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1. Introduction

Let U be the upper half-plane {z€C: Im z=0} and let G be a Fuchsian group
of U. We say that a homeomorphism f: V—-W (V, Wccel U) is G-compatible if
fogof~!is the restriction of a Mdbius transformation for g€G. The Teichmiiller
space T(G) of G is the set of G-compatible quasisymmetric maps of R that fix 0
and 1 and that can be extended to a G-compatible quasiconformal map of U.
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A complex structure can be given to 7(G) as follows. A map whose domain
contains 0, 1 and < is said to be normalized if it fixes 0, 1 and <. Let K(G) be the
set of normalized G-compatible quasiconformal maps of ¢l U. Then T(G)=K(G)/~
where ~ is the equivalence relation of K(G) for which f~g if and only if f|R=g|R.
Each element f€K(G) is uniquely determined if we know its complex dilatation
Hp= df19f. Since f is G-compatible, p= Ly satisfies

(1.1) #(g®) = n(x)(g®)/g' () for all geG.

An element p€L* (U, C) is said to be G-compatible if it satisfies (1.1), and the set
of all G-compatible elements of L*(U, C) is denoted by L= (G). The (open) unit
ball of L= (G) is denoted by M (G). Then fi—pu, is a bijection K(G)—~M(G).

This embedding into a complex Banach space defines a complex analytic structure
on K(G). The complex structure of 7(G) is defined as the quotient structure of
K(G)/~. Bers [1, 2] (cf. also [6]) has shown that T(G) with this structure is in fact
a complex analytic Banach manifold. He showed that one can define a holomorphic
map ¢: M(G)—~B(G), where B(G) is a complex Banach space of holomorphic
functions which are defined in the lower half-plane L, are quadratic with respect
to G and satisfy a norm condition. At every point x€M(G) the derivative
d®(x): L~(G)~B(G) has a continuous right inverse B(G)—~L>(G). One can also
show that @ (u,)=®(u,), f, g€K(G), if and only if f~g. It follows that K(G)/~ =
=T(G) is isomorphic to @(M(G)) which is an open subset of B(G), and thus T(G)
is a complex analytic manifold. (Bers defines T(G)=®(M(G)) in contrast to our
definition T(G)=K(G)/~.) We do not make use of these results of Bers.

Earle [4] has indicated how to show that T'(G) is contractible if G is finitely gen-
erated (cf. also [6] if G={id}). If, in addition, G is of the first kind, then T(G) is
homeomorphic to a finite dimensional euclidean space. The method of proof of
this result is the construction of so called “moduli” for Fuchsian groups (cf. e.g.
Keen [7, 8, 9]). It has been conjectured by Bers that T(G) is always contractible
[1, Lecture 1].

In the present work we extend these results. It must be assumed that the group
G satisfies certain regularity conditions. These conditions are satisfied e.g. if G is
a subgroup of a finitely generated group H such that U/H is non-compact. Proposi-
tion 3.3 (e) implies that if G is an arbitrary group such that U/G is non-compact,
then there is a homeomorphism f of ¢l U such that foGof~1! is a Fuchsian group
satisfying these conditions. Under these circumstances we show that 7'(G) is con-
tractible (Theorem 5.2). We show this by constructing for every quasisymmetric
G-compatible map of R a quasiconformal G-compatible extension to U. This exten-
sion defines a real analytic section s: T(G)—M(G), i.e. s is a right inverse to the
quotient map M (G)—T(G). Since M (G) is contractible, this implies the contracti-
bility of T'(G). Earle [5] has also shown that in case G={id} the Beurling—Ahlfors
extension of a quasisymmetric map defines a real analytic section 7'(1)~M(1).
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Our method of extension is in some respects similar to Carleson’s piecewise linear
extension [3].

We also show that if G satisfies certain additional conditions, then 7'(G) is
homeomorphic to a Banach space E and as a real analytic Banach manifold 7'(G)
is equivalent to an open and convex subset of E (Theorem 5.5). This is true e.g.
if G is contained in a finitely generated group of the second kind. It turns out that
Eis isomorphic to /* as a real Banach space, where /= is the Banach space of bounded
sequences (k;), /=0, with supremum norm. Thus it might seem that the contrast
between M (G) and T(G)= M(G)/ ~ lies in the fact that T'(G) is a /*°-manifold whereas
M(G) is a L=-manifold. But there is no contrast since /* and L* are isomorphic
(Petcszynski [12]). Thus also the space B(G) of holomorphic maps of L is isomorphic
to [~ as a real Banach space, since an open subset of B(G) (i.e. (M (G))) can be
mapped by a real analytic isomorphism to an open subset of E.

As we have already indicated we show that under these circumstances any
G-compatible quasisymmetric map fadmits a G-compatible quasiconformal extension
to U. For arbitrary G, the existence of such an extension is not known but Lehto [11]
has shown that if the quasisymmetry of fis close to 1, such an extension always exists.

This and other results of the paper [11] by Lehto will be discussed in the remark
at the end of Section 4.

Our method is to find for G (we consider only the case with U/G non-compact)
a special tessellation J of U which is invariant under G and whose triangles are
hyperbolic triangles of U with two or three zero angles. If such a triangle 7" has a
vertex v at which the angle of T is not zero, then v is the fixpoint of some elliptic
element of G. Each map f€7(G) determines automatically a tessellation 7, which
is invariant under foGof~!. It turns out that we can parametrize such tessella-
tions J by sequences (k]), i€l, of real numbers, where the index set I is the set
of sides of J factored by G. We use these numbers (k/) to determine the Teich-
miiller space of G. Thus our method is a development of the idea of “moduli” in
the finite dimensional case and also an extension of [15], where we proved similar
results for G={id}.

Our results are known if T(G) is finite dimensional. Therefore we have em-
phasized infinite dimensionality in the title, although our methods apply also in the
finite dimensional case if U/G is non-compact (cf. Remark 2 in Section 5).

This work was motivated by the results of [14, Proposition p. 15] and [13, Case 2
in the proof of Theorem 3.6], where we proved that any Fuchsian group G such
that U/G is non-compact has a fundamental domain D such that bdy D consists of
a family of hyperbolic lines and rays that do not intersect except possibly at the
fixpoints of elliptic elements of G. The desire to utilize fundamental domains of
this kind to obtain moduli for infinitely generated Fuchsian groups was the main
motive in this work. (Fundamental polygons for infinitely generated Fuchsian groups
have been constructed also by Keen [10]. Unlike ours, the sides of her fundamental
polygons can intersect at points that are not fixpoints of elliptic elements of G.)
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We use cl and bd to denote closure and boundary. Sometimes it is not clear
where closure or boundary is taken. Then we clarify the situation by denoting cl, B,
bd, B or by denoting cl B (closure in 4). We use also cl to denote class. If a group
G acts on a set 4, the orbit Ga, a€ A4, is denoted by cl a (=class of a). We may again
for clarity denote clga or cla (in 4/G).

2. Tesseliations by zero-angle triangles

A. Zero-angle triangles. A (proper) zero-angle triangle of the open upper half-
plane U is a degenerated triangle 7c U such that T is closed in U and that bd,T
consists of three hyperbolic lines, not intersecting in U, but, if extended to the bound-
ary dU=R u{e}, intersecting at three points of QU. The hyperbolic lines bounding
T are the sides of T, and the three points of cl T\ 7 in Ru{e} are the vertices
of T. If T’ is another such triangle, then there is a unique, conformal or anticon-
formal, Mdbius transformation of U carrying 7 to 77 in such a way that the vertices
of T are carried to pre-assigned vertices of 7”.

If we were interested only in such Fuchsian groups that do not contain elliptic
elements, it would be sufficient to consider only zero-angle triangles of the above
kind. However, if we consider groups with elliptic elements, we must consider also
triangles 7 such that 97 consists of two hyperbolic rays R, and R, with one common
point x,€ U and a hyperbolic line L, not intersecting R; nor R, in U, but such that
cd LnclR,={x,} and cl Lncl R,={x,}. The points x,, x, and x, are the vertices
of T and L, R, and R, are its sides. The point x, is the non-zero vertex of T, others
are zero-angle vertices of T.

B. Tessellations by zero-angle triangles. Let V be an open, connected subset of
U. A tessellation of V by zero-angle triangles is a collection 7 of zero-angle triangles
of U such that:
@) V=Ures T.
(i) If x€V, the set {T€T : x€T} isfinite.
Gi)) If T, SeT, TS, then TnS=0 or a common side or a common vertex.

