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THE COEFFICIENTS
oF QUASTCO|{FORMATTTY

OF CONES IN ru.SPACE

KARI HAG anrl M. K. VAMANAMURTHY

1. Introduction. In this paper we extend some results of Gehring and Väisälä

[6] to n-space. The outer coefficient of a cylinder and that of a convex cone have

been obtained by them in 3-space. We show that their methods can be modified
to obtain outer coefficients of increasing convex as well as nonconvex cones and
include cylinder as a limiting case of a conyex cone. The problems of characterizing
domains with finite coefficients and that of determining these coefficients are rather
complicated in spaces of dimension greater than 2. Some results in this direction
have been obtained in [], l2), 131, and [6].

The authors wish to thank Professor F. W. Gehring for many helpful dis-
cussions.

2. Notation. We refer to [0] for all definitions and notations not explicitly
stated here.

For each positive integer p, we let Q, denote the p-dimensional Lebesgue

measure of Bp and ao-r denote the (p-l)-dimensional Lebesgue measure of
§p-r. We observe that ao-r:pQr:2nol2lfp7z, where f is the classical Gamma
function.

We let (r,0, xn) and (r, 0, E) denote the cylindrical and spherical coordinates
of x:)'!_rxre, in -R'. Here,

0-(0rr0r,...,?n-z), r=0, t=0, 0=8, 0r=n,

l=i=n-3 and 0= 1n-z<27T.

xr:/ cos e, t-l sin e, xt:r cos

xn-z: r sin 0, sin 0, ... co s 0n-2,
f,n is called a cone of angle c.,

(1)

while D is

These coordinates are related by the formulas:
0r, xr- r sin 0, cos 0r, xr- r sin 0, sin 0, cos 0r, ... )

xn-L:rsin0rsin0r...sin0n-2. A domain D in
0< c<ftt if D can be mapped conformally onto

,{(t,0,E):0< E-a},co:

called a cylinder (cone of angle 0) if it can be conformally mapped

koskenoj
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onto
(2) Co : {(r, 0, xn\: r = l}.
If 0=a=n12, the cone is convex, while if nf2-a=.n, it is nonconvex.

The inner, outer, and maximal coefficients of the ordered pair (D, D') of
domains in Rn, are defined as

K,(D, D') : inf Kt(l), Ko(D, D') : inf Ko(f),
(3)

K(D,D'): inf K(,f),

where the infima are taken over all homeomorphisms / of D onto D'. lt follows
from (3) that

I < Kr(D, D'), Ko(D, D',) = *,
(4) Kr(D, D',) - Ko(D" D),

Kt(D, D',) < Kb-L(D, D',),

and that the coefficients are finite if and only if there exists a quasiconformal map-
ping from D onto D'. ln this case we say that D and. D' are quasiconformally
equivalent.

The following notation is used throughout the paper:

f z-n
q(E): | 1sinu1"-Ldu, 0=E<n,

J

($ O=ot= §=r, givenconstants,

c:S(illS@), q(E):cq(E), for 0=E=a, and

s(E):+g for O=q=a, s(0):a'-r.' slng
3. The results.

Lemma l. Giuen O<a<l and b>-1, let f,g,h be functions on [0,2]
defined by

and
sin /h(t):#if,i .for t*o,

h(0):6-rl(t+rt. Then h is continuous and deueasing.

Proof. Continuity follows from L'Hospital's rule applied to the (å+l)-th
power of h(t) äs t*0. Nextformonotonicity, bydifferentiating h(t) andsimplify-

f (t) : 
/(sin 

u)b du,

s,(t) - f-'(of (t)),
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ing, we get

"or 
r"or#* c(r),h.\t) : 

Iri, gtlil _

where G(/):(sin g(r))ä+rsecg(t)-a(sin t)å+lsec t, and G'(t):a1sin t)b(tanz g(t)-
-tan2r). Now, on (0,n12), since g(r)<t, it follows that G', G and h' arc all
negative. Next, on lnlZ, g-t(nl2)), h is clearly decreasing. Finally, on
(s-'(nl2), n), G' is positive, whence G and h' are negative. n

Theorem l. Giuen O=a<f<n, let D,D'' be cones of angles a and p, resp-

ectiuely. Then

(6)

(8)

Ko(D,D',) =(#)'-'[ffi)=,
where for a:0, the right side is replaced by its limit as q,*0, that is,

(7) q(§)'-'((n- l) (sin B;t/t'-tr;z-'.
Proof. We may assume that D:Co and D':C, as in (l). First let a>0.

