THE COEFFICIENTS OF QUASICONFORMALITY OF CONES IN n-SPACE

KARI HAG and M. K. VAMANAMURTHY

1. Introduction. In this paper we extend some results of Gehring and Väisälä [6] to n-space. The outer coefficient of a cylinder and that of a convex cone have been obtained by them in 3-space. We show that their methods can be modified to obtain outer coefficients of increasing convex as well as nonconvex cones and include cylinder as a limiting case of a convex cone. The problems of characterizing domains with finite coefficients and that of determining these coefficients are rather complicated in spaces of dimension greater than 2. Some results in this direction have been obtained in [1], [2], [3], and [6].

The authors wish to thank Professor F. W. Gehring for many helpful discussions.

2. Notation. We refer to [10] for all definitions and notations not explicitly stated here.

For each positive integer p, we let Ω_p denote the p-dimensional Lebesgue measure of B^p and ω_{p-1} denote the $(p-1)$-dimensional Lebesgue measure of S^{p-1}. We observe that $\omega_{p-1} = p\Omega_p = 2\pi^{p/2}/\Gamma(p/2)$, where Γ is the classical Gamma function.

We let (r, θ, x_n) and (t, θ, φ) denote the cylindrical and spherical coordinates of $x = \sum_{i=1}^{n} x_i e_i$ in \mathbb{R}^n. Here,

$$\theta = (\theta_1, \theta_2, \ldots, \theta_{n-2}), \quad r \equiv 0, \quad t \equiv 0, \quad 0 \leq \varphi, \quad \theta_i \leq \pi,$$

$1 \leq i \leq n-3$ and $0 \leq \theta_{n-2} < 2\pi$. These coordinates are related by the formulas:

$$x_n = t \cos \varphi, \quad r = t \sin \varphi, \quad x_1 = r \cos \theta_1, \quad x_2 = r \sin \theta_1 \cos \theta_2, \quad x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3, \ldots, \quad x_{n-2} = r \sin \theta_1 \sin \theta_2 \ldots \cos \theta_{n-2}, \quad x_{n-1} = r \sin \theta_1 \sin \theta_2 \ldots \sin \theta_{n-2}.$$

A domain D in \mathbb{R}^n is called a cone of angle α, $0 < \alpha < \pi$, if D can be mapped conformally onto

$$C_{\alpha} = \{(t, \theta, \varphi): 0 \leq \varphi < \alpha\},$$

while D is called a cylinder (cone of angle 0) if it can be conformally mapped

doi:10.5186/aasfm.1977.0308
onto

(2) \[C_0 = \{(r, \theta, x_n): r < 1\}. \]

If \(0 \leq \alpha \leq \pi/2\), the cone is convex, while if \(\pi/2 < \alpha < \pi\), it is nonconvex.

The inner, outer, and maximal coefficients of the ordered pair \((D, D')\) of domains in \(\mathbb{R}^n\), are defined as

\[
K_t(D, D') = \inf K_t(f), \quad K_o(D, D') = \inf K_o(f),
\]

(3) \[K(D, D') = \inf K(f), \]

where the infima are taken over all homeomorphisms \(f\) of \(D\) onto \(D'\). It follows from (3) that

\[1 \leq K_t(D, D'), \quad K_o(D, D') \leq \infty, \]

(4) \[K_t(D, D') = K_o(D', D), \]

\[K_t(D, D') \leq K_o^1(D, D'), \]

and that the coefficients are finite if and only if there exists a quasiconformal mapping from \(D\) onto \(D'\). In this case we say that \(D\) and \(D'\) are quasiconformally equivalent.

The following notation is used throughout the paper:

\[q(\phi) = \int_0^\phi (\sin u)^{\frac{2-n}{n-1}} \, du, \quad 0 \leq \phi \leq \pi, \]

\[0 < \alpha < \beta < \pi, \quad \text{given constants,} \]

(5) \[c = q(\beta)/q(\alpha), \quad q(\phi') = cq(\phi), \quad \text{for} \quad 0 \leq \phi \leq \alpha, \quad \text{and} \]

\[s(\phi) = \frac{\sin \phi'}{\sin \phi} \quad \text{for} \quad 0 < \phi \leq \alpha, \quad s(0) = c^{\alpha-1}. \]