In most cases V=U and it is easy to see that U has such tessellations. E.g.,
let T, be the zero-angle triangle with vertices 0, 1 and < and let G, be the group
whose generators are reflections in the sides of T,. Let J, be the tessellation
{g(Ty): g€G,y} of U. A vertex or a side of 7 is a vertex or a side of some triangle
of 7. We denote by J° the set of all vertices of 7, by J* the set of all sides of I
and by J2=7 the set of all triangles of . In the following a tessellation will
always mean a tessellation of Vc U satisfying the above conditions. If V#=U,
then bd,V consists of a number of disjoint hyperbolic lines.

C. Maps between tessellations. Let  and & be two tessellations. A simplicial
map o: I -~ is a bijection T°VITUT:>FOUFLTUSL? such that it and its
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inverse preserve the side and the vertex relations. Since a vertex v€ T€.J is a non-zero
vertex if and only if v is a vertex in a finite number of triangles of ~, non-zero vertices
are mapped onto non-zero vertices. A simplicial map 9 —~& is uniquely determined
if we know how it maps the vertices of a given triangle of 7.

A geometric map f: T~ is a homeomorphism of V=);c; T>W=Uyr, T
such that T'is a triangle of J if and only if f(T') is a triangle of % A homeomorphism
fis a geometric realization of a simplicial map o if f(T)=wa(T) for T€T. Itis
clear that every simplicial map has a geometric realization and, conversely, every
geometric map is a geometric realization of a simplicial map.

We assume now that V=W=U. Under these conditions a geometric map
f: T~ has always an extension to a homeomorphism of cl U. (If x€dUN\Z?°,
notice that x has a basis of neighbourhoods U;, i=0, such that bdy(UNAU) is
a side of some triangle of . The extension to J° is also obvious.) Conversely,
consider a tessellation 4 of U and a homeomorphism f of dU. We can define a
tessellation J; of U as follows: If v€.77° is a non-zero vertex, let U,= U {T: T€J and
veT}. If 5, ..., s, are the components of bd, U,, then each s; is a hyperbolic line
and s;€ 7. Let s; be the hyperbolic line with endpoints f(x) and f(y) if x and y are
the endpoints of s; in dU. Then there is a well-defined closed subset U, of U such that
bdy U, =s;u... Us,. Let v, be some point of int, U,. If v€J° is a zero-angle
vertex, let v,=f(v). If s€77, let s, be the hyperbolic ray or line with endpoints
v, and u,, where u and v are the endpoints of s. Finally, if T is a triangle of 7 with
sides s;, i=3, let T, be the unique zero-angle triangle with sides (s;);, i=3. Then
I;={T;: TcTJ} is a tessellation of U and x—x;, x€Z°0UIT LT ? is a simplicial
map oy J ~J;. Any map that is a geometric realization of a, has extension to
0U coinciding with f.

In the above definition of 7 we had a certain freedom in the choice of the non-
zero vertices of . If there are no such vertices in 7, the tessellation 7 is uniquely
determined. Later we will consider Fuchsian groups acting on a tessellation, and
we require that each non-zero vertex is the fixpoint of some elliptic transformation
in the group G we are considering. This requirement makes v, again unique for non-
zero vertices v.

Let J be some tessellation with a triangle T that has three zero-angle vertices.
Then, by performing a suitable Mdbius transformation of U, it is always possible
to assume that the vertices of 7" are 0, 1 and o~. If this is the case, we say that J is
normalized. A normalized simplicial map o: I ~% between two normalized tessella-
tions is a map that maps the vertices 0, 1 and « of J to the vertices 0, 1 and
of & (in this order). A normalized simplicial map is unique; it depends only on I
and &

It should be noticed that a tessellation can be normalized only if it contains a
triangle with three zero-angle vertices; not all tessellations contain such triangles.
However, in later applications in all cases of interest it is possible to normalize a
tessellation.
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3. Fuchsian groups and tessellations

A. Groups acting on a tessellation. Let G be a group of Mébius transformations
of U. We say that G acts on a tessellation J if g(T)eT whenever T€J for each
g€G. If G acts on a tessellation, then G necessarily acts discontinuously in U. Hence
G is a Fuchsian group of U if all its elements are orientation preserving. While it
appears that our results are true also for groups containing orientation reversing
elements, we nevertheless restrict our treatment to Fuchsian groups. By a Fuchsian
group we always mean a Fuchsian group of U.

If a Fuchsian group G acts on a tessellation 7 , then the quotient surface U/G
has also a tessellation induced by 7. (The conditions (i)—(iii) must of course be
modified to fit this case.) We denote this tessellation by J/G. Let vecl U. If for
some g€G\{id}, g(v)=v, we say that v is a fixpoint of G\{id} or, in short, of G.
Let v be a vertex of 7. Then we say that v is an elliptic (resp. parabolic) vertex
if there is an elliptic (resp. parabolic) element of G with fixpoint v. (If 7 is a tessella-
tion of U, then v cannot be the fixpoint of a hyperbolic element of G.) This defini-
tion depends also on the group G acting on 7, and if it seems that confusion could
arise, we say e.g. that v is an elliptic vertex of 7 with respect to G. If v€J° is elliptic
or parabolic, we say also that cl v€7G is elliptic or parabolic.

If a Fuchsian group G acts on a tessellation, then U/G cannot be compact.
On the other hand, we shall show that if U/G is non-compact, then there is always a
tessellation of U on which G acts.

Let 7 be a tessellation. We say that J is a normal tessellation relative to G if
G acts on J and if each x€U that is the fixpoint of an elliptic element g€G of
order =3 is a vertex of .7, and if all the triangles of J with a common non-zero
vertex are equivalent under G. (Note that if x€U is the fixpoint of an elliptic ele-
ment of G order at most 2, then x lies on some side of 7.)

Proposition 3.1. Let G be a Fuchsian group of U such that U/G is non-compact.
Then there is a tessellation of U that is normal relative to G.

Proof. This follows essentially from results in [13] and [14]. For according to
[14, Proposition p. 15] G has a fundamental domain D such that bdy D=, T},
where each T} is a hyperbolic line or a hyperbolic ray and (a) for each i€/, there
is g,€G such that &(T)=T; for some j=i, jeI (in which case g;(T)=T),
(®) T;nT;=0 if i,j€l, i#j except if T;isarayand T,=g;,(T). In case (b) T,nT;
is the common endpoint of the rays T; and T;; it is also the fixpoint of the elliptic
transformation g;. (Cf. also [13, Case 2 in the proof of Theorem 3.6 pp. 34—35],
where this was proved for groups of the first kind.)

Now it is easy to add hyperbolic lines to D in such a way that a tessellation of
D by zero-angle triangles results. If we take all transforms of these triangles by ele-
ments of G we get a tessellation 4 of U on which G acts.

Note that if x€ U is the fixpoint of some elliptic element g of G, then x is equi-
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valent to some point x’€bd,D. Therefore {x’}=T;nT; (7; and T; as in (b)),
Thus if the order of g;=3, then x is a non-zero vertex. If the order of g; equals 2.
then T;UT; is a hyperbolic line, and in this case x lies on some side of .

Remarks. Let us note that if 7€J has a non-zero vertex, then there is a
triangle 7’¢J with three zero-angle vertices such that Tn7” is a side of 7,
except if U’/G is a triply punctured sphere where U’ is U from which fixpoints of
elliptic elements have been removed. Thus J has triangles with three zero-angles,
the above case excepted.

Also, if G acts on  and x€U is a fixpoint of an elliptic element g€G of
order n=3, then x need not be a non-zero vertex of ~ since it may be that x€int, T
for some T€J . However, if n=>3, then x is always a non-zero vertex, and even
if n=3, there is always a subdivision J’ of J such that x is a non-zero vertex
of 7.

Let f: U~U be a homeomorphism and G some Fuchsian group of U. Then
we say that f is G-compatible if fogof~! is a Mébius transformation of U for
each g€G. This means that f defines a homeomorphism U/G—U/G’ with G'=
=foGof~1 In the same manner, if 4 is a homeomorphism of dU, wesay that % is
G-compatible if hogoh~! is the restriction of a Mébius transformation of C U {e}.
A simplicial map o: & (where G acts on J) is G-compatible if aogoa™?
(where we regard g as a simplicial map of ) is a simplicial map of & admitting a
geometric realization which is a Mbius transformation of U.

B. Hierarchies of tessellations. Later, when we construct quasiconformal exten-
sions to U of quasisymmetric maps, we need an additional structure on tessellations.
We call this a hierarchy of a tessellation J . Although it cannot be motivated in
the present context, we define here the hierarchy of a tessellation relative to a Fuchsian
group G acting on J and prove the existence of such a hierarchy.