Let f!:f: C,*C, be defined by

(t', 0, E') : f (t, 0, E), where

n-2
q(E): cq(E), logt' : c(s(a))'-1logr,

c, ,s as in (5). Then / is a diffeomorphism whose stretchings at a point (t,0, E)
are proportional to

n-2 n-2
c(s(a))'-1, .(r(E))'-t and s(E),

where s(g) occurs (n-2) times. From Lemma I it follows that the maximum
of these stretchings is c(s(9))t'-z)/{z-tl, whence

2-n
KoU) -- cn-'(r(o))'-',

Next for c:0 we use a limiting argument as follows. For each ,r(N, let

ffi;fi: Cpu-Cp be defined as in (8). Let ,S7 be the radial stretching of Å' given

by §i(x):cot (\b)x and Tt the translation \(x):x-cot(§b)e,. Then the
sequence of mappings

TroSrof;t: Cp - Cpli-cot(Blj)e,

converges c-uniformly ([0]) to a mapping f-': Co*go un6

Ko U) : K /f - r) 
= liE K o (fi) : q (fr), -, ((n - 1) (sin p)r/(r - 1))2 - a,

and (6) follows for a:0. tr

(e)

and (6) follows for d > 0.
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We next proceed to prove that there is indeed equality in (6) for O=a=fr=nl2
and for nf2=a-.fr<n. For this we need the generalizations of some modulus
estimates in [6] for curve fam.ilies in a cylinder and in a cone.

Lemma 2. Let 2=p=n-l and let l:lp be thefamily of curues in Be(x, l)
joining its boundary ,Sp-l(n, l) to a giuen point p(Bp(x,l) and let S€f(,l-).
Then

( 10) =- pt-PQp.

Foreach /€,SP-r, let yy

Then Höider's inequaiity

t(v) t t(y,) r- p

= I Qp+ryP-L dt 
U' 

ti

be the segment joining
yields

\p
Or)

*{ 
n'*'d*o

I(y")

0

ume P:0.
rough y.

I q o4'*'
yy

Proof. We may ass

0 and S,e_, (r, l) th

n=[

Qp*L tp-' dt,

t(yv)

J QP*ttP-L dt = p-el(yr)-,

Integrating with'respect to y we get

*{ no*'d*r= o-' 
,,f,,r(y)-Ldmo-r.

On the other hand, Hölder's inequality again yields

a!!! : (r,.[, 0* r _,)o 
*' 

=,nf, , 
1 (! r), -, dm o _ tL,d, r,r -, d m, _,),,

or

,,'[,' 
{")-' dm e -1 = PQ e'

Thus

*.[ 
Q'*'d*r= pr-PQp. n

Corollary l. Giuen O=a=b, let C be the finite part of the cylinder Co,
bounded by the planes xn:a efid xn:b, and let E be a connected set in C joining
the bases of c. Let I be the family of curues in c joining E to the lateral surface
of C. Then

(ll) M(D =* a,_2(b-a)(n-t)r-",

with equality if E is the segment {te,: a<t-b}.
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Proof. Choose q(FQ-). For each t((a,b), the plane rco:/ has nonempty

intersection with E and meets C in B"-a(ten,l). Thus (10) with p:n-l yields

f o"dm,= { at { Q"d,m,-t> an-r(b-a)(n-l)t-'.
a xn:,

Next if .E is the segment {ten: a<t<b}, the function, q(x):lz-")l("-D(n-l)-L
for x:(r,O,x,)€C and a(x):O for x{C, is in f(f-) and

! o'd*,: (Dn-z(b-a)(n- l)'-',

thus there is equality in (11). n
The proofs of the next lemma and its corollary are similar to those above and

hence omitted ([6], [7D.

Lemma 3. Giuen 0<a<nf2, for t>O let T:ConS'-t(l) and P€T. Let

f be the family of curues in T joining P and To\C,. Then S€.F'(,I') implies

(12) I Q" dmn-r= r»o-zq(q.)t-"t-1.
§n _ 1(r)

Corollary 2. Gioen 0<a=n12, O=a-b, let C be the part of Cn bounded

by S"-r(a) and Sn-t(b). Let E be a connected set in C joining the spherical

bases of C and let f be the family of curttes in C joining E to the lateral surface

of C. Then

(13) M@ = @n-ze(a)1-',.t [*),
with equality if E is the segment {ten: a=t=b}. Furthermore, the latter result holds

for O=a-n.

Lemma 4. Suppose that f: e11-1*6-lN{0, *\ is a homeomorphism with

(r4) ,,'iT_ f@):0, .^[T_ f(x):-,

and that f is K-quasiconformal in Co. Then for each a'=0, the set T-
J-1(Sr-1(a)ne *,) lies between two planes x,:er and x,:s, v)hs7s

0< az-atf /[{tl@-'), A-A(n).(l s)

Proof. Let ar,a2 be the minimum and maximum of x,, where x€7. We

may assume that ar<ar. Let C be the finite part of C0 bounded by the bases

xn:aL, xr:dz, let j- be the family of curves in C joining these bases and let
f':f (f). Then ([4], [10])

0 12) H,(l) = M (r) = KM(r) : KQn-Jaz- at)r-n,
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where ä,(r) is the modulus of the Teichmiiller ring

R',11quC;, Ct: {ter: -l = l=0}, Cr: {ter: r = t a -}.
Thus (15) follows. n

We next show that equality holds in (6) for increasing convex cones.

Theorem 2. Gioen Q=q<fi=n12, let D, D' be cones of angles a and fr,
respectiuely. Then

(16) Ko(D,r'r:(#)'-'.(#)=.
Proof. Case (i): a:0, fl:n12. Let f be any quasiconformal mapping of

Co onto Colz. Then f can be extended to a homeomorphism of e§{-} onto
e,tr\{0, -} (F0l). Further, by composing with a Möbius transformation, we
may assume that

"lit- f @) : o and ,"'iT- f(x) :*'
Now choose O=e'=b' and set g':(f (å')\.8'(a'))nC,,r,

E' - {te,: a' = t = b'}, ,' - ,"-r(b')\B'-'(a'), ,S' * R'-1.

Next let li:/(E', S'; C'), f'r:/(5"-'(a'), Sn-'(b'); f'). Then (15) implies that
/-1 maps S"-t(a')aCotz aud S"-r(b')^Col, into ar=xn=az and br=xn=br,
respectively, where

(17) 0 < ar-ar, br-br.= AK(I)ttb-z\.

By choosing a' small enough we may also assume that ar<br. Then (ll) yields

%#* = Me,) = Ko(flMgi): r"0 qffi=bg(b'la'),
and by the boundary correspondence property of / ([5], [7]) we get t

@n-z 
= Ms(f z) = Ko(f)Ms'Qi): Ko(I)r»,-r(log(b'la'))z-'.(br-ar)-'-

Thus

Kou)=-(s@_ )"''(#)='
Now letting a'*0 and b'-* and using (17) it follows that

(r8) KoU) =(39-2)'-'.
Combining this with (6), the result follows.

Case (ii): O=a<.p=n12. Let f be any quasiconformal mapping of D:Cn
onto D':Ca. Let fd: Co*Co and 6tz' CF*C,* be the mappings as in Theorem
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l. Then g:f;l2ofof{ is a quasiconformal mapping of Co onto Cn,, and from
(9) and (18) it follows that

Kou)=(#)'-'(r*,,J-i,

which together with (6) yields (16). n
The next two lemmas will be needed in extending (16) for increasing non-

convex cones. We omit their proofs since they are similar to those of the previous
lemmas (see [6], [7]).