3. The results.

Lemma 1. Given \(0 < a < 1\) and \(b > -1\), let \(f, g, h\) be functions on \([0, \pi]\) defined by

\[f(t) = \int_0^t (\sin u)^b \, du, \]

and

\[g(t) = f^{-1}(af(t)), \]

\[h(t) = \frac{\sin t}{\sin g(t)} \quad \text{for} \quad t \neq 0, \]

\[h(0) = a^{-1/(b+1)}. \quad \text{Then} \quad h \quad \text{is continuous and decreasing.} \]

Proof. Continuity follows from L'Hospital's rule applied to the \((b+1)\)-th power of \(h(t)\) as \(t \to 0\). Next for monotonicity, by differentiating \(h(t)\) and simplify-
The coefficients of quasiconformality of cones in \(n \)-space

\[
h'(t) = \frac{\cos t \cos g(t)}{(\sin g(t))^{b+2}} G(t),
\]

where \(G(t)= (\sin g(t))^{b+1} \sec g(t) - a(\sin t)^{b+1} \sec t \), and \(G'(t) = a(\sin t)^b (\tan^2 g(t) - \tan^2 t) \). Now, on \((0, \pi/2)\), since \(g(t) < t \), it follows that \(G', G \) and \(h' \) are all negative. Next, on \([\pi/2, g^{-1}(\pi/2)]\), \(h \) is clearly decreasing. Finally, on \((g^{-1}(\pi/2), \pi)\), \(G' \) is positive, whence \(G \) and \(h' \) are negative. \(\square \)

Theorem 1. Given \(0 \leq \alpha < \beta < \pi \), let \(D, D' \) be cones of angles \(\alpha \) and \(\beta \), respectively. Then

\[
K_\alpha(D, D') \leq \left(\frac{q(\beta)}{q(\alpha)} \right)^{n-2} \left(\frac{\sin \alpha}{\sin \beta} \right)^{n-1},
\]

where for \(\alpha = 0 \), the right side is replaced by its limit as \(\alpha \to 0 \), that is,

\[
q(\beta)^{n-2}((n-1)(\sin \beta)^{1/(n-1)})^{2-n}.
\]

Proof. We may assume that \(D=C_\alpha \) and \(D'=C_\beta \) as in (1). First let \(\alpha > 0 \). Let \(f_\alpha^\beta = f : C_\alpha \to C_\beta \) be defined by

\[
(t', \theta, \varphi') = f(t, \theta, \varphi), \quad \text{where} \quad q(\varphi') = cq(\varphi), \quad \log t' = c(s(\varphi))^{n-1} \log t,
\]

\(c, s \) as in (5). Then \(f \) is a diffeomorphism whose stretchings at a point \((t, \theta, \varphi) \) are proportional to

\[
c(s(\varphi))^{n-1}, \quad c(s(\varphi))^{n-1} \quad \text{and} \quad s(\varphi),
\]

where \(s(\varphi) \) occurs \(n-2 \) times. From Lemma 1 it follows that the maximum of these stretchings is \(c(s(\varphi))^{(n-2)/(n-1)} \), whence

\[
K_\alpha(f) = c^{n-2}(s(\varphi))^{2-n},
\]

and (6) follows for \(\alpha > 0 \).

Next for \(\alpha = 0 \) we use a limiting argument as follows. For each \(j \in \mathbb{N} \), let \(f_\beta^\beta = f_j : C_\beta \to C_\beta \) be defined as in (8). Let \(S_j \) be the radial stretching of \(\mathbb{R}^n \) given by \(S_j(x) = \cot(\beta/j)x \) and \(T_j \) the translation \(T_j(x) = x - \cot(\beta/j)e_n \). Then the sequence of mappings

\[
T_j \circ S_j \circ f_j^{-1} : C_\beta \to C_\beta - \cot(\beta/j)e_n
\]

converges \(c \)-uniformly ([10]) to a mapping \(f^{-1} : C_\beta \to C_0 \) and

\[
K_\alpha(f) = K_\alpha(f^{-1}) \leq \lim_{j \to \infty} K_\alpha(f_j) = q(\beta)^{n-2}((n-1)(\sin \beta)^{1/(n-1)})^{2-n},
\]

and (6) follows for \(\alpha = 0 \). \(\square \)
We next proceed to prove that there is indeed equality in (6) for \(0 \leq \alpha < \beta \leq \pi/2\) and for \(\pi/2 \leq \alpha < \beta < \pi\). For this we need the generalizations of some modulus estimates in [6] for curve families in a cylinder and in a cone.

Lemma 2. Let \(2 \leq p \leq n-1\) and let \(\Gamma = \Gamma_p\) be the family of curves in \(B^p(x, 1)\) joining its boundary \(S^{p-1}(x, 1)\) to a given point \(P \in B^p(x, 1)\) and let \(q \in F(\Gamma)\). Then

\[
\int_{R_p} q^{p+1} dm_p \approx p^{1-p} \Omega_p.
\]

Proof. We may assume \(P = 0\). For each \(y \in S^{p-1}\), let \(y_y\) be the segment joining \(0\) and \(S^{p-1}(x, 1)\) through \(y\). Then Hölder's inequality yields

\[
1 \equiv \left(\int_{\gamma_y} q \, ds \right)^{p+1} \leq \int_0^{l(y_y)} q^{p+1} t^{p-1} dt \left(\int_0^{l(y_y)} t^{-p} dt \right)^p \leq l(y_y)^p \int_0^{l(y_y)} q^{p+1} t^{p-1} dt,
\]
or

\[
\int_0^{l(y_y)} q^{p+1} t^{p-1} dt \equiv p^{-p} l(y_y)^{-1}.
\]

Integrating with respect to \(y\) we get

\[
\int_{R_p} q^{p+1} dm_p \equiv p^{-1} \int_{S^{p-1}} l(y_y)^{-1} dm_{p-1}.
\]

On the other hand, Hölder's inequality again yields

\[
\omega_{p-1}^{p+1} = \left(\int_{S^{p-1}} dm_{p-1} \right)^{p+1} \leq \int_0^{l(y_y)^{n-1}} dm_{p-1} \left(\int_{S^{p-1}} l(y_y)^{-1} dm_{p-1} \right)^p,
\]
or

\[
\int_{S^{p-1}} l(y_y)^{-1} dm_{p-1} \equiv p \Omega_o.
\]

Thus

\[
\int_{R_p} q^{p+1} dm_p \equiv p^{1-p} \Omega_p. \quad \square
\]

Corollary 1. Given \(0 < a < b\), let \(C\) be the finite part of the cylinder \(C_o\), bounded by the planes \(x_n = a\) and \(x_n = b\), and let \(E\) be a connected set in \(C\) joining the bases of \(C\). Let \(\Gamma\) be the family of curves in \(C\) joining \(E\) to the lateral surface of \(C\). Then

\[
M(\Gamma) \equiv \omega_{n-2}(b-a) (n-1)^{1-n},
\]

with equality if \(E\) is the segment \(\{te_n: a < t < b\}\).
The coefficients of quasiconformality of cones in n-space

Proof. Choose $q \in F(\Gamma)$. For each $t \in (a, b)$, the plane $x_n = t$ has nonempty intersection with E and meets C in $B^{n-1}(te_n^*, 1)$. Thus (10) with $p = n - 1$ yields

$$\int_{\mathbb{R}^n} q^n dx_n \equiv \int_a^b dt \int_{x_n = t} q^n dm_{n-1} \equiv \omega_{n-2}(b-a)(n-1)^{1-n}.$$

Next if E is the segment $\{te_n : a < t < b\}$, the function, $q(x) = r^{(2-n)(n-1)}(n-1)^{-1}$ for $x = (r, \theta, x_n) \in C$ and $q(x) = 0$ for $x \not\in C$, is in $F(\Gamma)$ and

$$\int_{\mathbb{R}^n} q^n dm_n = \omega_{n-2}(b-a)(n-1)^{1-n},$$

thus there is equality in (11). \(\square\)

The proofs of the next lemma and its corollary are similar to those above and hence omitted ([6], [7]).

Lemma 3. Given $0 < \alpha \leq \pi/2$, for $t > 0$ let $T = C_\alpha \cap S^{n-1}(t)$ and $P \in T$. Let Γ be the family of curves in T joining P and $\overline{T} \cap \partial C_\alpha$. Then $q \in F(\Gamma)$ implies

$$\int_{S^{n-1}(t)} q^n dm_{n-1} \equiv \omega_{n-2} q(x)^{1-n} t^{-1}.$$ (12)

Corollary 2. Given $0 < \alpha \leq \pi/2$, $0 < a < b$, let C be the part of C_α bounded by $S^{n-1}(a)$ and $S^{n-1}(b)$. Let E be a connected set in C joining the spherical bases of C and let Γ be the family of curves in C joining E to the lateral surface of C. Then

$$M(\Gamma) \equiv \omega_{n-2} q(x)^{1-n} \log \left(\frac{b}{a}\right),$$ (13)

with equality if E is the segment $\{te_n : a < t < b\}$. Furthermore, the latter result holds for $0 < \alpha < \pi$.

Lemma 4. Suppose that $f : \overline{C}_0 \setminus \{\infty\} \to \overline{C}_{\pi/2} \setminus \{0, \infty\}$ is a homeomorphism with

$$\lim_{x_n \to -\infty} f(x) = 0, \quad \lim_{x_n \to +\infty} f(x) = \infty,$$ (14)

and that f is K-quasiconformal in C_0. Then for each $\alpha > 0$, the set $T = f^{-1}(S^{n-1}(a') \cap \overline{C}_{\pi/2})$ lies between two planes $x_n = a_1$ and $x_n = a_2$ where

$$0 \leq a_2 - a_1 \leq AK^{1/(n-1)}, \quad A = A(n).$$ (15)

Proof. Let a_1, a_2 be the minimum and maximum of x_n, where $x \in T$. We may assume that $a_1 < a_2$. Let C be the finite part of C_0 bounded by the bases $x_n = a_1$, $x_n = a_2$, let Γ be the family of curves in C joining these bases and let $\Gamma' = f(\Gamma)$. Then ([4], [10])

$$H_2(1) \leq M(\Gamma') \leq KM(\Gamma) = K\Omega_{n-1}(a_2 - a_1)^{1-n},$$
where $H_n(r)$ is the modulus of the Teichmüller ring

$$R_n \setminus (C_1 \cup C_2), \quad C_1 = \{te_1: -1 \leq t < 0\}, \quad C_2 = \{te_1: r \leq t \leq \infty\}.$$

Thus (15) follows. \hfill \Box

We next show that equality holds in (6) for increasing convex cones.

Theorem 2. Given $0 \leq \alpha < \beta \leq \pi/2$, let D, D' be cones of angles α and β, respectively. Then

$$K_0(D, D') = \left(\frac{q(\beta)}{q(\alpha)} \right)^{n-2} \cdot \left(\frac{\sin \beta}{\sin \alpha} \right)^{\frac{2-n}{n-1}}. \quad (16)$$

Proof. Case (i): $\alpha = 0, \beta = \pi/2$. Let f be any quasiconformal mapping of C_0 onto $C_{\pi/2}$. Then f can be extended to a homeomorphism of $\mathbb{C} \setminus \{0, \infty\}$ onto $\mathbb{C} \setminus \{0, \infty\}$ ([10]). Further, by composing with a Möbius transformation, we may assume that

$$\lim_{x_n \to -\infty} f(x) = 0 \quad \text{and} \quad \lim_{x_n \to +\infty} f(x) = \infty.$$

Now choose $0 < a' < b'$ and set $C' = (B^n(a') \setminus \overline{B^n(a)} \cap C_{\pi/2}, E' = \{te_n: a' < t < b'\}, \quad T' = B^{-1}(b') \setminus \overline{B^{-1}(a')}, \quad S' = R^{n-1}.$

Next let $\Gamma_1' = \Delta(E', S'; C'), \Gamma_2' = \Delta(S'^{-1}(a'), S'^{-1}(b'); T')$. Then (15) implies that f^{-1} maps $S'^{-1}(a') \cap C_{\pi/2}$ and $S'^{-1}(b') \cap C_{\pi/2}$ into $a_1 \equiv a_2 \equiv a_2$ and $b_1 \equiv b_2 \equiv b_2$, respectively, where

$$0 \leq a_2 - a_1, \quad b_2 - b_1 \leq AK(f)^{1/(n-2)}. \quad (17)$$

By choosing a' small enough we may also assume that $a_2 < b_1$. Then (11) yields

$$\frac{(b_1 - a_2)\omega_{n-2}}{(n-1)^{n-1}} \leq M(\Gamma_1) \leq K_0(f)M(\Gamma_1') = K_0(f)\frac{\omega_{n-2}}{q(\pi/2)^{n-1}} \log (b'/a'),$$

and by the boundary correspondence property of f ([5], [7]) we get

$$\frac{\omega_{n-2}}{(b_2 - a_1)^{n-2}} \leq M^S(\Gamma_2) \leq K_0(f)M^S(\Gamma_2') = K_0(f)\omega_{n-2}(\log (b'/a'))^{2-n}. \quad (18)$$

Thus

$$K_0(f) \leq \left(\frac{q(\pi/2)}{n-1} \right)^{n-2} \left(\frac{b_1 - a_2}{b_2 - a_1} \right)^{\frac{n-2}{n-1}}.$$

Now letting $a' \to 0$ and $b' \to \infty$ and using (17) it follows that

$$K_0(f) \leq \left(\frac{q(\pi/2)}{n-1} \right)^{n-2}. \quad (18)$$

Combining this with (6), the result follows.

Case (ii): $0 \leq \alpha < \beta \leq \pi/2$. Let f be any quasiconformal mapping of $D = C_\alpha$ onto $D' = C_\beta$. Let $f_\alpha^0 : C_0 \to C_\alpha$ and $f_\beta^{\pi/2} : C_\beta \to C_{\pi/2}$ be the mappings as in Theorem
The coefficients of quasiconformality of cones in n-space

1. Then $g = f_{1/2}^\pi \circ f \circ f_0^\pi$ is a quasiconformal mapping of C_0 onto $C_{\pi/2}$ and from (9) and (18) it follows that

$$K_0(f) \equiv \left(\frac{q(\beta)}{q(\alpha)} \right)^{n-2} \left(\frac{\sin \alpha}{\sin \beta} \right)^{n-1},$$

which together with (6) yields (16). □

The next two lemmas will be needed in extending (16) for increasing non-convex cones. We omit their proofs since they are similar to those of the previous lemmas (see [6], [7]).

Lemma 5. Given $0 < \beta < \pi$, $0 < a < b$, let Γ be the family of curves in $S = \partial C_\beta \cap B^n(b) \setminus B^n(a)$ joining its boundary spheres. Then

$$M^S(\Gamma) = \omega_{n-2} \left(\frac{\sin \beta}{\log (b/a)} \right)^{n-2}. \quad (19)$$

Lemma 6. Given $0 < \beta < \pi$, let $f : \overline{C}_{\pi/2} \to \overline{C}_\beta$ be a homeomorphism, $f(0) = 0$, $f(\infty) = \infty$ and let f be K-quasiconformal in $C_{\pi/2}$. Then for each $a' > 0$, the set $f^{-1}(S^{-1}(a') \cap \overline{C}_\beta)$ lies in $\overline{B}^n(a_2) \setminus \overline{B}^n(a_1)$, where

$$1 \equiv a_2/a_1 \equiv A, \quad A = A(n, \beta, K).$$

Theorem 3. Given $\pi/2 \equiv a < \beta < \pi$, let D, D' be cones of angles α, β, respectively. Then

$$K_0(D, D') = \left(\frac{q(\beta)}{q(\alpha)} \right)^{n-2} \left(\frac{\sin \alpha}{\sin \beta} \right)^{n-1}. \quad (20)$$

Proof. As in the proof of Theorem 2 we consider two cases.

Case (i): Let $\alpha = \pi/2$. We may assume that $D = C_{\pi/2}$, $D' = C_\beta$. Let f be any quasiconformal mapping of D onto D'. Then f can be extended to a homeomorphism of \overline{D} onto $\overline{D'}$ (110) with $f(0) = 0$, $f(\infty) = \infty$. Now choose $0 < a' < b'$ and set $C' = D' \cap \overline{B}^n(b') \setminus \overline{B}^n(a')$, $E' = \{ t \in \overline{C}_\alpha : a' < t < b' \}$, $T' = \partial D' \cap \overline{B}^n(b') \setminus \overline{B}^n(a')$, $S' = \partial D'$, $I'_1 = \Delta (E', S'; C')$, $I'_2 = \Delta (S^{-1}(a'), S^{-1}(b'); T')$. Next f^{-1} maps $\overline{D'} \cap S^{-1}(a')$ and $\overline{D'} \cap S^{-1}(b')$ into $\overline{B}^n(a_2) \setminus \overline{B}^n(a_1)$ and $\overline{B}^n(b_2) \setminus \overline{B}^n(b_1)$, respectively, where

$$1 \equiv a_2/a_1, \quad b_2/b_1 \equiv A. \quad (21)$$

By choosing a' small enough, we may assume that $a_2 < b_1$. Then Corollary 2 yields

$$\frac{\omega_{n-2}}{q(\pi/2)^{n-2}} \log \left(\frac{b_1}{a_2} \right) \equiv M(\Gamma_1) \equiv K_0(f) M(\Gamma'_1) = K_0(f) \frac{\omega_{n-2}}{q(\beta)^{n-1}} \log \left(\frac{b'}{a'} \right),$$

and by the boundary correspondence property of f ([5], [7]) we get

$$\frac{\omega_{n-2}}{\left(\log \left(\frac{b_2}{a_1} \right) \right)^{n-2}} \equiv M^S(\Gamma_2) \equiv K_0(f) M^S(\Gamma'_1) = K_0(f) \omega_{n-2} \left(\frac{\sin \beta}{\log \left(\frac{b'}{a'} \right)} \right)^{n-2}. \quad (22)$$
Thus combining the above two inequalities, letting $a' \to 0$ and using (21), we get

\[(22) \quad K_\Omega (f) = \left(\frac{q(\beta)}{q(\pi/2)} \right)^{\frac{n-2}{n}} (\sin \beta)^{\frac{n-2}{n-1}}.\]

Hence (6) and (22) yield (20) for the case $\alpha = \pi/2$.

Case (ii): Let $\pi/2 < \alpha < \beta < \pi$. As before we may assume that $D = C_\alpha$, $D' = C_\beta$. Let f be any quasiconformal mapping of D onto D' and let $f_{\pi/2}: C_{\pi/2} \to C_{\alpha}$, be the mapping as in Theorem 1. Then $g = f_{\pi/2} \circ f$ is a quasiconformal mapping of $C_{\pi/2}$ onto C_β, whence from (9) and (22), it follows that

\[K_\Omega (f) = \left(\frac{q(\beta)}{q(\alpha)} \right)^{\frac{n-2}{n}} \left(\frac{\sin \alpha}{\sin \beta} \right)^{\frac{n-2}{n-1}},\]

which together with (6) yields (20). \(\square\)

Remark. If $0 \leq \alpha < \beta \leq \pi/2$ or $\pi/2 \leq \alpha < \beta < \pi$, then (9), (16) and (20), imply that the mapping $f_\alpha^\beta: C_\alpha \to C_\beta$, is extremal for the outer coefficient $K_\Omega (C_\alpha, C_\beta)$. For $\alpha < \pi/2 < \beta$, the problem is still open.

Given a domain D in \mathbb{R}^n, a point $P \in \partial D$ is said to be a cone point for D of angle α, $0 < \alpha < \pi$, if there exists a neighborhood V of P and a cone G of vertex P, angle α, such that $V \cap D = V \cap G$. Theorems 2 and 3 together with the fact that a cone is ray like at its vertex yield sharp lower bounds for outer dilatation of mappings of a class of domains. This result is analogous to Theorem 9 in [6] and Theorem 40.3 in [10].

Theorem 4. Let D, D' be domains in \mathbb{R}^n which have cone points P, Q of angles α, β, respectively, where $0 < \alpha < \beta < \pi$. Let f be a homeomorphism of D onto D' such that Q is a cluster point of f at P. Then

\[(23) \quad K_\Omega (f) = \left(\frac{q(\beta)}{q(\alpha)} \right)^{\frac{n-2}{n}} \left(\frac{\sin \alpha}{\sin \beta} \right)^{\frac{n-2}{n-1}},\]

and the bound is sharp.

In the above discussion we have only considered the outer coefficient for increasing cones. In view of (4) we get analogous results for the inner coefficient for decreasing cones. However, the problem of determining the inner coefficients for increasing cones is still open. Of course, rough upper and lower bounds for this case can be obtained by obvious n-dimensional analogues of Theorem 9.2 in [6] and Theorem 3.2 in [11].
References

University of Trondheim
Department of Mathematics, NTH
N—7034 Trondheim
Norway

University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48109
USA

University of Auckland
Department of Mathematics
Auckland
New Zealand

Received 17 August 1977