Let T, T, ..., T, be zero-angle triangles of U with a common vertex v€QU
and assume that T has three zero-angle vertices. We say that T groups together
triangles T3, ..., T, at v if there is a neighbourhood ¥V of v such that

TnV=(Tv..uT)nV

and that T;nT;=a common side if |[i—j|=1 and =0 if |i—j|>1. A hierarchy
of triangles of a tessellation J (or, in short, a hierarchy of ) is an (indexed) col-
lection

H = {T;v): i=0, jE¢Z, v is a zero-angle vertex of J}

of zero-angle triangles of U that satisfy conditions (a)—(e) below. We say that a
triangle T;;(v) of 5 is a triangle of level i. In general, T;;(v)€J onlyif i=0 (cf.(c)).

(@) If v is a zero-angle vertex of T, then {T,;(v): JEZ} is the set of triangles
of T with vertex v.
(b) Each triangle of T of level i=0 has three zero angles.
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(c) Each triangle T;j(v) of # groups together n triangles of {T;_, ;(v): jE€Z},
i=0. If i=1, then n=2; if i=1, then n=0 may vary but is bounded by a con-
stant Ny €N.

(d) Let 5;;(0)=T,; ;-1(0)nT;;(0)€T* if i,j€Z,i=0 and v€T noU. If s5;;(v)
is a hyperbolic line, let x;;(v) be the other endpoint of s;;(v) (#v); if s;;(v) is a ray,
let x;;(V)€QU be such that the hyperbolic line with endpoints v and x,;;(v) contains s;;(v)
as a subset. Then the sequence

e Xi, —1(0)s X3 (0), X1 (V) .

is an increasing sequence of points of dUN\{v} in the natural order of dUN\{v} (induced
by the positive orientation of U ).
(€) 8;0(v)=59o(v) for i=0 and veT°noU.

We then suppose that a Fuchsian group G acts on 7. The hierarchy & is invariant
under G if, for i=0, j¢Z and v€T°NIU,

3.1 g(T,;() =T,;(gw) if i,jeZ, i=0, v€T°NIU

and g€G with g(v)=v. If g(v)=v, let n=0 be the number of oriented sides
of J1/G with clgv as the positive endpoint. Let T;;(v) group together k;; tri-
angles of level 0. We assume that there is i"=0 such that k;;=k;n for i=i’
with k;=1 and k. =1. If i=i’, we assume that, for some [=/¢Z,

(32 8(T;;(®) = T, ;41 v)-

Proposition 3.2 Let G be a Fuchsian group acting on a tessellation I . Then
there is a hierarchy # of I which is invariant under G.

Proof. Let F contain exactly one point of each orbit Gv, v€Z7°ngU. We can
construct {7T};(v): i=0,j€Z} freely for v€F; after that the hierarchy is fixed by
(3.1). This is easily done. We simply choose sy, (v) and, if v is not a fixpoint for ele-
ments of G\ {id}, the set {7,;(v): i=0, j€Z} is fixed if each triangle of level i
groups together exactly two triangles of level i—1. If v is a fixpoint for some
g€G\{id}, there is some trouble due to the fact that the number of oriented sides
of /G with clgv as the positive endpoint need not be a power of 2. However, in
this case we can arrange that each triangle of level 1 groups together two or three
triangles of level 0, and each triangle of level i=>1 groups together exactly two
triangles of level i—1.

C. Parametrization of tessellations. Let  be some normalized tessellation. We
describe a method by which one can parametrize all normalized tessellations that
are simplicially isomorphic to J by means of a normalized simplicial map « (note
that « is uniquely determined).
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Let T and T’ be two zero-angle triangles such that Tn7T’=s, a common side
that is a hyperbolic line. Let v (resp. v”) be the vertex of T (resp. 7”) that is not on
s. Let L be the hyperbolic line such that v, v’€cl L (closure in ¢l U). If L is orthogonal
to s, we say that 7 and 7’ are symmetric with respect to s. We define a number
k(T, T") that measures the lack of symmetry of 7 and T’ with respect to s. We
choose an orientation for s and let the orientations of 7 and 7’ be induced from
that of U. Then one of the triangles 7 and 7’, say T, is oriented compatibly with s,
the other, 7, is not. Thus there is a well-defined M6bius transformation g of U which
fixes the endpoints of s and for which g(7”) and T are symmetric. If we transform
the positive endpoint of s to « and the other endpoint to 0, then g is of the form
g(z)=Az, z€U, where A=0. We define k(7,T’)=A. We call k(T, T’) the glide
coefficient of s (with respect to T and T’). Then logk(T, T’) is the hyperbolic
length that 77 must glide along s in order that 77 and T are in a symmetric
position. Note that k(7, T") does not depend on the chosen orientation of s.

In case TnT’=s is a hyperbolic ray, we say that T and 7’ are symmetric
(with respect to s) if 77 coincides with the image of T under the reflection on s.
Also in this case we could define numbers that measure the lack of symmetry of
T and 7’ but we do not need them. If any two adjacent triangles of a tessellation
g are symmetric, we say that J is symmetric. If v is a vertex of J and any two
adjacent triangles of J with vertex v are symmetric, we say that J is sym-
metric at v.

Let & and "’ be two normalized tessellations and «: -7’ a normalized
simplicial map. Then « is uniquely determined. Thus there is a one-to-one corre-
spondence between normalized simplicial maps « of J and the image «(7). We
can associate with 7 (or with «) a sequence k,, s€7 ! and s is a hyperbolic line.
Set ky=k(a(T), «(T")), where T and T~ are the triangles of J~ with side s. We call
the numbers £, the glide coefficients of 9’ (or of «) and denote also k,=k,(x). Given
the numbers k;, the tessellation 7 (like «) is uniquely determined if J is symmetric
at non-zero vertices and given such a sequence k, of positive real numbers, there is
a unique normalized simplicial map a: J —J such that k,=k (a) if s€JT1 is
a hyperbolic line and 7 is symmetric at non-zero vertices.

We assume then that a Fuchsian group G acts on . If «: I -7 is G-com-
patible, we must have

3.3) k(@) = k5 (@), g€G and s€J*' is a hyperbolic line.

Conversely, if the numbers k; satisfy (3.3), then the normalized map «: I ~J’ is
G-compatible. Thus all G-compatible normalized simplicial maps of 4 can be
parametrized by sequences (k,), s€I, where I={s€J": s is a hyperbolic line}/G.

Proposition 3.3. (a) 4 symmetric tessellation is a tessellation of U.
(b) Let T and T’ be two zero-angle triangles with three zero-angles such that
TNT’ is a common side and that both T and T’ group together n triangles of a sym-
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metric tessellation & at a vertex véecl (T NT’). Then
logk(T, T")| = My, for some M, =0.

M,=0 if & contains only triangles with three zero-angles.

() If B: S~ & is a simplicial map of a symmetric tessellation &, then B admits
a realization by a Mdbius transformation.

(d) If G is a Fuchsian group acting on a tessellation I, then there is a G-com-
patible simplicial map o: T —~ &, where & is a symmetric tessellation.

(€) If G is a Fuchsian group of U such that U|G is non-compact, then there is
a homeomorphism of cl U such that foGof~' acts on a symmetric tessellation of U
that is normal relative to foGof~

Proof. We have already shown (c) (eq. (3.3)). The statement (d) also is clear
since obviously there is a symmetric tessellation & and a simplicial map «: I - &
Now « is G-compatible for any group G acting on 7. Proposition 3.1, (a) and (d) imply
(e) since, if J and J are tessellations of U, any geometric map 4 —J’ can be
extended to a homeomorphism of ¢l U. Thus it suffices to prove (a) and (b).

Let & be a symmetric tessellation. Let V=(J;., T. To prove (a) we must
show V=U. For this it is sufficient to show that there is ¢=0 such that if x€V,
then U.(x)cV, where U,(x) is the hyperbolic open disk with center x and radius
c. If xcV, let d,=sup {r: U,(x)c¥V}. We will show that inf {d,: x€V}=>0.

We study the situation at a vertex v€7 °n@U. It is no restriction to assume
v=oce, If s€ %! has vertex v, let T and 7~ be the triangles of & with side 5. Since
& is symmetric, there is a hyperbolic line L, orthogonal to s (or to s’, where s’ is
the hyperbolic line containing s if s is a ray) such that a vertex of T and a vertex
of T’ lie on cl L, (cl in cl U). Let diam denote the euclidean diameter of a subset
of C. Then diam L,=diam L,=d if s, t€ ¥ are hyperbolic lines with vertex v=-oo.
This follows easily from the symmetry of & and from the fact that two successive
sides of &#* with vertex v cannot both be rays. Let U,={x+iy: x€R, y=>d/2}cU.
The boundary of U, is the (euclidean) line that is tangent to those L, where s¢ %!
has vertex v and is a hyperbolic line. Then U,cV and inf {d,: x€U,}=>c¢"=0,
where ¢’ does not depend on v. Also, if T¢€ %2,

inf {d,: x€T and x4 U, for v€ #°noU} > ¢” > 0,

where ¢” does not depend on 7. Thus inf {d,: x€V}=0, proving (a).