Lemma 5. Giuen 0= §=n,
^S- \Ce^B' (å)\8" (a) joining its

MS$)

Lemma 6. Giuen 0<B<n, Iet f: e*,rte o be a homeomorphism, /(0):0,
"f(-):* and let f be K-quasiconformal in Cn,r. Thenfor each a'=0, the set

7-t1tgt-t(a')ner) fies in P(a2)\Bn(ar), where

I = azlar= A, A: A(n, fi, K).

Theorem 3. Gioen nf2<a<P<.n, let D,D' be cones of angles a,B, resp-
ectiuely. Then

(le)

(20)

0= o<b, let f be the family of curues in
boundary spheres. Then

Ko(D,D',):(#)'-'[#):
Proof. As in the proof of Theorem 2 we consider two cases.

Case (i): Let a:n12. We may assume that D:Cn1z, D':Cu. Let f be any
quasiconformal mapping of D onto D'. Then f can be extended to a homeo-
morphism of D onto D' ([10) with /(0):0,/(-):-. Now choose Q<a'<b'
and set C,:D,nB"(b,)\8,(a,), g, :{ten: a,=t=b,}, T,:DD,nB"(å,)\8,(a),
s':0D', fi:/(E', s';c'), fi:/(s'-'(a'), ,sn-r(å'); T'). Next /-1 maps
D'aS"-t(a') and D'^5"-r(b') into B'(ar)\.B'(a) and B'(år)\B'(åJ, resp-
ectively, where

(21) I = arf ar, bzlbr= A.

By choosing a' small enough, we may assume that ar<br. Then Corollary 2
yields

iffi-,*(*) = M(r) = Kou)M(r): Kou)ffi"t(#),
and by the boundary correspondence property of ,f ([5], [7]) we get

@ffi-b- = Ms(rz) = Ko(f)Ms'Qi): Ko(f) a,-,(#-)'
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Thus combining the above two inequalities, letting a'to and using (21), we get

(22) Kou) =(#r)"-'G,,By?.
Hence (6) and (22) yield (20) for the case a:n12.

Case (ii) : Let nl2<a<f =2. As before we may assume that D:Co, D':CF.
Let f be any quasiconformal mapping of D onto D' and let .ffpi Cnp*Co,
be the mapping as in Theorem 1. Then S:-fflzof is a quasiconformal mapping

of Co,, onto Cp, whence from (9) and (22), it follows that

Koff)=w;)'-'(ffi)-,
which together with (6) yields (20). n

Remark. If 0=a<f=nl2 or nf2=a<B<.z, then (9), (16) and (20), imply
that the mapping f!:C,-Cp, is extremal for the outer coefficient K7(C,,C).
For a=nll=P, the problem is still open.

Given a domain D in Ro, a point P(0D is said to be a cone point for D
of angle d,, O<a,<TE, if there exists a neighborhood V of P and a cone G of
vertex P, angle u, such that VaD:YaG. Theorems 2 and 3 together with
the fact that a cone is ray like at its vertex yield sharp lower bounds for outer dilata-

tion of mappings of a class of domains. This result is anaiogous to Theorem 9 in

[6] and Theorem 40.3 in [10].

Theorem 4. Let D, D' be domains in

angles c,§, respectiuely, where 0<d,<.§=n.
onto D' such that O ,s a cluster point of f

fln which haue cone points P, Q of
Let f be a homeomorphism of D
at P. Then

n-2
/sin d\,,-1lmrj ,(23) Kou)=(#)'-'

and the bound ,s sharp.

In the above discussion we have only considered the outer coefficient for in-
creasing cones. In view of (4) we get analogous results for the inner coefficient for
decreasing cones. However, the problem of determining the inner coefficients for
increasing cones is still open. Of course, rough upper and lower bounds for this

case can be obtained by obvious z-dimensional analogues of Theorem 9.2 in 16l

and Theorem 3.2 in [11].
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