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1. Introduction

Let U be the upper half-plane {z(C: lm z>O} and let G be a Fuchsian group
of U. We say that a homeomorphism f: V*W (V,llccl U) is G-compatible if
fogo.f-' is the restriction of a Möbius transformation for g€G. The Teichmilller
space T(G) of G is the set of G-compatible quasisymmetric maps of R that fix 0
and I and that can be extended to a G-compatible quasiconformal map of U.
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344 Pxra Turm

A complex structure can be given to 7(G) as follows. A map whose domain
contains 0, I and - is said to be normalized if it fixes 0, I and -. Let K(G) be the
set of normalized G-compatible quasiconformal maps of cl U. Then T(G):K(A|-
where - is the equivalence relation of K(G; for which f- S if and only if /lR:glR.
Each element f€K(q is uniquely determined if we know its complex dilatation
$r:\flilf. Since / is G-compatibla, F: lt, satisfies

1"'
p(s(r)) - p(x)(g'(x) ls'@)) for all s€ G.

An element p€L*(U, C) is said to be G-compatible if it satisfies (1.1), and the set

of all G-compatible elements of L-(U, C) is denoted by Z-(C). The (open) unit
ball of Z-(G) is denoted by M(A.Then f*p, is a bijection K(G)*M(@.

This embedding into a complex Banach space defines a complex analytic structure
on i((G). The complex structure of T(@ is defined as the quotient structure of
K(ql -. Bers [, 2] (cf. also [6]) has shown that T(@ with this structure is in fact
a complex analytic Banach manifold. He showed that one can define a holomorphic
map @: M(O*B(G), where ,B(G) is a complex Banach space of holomorphic
functions which are defined in the lower half-plane L, are quadratic with respect
to G and satisfy a nonn condition. At every point x€M(@ the derivative
diD(x): L*(A*B(G) has a continuous right inverse B(G)*L-(G). One can also
show that iD(tt):iD(p),f, C€K(q, if and only if .f-5. lt follows that K(G1l-:
:T(q is isomorphic to O(M(q) which is an open subset of ,B(G), and thus 7(G)
is a complex analytic manifold. (Bers defines f(O: A(MG)) in contrast to our
definition T(A:K(G)/-.) W" do not make use of these results of Bers.

Earle [4] has indicated how to show that 7(G) is contractible if G is finitely gen-

erated (cf. also [6] if c:{id}). If, in addition, G is of the first kind, then f(@ is

homeomorphic to a finite dimensional euclidean space. The method of proof of
this result is the construction of so called "moduli" for Fuchsian groups (cf. e.g.

Keen [7, 8, 9]). It has been conjectured by Bers that T(G) is always contractible

[1, Lecture l].
In the present work we extend these results. It must be assumed that the group

G satisfies certain regularity conditions. These conditions are satisfied e.g. if G is
a subgroup of a finitely generated group .EI such that UIH is non-compact. Proposi-
tion 3.3 (e) implies that if G is an arbitrary group such that UIG is non-compact,
then there is a homeomorphism/of cl Usuch that f oG o/-1 is a Fuchsian group
satisfying these conditions. Under these circumstances we show that T(@ is con-
tractible (Theorem 5.2). We show this by constructing for every quasisymmetric
@-ssmpatible map of R a quasiconformul 6-ssmpatible extensiott to U. This exten-
sion defines a real analytic section s: T(Q*tr4(G), i.e. s is a right inverse to the
guotient map M(G)*Z(G). Since M(G)is contractible, this implies the contracti-
pility of 7(G). Earle [5] has also shown that in case G: {id} the Beurling-Ahlfors
äxtension of a quasisymmetric map defines a real analytic section T(1)*114111.
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Our method of extension is in some respects similar to Carleson's piecewise linear
extension [3].

We also show that if G satisfies certain additional conditions, then I(G) is

homeomorphic to a Banach space .E and as a real analytic Banach manifold Z(G)
is equivalent to an open and convex subset of E (Theorem 5.5). This is true e.g.

if G is contained in a finitely generated group of the second kind. It turns out that
.Eis isomorphic to /- as a real Banach space, where /- is the Banach space of bounded
sequences (k), i>0, with supremum norm. Thus it might seem that the contrast
between M (G) and T(G): 1416)/ - lies in the fact that 7(G) is a /--manifold whereas

M(G) is a Z--manifold. But there is no contrast since /- and L- are isomorphic
(Pelcszyriski [12]). Thus also the space.B(G) of holomorphic maps of I is isomorphic
to /- as a real Banach space, since an open subset of ,B(G) (i.e. O(M(G))) can be
mapped by a real analytic isomorphism to an open subset of ,E

As we have already indicated we show that under these circumstances any
G-compatible quasisymmetricmapf admits a G-compatible quasiconformal extension
to U. For arbitrary G, the existence of such an extension is not known but Lehto [11]
has shown that if the quasisymmetry of/is close to l, such an extension always exists.

This and other results of the paper [11] by Lehto will be discussed in the remark
at the end of Section4.

Our method is to find for G (we consider only the case with U/G non-compact)
a special tessellation I of U which is invariant under G and whose triangles are
hyperbolic triangles of t/ with two or three zero angles. If such a triangle 7 has a
vertex u at which the angle of 7 is not zero, then u is the fixpoint of some elliptic
element of G. Each map f€T(G) determines automatically a tessellation f, which
is invariant under /oGof-L. lt turns out that we can parametrize such tessella-

tions {, by sequences (k!), i(1, of real numbers, where the index set 1is the set

of sides of { factored by G. We use these numbers (kf) to determine the Teich-
miiller space of G. Thus our method is a development of the idea of "moduli" in
the finite dimensional case and also an extension of [15], where we proved similar
results 1o, 6: {id}.

Our results are known if T(G) is finite dimensional. Therefore we have em-
phasized infinite dimensionality in the title, although our methods apply also in the
finite dimensional case if UIG is non-compact (cf. Remark 2 in Section 5).

This work was motivated by the results of [14, Proposition p. l5] and [3, Case 2

in the proof of Theorem 3.6], where we proved that any Fuchsian group G such
that UIG is non-compact has a fundamental domain D such thatbdrD consists of
a family of hyperbolic lines and rays that do not intersect except possibly at the
fixpoints of elliptic elements of G. The desire to utilize fundamental domains of
this kind to obtain moduli for infinitely generated Fuchsian gtoups was the main
motive in this work. (Fundamental polygons for infinitely generated Fuchsian groups

have been constructed also by Keen [10]. Unlike ours, the sides of her fundamental
polygons can intersect at points that arc not fixpoints of elliptic elements of G.)
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We use cl and bd to denote closure and boundary. Sometimes it is not clear
where closure or boundary is taken. Then we clarify the situation by denoting clr,B,
bd,aB or by denoting cl ,B (closure in ,4). We use also cl to denote class. If a group
G acts on a set A, the orbit Ga, a€A, is denoted by cl a (: class of a). We may again
for clarity denote cl6a or cla (in AIG).

2. Tessellations by zero-angle triangles

A. Zero-angle triangles. A (proper) zero-angle triangle of the open upper half-
plane U is a degenerated triangle 7c U such that T is closed in U and lhat bduT
consists ofthree hyperbolic lines, not intersecting in [/, but, ifextended to the bound-
ary |U:Ru{-}, intersecting at three points of 0U. The hyperbolic lines bounding
T are the sides of T, and the three points of cl 7\7 in R u {-} are the oertices

of Z. If Z' is another such triangle, then there is a unique, conformal or anticon-
formal, Möbius transformation of U carrying T to T' in such a way that the vertices
of T are carried to pre-assigned vertices of 7'.

If we were interested only in such Fuchsian groups that do not contain elliptic
elements, it would be sufficient to consider only zero-angle triangles of the above

kind. However, if we consider groups with elliptic elements, we must consider also

triangles 7 such that åZ consists of two hyperbolic rays Ä, and ,R, with one common
point x6( U and a hyperbolic line L, not intersecting .R, nor.R, in t/, but such that
clZnclRr:{xr} and cl LaclRr:{xr}. The points xo, x, and xz ate the uertices

of Zand L, R, andR, are its sides. The point xo is the non-zero uertex of 7, others

are zero-angle uertices of T.

B. Tessellations by zero-angle triangles. Let V be an open, connected subset of
U. A tessellation of V by zero-angle triangles is a collection { of zerc-angle triangles

of U such that:
(i) V:l)rro T.

QD ff x(V, the set {T€{: xeT\ isfinite.
(iii) If T, S€9-, T#5, then TnS:O or e common side or a common Dertex.

In most cases Z: U and it is easy to see that U has such tessellations. E.g.,

let 7o be the zero-angle triangle with vertices 0, I and - ånd let Go be the group

whose generators are reflections in the sides of To- Let {o be the tessellation

{S(ä: g(Go} of U. A uertex or a side of { is a vertex or a side of some triangle
of {. We denote by {o the set of all vertices of {, by {' the set of all sides of ./
and by {2:{ the set of all triangles of {.In the following a tessellation will
always mearl a tessellation of Vc U satisfying the above conditions. If V*U,
thetbdoV consists of a number of disjoint hyperbolic lines.

C. Maps between tessellations. Let { and I be two tessellations. A simplicial
map a: {-9 is a bijection {ov{tv{2-9ov9Lvg2 such that it and its
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inverse preserve the side and the vertex relations. Since a vertex u(T(f is a non-zero
vertex if and only if u is a vertex in a finite number of triangles of { , non-zero vertices
are mapped onto non-zero vertices. A simplicial map {-9 is uniquely determined
if we know how it maps the vertices of a given triangle of 7.

A geometric map f: { * I is a homeomorphism of V:Ur* T-W:Ure, T
such that Zis a triangle of { if and only if fQ) is a triangle of 9- Ahomeomorphism

/is a geometricrealization of a simplicial map o( if f(T):ct171 for T€{. ltis
clear that every simplicial map has a geometric realization and, conversely, every
geometric map is a geometric realization of a simplicial map.

We assume now that V:W:U. Under these conditions a geometric map

f: f -9 has always an extension to a homeomorphism of clU. (If x€AU\.7-0,
notice that x has a basis of neighbourhoods Ui, i>0, such that bdr(U,\åtl) is
a side of some triangle of {. The extension to {o is also obvious.) Conversely,
consider a tessellation { of U and a homeomorphism f of 0U. We can define a
tessellation f7 of U as follows : lf u ( {o is a non-zero vertex, let U u: v {T : T€ { and
u(T\.If s1, ...,.r, are the components of bdrUu, then each s, is a hyperbolic line
and s,€ft. Let si be the hyperbolic line with endpoints f(x) and f(y) if x and y are

the endpoints of s; inåU. Then there is a well-defined closed subset Ui of U such that
bduu;:siu... usj. Let o, be some point of int, Ui. lf u(9o is a zero-angle
vertex, let D!:f(u). If s€{r, Iet s, be the hyperbolic ray or line with endpoints
ut and u1, where u and o are the endpoints of s. Finally, if 7 is a triangle of f with
sides s,, i=3, let T, be the unique zero-angle triangle with sides (s)r, f=3. Then
{1: {71: T€g} is a tessellation of U and x+xy; x€{o v{t v{2, is a simplicial
map d,.: f *{r. Any map that is a geometric realization of a, has extension to
äU coinciding with /.

In the above definition of {, we had a certain freedom in the,choice of the non-
zero vertices of {t. If there are no such vertices in { , the tessellation ./, is uniquely
determined. Later we will consider Fuchsian groups acting on a tessellation, and
we require that each non-zero vertex is the fixpoint of some elliptic transformation
in the group G we are considering. This requirement makes a, again unique for non-
zero vertices u.

Let 9 be some tessellation with a triangle T that has three zero-angle vertices.
Then, by performing a suitable Möbius transformation of U, it is always possible
to assume that the vertices of T are 0, I and -. If this is the case, we say that I is

normalized. Anormalized simplicial map a: { -9. between two normalized tessella-

tions is a map that maps the vertices 0, I and * of { to the vertices 0, 1 and -
of 9 (in this order). A normalized simplicial map is unique; it depends only ot f
and L

It should be noticed that a tessellation can be normalized only if it contains a
triangle with three zero-angle vertices; not all tessellations contain such triangles.
However, in later applications in all cases of interest it is possible to normalize a
tessellation.
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3. Fuchsian groups and tessellations

A. Groups acting on a tessellation. Let G be a group of Möbius transformations
of U. We say that G acts on a tessellation { if Se)€g whenever T({ for each
sQ.G. lf G acts on a tessellation, then G necessarily acts discontinuously in U. Hence
G is a Fuchsian group of U if all its elements are orientation preserving. While it
appears that our results are true also for groups containing orientation reversing
elements, we nevertheless restrict our treatment to Fuchsian groups. By a Fuchsian
group we always mean a Fuchsian group of U.

If a Fuchsian group G acts on a tessella tion f , then the quotient surface u f G
has also a tessellation induced by {. (The conditions (i)-(iii) must of course be
modified to fit this case.) we denote this tessellation by f lG. Let u(cl u. If for
some g€\{id}, g(u):p, we say that u is a fixpoint of G\{id} or, in short, of G.
Let o be a vertex of {. Then we say that u is an eltiptic (reip. porabolic) vertex
if there is an elliptic (resp. parabolic) element of G with fixpoint i. 1tt l- is a tessella-
tion of u, then u cannot be the fixpoint of a hyperbolic element of G.) This defini-
tion depends also on the group G acting on {, and if it seems that confusion could
arise, we say e.g. that u is an elliptic vertex of g withrespect to G. If u€Io iselliptic
or parabolic, we say also that cluegolG is elliptic or parabolic.

If a Fuchsian group G acts on a tessellation, then (IlG cannot be compact.
on the other hand, we shall show that if ulc is non-compact, then there is always a
tessellation of U on which G acts.

Let { be a tessellation. We say that I is a normal tessellation relatiue to G if
G acts on { and if each x€U that is the fixpoint of an elliptic element g€G of
order >3 isavertex of {,andif allthetriangles of {witiacommonnon-zero
vertex are equivalent under G. (Note that if x€U is the fixpoint of an elliptic ele-
ment of G order at most 2, then x lies on some side of g.)

Propositio n 3.1. Let G be a Fuchsian group of (I such that ulG is non-compact.
Then there is a tessellation of U thqt is normal relatiue to G.

Proof. This follows essentially from results in [13] and [14]. For according to
[4, Proposition p. 15] G has a fundamental domain D such rhat bduD:l)rrrT,
where each T, is a hyperbolic rine or a hyperboric ray and (a) for each i€I, there
is gi(G such that gi(T):Ti for some j#i, j(I (in which case gr(e:[),
(b) TtnTt:A if i, j(J, i*j except if Z, is a ray and Tj:gi(Ti). In case (b) 7,n{
is the common endpoint of the rays T, and 4; it is atso trre dxpoint of the elliptic
transformation g,. (cf. also [13, Case2 in the proof of Theorern3.6 pp. 34_3s],
where this was proved for groups of the first kind.)

Now it is easy to add hyperbolic lines to D in such a way that a tessellation of
D by zero-angle triangles results. If we take all transforms of these triangles by ele-
ments of G we get a tessellation { of U on which G acts.

Note that if x€u is the fixpoint of some elliptic element g of G,then x is equi-
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valent to some point x'€bduD. Therefore {*'}:TrnT, (7, and Ti as in (b)),

Thus if the order of gi>3, then x is a non-zero vertex. If the order of g; equals 2.

then 7, u7, is a hyperbolic line, and in this case x lies on some side of .4.

Remarks. Let us note that if TQf has a non-zero vertex, then there is a
triangle T'(f with three zero-angle vertices such that TaT' is a side of {,
except if U'lG is a triply punctured sphere where U'is Ufrom which fixpoints of
elliptic elements have been removed. Thus I has triangles with three zero-angles,

the above case excepted.

Also, if G acts on I and x(U is a fixpoint of an elliptic element B€G of
order n:3, then x need not be a non-zero vertex of { since it may be that x€intoT
for some T€{. However, if n>3, then x is always anon-zeto vertex, and even

if n:3, there is always a subdivision 9' of { such that x is a non-zero vertex
of 7'.

Let f: U-U be a homeomorphism and G some Fuchsian group of t/. Then

we say that f is G-compatible if fogof-' is a Möbius transformation of U for
each g(G. This means that f defines a homeomorphism UIG*UIG' withG':
-foGof-t.ln thesame manner, if å is a homeomorphism of 0U,wesaythat å is
G-compatibleif hogoh-1 is the restriction of a Möbius transformation of Cu{-}.
A simplicial map d: {*9 (where G acts on {) is G-compatible if dogod.-r
(where we regard g as a simplicial map of {) is a simplicial map of I admitting a
geometric realization which is a Möbius transformation of [/.

B. Hierarchies of tessellations.Later, when we construct quasiconformal exten-

sions to U of quasisymmetric maps, we need an additional structure on tessellations.
We call this a hierarchy of a tessellation {. Althoagh it cannot be motivated in
the present context, we define here the hierarchy ofa tessellation relative to a Fuchsian
group G acting on { and prove the existence of such a hierarchy.

Let 7,Tr,...,7, be zero-angle triangles of Uwith a common vertex a€|U
and assume that T has three zero-angle vertices. We say that T groups together

triangles Tr,...,7, atu if thereisaneighbourhoodYof u suchthat

T nV: (fru...wT,)aV

and that TinTr:a common side if li-jl:t and:0 if lr-jl>1. A hierarchy
of triangles of a tessellation { (or, in short, a hierarchy of 7) is an (indexed) col-
lection

3g : {I6@): i > 0, i(2, u is a zero-angle vertex of {l
of zero-angle triangles of U that satisfy conditions (a)-(e) below. We say that a

triangle Tq(u) of lf is atriangle of leoeli. In general, T;Q)(f only if i:0 (cf. (c)).

(a) If u is a zero-angle uertex of {, then {Tot@): i€Z} is the set of tiangles
of { with oertex a.

(b) Each triangle of { of leuel i>0 has three zero angles.
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(c) Each triangle Tri(u) of lf, groups together n triangles of {Tr_r,r(u): j(Z},
i>0. If i>1, then n:2; if i:7, then n>O may uary but is bounded by a con-

stant Nn(N.
(d) Let sii(u)-Ti,i-r@)aT;i@)(7'' if i,j(Z,i>0 and u€{onlU. If s,i@)

is a hyperbolic line, let xii@) be the other endpoint of sii@) (*u); f su(u) is a ray,
let xrr(u)(OU be such that the hyperbolic line with endpoints o and xtt(u) contains sii(u)

as a subset. Then the sequence

is an increasing sequence of potnts qf
by the positiue orientation of AU).

(e) s;o (u) : soo (u) for i 
= 

0 and

åU\{u} in the natural order of }U\{r} (induced

u (go 
^ 

AU.

We then suppose that a Fuchsian group G acts on { . The hierarchy tr is inuariant
under G if, for i >0, j(Z and o€{o a\U,

s(T,i(r)) -Tij(g(r)) if i,i€2, i=0, ue {a^0u(3. 1)

and g€G
of rrlc
angles of
with kiZ

with s@)#u. lf s{u):u, let n>0 be

with clou as the positive endpoint. Let
level 0. We assume that there is i'>O
1 and ki,: l. If ,5i' , we assume that,

the number of oriented sides

T,i@) group together kii tri-
such that kij: kin for i> i'
for some l: lie.Z,

(3.2) s(T,i@»: T,,i*,(n).

Propositio n 3.2. Let G be a Fuchsian group acting on a tessellation {. Then

there is a hierarchy tf of { which is inuariant under G.

Proof. Let F contain exactly one point of each orbit Gu, u({o aDU. We can

construct {I1(u): i>0, j(Z) freely for r:(F; after that the hierarchy is fixed by
(3.1). This is easily done. We simply choose soo(u) and, if o is not a fixpoint for ele-

ments of G\{id}, the set {7,,(u): i=0, j<Z} is fixed if each triangle of level i
groups together exactly two triangles of level ,-1. If u is a fixpoint for some
g€O\{id}, there is some trouble due to the fact that the number of oriented sides

of {LlG with clnu as the positive endpoint need not be a power of 2. However, in
this case we can arrange that each triangle of level I groups together two or three
triangles of level 0, and each triangle of level i>l groups together exactly two
triangles of level f -1.

C. Parametrization of tessellations. Let { be some normalized tessellation. We
describe a method by which one can parametrize all normalized tessellations that
are simplicially isomorphic to { by means of a normalized simplicial map o( (note

that q is uniquely determined).
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Let T and 7' be two zero-angle triangles such that T 
^T' 

:s, a common side
that is a hyperbolic line. Let u (resp. u') be the vertex of 7 (resp. T') that is not on
s. Let L be the hyperbolic line such that u, o' qcl Z (closure in cl U). If Z is orthogonal
to ,r, we say that T and T' are symmetric with respect to s. We define a number
k(7, T') that measures the lack of symmetry of T and T' with respect to s. We
choose an orientation for s and let the orientations of T and T'be induced from
that of U. Then one of the triangles T and T', say T', is oriented compatibly with s,

the other, 7, is not. Thus there is a well-defined Möbius transformation g of U which
fixes the endpoints of s and for which g(T') and 7 are symmetric. If we transform
the positive endpoint of s to - åfld the other endpoint to 0, then g is of the form
g(z):).2, z(U, where 2>0. We define k(T,T'):).. We call k(T,T')the glide
cofficient of s (with respect to 7 and 7'). Then logk(T,T') is the hyperbolic
length that T' must glide along s in order that T' and T are in a symmetric
position. Note that k(7, T') does not depend on the chosen orientation of s.

In case T oT':s is a hyperbolic ray, we say that T and T' are symmetric
(with respect to s) if 7' coincides with the image of I under the reflection on ,r.

Also in this case we could define numbers that measure the lack of symmetry of
T and T' but we do not need them. If any two adjacent triangles of a tessellation
{ are symmetric, we say that { is symmetric. If u is a vertex of { and any two
adjacent triangles of { with vertex u are symmetric, we say that { is sym-
metric at u.

Let { and {'be two normalized tessellations and a: {-{'a normalized
simplicial map. Then a is uniquely determined. Thus there is a one-to-one corre-
spondence between normalized simplicial maps d of { and the image a(,V). We
can associate with ,V' (or with «) a sequence k", s({r and s is a hyperbolic line.
Set 4:/c(o((T),a(T')), where 7 ard T'are the triangles of { withside s. We call
the numbers A" the glide coefficients of {' (or of a) and denote also t":k"(a). Given
the numbers fr,, the tessellation V' (like «) is uniquely determined if {' is symmetric
at non-zero vertices and given such a sequence fr" of positive real numbers, there is
a unique normalized simplicial map a: {*{' such that k":k"(u) if s({t is
a hyperbolic line and {' is symmetric at non-zero vertices.

We assume then that a Fuchsian group G acts on I.lf a: {*{' is G-com-
patible, we must have

35r

(3.3) k,(a):ks(,)(a), g(G and s(.fL is a hyperbolicline.

Conversely, if the numbers k" satisfy (3.3), then the normalized map a: 9*9' is
G-compatible. Thus all G-compatible normalized simplicial maps of { can be
parametrized by sequences (fr"), s€I, where 1: {s({L: s is a hyperbolic line}/G.

Proposition 3.3. (a) A symmetric tessellation is a tessellation of U.
(b) Let T and T' be two zero-angle triangles with three zero-angles such that

T oT' is a common side and that both T and T' group together n triangles of a sym-
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metric tessellation I at a ttertex u€cl (f n T'). Then

llog k(7, T')l = Mo for some M, = O.

Ms:O if 9 contains only triangles with three zero-angles.
(c) If fr: 9* I is a simplicial map of a symmetric tessellation 4 then § admits

a realization by a Möbius transformation.
(d) If G is a Fuchsian group acting on a tessellation {, then there is a G-com-

patible simplicial map d,: { * 9, where I is a symmetric tessellation.
(e) If G is a Fuchsian group of U such that UIG is non-compact, then there is

a homeomorphism of clU such that foGof-r acts on a symmetric tessellation of U
that is normal relathse to f oGof-|.

Proof. We have already shown (") (eq. (3.3)). The statement (d) also is clear
since obviously there is a symmetric tessellation I and a simplicial map a: f * I
Now s is G-compatible for any group G acting on {. Proposition 3. l, (a) and (d) imply
(e) since, if { ard {'are tessellations of U, any geometric map 9*{'can be
extended to a homeomorphism of cl U. Thus it suffices to prove (a) and (b).

Let I be a symmetric tessellation. Let V:Urce 7. To prove (a) we must
show Z:U. Forthisitissufficienttoshowthatthereis c=0 such that if x(V,
then ("(x)c Y, where U"(x) is the hyperbolic open disk with center x and radius
c. If x(V, let 4:sup {r: U,(x)cV}. We will show that inf {d,: x(V}>g.

We study the situation at a vertex u({o a\U. It is no restriction to assume
u:-. If s€91 has vertex o, let T and T'be the triangles of ?with side s. Since
.94 is syrnmetric, there is a hyperbolic line Z" orthogonal to s (or to s', where s' is
the hyperbolic line containing s if s is a ray) such that a vertex of 7 and a vertex
of T' lie on cl Z" (cl in cl U). Let diam denote the euclidean diameter of a subset
of C. Then diam d:614m L,:fl if s, r€ 9r are hyperbolic lines with vertex o:-.
This follows easily from the symmetry of I and from the fact that two successive
sides of 9L with vertex u cannot both be rays. Let U,:{x*iy: x(R, y>dl2}cU.
The boundary of U, is the (euclidean) line that is tangent to those L", where s(9r
has vertex o and is a hyperbolic line. Then UucV and inf {d,: x€U,l>c'>O,
where c'does not depend on u. Also, if T<92,

inf {d,: x€.T and x{ U, for DC,9o o\U} = c" > 0,

where c" does not depend on 7. Thus inf {d,: x(V}>O, proving (a).

To prove (b) let S(92 have vertex u:*. Let the sides of 
^S 

with vertex u be
contained in the lines s: {x*it: y>0} and s':{x'*it: t>O}. Then the above
discussion shows that l*-*'l depends only on max{a: a an angle of ,S}:8. The
number l*-*'l issmallestwhen B:1200. Thusthereis c=0 suchthat lx-x'l>c
regardless of §. This proves (b), since also lx-x'l<df2, where dis as in the proof
of (a).
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4. Quasiconformal extension

In this section we shall construct a quasiconformal extension to U of a given

quasisymmetric mapl The first idea is as follows. Let { be some tessellation of U.

In Section 2.C we defined the image {, of {, which is also a tessellation of U.

Now if F: {*4 is some geometric map that coincides withf at vertices o€{o n
a\U, then Fln:f if F is extended to cl U (which can always be done). However,

if we wish Fto be quasiconformal there are difficulties due to the fact that the triangles

have zero angles. For this reason it is better to use the dual complex described

below.
A. The dual complex. In the dual complex 7a of a tessellation {, a cell of

{o conespotds to a vertex of {, a side of {a corresponds to a side of {, and a vertex

of {1 corresponds to a triangle of {. Let T be a zero-angle triangle with vertices

a, b and c.Let So be the hyperbolic line such that a(cl ^S. (closure in cl t/) and

that the sides of 7 with vertex a are situated symmetrically about ,S,. Define simi-

larly ^§, and ^S.. Then S,, 
^S6 

and ,S" intersect at a common point T6(intuT. The
point ?la is called the middle point of T.If I has vertices 0, I and -, then Ta:ll2+
+(3rtzlz)i. The set of vertices of {ois fi:{To: T€9'2}. If s is a side of {,let
s, be the hyperbolic line segment joining To and ,Sr, where 7 and § are the triangles

of .Z with side s. The set of sides of fo is Vor: {s6: s€{t}. Finally, if u is a vertex of
{, let ua be the closed subset of U whose boundary in cl U\{o} is u {sr: s(9r and

u is a vertex of s). If u(fo a0(/, the boundary of ua in U is of the form ... \J§,\J

§i+rU..., where each si{-{al, i(2, and s; intersects only with §;-1 lIDd J;11.

If we add to this union the point u, it is a Jordan curve. lf u({o aU, thenbduoo
is a Jordan curve that is a similar union us, of a finite number of sides of fd.
The set of cells of {ois groz:{ua: u€fol.

It is easy to see that {o is a complex in the usual sense, i.e. the intersection of
two distinct elements of {o is either empty, a common vertex or a common side'

B. A canonical map between hyperbolic triangles. Let To arrd T be two non-

degenerated hyperbolic triangles. We describe a canonical way to define a map

To*7. Let Ao, Bo and Co(U be the vertices of 7, and A, B and C the vertices of
7 such that there is an orientation preserving homeomorphism f: To-7 *i1A

f(A):A, f(B):B and f(cr):c. we denote by xY the hyperbolic line segment
joining X and Y (€U). We regard I, as fixed and T as variable and denote the map

To*T to be defined by f:f(Ao, Br, Co, A, B, C) since it depends on the order of
vertices.

We set

I(A) - A, f(B): B and f(C): g'

Let flAoBo be the linear stretch AoBo*13 in the hyperbolic metric and similarly

flBoCo alnd flCoAo. If Xo<BoCo, let flAoXo be the linear stretch AoXo-ay,
where X:f(Xo). Now we have defined/at all points of 70.
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If G is a subset of C,let L* (G, C) be the Banach space of a.e. defined, essentially

bounded maps G*C with sup ess norm. Let p(f):|fl|f be the complex dilata-
tion of a quasiconformal map. We have:

Lemma a.l. (a) The map f(Ar,Bo,Co,A,B,C):f is quasiconformal. For

fixed Ao, Bo and Co, p(f) depends only on x:d(A, B), y:d(B, C) and z:d(C, A)
(d the hyperbolic metric), and the map (x,y,z)*p(f) is a real analytic map of a
domain of Rz into L- (To,C).