To prove (b) let S€ &2 have vertex v=cc. Let the sides of S with vertex v be
contained in the lines s={x+it: +=>0} and s'={x"+ir: t=0}. Then the above
discussion shows that |x—x’| depends only on max{x: « an angle of S}=p. The
number |x—x’| is smallest when S=120°. Thus thereis ¢>0 such that |x—x’|>c
regardless of S. This proves (b), since also |x —x’|=d/2, where d is as in the proof
of (a).
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4. Quasiconformal extension

In this section we shall construct a quasiconformal extension to U of a given
quasisymmetric map f. The first idea is as follows. Let 7 be some tessellation of U.
In Section 2.C we defined the image Z; of 7, which is also a tessellation of U.
Now if F: 7 -7 is some geometric map that coincides with fat vertices v€J° N
nAU, then F|R=f if Fis extended to cl U (which can always be done). However,
if we wish F to be quasiconformal there are difficulties due to the fact that the triangles
have zero angles. For this reason it is better to use the dual complex described
below.

A. The dual complex. In the dual complex J, of a tessellation J, a cell of
T, corresponds to a vertex of 7, a side of ; corresponds to a side of 7, and a vertex
of J, corresponds to a triangle of J. Let T be a zero-angle triangle with vertices
a, b and c. Let S, be the hyperbolic line such that aé€cl S, (closure in cl U) and
that the sides of T with vertex a are situated symmetrically about S,. Define simi-
larly S, and S,. Then S,, S, and S, intersect at a common point T,€int,7. The
point T, is called the middle point of T. If T has vertices 0, 1 and o, then T,=1/2+
+(3Y2/2)i. The set of vertices of F; is I={T,: T€7?}. If s is a side of 7, let
s, be the hyperbolic line segment joining 7, and S;, where T and S are the triangles
of 7 withside s. The set of sides of 7, is 7' ={s;: s€7*}. Finally, if v is a vertex of
T, let v, be the closed subset of U whose boundary in cl UN\{v} is U {s,: s€J " and
vis a vertex of s}. If v€7°NAU, the boundary of v; in U is of the form ... us; L
$;+1VU..., where each s,€7,', i€Z, and s; intersects only with s5;_; and s;;.
If we add to this union the point v, it is a Jordan curve. If v€Z°NU, then bdyv,
is a Jordan curve that is a similar union us; of a finite number of sides of 7.
The set of cells of , is T,2={v,;: v€T°}.

It is easy to see that 7 is a complex in the usual sense, i.e. the intersection of
two distinct elements of J; is either empty, a common vertex or a common side.

B. A canonical map between hyperbolic triangles. Let T, and T be two non-
degenerated hyperbolic triangles. We describe a canonical way to define a map
T,~T. Let A,, B,and C,cU be the vertices of T, and 4, B and C the vertices of
T such that there is an orientation preserving homeomorphism f: T,—~7 with
f(4))=A, f(B))=B and f(Cy)=C. We denote by XY the hyperbolic line segment
joining X and Y (€ U). We regard T, as fixed and T as variable and denote the map
T,—~T to be defined by f=f(4,, B,, C,, 4, B, C) since it depends on the order of
vertices.

We set

f(4o) = A4, f(B) =B and f(C)=C.

Let f|4,B, be the linear stretch A4yB,—~AB in the hyperbolic metric and similarly
fIByCy and f|Cyd,. If Xo€ByC,, let f|A,X, be the linear stretch AyX,—~AX,
where X=f(X,). Now we have defined f at all points of Tj.
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If G is a subset of C, let L= (G, C) be the Banach space of a.e. defined, essentially
bounded maps G—C with sup ess norm. Let u(f)=0f/0f be the complex dilata-
tion of a quasiconformal map. We have:

Lemma 4.1. (a) The map f(Ay, By, Cy, A, B, C)=f is quasiconformal. For
fixed Ay, By and Cy, u(f) depends only on x=d(A, B), y=d(B, C) and z=d(C, A)
(d the hyperbolic metric), and the map (x,y, z)—~u(f) is a real analytic map of a
domain of R? into L™ (T,, C).

(b) Let 3, ; y=o tijitt' ' W* be the power series development of the map (x, y, z)—
—u(f) at a point (xy,y1, zy), where each p;;€L”(Ty, C). Then each |pl..
depends continuously on xo=d(Ay, By), Yo=d(By, Co)s zo=d(Cy, Ay), X1, ¥1 and z;
and the convergence of this series is uniform in L= (T,, C) as we vary Xy, Yo, Zo> X1, V1
and z, in a compact set.

Proof. In the proof of the lemma we consider the situation in the urit disk D
instead of U. This is due to the fact that we use polar coordinates and that is simpler
in D. We set, if r, 3¢R,

[r, 9] = r(cos §+i sin 9).

We can assume that A4,=A=0, By=u,cR* nD, B=u€R+ nD, Cy=[ry, 3]
and C=[r, 3] with O<r,r,<1 and 0<9, Jy<=. Since (x, y, z) and (u, r, 3) are
in a real analytic one-to-one correspondence, to prove (a) it suffices to show that
p()=u(f(4y, By, Cy, 4, B, C))€L=(T,, C) is a real analytic function of (u, r, 9).
Indeed, the above normalization shows that u( f) depends only on x, y and z.

We note first that it suffices to find for each point P€T, a neighbourhood
U(P) in T, such that (x, y, z)—~u(f)|U(P) is a real analytic map into L=(U(P), C).
This implies the lemma by compactness. It is also easy to see that if P& T\ {0},
then P has such a neighbourhood. Thus it suffices to consider the case P=0.

Let h(s)=d(s,0) for 0=s=<1, where d is the hyperbolic metric of D. Then
the function f has the expression

f(s, o) = [A7 (Y (@) h(5)), 0 ()],

where i and ¢ depend real-analytically on u, r, 3 and « (but do not depend on s).
Itis important to note thatif «=0 or a=39,, also in this case ¢ and  have a power
series expansion (in u, r, 3 and «) in a neighbourhood of (u, r, 3, o). It is easy to
see that

h= (@) h(s)) = sy (0)g (s, ),

where g depends real-analytically on u, r, 3, s and o, and g has a power series expan-
sion also if s=0 or «=0 or «=9,, and g(0, «)=1.

If weDN\{0}, let e, (w)=w/|w| and let eyz(w) be the unit vector €C such
that {e,(w), es(w)} is a positively oriented orthonormal basis of C=R? Now it
is easy to calculate the matrix of the derivative df(w): R?2—R? if the basis of domain
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is {e,(w), e;(w)} and that of range is {e,(f(w)), es(f(w))}. The result is, if w=[s, «],

( Y ()(g(s, @) +sDg (s, o)) 0 ]
W(@)g (s, o)+ (@) Dog(s, ) () gls, 0) o' (@)

If s=0, this assumes the form

[ (@) 0 ]
V(@) +¥ (@) D80, ) Yo' (@)

Thus also if s=0 and 0=a=9,, df(w) is defined as the analytic extension and is
non-singular. Therefore if the above matrix is interpreted as a R-linear map of C,
its complex dilatation is defined. Since the change of basis from {e;=1, e,=i}
to {e,(w), e,(w)} corresponds to a rotation of amount argw=a, we see that
u(f)(s, «]) can be extended for s=0 if 0=a=3, and that it has a power series
expansion (in u, r, 3, s and «) at these points. This proves that also if P=0, then
P has a neighbourhood U(P) in T, such that (u, r, §)—pu(f)U(P) is a real analytic
map into L=(U(P), C).

Similar considerations prove part (b) of the lemma.

C. The map induced by a simplicial map. Let 7 and I’ be tessellations by
zero-angle triangles and «: 7 —J  a simplicial map. In addition we assume that
J and J’ are symmetric at non-zero vertices, that a Fuchsian group G (possibly
trivial) acts on J and that « is G-compatible. Finally, we assume that # is a G-in-
variant hierarchy of 7. Let J#” = {T},(v")} be the hierarchy of 7 such that T}(x(v))
has vertices o(v), a(u), a(w) if T;;(v) has vertices v, u and w. This determines #”
uniquely. We shall denote such a hierarchy by a(s#) and we set also if i=0

«(T;;(v)) = T{;(ox(v)) for j€Z and veT°.

Now we describe a map F(x) induced by a. The domain of definition of F(o)
is a subdomain V, of V=), T (V, depends on #), and similarly its image
is a subdomain ¥V, of V'=J;. 5 T that depends on #’. We denote by 3}", i=0,1,2,
also the i-skeleton of J; thus J)=u {s: s€J/}. It is easy to define a map
Fy(e): Z"—»:Z"’. We simply set Fy(«)(T)=a(T), for T€T 2% The obvious way to
define Fy(a): J;'—=7," is to let its restriction to a side s;, €71, to be the linear
stretch in the hyperbolic metric in such a way that Fy(x)(s)=a(s), (we assume
that Fy(«)|7,"=Fy()). The next step, to extend this map to a map F(x)=
=F,(0): Vyp—~Vy, is less obvious. We shall now do that using the hierarchy #
of 7. In some respects our method is similar to Carleson’s piecewise linear extension
of a quasisymmetric mapping [3].

First we note that if v€7°nU, the definition of F(x)v, is easy, since in that
case our assumptions (J and J’ are symmetric at non-zero vertices) imply that
there is a Mobius transformation g,: v,—~a(v); such that g,|bd v;=F,(2)|bd v,.
We set F(o)|v;=g,.
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Next, we choose a vertex v€7°ndU, and consider the triangles T;;(v), j€Z,
for fixed i=0. Asin case /=0 we form the middle point T;;(v),. Let s;;(v), be the
hyperbolic line segment joining 7;;(v); and T ;_4(v),. Then (J;czs;(v), is the
boundary (in U) of a closed subset v} of v,=uvj, defined like v, in Section 4. A.
We use a similar notation, T7;(v") etc., with respect to 7. Then it is true:

(i) Each v} is convex in the hyperbolic metric.

(i) T;j(v)€inty vy, i>0, unless T,j(v)=T,_,,(v) for some k€Z. (This is
possible only if i=1, by virtue of (c) in the definition of a hierarchy.)

(iii) vicv) if i=j.

We define  F(2)(T;;(v)s)=T7;(¢(v)); and let F(e)|s;;(v); be the linear stretch
in the hyperbolic metric such that F(a)(s;;(v),)=s];(¢(v)), if i=0 and j€Z.

We extend F(x) to each set v)\v;™, i=0. Consider the situation in Fig. 1. (We
assume that /=0. The situation is similar, but, by (c) in Section 3.B, possibly simpler
if i=0. We fix j€Z. Let Ty;(v) group together triangles T (v), ..., Ty x+,(0).
Let s be the hyperbolic line segment joining 7}, (v); and Ty, (v); and s” be the segment
joining T3 ;,;(v); and Tg ;4,41 (v),. Let F be the closed subset of cl (v3\v;) whose
boundary in cl (WJ\0v}) is sus’. We triangulate F as in Fig. 1. Let the triangles
of this triangulation be T;, i=0, ..., n+1, such that the vertices of T; are 4;, B;
and C; with 4;=T1;()s, Bi=To,x+;(0)a> C;=Tox+i+1(0)s (f i<n+1) and C,4y=
Ty,;+1(v)s. We define similarly the triangles 7] with vertices A;, B; and C; with
respect to 7. We set

F((X)!Tl :f(An Bia Ci, A:,’ Bl” C:),
where f(...) is as in Lemma 4.1.

Note that if v and «(v) are parabolic fixpoints of G and G'=xoGooa~?, then
there is i=0 such that F(x)|v) is the restriction of a M&bius transformation.

This concludes the definition of F(x). Next, we examine its properties. Ob-
viously,

() F(x) is G-compatible.

If a=id, we have
() F(id)(x) = x
at the points x where F(id) is defined. Let then J ” be a tessellation and f: ' —~J”
a simplicial map. We provide J” with the hierarchy B(s#’)=pfoa(#). If we use
H'=0a(s#) in defining F(a~?!) and F(f), we have

Fl ) (x) = F(x)"*(x) and

F(Boa)(y) = F(B)o F(a)(y)
at the points x where F(x~!) and F(x)~! are defined and at the points y where F(a)
is defined.
We examine the domain of definition of F(x). In this respect the following
condition is decisive:

6]
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(%) Let v€T°NQU. Then v is the only point of accumulation of {u: u is a vertex
of SET' such that the other endpoint of s is v}.

Condition (¢) in the definition of a hierarchy guarantees:

) If v€T°NIU satisfies (), then F(x) is defined in the whole v,.
(&) If v=a(@), v as in (9), satisfies (%), then F(a)(v))=0].

It is also easy to see (since v has arbitrary small neighbourhoods ¥ in cl U such
that bdy Vc J;' and similarly v”):

) Ifvand v are as in (0) and (g), then if we set F(x)(v)=v"=a(v), F(x) is con-
tinuous at v.

Finally, we note () which is proved in the same manner as ({):

() If T and T’ are tessellations of U, then F() admits an extension to a homeo-
morphism of cl U in such a way that F(a)(v)=o(v) for veJ°.

D. Quasiconformality of F(x). We study on what conditions F(x) is quasi-
conformal. In this section assumptions are unchanged; recall especially that all
tessellations are assumed to be symmetric at non-zero vertices.

le ® T1.j+1(U)

Tox(v) To,k+1(v) To,k+2(0)

Ty;(v),

To,k+1(V)q Toxr2(0)g

T (v)4

Figure 1



358 PekkA TUKIA

For a given tessellation J we define numbers k;;,(7) by

“4.1) kiju(y) = k(Ti,j—l(v)a Tij(v)),

where k(,) is the glide coefficient of Section 3.C and (=0, j¢Z, v€T°ngU. For
brevity we write P=NXZX(7°n9dU) (N is the set of natural numbers, zero
included) and k,() for k;;,(J) if A=(,j,v)€P. Let

4.2) d(7) = sup |logk, (7).
LEP

If d(9 )<<, we say that I is quasisymmetric.
For a given simplicial map «: 9~ we define

(43) kijv(a) = kija(v)(f/-/)’ (l’ jv U)E Ps
where 7 is provided with the hierarchy # =o(#). Similarly,

4.4 d(x) = sup llog k; (2)|.
AEP

If d(a)<eoo, we say that « is quasisymmetric.

Let F be the Banach space of bounded sequences (k,); . p With supremum norm.
Let F, be the subset

Fo ={(k;(@);ep: a1 T — T a simplicial map with d(x) <eo}.

Assume now that in addition 9, J and « are normalized. Then, given J,
since we assumed that 7 (like ) is symmetric at non-zero vertices, o is uniquely
determined if we know the sequence (k;(2));¢p. In this case we identify « with the
sequence (k;(2));¢p-

We can now prove if a: J -7 is as in Section C and if J and o are quasi-
symmetric:

Theorem 4.2. (a) I and T are tessellations of U.

(b) The map F(x) is a quasiconformal homeomorphism of U.

(c) We assume that in addition I and o are normalized. Let H be a real Banach
space, Hyc H an open subset and h: Hy—~F, a map that is real analytic (differenti-
able) if regarded as a map Hy—~F. Then xw—p(F(h(x))) is a real analytic (diffe-
rentiable) map Hy,—~ L= (U, C).

Proof. We prove (a) and (b) together. Note first that we may factorize « as
a=pfoy, where y: I -7, and ff: Iy~  aresimplicial maps and J; a symmetric
tessellation. This follows from Proposition 3.3 (d). By Proposition 3.3 (b) J, is
quasisymmetric and therefore both f# and y are quasisymmetric. If the hierarchy of
T, is y(#), we have, by (y) of Section C, F(a)=F(f)o F(y) and F(y~Y)=F(y)~.
Therefore it suffices to consider the case where J is a symmetric tessellation. By
Proposition 3.3 (a) 7 is now a tessellation of U. We show that 7 is a tessellation
of U and F(x) is quasiconformal.
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To prove the quasiconformality of F(x) we must have a look at Fig. 1. We defined
F(2) piecewise in a triangulation K of U by (non-degenerate) hyperbolic triangles
in such a way that F(x)|T, T€K, is of the form f(4,, ..., C) of Section B. Since
the lengths of the sides of the triangles of K as well as those of F(x)(T), T€K, vary
in a compact set (this follows from the assumption of quasisymmetry), Lemma 4.1
implies that |[u(F(@)|..<1, ie. F(®) is quasiconformal.

Next we show that "’ is a tessellation of U. Let v'€7°n@U. Since I’ is
quasisymmetric, v’ satisfies (%) of Section C. Therefore v;C F(2)(U) and F(x)(U)=
=V=Urcs T=Uycs0v; Each component C of UN\V is a closed subset of U
such that bd, C is a hyperbolic line. Therefore V' is a Jordan domain of the Riemann
sphere. Since F(x) is quasiconformal, it can be extended to a homeomorphism
cl U>cl V. By ({) of Section C we must have F(x)(v)=a(v) for v€Z° Since
J9 is dense in QU, J’° must also be dense in dV. This is possible only if V=U.

In (c) we have a family a(x): 7 ~7 (x), x¢H,, of simplicial maps (set /(x)=
=(k;(x(x));cp). Since the lengths of the sides of the triangles in Fig. 1 for a(x)
are real analytic (differentiable) functions of x€H, that vary in a compact set, the
result follows by Lemma 4.1.

The above definition of the quasisymmetry of a tessellation (and of a simplicial
map) depends apparently on the choice of a hierarchy of 7. The following corollary
shows that this is not so.

Corollary 4.3. A tessellation I that is symmetric at non-zero vertices is quasi-
symmetric if and only if there is M=0 such that

(4.5) logk(T, T)| =M

Jor any two triangles T and T’ with three zero-angles such that TNT’ is a common
side and that both T and T’ group together n triangles of 7 at a vertex vE€T °.

Proof. Let a: ¥~ be a simplicial map, where & is symmetric. By Proposi-
tion 3.3 (d) there is such & By Proposition 3.3 (b) Corollary 4.3 is true for &
Since we have proved that F(x) is quasiconformal, it follows from the quasisym-
metry of the boundary extension of F(x) easily that Corollary 4.3 is true also for 7.

Finally, a few words on the following problem. Let G be a Fuchsian group
acting in U and let f: R—~R be a G-compatible quasisymmetric mapping. The
question whether f admits a G-compatible quasiconformal extension to U is open.
However, Theorem 4.2 implies a partial result:

Corollary 4.4. Let G be a Fuchsian group acting on a quasisymmetric tessella-
tion normal relative to G. Then any G-compatible quasisymmetric map f admits a
G-compatible quasiconformal extension to U.

In particular, if G is a subgroup of a finitely generated Fuchsian group H such that
U/ H is non-compact, then G acts on a quasisymmetric tessellation normal relative to G.
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Proof. Let G, be the group of Mobius transformations of U for which
{gloU: g€G}=foGof~t. Let J; and o;: T —~J, be the tessellation and the
simplicial map defined in Section 2.C. Z and a, are uniquely determined if we demand
that J; is symmetric at non-zero vertices (this is possible since 7 is normal relative
to G). Then G acts on J; and hence G, is Fuchsian. The quasisymmetry of / implies
easily that o, is quasisymmetric. (Cf. e.g. [15, (i) in the proof of Proposition 4 p. 134]
for a similar situation.) The map F(x,) is quasiconformal and G-compatible since
o is G-compatible. By (17) of Section 4.C the extension of F(a,) to R coincides with
S (by quasisymmetry, both J~ and 7 are tessellations of U).

The latter part of the Corollary follows from the following result.

Lemma 4.5. If G is a subgroup of a finitely generated Fuchsian group H such
that U/H is non-compact, there is a quasisymmetric tessellation I normal rela-
tive to G.

Let us assume that H has a fundamental domain D such that the sides L;, i€l J,
of D are hyperbolic lines (if i€I) orrays (if i€J) such that L; and L; do not intersect
except if L; and L; are rays equivalent under H. Let B;, i€K, be the components of
cl DNAU that are not points. Let L;, i€ K, be the hyperbolic line with the same end-
points as B;. Then we may assume that L;, i€l UK, are sides of T .

H has always such a fundamental domain, and if H is of the second kind, we may
assume in addition that if s€ I, then at most one of the endpoints of s is an elliptic
or a parabolic fixpoint of H, and that if cl L,ncl Li=X#0, i#j, i,jeIUJ, then L,
and L; are equivalent under H and X={v}, where v is an elliptic or a parabolic fix-
point of H.

Proof. We assume that H> {id} since this case is trivial.

We prove first the existence of such a tessellation & for H assuming the exist-
ence of a fundamental domain D as described in the Lemma. It can be also assumed
that if L; and L; are rays and L;nL;={v}, then L,UL; is not a hyperbolic line
(i.e. v is not a fixpoint for g€G of order >2). If this is the case we set L, =L, U L;
and add i’ to I (and remove i and j from J) for such pairs L; and L;.

Let C;, i€ K, be the component of U\ L; for which C;n L;=0, je(I uJ UK)\ {i}.
Let D’ be the subset of U for which bd, D’={J;.,;.x L;- Now we add hyperbolic
lines to D’ in such a way that a tessellation of D’ results. This is a finite tessellation.
Then we tessellate each C; by triangles with three zero-angles in such a way that
if T and T” are two adjacent triangles of this tessellation, the glide coefficient
k(T, T")=1. Since D=D"uU(|J;cx C), we can extend this tessellation in a unique
manner to a tessellation & of U on which G acts. It is normal relative to H. Since
k=1 except if cl;sc FCS'/H, where F is finite, it is easy to see that & satisfies
(4.5), i.e. is quasisymmetric.

G acts on &, but & need not be normal relative to G, since, if v€#°NU and
if T;(v), 1=i=n, are the triangles of & with vertex v, {T;(v)}, i=n, may contain
more than one non-equivalent (with respect to G) triangles. Therefore we must
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modify &, Let
U,=T(v)v...uT,(v).

We retessellate U, in such a way that, if g€G and g(v)=v, then g maps this retessella-
tion onto itself, and that in this retessellation all triangles with vertex v are equivalent
under G. Also, we may assume that if v is the fixpoint of an element of G of order
k=3, then v is a vertex in the retessellation. We do this for all v€#°nU taking
care that a tessellation  on which G acts results. Then J is normal relative to G.

J is also quasisymmetric. Since H is finitely generated and & normal relative to
H, the number of triangles of & with a vertex v€#°nU is bounded if v varies in
SN U. Therefore the number of non-equivalent (with respect to H) retessella-
tions of U,, v€#°NU, is bounded. The quasisymmetry of 4 follows from this and
from the quasisymmetry of &,

Clearly, also the second paragraph of Lemma 4.5 is true and it suffices to show
the existence of such a fundamental domain D as claimed in the Lemma. Unfor-
tunately, it seems that there is no proof in the literature of the existence of such a
fundamental domain although [14, Proposition p. 15] is quite close. In fact, this
Proposition is all that is needed for the existence of a quasisymmetric tessellation
normal relative to G but later, in Theorem 5.5, we will need also the last two para-
graphs of Lemma 4.5.

We construct now such a fundamental domain for H as claimed in the Lemma.
We assume that H is of the second kind. (If H is of the first kind [14, Proposition
p. 15] gives the desired result.) Let S=(cl UNL(H))/H, where L(H)cU is the
set of limit points of H. Let p: cl UNL(H)—S be the canonical projection, let
X1, ..., X,€S be the points such that elements of p~1(x;) are the fixpoints of elliptic
elements of H, and let »; be the ramification number at points of p~1(x;).

It follows easily from the well-known classification theorems for surfaces of
finite type that S can be obtained as follows. There is a subset D’ of C uU{=} such
that cl D’ is a closed Jordan domain and D’ is obtained from cl D’ by the removal
of a finite number of points from the boundary curve. By identifying certain arcs
of D" we get a surface homeomorphic to S. Let p’: D’~S be the map induced
by this homeomorphism. Further, let A;, i€, be the arcs of 9D’ that are identified.
Then each 4] is a closed or half-open interval of dD’, and we may assume that
A;nA;.=ﬁ, i#j, except if A{nA;:{v}, where v€p’~1({xy, ..., X,}); in this case
A; and A are closed intervals and p’(4;)=p’(4}), the other endpoints of 4} and
A’; lying in p=1(dS). If v is a parabolic puncture of S and U, a sufficiently small
neighbourhood of v, then p~*(U,) intersects exactly two half-open arcs 4] and 4]
such that p’(4])=p’(4)) and that the endpoints of 4; and 4] lie in p’~1(3S).

If we have found such a domain D’ and such a map p’: D'~ S, we can as well
assume that p’~1(9S)cdU and that each arc 4; is a subarc of a circle C; that is
orthogonal to dU. If p’(4;)=p’(4}), we assume that C; and C; have equal diameter
and there is a M&bius transformation T; of U such that C; and C; are the isometric
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circles of T;and 7;'=T; and that T;(4])=4]. In case 4] nA;={v} and p'(v)=
=x, we assume that the order of T; is n,. Let H’ be the group generated by T,
i€l. Then D’ is a fundamental domain for H’. Thus there is a homeomorphism
S (L UNL(H'))/H"—~S=(cl UNL(H))/H such that if f(y)=x, then the points
of p’~%(y) are fixpoints of elliptic elements of H” if and only if the points of p~1(x)
are fixpoints for H and also the orders of these elements are the same. Now it fol-
lows that there is a homeomorphism 4A: ¢l U-~cl U such that H'=h"loHoh.
(This is easy to see since L(H) is nowhere dense. Cf. [13, Proposition 3.5] and
[14, Lemma 3].)

We can now define the fundamental domain D for H by setting the sides of
D (in U) to be A;, i€l, where A; is the hyperbolic line or ray that has endpoints
h(v,) and h(v,); v, and v, being the endpoints of 4;. It is easy to see that this defines
a fundamental domain D for H with the desired properties.

Remarks. Although it is not known whether for every Fuchsian group G
any G-compatible quasisymmetric map f admits a G-compatible quasiconformal
extension to U, Lehto [11] has shown that such an extension always exists if the
quasisymmetry of fis sufficiently near 1.

Also, in connection with Corollary 4.4 the following result in the same paper
by Lehto is of interest. Let, if G is some Fuchsian group, Q(G) be the set of univalent
functions f defined in the lower half-plane L such that foGof~! is a group of
Mobius transformations of f(L). Let 4(G) consist of those elements f€Q(G) that
admit a quasiconformal extension f” to C in such a way that f"oGof’~!is a group
of Mé&bius transformations. Then

4(6) = 4(1)nQ(G)

if and only if every G-compatible quasisymmetric map admits a quasiconformal
extension to U. (In [11] there are some restrictions on G but these are unnecessary.
The restrictions are used only in the footnote on p. 243 to establish that G, of Corol-
lary 4.4 is discontinuous. This is true anyway, cf. e.g. the proof of Corollary 4.4
since, if U/G is non-compact, G always acts on a tessellation normal relative to G
(Proposition 3.1).)

5. Teichmiiller spaces

A. Parametrization of quasisymmetric maps. We fix a Fuchsian group G acting
on a normalized tessellation J , normal relative to G. We also fix a G-invariant
hierarchy # of triangles of J~ which is used in the definition of the map F(«) induced
by a simplicial map a: I —~7’. We have already defined the Teichmiiller space
T(G) of G (cf. Introduction) as a set whose elements are G-compatible quasisym-
metric maps. We show that if J is quasisymmetric, we can use in the definition of
T(G) simplicial maps «: -7 instead of quasisymmetric maps. If J and «
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are quasisymmetric, J and J’ are tessellations of U (Theorem 4.2), and thus «
induces a homeomorphism f, of U for which f,(v)=a(v) if vETO.

Proposition 5.1. Let G, 7 and # be as above. If T is quasisymmetric, the
map a—f, is a bijection from the set of normalized, G-compatible quasisymmetric
simplicial maps «: I -7 onto T(G). Under these circumstances T(G) consists of
all normalized, G-compatible quasisymmetric maps of R.

Proof. Let a: -7’ be a normalized, G-compatible and quasisymmetric
simplicial map. Then (Theorem4.2) F(x): U-~U is G-compatible and quasi-
conformal. Since (({) of Section 4.C) F(o) has an extension to a homeomorphism
of cl U in such a way that F(x)(v)=a(v), v€T°NAU, f, is quasisymmetric and
G-compatible. Since f, is also normalized, f,€T(G).

Conversely, let f: R-~R be normalized, G-compatible and quasisymmetric.
Then (cf. Section 2.C) there is a unique tessellation J; and a simplicial map o T ~T;
such that J; is normal relative to apoGoas 1. It follows easily from the quasi-
symmetry of f that o, is quasisymmetric (cf. the proof of Corollary 4.4). Then F(x)
is quasiconformal and thus f€7(G). Obviously «, is also G-compatible and nor-
malized. Since a+—f, and fi>a, are inverse to each other, this proves our Pro-
position.

Thus, if J is quasisymmetric, we can identify 7(G) and the set of normalized,
G-compatible quasisymmetric simplicial maps «: J —~Z’. We do this identifica-
tion in the sequel and write o€7(G) for such maps a.

In the following theorem M (G) is the set of G-compatible complex dilatations
(cf. Introduction).

Theorem 5.2. Let G be a Fuchsian group acting on a quasisymmetric tessella-
tion I normal relative to G. Then we have:

(@) The Teichmiiller space T(G) of G is contractible.

(b) The map ar—pu(F(2)) is areal analytic section s: T(G)—~M (G); i.e. kos=id
if k: M(G)~T(G) is the natural projection.

In particular, if G is a subgroup of a finitely generated group H such that U/H
is non-compact, then G acts on such a tessellation I .

Proof. Since M (G) is contractible (a) follows from (b). As for (b), by Theo-
rem 4.2 (c) it suffices to show that k is real analytic if regarded as a map M (G)— F,
where F is the [=-space of sequences (k;),¢p (cf. Section 4.D). That this map is real
analytic follows from Lemma of [15, Section 5].

In Corollary 4.4 we proved that if G is a subgroup of a finitely generated
group with non-compact quotient space, there is such a tessellation as specified by
the Theorem.

In Section 4.D we defined, given a simplicial map o: J -7, numbers k, (),
AENXZX(T°noU)=P. These numbers define o uniquely if it is normalized. On
the other hand, the numbers k,;(«), A€P, are not independent. E.g. it suffices to
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know ky;, (), jEZ, vET°NAU, to determine a, and if « is G-compatible, this gives
more relations.

We determine now a subset Qc P such that any sequence (k;), A€Q, deter-
mines a unique G-compatible simplicial map «: I ~Z’ (not necessarily quasi-
symmetric) such that k,=k,(x) for A€Q. Our calculations here are quite similar
to those of [15, Section 3].

We fix some v€7°N@U and transform the situation by a Mdbius transforma-
tion of Uin such a way that o(v)=ece. Then «(T; ;—,(v)) v «(T;;(v)) has three vertices
on R, let them be a, b and ¢ with a<b<c. We have

.1 kijo(@) = (c—b)[(b—a), i=0, jEZ.
Let k;=k,(«), A€P. Then a simple calculation shows

14Kk 3510

i1
L L+kioj41,0

5.2 kioj o=k

for i=1, jeZ. If i=0, the situation is more complicated. On the one hand, a
triangle T,;(v) may have a non-zero angle and, on the other hand, a triangle T;(v)
need not group together exactly two triangles of level 0. However, it is easy to see
that there are numbers ¢;, 1=c;=C<o for j€Z depending on the maximal angle
3 of Ty;(v), 0=9=120°, such that

kojo(0) = (Cj(C— b))/(cj~l(b - a)),
where a<b<c and the line with vertices v=o and a (or b or ¢) contains a side of
a(To, j-1(v)) or a(Ty;(v)). Let

koo = (cj-1/¢)koj = (c=D)/(b—a) for jEZ.

Let m(j), j€Z, be the numbers such that Ty;(v) groups together triangles
Tomy@)s T, miy+1®)s -5 To, m(j+1—1(v). Now a similar calculation as in (5.2) shows

-1 -1 -1
1+ 6,m(i)—l,v+"'+k6,m(j)—l,v-" k(;,m(j—l)+l,v
L+ kg m(pyat,0 T Ko m(p+1,0 -+ Ko,mGG+D-1,0

(53) k(’)m(j)v = kljv
for j€Z. A repeated application of (5.2) gives

-1 -1
L+ki _1ej-1,0 L+kioni_1,0

i+n,j,v
’ 1-I'ki+n—1,2j+1,u 1-‘_ki,Z"j+1,u

(5.4) ki, onj y =

if i=1 and j€Z.
Let s€J be a hyperbolic line with endpoints v and v’. Let j(s) and j'(s)€Z
be the numbers such that s=s;,(v) =s,;(v"). Then we have

(55) kOj(s)v = kOj’(s)v’

for every such side s. If s€J' is a hyperbolic ray with vertex v€J°noU, the
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normality of aoGoa~! relative to I’ gives
(5.6) koj(s)v - 1

if j(s)€Z is the number for which s=1s,;.,(v).
Next we seek for the relations that derive from the G-compatibility of a. If «
is G-compatible, we must have

5.7 kijgwy = kij, for (i,j,v)€P and g€G
since the hierarchy s is G-compatible. If o(v) is a fixpoint of aoGoa™?, we have
(5.8) kijv = ki,j+n,u fOI‘ i= 0 and jEZ

provided there is g€G with fixpoint v such that g(s;;(v))=s; ;+,(v). In case a(v)
is a parabolic fixpoint of aoGoa~1 we have also

(5.9) k=1 if izi, and jeZ,

where i,=0 is the smallest number i for which all the sides of {s;;(v): j€Z}, ori-
ented with v as the positive endpoint, are equivalent under G. It is easy to see that
(5.9) is a consequence of (5.4) and (5.8) if sup,¢p |log k;|<<=; ie. if « is quasi-
symmetric.

Let us suppose that numbers k;>0, 1€ P, satisfy (5.2)—(5.8). Then we assign
for each s€J! that is a hyperbolic line the number k,=k,;, if v is an endpoint
of s and s5,;(v)=s. By (5.5) k, does not depend on the chosen endpoint of 5. Then (Sec-
tion 3.C) there is a unique, normalized tessellation J’, symmetric at non-zero ver-
tices, and a unique normalized simplicial map «: J -7 such that these numbers
k, are the glide coefficients of . It is obvious, since k’s satisfy (5.2)—(5.8), that
we have then k,(2)=k,; for A€P and that « is G-compatible. We paraphrase this
in the following

Lemma 5.3. Let the numbers k,>0, A€ P, satisfy (5.2)—(5.8). Then there is
a unique normalized G-compatible simplicial map «: I -~ such that k;(0)=k,,
AEP. If sup,cp |logk;|<oo, then a is quasisymmetric and the numbers k;, A€P,
satisfy also (5.9).

To proceed we must make additional assumptions on the hierarchy . We
assume that the G-invariant hierarchy # satisfies also (f) below, in addition to
the conditions (a)—(e) of Section 3.B. This condition is motivated by the con-
struction in Theorem 5.5.

(f) There is a partition I,, i=0, of J° with the following properties:

(D) If v€T° is a fixpoint of G\{id}, then v€l,. If s€T*, at most one end-
point of s is in 1.

(2) If vel,, then the number of sides s€JT* with vertex v such that the other
vertex is in I, VI, does not exceed a constant N,. If s,;(v) has endpoint v' (5v) in
I, I, then s4;(v)¢ {51;(v): jEZ}.
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(3) If vel,, k=2, then each triangle of level 1 groups together exactly two
triangles of level 0. If v’ is the other endpoint of So;(v), then v'€l,., where k'>k
except if j=0 or j=1 when k’<k. In addition, 54 (v)=5,(").

We shall later show that if G is a subgroup of a finitely generated group of the second
kind, then there is a quasisymmetric tessellation normal relative to G with a G-in-
variant hierarchy that satisfies (a)—(f).

If the hierarchy satisfies also (f) we can find a basis k;, A€Q, for k;,’s as follows.
Let F={v;, vy, ...} contain exactly one element from each orbit Gv, v€7°NJU.
For elements of °nQU we define an order by setting v<v’ if clv=cl v, and
cdv'=clv, (in J°/G) and n<n’. We define a subset QC P by (i)—(iii).

() Let v€Fnly, k=2. Then (i,j,v)€Q if i=0 and j¢2Z with the exception
of (0,1,0)¢0.

(i) Let v€ Fn(I,Ul,) and assume that v is not a fixpoint of A\{id}. Ler i=1;
then (i, j,v)€Q if j¢2Z and, in addition, (1,0,v)€Q. Let vEl,; then (0, ], v)EQ
if 50;(V)& {sy(v): kEZ}. Let vely; then (0,,v)€EQ if So; ()¢ {s1(v): k€Z} and
if the other endpoint v" of so;(v) is in I, k=2, orin I, and v'>v or clv=clv’ (in
TOIG) and s5,;(v)=s0;; (V") with j<j’.

(i) If v is a fixpoint of G\{id} (now necessarily v€l,), then (i,j, v)€Q if
(i, ], v) satisfies (ii) except that (1,0,v)¢ Q, and, in addition, i<M and O<j<m.
Here M >0 is the smallest number for which all the sides of {sygy (v): k€Z} oriented
with v as the positive endpoint are equivalent under G and m=0 is the smallest number
Jor which there is g€G with g(v)=v such that g(sio(v))=si,,,(v).

Letk;, A€Q, beasequence of positive real numbers. We determine &, AEP\Q,
in such a way that k;, Ac€P, satisfies (5.2)—(5.9). Let v€Il,nF. Then, in view of
(i) and (iii), (5.3), (5.4), (5.7), and, if v is a fixpoint of G\ {id}, (5.8) and (5.9) de-
termine all the remaining k;;,’s. Let then v€l,nF and assume that we know all
kijo’s if v"€l, or v'€l; and v'<v. Again, in view of (ii), eq. (5.3), (5.4), (5.6) and
(5.7) determine all k;;,’s. We continue in this way. We assume that we know kijo
if vel, with k<n and determine all the numbers kijp, v€L,, from (5.3), (5.4), (5.6)
and (5.7). Clearly, in this manner all the numbers k,, A€P, are determined uniquely
and they satisfy (5.2)—(5.9). Notice that if v€7°nQU is a fixpoint of N\ {id},
then a(v) is a parabolic fixpoint of xoGoa1.

‘Thus we have proved:

Lemma 5.4. Let k;, A€Q, be positive real numbers. Then there is a unique
normalized G-compatible simplicial map o: T~ such that k,=k;(a), A€Q,
Jor which o (v) is a parabolic fixpoint of o cGooa~1 whenever vEQU is a fixpoint of
some element of G\ {id}.

B. Embedding into a Banach space. In this section we show how to embed all
normalized quasisymmetric and G-compatible simplicial maps of a quasisymmetric
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tessellation 4~ with a G-invariant hierarchy # satisfying (a)—(f) into a Banach
space. In the preceding section we did not assume that J was quasisymmetric;
from now on we make this assumption. Thus J is a tessellation of U (Theorem 4.2),
and if v€JT°naU is a fixpoint of G\ {id}, v is a parabolic fixpoint of G.

By Lemma 5.3 we can identify the set of normalized, quasisymmetric G-compat-
ible simplicial maps o of 7~ with sequences (k,), ¢ » of positive real numbers that satisfy
relations (5.2)—(5.9) with sup,;.p|logk;|<<. We do this identification and mean
the map o« when we say the map (k;(®)),cp=(k2);cp. Since, by Lemma 5.4, it
suffices to know k, for A€Q, we can also say the map (k;);¢o. Then it is unders-
tood that the numbers k;, A¢ P\ Q, are determined from relations (5.2)—(5.9).

Given a simplicial map (k;),cp, we define the numbers (4;);¢o by

(5.10) hijo = log k;;, if (i,j,v)€Q and i=0 or (j,v)=(,0,v),
hijo =log(1+k;,) if i=1, (i,j,0)€Q and j—1€4Z,
=log(l+ki) if i=1, (i,j,v)€Q and j+1€4Z.
With the numbers (4,),¢o, €quation (5.4) assumes form
(5.11) log k; onj,» = lOg Kisp, j, 0
+log (1+kih1,2j-1,0) —10g (1 +-Ki s yo1, 2541, 0)

n
+IZ; (hi+n—l,2'j—1,v'_hi+n—1,21j+1.u)

for i=1, j€Z, ve F, n=0. If v is a parabolic fixpoint of G, we assume also that all
the indices appearing in the A’s are in Q. If j=0, we need (5.11) in a slightly dif-
ferent form:

n—1
(5.12) log k4 p,0,, = lOg kmo“l;; (Risr, =1, 0= his1,1,0)

for i=1, n=0, and v€F. If v is a parabolic fixpoint of G, we set A, 1 , =M m=1,0»
where m=>0 is the smallest number for which g(s.o(v))=s:,(v) for some g€G
with g(v)=v. In this case we also assume that i+n=N, where N=0 is the smallest
number for which all the sides of {sy;(v): j€Z}, oriented with v as the positive
endpoint, are equivalent under G.

In view of (5.11) and (5.12) it is reasonable to consider a Banach space E whose
elements are sequences (4,),¢o Of real numbers such that

(5.13)

my = sup |hy,
A€Q

my = SuP{llg; (hi+n-1,zlj~1,v—hi+n-x,2lj+1,u)|3 (i+n,j,0€Q, i=1, j*0, n=0},

my = SuP{Lg; (h1+-l,—1,v;h1+l,1,v)l: n=0, (1+n,1,0v)€ Q}
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are finite. For such sequences we define the norm to be
(5.14) "(hi)lEQ"E = max {mla ms, ms}-

Finally, let E, be the open and convex subset of E consisting of those sequences
(h3)1¢q for which

(5.15) inf {h;;,: (i, j, v)€Q and i = 1 and (i, j) # (1, 0)} > 0.

By Proposition 5.1, we have identified the Teichmiiller space 7(G) of G with
the set of normalized, quasisymmetric simplicial G-compatible maps of J~ and
this we have identified with sequences (k,),.p Wwhich satisfy (5.2)—(5.9) with
sup,¢p [log k;|<e=. Let ¢: T(G)—~E bethemap (k,);¢cp—(h;),co defined by (5.10).

Theorem 5.5. Let G act on a quasisymmetric tessellation I, normal relative
to G that has a G-invariant hierarchy # satisfying (a)—(f). Then the image of the map
@: T(G)—~E is E, and ¢ is a real analytic isomorphism T(G)—~E,. E, is an open
and convex subset of E and it is homeomorphic to E. E is isomorphic to I as a real
Banach space.

In particular, if G is a subgroup of a finitely generated group of the second kind,
the assumptions of this theorem are satisfied.

Proof. Clearly, if a€T(G), ