s\{0, =} is a homeomorphism with

(14) lim [ =0, lm f()==,

- — oo
*n

and that f is K-quasiconformal in C,. Then for each a’ =0, the set T=
=f"Y(S"" @ )nC,,) lies between two planes x,=a, and x,=a, where

(15) 0=a,—a, = AKV®V 4= A(n).

Proof. Let a,,a, be the minimum and maximum of x,, where x¢T. We
may assume that a,<a,. Let C be the finite part of C, bounded by the bases
X,=a,, X,=a,, let I' be the family of curves in C joining these bases and let
I"=f(I). Then ([4], [10])

(1/2)H,(1) = M) = KM(I') = KQ,_,(a;—a)' ™",
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where H,(r) is the modulus of the Teichmiiller ring
R™N(CLUGy), Cy={te;: —1=t=0}, Co={te;:r=1= o).

Thus (15) follows. 0O
We next show that equality holds in (6) for increasing convex cones.

Theorem 2. Given O=a<f=mn/2, let D, D’ be cones of angles o and B,
respectively. Then

2—n
q(ﬁ)]"‘2 [SinﬂJm
q(a) “(sina )

Proof. Case (i): a=0, f=mn/2. Let f be any quasiconformal mapping of
Cy, onto C,,. Then f can be extended to a homeomorphism of C,\{«} onto
C.2\{0, ==} ([10]). Further, by composing with a Mobius transformation, we
may assume that

16) Ko(D, 1) = (

lin}w f(x)=0 and l_i’mc.° f(x) =oo.

Now choose 0<a’<b’ and set C’=(B"(b')\B"(@))NC,,
={te,,a’ <t <b}, T'=B"1U')N\B"(@), S =R\
Next let I''=A(E’, §’; C"), I';=A4(S""2(a’), S"%(¥); T’). Then (15) implies that
f~* maps S§""'(@)nC,, and S"'(B)NC,, into a;=x,=a, and b;=x,=b,,
respectively, where
a7 0=a,—a;, by,—b, = AK(fHV"-?,
By choosing 4’ small enough we may also assume that a,<b,. Then (11) yields
(by—as) @, - —
(n_l)n_]_ =M(F1)=K0(f)M(F1) KO(f) ( /2
and by the boundary correspondence property of f ([5], [7]) we get

it log (b'/a’),

E% = M5(I') = Ko(f) M (I'3) = Ko(f) 0,5 (log (b'/a’))>~"
Thus

o = (422"t

Now letting a’~0 and b’—~o and using (17) it follows that

as) Ko(f) = (LED)

Combining this with (6), the result follows.

Case (ii): 0=a<p=mn/2. Let f be any quasiconformal mapping of D=C,
onto D'=C,. Let fi: Cy—~C, and f"’2 Cs—~C,), be the mappings as in Theorem



The coefficients of quasiconformality of cones in n-space 273

1. Then g=fﬁ”/2ofof0“ is a quasiconformal mapping of C, onto C,, and from
(9) and (18) it follows that

n—-2
>q@r1mqﬁ
Ko(f) = [q(oc) sin
which together with (6) yields (16). [
The next two lemmas will be needed in extending (16) for increasing non-
convex cones. We omit their proofs since they are similar to those of the previous
lemmas (see [6], [7]).

Lemma 5. Given O<f<mn, O<a<b, let I' be the family of curves in
S=0CynB"(b)\B"(a) joining its boundary spheres. Then

sin 8 ]"—2
log (b/a) '

Lemma 6. Given O<f<m, let f: (_anz»f,, be a homeomorphism, f(0)=0,
f(e)=co and let f be K-quasiconformal in C,,. Then for each a'=0, the set
F7Y(S" Y (a)NnCy) lies in B"(a))\B"(a;), where

Il =ay/a, =4, A=A, B, K).

(19) MS(IN) = w"_z(

Theorem 3. Given n/2=a<f<mn, let D,D’ be cones of angles o, B, resp-
ectively. Then
n—2
, g(B) ) ?(sina)-1
(20) Ko(D, D) = [q(oc)) (sin /3] ’
Proof. As in the proof of Theorem 2 we consider two cases.
Case (i): Let a=m/2. We may assume that D=C,,, D’=Cs. Let f be any
quasiconformal mapping of D onto D’. Then f can be extended to a homeo-
morphism of D onto D’ ([10]) with f(0)=0, f(e)=c. Now choose O<a’ <b’
and set C'=D'nB"(b')\B"(a’), E’={te,: a<t<b’}, T'=0D'nB"(b’)\B"(a),
§’=0D’, I'1=A(E’, S’;C"), I';=4(S""'(a’), S"7'(¥'); T’). Next f~!' maps
D’'nS"'(a’) and D’'nS""'(b") into B"(a,)\B"(a,) and B"(b,)\B"(b,), resp-
ectively, where
21n 1 = ay/a;, by/b; = A.

By choosing @’ small venough, we may assume that a,<b,. Then Corollary 2
yields

_ On-2
q(n/2)""*

and by the boundary correspondence property of f ([5], [7]) we get
sin f§ ]"—2
log(b’/a’))

log (1) = M) = Ko M) = Kol —o22tog (1),

Wy -2

(log (by/ay)) 2 = M*(T'y) = Ko(HMT(I7) = Ko(f) 0, [
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Thus combining the above two inequalities, letting a’—~0 and using (21), we get

q(B)
q(n/2)

Hence (6) and (22) yield (20) for the case a=m/2.

@2) Ko(f) = (2D) sin g

Case (ii): Let n/2<a<p<m. As before we may assume that D=C,, D'=Cj.
Let f be any quasiconformal mapping of D onto D’ and let f7,: C. y—>C,,
be the mapping as in Theorem 1. Then g=f7,0f is a quasiconformal mapping
of C,, onto Cs, whence from (9) and (22), it follows that

n—2
o))~ (s
q(a) sinp) ’
which together with (6) yields (20). O

Ko() =

Remark. If 0=a<pf=mn/2 or n/2=a<f~<m, then (9), (16) and (20), imply
that the mapping f?: C,~C,, is extremal for the outer coefficient Ky (C,, Cp).
For a<mn/2<p, the problem is still open.

Given a domain D in R", a point P€dD is said to be a cone point for D
of angle «, O<a<m, if there exists a neighborhood ¥V of P and a cone G of
vertex P, angle «, such that VnD=VnG. Theorems 2 and 3 together with
the fact that a cone is ray like at its vertex yield sharp lower bounds for outer dilata-
tion of mappings of a class of domains. This result is analogous to Theorem 9 in
[6] and Theorem 40.3 in [10].

Theorem 4. Let D, D’ be domains in R™ which have cone points P, Q of
angles o, B, respectively, where O<a<f<m. Let f be a homeomorphism of D
onto D’ such that Q is a cluster point of f at P. Then

n—2
o))~ (sinz)=
q(®) sinp) ’

@) Ko () = (

and the bound is sharp.

In the above discussion we have only considered the outer coefficient for in-
creasing cones. In view of (4) we get analogous results for the inner coefficient for
decreasing cones. However, the problem of determining the inner coefficients for
increasing cones is still open. Of course, rough upper and lower bounds for this
case can be obtained by obvious n-dimensional analogues of Theorem 9.2 in [6]
and Theorem 3.2 in [11].
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