(b) Let Zr, j,o-o [tii*uiui wk be the power series deuelopment of the map (x, y, z)*
*p(f) at a point (xr,yr,zr), where each Fiir,(L*(To,C). Then each llp,r.oll-
depends continuously on xo:d(Ao, Bo), !o:d(Bo, Co), zo:d(Cs, Ao), xt, y1 and zt
and the conlergence of this series is unifurm in L- (To, C) as we Dary xo, !0, zo, xr, lt
and z, in a compact set.

Proof. ln the proof of the lemma we consider the situation in the unit disk D
instead of U. This is due to the fact that we use polar coordinates and that is simpler
in D. We set, if r, 9€R,

[r,.9] : r(cos 9+; sin,9).

We can assume that Ao:1-0, Bo:soqR+ nD, B:uQR+ nD, C6:[r6, 96]

and C:1r,9] with 0=r,ro<l and 0<.9,90=2. Since (x, y,z) and (u,r,S) are
in a real analytic one-to-one correspondence, to prove (a) it suffices to show that
p(f):p(f(Ao, Bo, Co, A, B, C))<L- (To, C) is a real analytic function of (u, r, S).

Indeed, the above normalization shows that p(f) depends only on x, y and z.

We note first that it suffices to find for each point P€70 a neighbourhood
U(P) in ft such that (x, y, z)- 1t(f)lU(P) is a real analytic map into L* (U(P), C).
This implies the lemma by compactness. It is also easy to see that if P€I0\{0},
then P has such a neighbourhood. Thus it suffices to consider the case P:0.

Let h(s't:d(s,0) for 0=s<1, where d is the hyperbolic metric of D. Then
the function/has the expression

"f([s, a]) :lnt(:1L@)å(s)), E(a)1,

where ry' and E depend real-analytically on u, r, S and a (but do not depend on s).
It is important to note that if oc : 0 or d : So , also in this case tp and rtt have a power
series expansion (in u, r, 9.and a) in a neighbourhood of (u, r, S, a). It is easy to
see that

h-L(lt(u)h(s)) : sr/(a)g(s, a),

where g depends real-analytically on u, r, 9,,s and a, and g has a power series expan-

sion also if s:0 or a:0 or fl:.9s, and g(0, a):1.
If w€D\{O}, let e,(w):wllwl and let es(w) be the unit vector €C such

that {e,(w),es(}r,)} is a positively oriented orthonormal basis of C:Rg. Now it
is easy to calculate the matrix of the derivative df(w): R2*R2 if the basis of domain
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is {e,(w), es@)} and that of range is {e,(/(w)), ,"(f(r\l.The result is, if w:[s, a],

0

.L @)s(s, a)E

If s:0, this assumes the form

a)

Thus also if s:0 and 0=or<9o, df(w) is defined as the analytic extension and is
non-singular. Therefore if the above matrix is interpreted as a RJinear map of C,

its complex dilatation is defined. Since the change of basis from {er:|, er:i)
tct le,(w),er(w)l corresponds to a rotation of amount argw:a, we see that
p("f)([s, a]) can be extended for s:0 if 0<or=So and that it has a power series

expansion (in u, r,.9, s and a) at these points. This proves that aiso if P:0, then

P has a neighbourhood U(P) in 7o such that (u, r, S)*p(/)lU(P) is a real analytic
map into L-(U(P),C).

Similar considerations prove part (b) of the lemma.

C. The map induced by a simplicial map. Let { and {' be tessellations by
zero-angle triangles and s: V*{'a simplicial map. In addition we assume that
{ and {' are symmetric at non-zero vertices, that a Fuchsian group G (possibly

trivial) acts on { and that a is G-compatible. Finally, we assume that tf is a G-in-
variant hierarchy of fr. Let ff': {Ti'j@')\ be the hierarchy of ,V' stch that Trlr(u(v))

has vertices aQt), a(u), a(ru) if T,r(o) has vertices u,u and w. This determines ff'
uniquely. We shall denote such a hierarchy by a(tr) and we set also if i =0

a(Tq(u)): Tii@@)) for i<Z and uQ{o.

Now we describe a map F(a) induced by a. The domain of definition of I(a)
is a subdomain V* of V:l)rrrT (Vx depends on af), and similarly its image

is a subdoma in Y *, of V' :l), e s, I that depen ds on 3f ' . We denote by {/, i : O, l, 2,

also the i-skeleton of {o; thus {oi:v {s: s({at}. It is easy to define a map

Fs(a): {ro*"{o'0.w" simply set ro(a)(Ta):a(lT)a fot T({2. The obvious way to
define d(a): {07*9ro'r is to let its restriction to a side sa, s({r, to be the linear
stretch in the hyperbolic metric in such a way that d(a)(sr):s(s)a (we assume

that Fr(a)l{oo:po1o11. The next step, to extend this map to a map -F(a):
:Fr(a): V**Vrs,, is less obvious. We shall now do that using the hierarchy 2f,

of {.In some respects our method is similar to Carleson's piecewise linear extension

of a quasisymmetric mapping [3].
Firstwe note that if u({oaU, the definition of F(u)lua is easy, since in that

case our assumptions ({ and {' are symmetric at non-zero vertices) imply that
tlrere is a Möbius transformation gu: ua*u(u)a such that gulbduo:Fr(«)lbdua.
We set F(a)lua:g".

( ,1,@)(s(r, d)+sDrs(r, o))
't,/'(o)s(s, a) + t @) DzS(s, a)

( t@)
U'(o) +tL (u) Drs(o,

'f*l)

,tol*'t.l) '
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Next, we choose a vertex u({o a|U, and consider the triangles Tq(u), iCZ,
for fixed i>0. As in case i:0 we form the middle point I,r(u)a . Let si1(u)a be the
hyperbolic line segment joining Tqkt)a and Tr,r-r(u)r. Then Uiezsii(u)a is the
boundary (in U) of a closed subset u'o of uo:t:f;, defined like u, in Section 4. A.
We use a similar notation, Tii@') etc., with respect to f' . Then it is true:

(i) Each u'o is conuex in the hyperbolic metric.
($ f,r(u)r6intru'{1, i>0, unless Tii(u):Ti-1,1,Q) for some k€2. (This is

possible only if i:1, by uirtue of (c\ in the definition of a hierarchy.)
(iii) rflctro tf i=j.

We define F(a)(711@)):Tii@@))a and let F(a)ls;;(u)a be the linear stretch
in the hyperbolic metric such that f(a)(s;y(u)a): si,@@)\ if i>0 arrd jez.

We extend F(a) to eachset ur\ui*t, i>0. Considerthesituationin Fig. 1. (We

assume that i:0. The situation is similar, but, by (c) in Section 3.8, possibly simpler
if i>0. We fix j€2. Let 7ri(u) group together triangles Tor(u),...,To,r,*,(o).
Let s be the hyperbolic line segment joining Trib)o and To1,(u)6 and s' be the segment
joining Tr,t*r(u)o and Io,**,*, Q)a. Let lr be the closed subset of cl (u!\o]) whose
boundary in cl(u\u]) is su^r'. We triangulate.Fas in Fig. 1. Let the triangles
of this triangulation b. 4, l:0,...,n*1, such that the vertices of T,are Ar, Bi
and Ci with Ar:7ri(u)a, Bi:To,**r(rs)a, Ct:To,r,*i+t(u), (if i<n*l) and Cn*r:
Tr,i*r(u),. We define similarly the triangles Ti wirh vertices A;, B; and Cj with
respect to {'. We set

F(a)lTi:f@t,Bi,
where f(...) is as in Lemma4.L.

Note that if u and a(u) are parabolic fixpoints of G and G':d,oG oa-l, then
there is i>0 such that F(a)lui is the restriction of a Möbius transformation.

This concludes the definition of F(a). Next, we examine its properties. Ob-
viously,
(a)

If d - id, we have
(fr)

at the points x where .F(id) is defined. Let then {" be a tessellation and B: {'*{"
a simplicial map. We provide {" with the hierarchy fr(tr'):fioa(nf,). If we use

o3':a(tr) in defining F(a-t; ard F(P), we have

F(a-')(x) - F(a)-'(x) and

F(§oa) (y) - F(p)o r(a) (y)

at the points x where f(s-) and F(a)-r are defined and at the points y where F(a)
is defined.

We examine the domain of definition of F(a). In this respect the following
condition is decisive:

F(a) is G-compatible.

r(id)(x) - x

(y)
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(x) Let ue{o n|U. Then o is the only point of accumulation of lu; u is a tsertex

of s€{L such that the other endpoint of s is u}.

Condition (c) in the definition of a hierarchy guarantees:

(ö) If u€{o a|U satisfies (x), then F(u) is defined in the whole uo.

(e) If o':a(o), u as in (ö), satisfi.es (x), then F(a)Qt):oi.

It is also easy to see (since a has arbitrary small neighbourhoods V in cl Usuch
that bd, Vc{ot and similarly o'):

((\ If u and u' are as in (6) and (e), then if we set F(a)Q:):u' :a(o), F(a) is con-

tinuous at u.

Finally, we note (4) which is proved in the same manner as (():

Q» If { and {' are tessellations of U, then F(u) admits an extension to a homeo-

morphism of cl U in such a way that F(a)(u):a(11) for u(To.

D. Quasiconformality of F(a). We study on what conditions r'(a) is quasi
conformal. In this section assumptions are unchanged; recall especially that all
tessellations are assumed to be symmetric at non-zero vertices.

Tri(u) Tr, j+ I (0)

Tor(u)

Too@)o

To, o+ 1 (u) To,o+ z (u)

Tri@) o

To, *+ r (u)a
To,o +z(u)a

Tr,i+ r (u)a

Figure I
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(4.1)

For a given tessellation { we define numbers krj,V) by

k,j,({) - k(7,, i _r(u), 7,,(u)),

where k( , ) is the glide coefficient of Section 3.C and i>0, j€2, a€{o n|U. For
brevity we write P:NXZX.(fo nDU) (N is the set of natural numbers, zero
included) and k^({) for k,,"({) if ).:(i,j,u)QP. Let

(4.2) d({) : sup lloe k^({)1.
7€.P

If dg){ -, we say that { rs

For a given simplicial map

(4.3)

where {' ts

(4.4)

krir,{*)

provided with the

quasisymmetric.

a: { -*,{' we define

: krjr(6({'), li, j, D)( P,

hierarchy ff ' - a(.ff). Si:nilarly,

d(a) - sup ilog k,.(u),.
7(P

If d(a)--, we say that oc is quasisymmetric.

Let ,F be the Banach space of bounded sequences (k^)^e , with supremum norm.
Let Fo be the subset

4: {(k^(a))r.ep: a: 7 * f' a simplicial map with d(a) <-}.

Assume now that in addition 9-, 9-' and e are normalized. Then, given {,
since we assumed that {' (like 9) is symmetric at non-zero vertices, a is uniquely
determined if we know'the sequence (k^(o))^rr.In this case we identify a with the
sequence (k^(o))^rr.

We can now prove if a: {*{'is as in Section C and if { and a are quasi-

symmetric:

Theorem 4.2. (a) { and {' are tessellations of U-

(b) The map F(a) is a quasiconformal homeomorphism of U.

(c) We assume that in addition { and a are normalized. Let H be a real Banach

space, HocH an open subset and h: Ho*f, amap that is reul analytic (differenti-
able) if regarded as a rnap Ho*F. Then x-p(f(a(x))) is a real analytic (diffe-
rentiable) map Ho* [,- (U, C).

Proof. We prove (a) and (b) together. Note first that we may factorize s as

cx:\oy, where 7: {-{o and, B: {o*{' aresimplicialmaps and{oasymmetric
tessellation. This follows from Proposition 3.3 (d). BV Proposition 3.3 (b) {o is

quasisymmetric and therefore both B and y are quasisymmetric. If the hierarchy of
{o is y(/f,), we have, by (y) of Section C, F(a): p(f) 

" 
f'(y) and F(y-t):F(y)-'.

Therefore it suffices to consider the case where { is a symmetric tessellation. By
Proposition 3.3 (a) f is now a tessellation of U. We show that 7' is a tessellation
of U and F(a) is quasiconformal.
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To prove the quasiconformality of .F'(a) we must have a look at Fig. l We defined

.F(a) piecewise in a triangulation K of U by (non-degenerate) hyperbolic triangles
in such a way that F(q)lT, T(K, is of the form f(Ao, ..., C) of Section B. Since

the lengths of the sides of the triangles of rKas well as those of F(u)(T), T€K, vary
in a compact set (this follows from the assumption of quasisymmetry), Lemma 4.1

implies that llp(F(,i)ll-=1, i.e. F(a) is quasiconformal.
Next we show that {' is a tessellation of U. Let 1s'E{'oa\U. Since {'is

quasisymmetric,u' satisfles (x) of Section C. Therefore u'ocF(a)(U) and F(a)(U):
:Y:Urcs.T:U,,<s,ou'0. Each component C of U\Z is a closed subset of U
such that bd, C is a hyperbolic line. Therefore V is a Jordan domain of the Riemann
sphere. Since .F (a) is quasiconformal, it can be extended to a homeomorphism
clU*clV. By (O of Section C we must have F(a)(u):a(u) for u€.70. Since

In (c) we have a family a(x): {*{(x), x(Ho, of simplicial maps (set h(x):
:(k^ta(x11rrr). Since the lengths of the sides of the triangles in Fig. 1 for a(x)
are real analytic (differentiable) functions of x(Ho that vary in a compact set, the

result follows by Lemma 4.1.

The above definition of the quasisynmetry of a tessellation (and of a simplicial
map) depends apparently on the choice of a hierarchy of {. The following corollary
shows that this is not so.

Corollary 4.3.

syrumetric if and only

(4.5)

-fo, any two triangles T and
side atxd that both T and T'

A tessellation { that is syntmetric at non-zero uertice,s rs quosi-

if there rs l,{ =0 such that

llog k(7, T')i = M

T' t4,ith three zero-ongles such that T nT' is a common

group together n triangles o,f ,{ at a uertex t)€{0.

Proof. Let a: 9-V be a simplicialmap,where I is symmetric. By Proposi-
tion 3.3 (d) there is such 9. By Proposition 3.3 (b) Corollary 4.3 is true for 9.
Since we have proved that F(a) is quasiconformal, it follows from the quasisym-

metry of the boundary extension of F(a) easily that Corollary 4.3 is true also for {.
Finally, a few words on the following problem. Let G be a Fuchsian group

acting in U and let I R*R be a G-compatible quasisymmetric mapping. The
question whether / admits a G-compatible quasiconformal extension to U is open.

However, Theorem4.2 implies a partial result:

Corollary 4.4. Let G be a Fuchsian group acting on a quasisymmetric tessella-

tion normal relatiue to G. Then ony G-compatible quasisymmetric map f admits a

G-compatible quasiconformal extension to U.

In particular,if G is asubgroup of a finitely generated Fuchsian group H such that
Uf Hisnon-compact,thenGactson a quasisymmetric tessellationnormal relatiue toG.
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Proof. Let G, be the group of Möbius transformations of t/ for which

{el|U: g(Gr):foGof-t. Let {, and ar: {*{r be the tessellation and the
simplicial map defined in Section 2.C. 9'r and a, are uniquely determined if we demand
that {, is symmetric at non-zero vertices (this is possible since { is normal relative
to G). Then G, acts on I, and hence Gy is Fuchsian. The quasisymmetry of f implies
easily that a, is quasisymmetric. (Cf. e.g. [15, (i) in the proof of Proposition 4 p. 134]
for a similar situation.) The map f(a) is quasiconforrnal and G-compatible since
a, is G-compatible. By (4) of Section 4.C the extension of F(a) to R coincides with
/(by quasisymmetry, both { and {, are tessellations of t/).

The latter part of the Corollary follows from the following result.

Lemma 4.5. If G is a subgroup of a finitely generated Fuchsian group H such
that UIH is non-compact, there is a quasisymmetric tessellation { normal rela-
tiue to G.

Let us assume that H has afundamental domain D such that the sides Lr, i(Iv J,
of D are hyperbolic lines (if i(I) or rays (if i€J) such that L, and Li do not intersect
except if L, and L, are rays equiualent under H. Let Bi, i€K, be the components of
cl D aDU that are not points. Let Lr, i(K, be the hyperbolic line with the same end-
points as Br. Then we may assume that Lr, i(IvK, are sides of {.

H has always such a fundamental domain, and if H is of the second kind, we may
assume in addition that if s€.{r, then at most one of the endpoints of s is an elliptic
or a parabolic fixpoint of H, and that if cl Z, ncl Lr:X*$, ilj, i,j(IvJ, then L;
and L, are equiualent under H and X:{u}, where o is an elliptic or aparabolicfix-
point of H.

Proof. We assume that H* {id} since this case is trivial.
We prove first the existence of such a tessellation g for H assuming the exist-

ence of a fundamental domain D as described in the Lemma. It can be also assumed
that if L, and L, arerays and LinLr:{u}, then L,vL, is not a hyperbolic line
(i.e. u is not a fixpoint for g€G of order >2). If this is the case we set Li,:L.v L.
and add i' to I (and remove i and j from "I) for such pairs Z, and L,.

Let C,, i€r(, bethecomponentof U\2, forwhich CinLi:$,j((1u.f ur<)\{i}.
Let D' be the subset of U for which bd, D':U,<tu.ruxZ,. Now we add hyperbolic
Iines to D' in such a way that a tessellation of D' results. This is a finite tessellation.
Then we tessellate each C, by triangles with three zero-angles in such a way that
if 7 and T' are two adjacent triangles of this tessellation, the glide coefficient
k(T,T'):1. Since D:D' u(U;erC), we can extend this tessellation in a unique
manner to a tessellation I of U on which G acts. It is normal relative to ä. Since
k":1 except if cl, s(Fc?LlH, where Fis finite, it is easy to see that Jz satisfies
(4.5), i.e. is quasisymmetric.

G acts on?, brtt? need not be normal relative to G, since, if u€?o nU and
if Tt(u), l=i=n, are the triangles of I with vertex a, {71@)), i=n, may contain
more than one non-equivalent (with respect to G) triangles. Therefore we must
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modify 9. Let
Uu: Tt(u)v ...vT,(a).

Weretessellate U,insuch awaythat,if SeC and g(u):u,thengmapsthisretessella-
tion onto itself, and that in this retessellation all triangles with vertex u are equivalent
under G. Also, we may assume that if u is the fixpoint of an element of G of order
k>3, then u is a vertex in the retessellation. We do this for all uQgo nU taking
care that a tessellation { on which G acts results. Then { is normal relative to G;

{ isalso quasisymmetric. Since ä isfinitelygeneratedand I normabelativeto
H, the number of triangles of I with a vertex u€.9o aU is bounded if u varies in
90 nU. Therefore the number of non-equivalent (with respect to H) retessella.
tions of U,, v€?o nU, is bounded. The quasisymmetry of { follows from this and
from the quasisymmetry of 9.

Clearly, also the second paragraph of Lemma 4.5 is true and it suffices to show
the existence of such a fundamental domain D as claimed in the Lemma. Unfor-
tunately, it seems that there is no proof in the literature of the existence of such a
fundamental domain although [14, Proposition p. 15] is quite close. In fact, this
Proposition is all that is needed for the existence of a quasisyrnmetric tessellation
normal relative to G but later, in Theorem 5.5, we will need also the last two para-
graphs of Lemma 4.5.

We construct now such a fundamental domain for ä as claimed in the Lemma.
We assume that H is of the second kind. (If Il is of the first kind [4, Proposition
p. 151 gives the desired result.) t.1 5:(cl U\Z(ä»/ä, where L(H)cåU is the
set of limit points of H. Let p: cl U\Z(ä)*^S be the canonical projection, let
x1, . . . , x, € .S be the points such that elements of p-1 (x) are the fixpoints of elliptic
elements of ä, and let nrbe the ramification number at points of p-l(x;).

It follows easily from the well-known classification theorems for surfaces of
finite type that ,S can be obtained as follows. There is a subset D' of C u{-} such
that cl D' is a closed Jordan domain and D' is obtained from cl D' by the removal
of a finite nu'nber of points from the boundary curve. By identifying certain arcs

of 0D' we get a surface homeomorphic to ,S. Let p': D'* S be the map induced
by this homeomorphism. Further,let A!i, i(1, be the arcs of 0D' that are identified.
Then each A! is a closed or half-open interval of 0D', and we may assume that
AinA]:g,i*j, exceptif AinAj:{u}, where u€p'-L({xr,...,x,}); in this case

Ai and Al, are closed intervals and p'(Ai):p'(A;), the other endpoints of A', and
Ajlyrrg in p-1(å§). If u is a parabolic puncture of ,S and [d a sufficiently small
neighbourhood of u, then p-L(U,) intersects exactly two half-open arcs A! and A!,

such that p'(Ai):p'(Ai) and that the endpoints of Ai and Al, lie in p'-l(åS).
If we have found such a domain D' and such a map p' : D' * S, we can as well

assume that p'-t(05)c0u and that each arc Ai is a subarc of a circle C; that is

orthogonal to 0U.lf p'(Ai):p'(Alr), we assume that Ci and Ci have equal diameter
and there is a Möbius transformation fr of U such that C, and Cl are the isometric

361
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circles of I and Tl':Ti and that Tr(Ai):a',. In case AinA3:{o} and p'(o):
:xk we assume that the order of T1 is n1,. Let H' be the group generated by Tr,
i€L Then D'is a fundamental domain for H'. Thus there is a homeomorphism

I (cl U\Z(ä))lH'-5:(cl U\Z(H))lH such that if f(y):y, then the points
of p'-'(y) are fixpoints of elliptic elements of H'if and only if the points ofp-l(x)
are fixpoints for ä and also the orders of these elements are the same. Now it fol-
Iows that there is a homeomorphism h: clU*cl U such that H':h-roHoh.
(fnis is easy to see since L(H) is nowhere dense. Cf. [13, Proposition 3.5] and

[14, Lemma 3].)
We can now define the fundamental domain D for H by setting the sides of

D (inU)tobe A,, i€I, where,4, is the hyperbolic line or ray that has endpoints
h(ur) and h(ur); o, and o, being the endpoints of Ai.lt is easy to see that this defines

a fundamental domain D for H with the desired properties.

Remarks. Although it is not known whether for every Fuchsian group G

any G-compatible quasisymmetric map f admits a G-compatible quasiconformal
extension to U, Lehto [ 1] has shown that such an extension always exists if the
quasisymmetry of/is sufficiently near 1.

Also, in connection with Corollary 4.4 the following result in the same paper

by Lehto is of interest. Let, if G is some Fuchsian group, Q@) be the set of univalent
functions/defined in the lower half-plane L such that foGof-r is a group of
Möbius transformations of /(Z). Let /(G) consist of those elements f€QG) that
admit a quasiconformal extension/' to C in such a way that f' oG of'-t is a group
of Möbius transformations. Then

Å(G): t(1)aQ(G)

if and only if every G-compatible quasisymmetric map admits a quasiconformal
extension to U. (In [11] there are some restrictions on G but these are unnecessary.

The restrictions are used only in the footnote on p. 243 to establish that Gy of Corol-
lary 4.4 is discontinuous. This is true anyway, cf. e.g. the proof of Corollary 4.4
since, if UIG is non-compact, G always acts on a tessellation normal relative to G
(Proposition 3.1).)

5. Teichmiiller spaces

A. Parametrization of quasisymmetric maps. We fix a Fuchsian group G acting
on a normalized tessellation {, normal relative to G. We also fix a G-invariant
hierarchy å? of tnangles of { which is used in the definition of the map .F'(a) induced
by a simplicial map a: {*{'. We have already defined the Teichmtiller space

7(G) of G (cf. Introduction) as a set whose elements are G-compatible quasisym-
metric maps. We show that if f is quasisymmetric, we can use in the definition of
Z(G) simplicial maps ai {*{' instead of quasisymmetric maps. If f and a



On infinite dimensional Teichmriller spaces 363

are quasisymmetric, { and {' are tessellatiors of U (Theorem 4.2), and thus a
induces a homeomorphism f" of 0U for which f,(u):a(u) if o€{o.

Proposition 5.1. Let G,{ and af be as abooe. If f is quasisymmetric,the
map a+fo is a bijection from the set of normalized, G-compatible quasisymmetric
simplicial maps q,i {-{' onto T(G). under these circumstances T(G) consists of
all normalized, G-compatible quasisymmetric maps of R.

Proof. Let a: {*{' be a normalized, G-compatible and quasisymmetric
simplicial map. Then (Theorem 4.2) F(a): U* U is G-compatible and quasi-
conformal. since ((0 of section 4.c) F(a) has an extension to a homeomorphism
of clU in such a way that F(a)(u):a(u), u({on|U, f is quasisymmetric and
G-compatible. Since{ is also normalized, f,€f(q.

Conversely, let I R*R be normalized, G-compatible and quasisyrnmetric.
Then (cf. Section 2.C) there is a unique tessellation {, and a simplicial map af g * ft
such that {t is normal relative to aroGoafr. It follows easily from the quasi-
symmetry of f that a, is quasisymmetric (cf. the proof of Corollary 4.4). Then F(a)
is quasiconformal and thus /€ z(G). obviously a, is also G-compatible and nor-
malized. Since a*{ and f*u, are inverse to each other, this proves our Pro-
position.

Thus, if .Z is quasisymmetric, we can identify Z(G) and the set of normalized,
G-compatible quasisymmetric simplicial maps a: 7*{'. We do this identifica-
tion in the sequel and write a(f(Q for such maps d.

In the following theorem M(G) is the set of G-compatible complex dilatations
(cf. Introduction).

Theorem 5.2. Let G be a Fuchsian group acting on a quasisymmetric tessella-
tion {normal relatiue to G. Then we haue:

(a) The Teichmilller space T(G) of G is contractible.
(b) Themap a*p(f@1) isarealanalyticsection s: T(G)*7,1(G); i.e. kos:id

if k: M(G)*T(G) is the natural projection.
In particular, if G is a subgroup of afi.nitely generated group H such that (IlH

is non-compact, then G acts on such a tessellation 7.
Proof. Since M(G) is contractible (a) follows from (b). As for (b), by Theo-

rem 4.2 (c) it suffices to show that k is real analytic if regarded as a map M (G)* p,
where l7is the /--space of sequences (k^)^r, (cf. Section 4.D). That this map is real
analytic follows from Lemma of [15, Section 5].

In Corollary 4.4 we proved that if G is a subgroup of a finitely generated
group with non-compact quotient space, there is such a tessellation as specified by
the Theorem.

In Section4.D we defined, given a simplicial map d: {*{', numbers k^(a),
1(NXZx(fo nlU):p. These numbers define a uniquely if it is normalized. On
the other hand, the numbers k{a), ),(P, are not independent. E.g. it suffices to



364 Pprrl Turre

know kor,(a), j€2, u€To n|U, to determine oc, and if a is G-compatible, this gives

more relations.
We determine now a subset QcP such that any sequence (kt), ).€Q, deter-

mines a unique G-compatible simplicial map fl: {-{'(not necessarily quasi-

symmetric) such that k^--k^(a) for ),€.Q. Our calculations here are quite similar
to those of [5, Section 3].

We fix some o€{o a|U and transform the situation by a Möbius transforma-
tionof Uinsuch awaythat a(u):-. Then a(7,,r-r(r)), a(ftr@)) has threevertices
on R, let them be a, b and c with a<b=c. We have

(5.1)

Let kt:k^(o),

(5.2) kr,'r,t): k'*',r,,W
LTtti,Zj*t,u

k,ju(a)-(c-b)l(b-a), f =0, ieZ-
L€P. Then a simple calculation shows

for i>1, j€2. lf i:0, the situation is more complicated. On the one hand, a

triangle Toi(rs) may have a non-zero angle and, on the other hand, a triangle Trt(u)
need not group together exactly two triangles of level 0. However, it is easy to see

that there are numbers ci, l<-ci=C<- for j(Z depending on the maximalangle
.9 of To;(u), 0=9=1200, such that

koi 
"(o) 

: (c, (c - b)) f (c i - r(b - a)),

where a<b<c and the line with vertices u: @ and a (or b or c) contains a side of
a(ro,,-r1u1) or a(ror(u)). ret

klsiu : @i-rlcl)koiu: @-b)l@-a) for j€2.

Letm(j), j€2, be the numbers such that 7rr(o) groups together triangles
To^o(u), To,*(il+r(v), ..., To,.(j*r)_, (u). Now a similar calculation as in (5.2) shows

(5.3)

for j €.2.

(5.4)

k'o^e)u : ktju
1 r l.r-l r r l-r-l l-r-l
I t ,10, m( j\ -1-,u f ... t K0, m(i)-].,t) ... Ko,*(.i-1) *1, u

A repeated application of (5.2) gives

t- t-
tui,zn j,u - 

Ki+n, j,u

if i=l and jeZ.
Let s €{L be a

be the numbers such

(5.5)

| + ki"-r,r, -r*- | + k;t", -r,"

hyperbolic line with endpoints u and D'. Let,r(s) and j'(s)e Z
that 5 -§or("y(u):§,j,(r r(u'). Then we have

l- t-

Ir s€{t,r'l'n#i;i: .", with verrex u€,ro 
^0(r, 

thefor every such side s.
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normality of

(5.6)

a o G o d-1 relative to {' gives

if i( s)€Z is the number for which
Next we seek for the relations

is G-compatible, we must have

(5.7) kiin@): kij, for (i, i, u)e P and Ce G

since the hierarchy lf,is G-compatible. If a(u) is a fixpoint of aoGoc-l, we have

(5.8) kriu: kr, j*n,, for i = 0 and ie Z

provided there is g(G with fixpoint u such that g(s;;(u)):s,,r*,(u). In case a(u)

is a parabolic fixpoint of aoGofl-l we have also

krjr:1 if i=io and i€.2,

koi(r), : 1

s - §oj("y(u).

that derive from the G-compatibility of a. If a

(5.9)

where zoä0 is the smallest number i for which all the sides of {s1;(u): i€Z}, ori-
ented with u as the positive endpoint, are equivalent under G. It is easy to see that
(5.9) is a consequence of (5.4) and (5.8) if sup16p llog&rl<-; i.e. if a is quasi-

symmetric.
Let us suppose that numbers kt=O, /.6P, satisfy (5.2)-(5.8). Then we assign

for each s(fL that is a hyperbolic line the number k":koJu if o is an endpoint
of ,r and se;(u):s. By (5.5) k" does not depend on the chosen endpoint of s. Then (Sec-

tion 3.C) there is a unique, normalized tessellation {', symmetric at non-zero ver-

tices, and a unique normalized simplicial map d: {t9' such that these numbers

k" are the glide coefficients of f'.It is obvious, since fr"'s satisfy (5.2)-(5.8), that
we have then kr(a):k^ for ).(P and that a is G-compatible. We paraphrase this
in the following

Lemma 5.3. Let the numbers kt=O, ).<P, satisfy (5.2)-(5.8). Then there is
a unique normalized G-compatible simplicial map d,'. {-9' such that kx(a):k1,
),eP. If supre r llog k1l<-, then a is quasisymmetric and the numbers kt, A€P,
satisfy also (5.9).

To proceed we must make additional assumptions on the hierarchy ,tr. We

assume that the G-invariant hierarchy .* satisfies also (f) below, in addition to
the conditions (a)-(e) of Section 3.B. This condition is motivated by the con-

struction in Theorem 5.5.

(f) There is a partition Ii, i>0, of {o with the following properties:
(l) If u€{o is afixpoint o/ G1{id}, then u€Io. If s({1, at most one end-

point of s is in Is.
(2) If uC\, then the number of sides s€.{' with uertex u such that the other

uertex is in lovll does not exceed a constant Nr. If sot(u) has endpoint ts' (*u) in
Iswlr, then ss1@)q.{sr1@): j€Z}.
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(3) If o€Ir, k>2, then each triangle of leuel I groups together exactly two
triangles of leuel 0. If o' is the other endpoint of so/u\, then u, qlo,, where k, =k
except if j:0 or j-l when k'<k. In addition, sor(u):soo(u').

We shall later show that if G is a subgroup of a finitely generated group of the second
kind, then there is a quasisynmetric tessellation normal relative to G with a G-in-
variant hierarchy that satisfies (a)-(f).

If the hierarchy satisfies also (f) we can find a basis kt, l€e, for &r's as follows.
Let F:{ur,or,...} contain exactly one element from each orbit Gu, o({o nTU.
For elements of {o nåU we define an order by setting u<o, if cl u:cl u, and
cla':cla,, (in golc) and n<n'. We define a subset ecp by (iF(iiD.

(i) Let u(Fnlo,k=2. Then (i,i,t)(e tf i=O and i§22 withtheexception
of (0,1, a)tQ.

(ii) Let r:€F a(Iovlr) and assume that o is not afixpoint o/ \{id}. Let i>l;
then (t,j,a)<Q if j{22 and, in addition, (l,O,u)ee. Let u(Is; then (O,j,r)qe
,f soi@){{st*(u): k€z}. tet a(It; then (o,j,u)€Q f soi(u){{s4(u): k€Z} and
if the other endpoint u' of soi(u) is in Ip, k>2, or in lrand t)'=u or clu:clu, (in
f'lc) and sniQt):sor(u') with j<.j'.

(iii) If a is afixpoinl o/ \{id} (now necessarily u(I), then (i,j,u\e tf
(i,j,o) safisrtes (ii) except that (1,0,o)4e, and, in addition, i<M and 0<j<m.
Here M>0 is the smallest number for which alt the sides of {s*(o): keZ} oriented
with u as the positiue endpoint are equiualent under G and m>O is the smallest number
for which there is g(G with B@):u such that S(s1s(o)):s,.(u).

Letk^, ).e Q, bea sequence of positive real numbers. We determine kr, .l€,\0,
in such a way that k^, ).<P, satisfies (5.2)-(5.9). Let u(Ion.F. Then, in view of
(ii) and (iii), (5.3), (5.4), (5.7), and, if u is a fixpoint of Cy{id}, (5.8) and (5.9) de-
termine all the remaining krr,'s. Let then u(IrnF and assume that we know all
kyu,'s if a'1lo or o'ql, and u'=o. Again in view of (ii), eq. (5.3), (5.4), (5.6) and
(5.7) determine all k;;,'s. we continue in this way. we assume that we know k1,
if o(Ir with k<n and determine all the numbers k,r,, u(In, from (5.3), (5.4), (5.6)
and (5.7). clearly, in this manner all the numbers k)., ).(p, are determined uniquely
and they satisfy (5.2)-(5.9). Notice that if u€.vo n\u is a fixpoint of \{id},
then a(u) is a parabolic fixpoint of ao Goa-r.

Thus we have proved:

Lemma 5.4. Let k^, LeQ, be positiue real numbers. Then there is a unique
normalized G-compatible simplicial map a: {*{' such that k^:k^(a), ).ie,
forwhich aQt) is aparabolicfixpoint of aoGoa-L wheneuer u€TU is afixpoint of
some elemenr o/ \{id}.

B. Embedding into a Banach space. ln this section we show how to embed all
normalized quasisymmetric and G-compatible simplicial maps of a quasisymmetric
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tessellation f with a G-invariant hierarchy lf, satisfyrng (aHf) into a Banach
space. In the preceding section we did not assume that { was quasisymmetric;
from now on we make this assumption. Thus { is a tessellation of U (Theorem 4.2),

and if u(fo n|U is a fixpoint of G\{id}, u is a parabolic fixpoint of G.

By Lemma 5.3 we can identify the set of normalized, quasisymmetric G-compat-
ible simplicial maps a of { with sequences (ft1)r., of positive real numbers that satisfy
relations (5.2F(5.9) with supl,rllog&^l<-. We do this identification and mean
the map a when we say the map (*^1a1)^rr:1tc,)rep. Since, by Lemma 5.4, it
suffices to know k^for )"(Q, we can alsosaythe map (k^)4o. Thenitis unders-
tood that the numbers ftr, .1(.\0, are determined from relations (5.2F(5.9).

Given a simplicial map (,t^)r.r, we define the numbers (h^)^eaby

h,j, - log k,j, if (i, j, u)€Q and f - 0 or (i, j, u) : (1, 0, u),

h,ju - log (l + k,i,) if i 4 l, (i, j, u)€Q and j -l€.42,
- log (1 + ktj» if i > 1, (i, j, u)€Q and j+ I €.42.

(5.10)

(5.1 1)

With the numbers (åi) A€e, equation (5.4) assumes form

log kr,r,j,r: log ki+n,j,,

* log (1 * kl*'o - r, ri - r,,) - log (1 * k * n - r, rj * r, )

+ å (h, *, -r,r, i -r,,- hi *,-,, r,i *r, )t:2
for i>1, j€2, u€F,n =0. If u is a parabolic fixpoint of G, we assume also that all
the indices appearing in the å's are in Q.If 7:9, we need (5.11) in a slightly dif-
ferent form:

(5.12) log kr*n,o,D : log kror-"i (hr*r, -r, ,-hr+,,r,u)

for i>1, z>0, and u(F. If o is a parabolic fixpoint of G, we set hp,-t,s:ht(,m-t,o,
where rn >0 is the smallest number for which g(s*o(u)):s1.(o) for some g(G
with g(u)-u. In this case we also assume that i*n=N, where i[=0 is the smallest
number for which all the sides of {s,*r(u): j€Z}, oriented with u as the positive
endpoint, are equivalent under G.

In view of (5.1 l) and (5. 12) it is reasonable to consider a Banach space ,O whose
elements are sequences (h)tea of real numbers such that

(5. l 3)

nr, : sup lä11,lee

ms: sup {l)@r*,-r,zii-r,u-ht+o-,,r,7*r,,)l :(i*n, j,ti€Q, i=1, j #0, n=0),

n

rza : sup { lj tl,.*,, -r,o-.hl+t,r,o)l: n = 0, (1*n, t, u)(Q}
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are finite. For such

(5.14)

sequences we define the norm to be

ll(h^)^<allr_ IrIäx {*r, ntz, ffie]r.

Finally, let .Eo be the open and convex subset of E consisting of those sequences

(h)rca for which

inf {h,i": (i, j,»eQ and i > I and (i, j) * (1,0)} > 0.(5.15)

By Proposition 5.1, we have identified the Teichmiiller space T(G) of G with
the set of normalized, quasisymmetric simplicial G-compatible maps of 7 and
this we have identified with sequences (k)rcp which satisfy (5.2)-(5.9) with
suP.rer llog krl<-. Let q; T(G)*E bethemap (k)*p*(ht).,6e defined by (5.10).

Theorem 5.5. Let G act on a quasisymmetric tessellation {, normal relatioe

to G that has a G-inuariant hierarchy af satisfying (a)-(f). Then the image of the map

E: T(G)*E is Eo and cp is a real analytic isomorphism T(G)*go. Eo is an open

and conuex subset of E and it is homeomorphic to E. E is isomorphic to l- as a real
Banach space.

In particular, if G is a subgroup of afinitely generated group of the second kind,
the assumptions of this theorem are satisfied.

Proof. Clearly, if a€T(G), E@)€Eo. Lemma 5.4 implies that rp is an injec-

tion. To show that E is a real analytic isomorphism of 7(G) onto E6 it suffices to
show:

(i) The map E o k: M (G)* E is real analytic, where M (G) is as in Introduction
and k:M(G)*T(G) is the canonical proiection.

(ii) .Eocim E and n-p(F(cl-'(å») ,, a real analytic map Eo-M(A, where

F(tp-t(h)): (J*U is the map defined in Section4.C.

lt follows from (i) that E is real analytic and (ii) implies that E-r is real analytic.
We prove (i). Let Fbe the /--space of sequences (k)xp of real numbers. Then

T(G)cF, and let k(p):(k^(p))^e, for F€M19. If ).:(i,i, u), we obtaink^Qt)
as follows. Let f be a quasiconformal self-map of cl U with dilatation p such that

/(u):-. 15s,

kr(p):ffffi;,
where a, b, c and u are the vertices of the triangles {.;(o) and [,;-1(u) of { and

f(a)<f(b)<f(c) (cf. eq. (5.1)). Lemma of [5, Section 5 p. 139] implies that & is
real analytic if regarded as a map M(G)* F. Now a glance at (5.10)-(5.14) shows

that E ok is real analytic.
We then prove (ii). Let (h,)*s:hQEo. Define k^for ),€Q in such a way that

(5.10) is true. By Lemma 5.4 there is a unique normalized, simplicial map d: { *9'
such that k7(a):k7 for ).€Q and that a(u) is a parabolic vertex of {' whenever

u is a parabolic fixpoint of {. Let kt:k,(a) for all l.€P. We must show that
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suprer llogk^l<-. On the basis of (5.11)-(5.13), (ii), (iiD, (c) and (2) of (H) in
the definition of tr it is to easy see that there is Mr>O such that

(5. t 6) lloe krjul - M, for (i, i, u) e p and u € lou 1r .

Eq. (5.1l) and (i) in the definition of Q imply that we may assume ML to be chosen

in such a way that (5.16) is true also if o(Io, k>2, if i#0, (i,i)+(O, 2) and (i,i)+
+(O,l). Then, by (3) in the requirement (f) for af (in Section5.A), sor(u):so;,(u'),

where u'€I*, with l1'<k and, if k'>2,i'*O,l or 2. Therefore (5.16) is true also

for koru for all u. The number kor, is calculated from

(rf.(5.3), k'ri"
krru, kor, and

(5.17)

k'oru:kttuW

-(cj-lc)koju is as in (5.3)).Since we now know that (5.16) is true for
koru, there is Mr>O such that

llog kor,l = M, for all u€ fo 
^0U.

Finally, requirement (3) of (f) together with (5.17), (5.16), (5.12) and (5.2) implies

that there is Mr such that

llogkio"l- Mu for all i > 0 and u({oa\U.

Thus we have shown that supr.., llog krl<-.
To prove that h*p(F(E-'(h))) is real analytic, notice that by Theorem 4.2

it suffices to show that E-r is real analytic if regarded as a map Eo* F. This can

be seen as follows. We have used in calculating k^, ),(P\Q, (5.7), (5.11), (5.12)

and also (5.3) to calculate kojuif (0,i,u){Q. In (5.11) and (5.12) there is a part

that depends linearly on the h^'s and that part is bounded by the norm condition
(5.14). The non-linear part depends real-analytically on a finite number of h^'s and

there is only a finite number of essentially different non-linear parts, i.e. such that
cannot be obtained from others by a permutation of the h^'s. A similar remark

applies to (5.3). Now a similar argument as in the proof that suPrer llogkrl=-
shows that g-1 is real analytic.

Eo is clearly open and convex and a homeomorphism Eo*E is constructed as

in Corollary in [5, Section 3 p.132]. (Note that the definition of Eo is slightly dif-
ferent in [5, eq. (6) p. l3l].)

To show that E is isomorphic to l*
Let Q,t: {Q, j, u)QQ: i=l and j + l e4Z}.
if (i, j, u) €Qt let, if k:j + 1,

hii" (h, - r, zt k - L, u - h t - l, 2rk + 1, u).

we construct a different "basis" for E.

If (h^)^€o€E let h1:ht if 1(Q, and

i-1.v
Z-J
I:0

Then (h^)^(q+@)^ro is an isomorphism E*l*
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Finally, we show that a subgroup G of a finitely generated Fuchsian group II
of the second kind acts on a tessellation { with a hierarchy // that satisfies the
conditions of the Theorem.

Let D be such a fundamental domain for H as specified in Lemma 4.5 and
let I be the tessellation constructed in Lemma 4.5 for G by means of D. we have
already shown that 7 is quasisymmetric. Therefore it suffices to show that there is
a hierarchy tr of { that satisfies also (f).

Let Lr, i(IvJvK, be as in Lemma 4.5. Let loc.go consist of u({o that
are elliptic fixpoints for G or parabolic fixpoints for H. (Notice that if a is a fixpoint
for ä\{id}, it need not be a fixpoint for \{id} and then, if a€U, u{{0.) Let
1, consist of those u(70 that are endpoints of h(L,), i€K, h€H. If k>1, an
element u of .20\(1ou1r) is in 1o if and only if there is a sequence Tr,...,Tr_,
of triangles of { such that: (i) Trr\Tr*1: a common side, i<k- l; (ii) Tr#71
it i*i; (iii) each TrcclC, i=k-I, where C isacomponentof U\(u{å(2,): heH
and i€Ivlur() such thatbdoC:h(Lr)cZr for some h(H and i€K; (iv) u€2i
if and only if i:k-1.

It is easy to see that Ik, k>0, is a partition of {o.If uelo, k>2, lhere is a
unique way of defining the triangles Trr(o), i>0, j€2, in such a way that (3) of (f)
is true. Notice that T;iQ) become defined in a G-compatible manner. If u(10, we
can define the triangles Trr(u) arbitrarily, taking only care that the result is G-com-
patible. Condition (l) of (f) is automatically true.

Let then u€1r. This is the most complicated case. We show first that there is
such N, as specified in (2) of (f). Let D' be the closed domain of u whose boundary
is vL,, iEIvJ u1(. Let

D" : v {h(D'): h€n is ellipric afi h(D)nD, + A}.

Then bdrD" consists of a finite number of hyperbolic lines that are of the form
h(L,), h(H and i(IvK. Each line L,cbduD,,, i€K, and clD,, (closure in
c u {-) is obtained from D" by the addition of the endpoints of the sides. Thus
each component of bduD" is a side of {.If u€Ir, then u is an endpoint of a side
of { of form h(Lt), hcH and i €r(. Therefore r.r€cl h(D") for some h(H. lf
s€{L has endpoints D arrd u', where also u'(Iovlr, then we must have sch(D").
since D" contains onlyafinitenumber of vertices of g,there is such.AI, as claimed
in (2) of (f). Now it is easy to see that we can define the triangles Tii@) in such a
way that (2) of (f) is true and that a G-compatible hierarchy ff results.

Remark L If we use the "basis" h;, )'<e, constructed above for .E to show
that E is isomorphic to /-, we get a simpler expression for the norm of .E (the
supremum norm) but the price to be paid is that the image of r(G) is more com-
plicated.

Remark 2. our method applies also if G is a finitely generated group of the
first kind such that ulG is non-compact. In fact, it seems that in this manner a
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particularly simple set of "moduli" for 7(G) results. In this case it is better to para-
metrize f@) by the use of the glide coefficients k", sQF, where .F is some set that
contains exactly one point from each orbit GTL. If s has an endpoint u that is an
elliptic fixpoint for G, then we must have &":1. This is true also if u is a parabolic
fixpoint for G and there is only one triangle of {lG with vertex clo u. For each
remaining parabolic fixpoint u of F we have a relation since we must choose the
numbers k" in such a way that a parabolic fixpoint results. Let kr,...,k, be the
glide coefrcients of the sides §1, ..., s, of {Lf G with vertex clo u, where §1, ..., §r
are in cyclic order. Note that we may have that s,:s, even if i#j since the end-
points of a side of 9L may be equivalent under G. Then an equation similar to (5.3)
(set &r;,:1 in (5.3)) can be used to obtain the condition for u to be parabolic.
We have, after some manipulation,

1 : ki...ki,

wherc ki:drk, and d, is a constant (:ci-rlci of (5.3)) that depends on the angles
of the triangles with side s, (if they have three zero-angles therr d,:l). Thus, if
h;:log ki, then for each parabolic puncture of U lG we have a relation of the form

hr+ ...*h,: Q.

Hence we can choose a subset F'c F in such a way that h* s(F', can be determined
freely and that they determine the other å's uniquely. consequentV rG) is equivalent
as a real analytic manifold to a finite dimensional euclidean space.

References

[U Bnns' L.: On moduli of Riemann surfaces. - Lecture notes, Eidgenössische Technische Hoch-
schule, Ziirich, 1964, (mimeographed).

[2] Bnns, L.: Universal Teichmi.iller space. - Analytic methods in mathematical physics, edited
by R. P. Gilbert and R. G. Newton, Gordon and Breach, New York-London-
Paris, 1968, 65-83.

[3] Cenlrsox, L.: The extension problem for quasiconformal mappings. - Contributions to
Analysis, edited by L. V. Ahlfors et al., Academic Press, New York-London, 1974,
39-47.

[4] Eanm, C.: The contractibility of certain Teichmiiller spaces. - Bull. Amer. Math. Soc. 73,
1967,434-437.

[5] EARLE'C.: On quasiconformal extensions of the Beurling-Ahlfors type. - Contributions to
Analysis, edited by L. V. Ahlfors et al., Academic Press, New York-London, 1974,
99-105.

[6] Eanr,B, C., and J. Epr,r,s: On the differential geometry of Teichmiiller spaces. - J. Analyse
Math. 19, 1967,35-52.

[7] KEEN, L.: Intrinsic moduli on Riemann surfaces. - Ann. of Math. 84, 1966,4M20.
[8] KSBN, L.: On Fricke moduli. - Advances in the theory of Riemann surfaces, edited by L. V,

Ahlfors et al., Annals of Mathematics Studies, No. 66, Princeton University Press,
Princeton, N. J., 1971, 205-224.

[9] KrBN, L.: A correction to "On Fricke moduli". - Proc. Amer. Math, Soc. zlo, lg1-3,60-42.

371



372 Pnxra. Turta

[0] Krrx, L.: On infnitely generated Fuchsian groups. - J. Indian Math. Soc. 35, 1971,67-85.
[11] Lruro, O.: Group isomorphisms induced by quasiconformal mappings. - Contributions to

Analysis, edited by L. V. Ahlfors et al., Academic Press, New York-London, 1974,

24t---244.

[12] Prr.cszutsrr, A.: On the isomorphism of the spaces m and M. - Bull. Acad. Polon. Sci. Sör.

Sci. Math. Astronom. Phys. 6, 1958,695---696.

[I3] Turue, P.: On discrete groups of the unit disk and their isomorphisms. - Ann. Acad. Sci. Fenn.
Ser. A I 5O4, 1972, l-45.

[4] Tuxr4 P.: Extension of boundaryhomeomorphisms of discrete groups of the unit disk. - Ibid.
548, 1973, l-16.

[l5] Tuxtr,P.: Thespaceof quasisymmericmappings.-Math.Scand.40, 1977,127-142.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki l0
Finland

Received 2 November 1977


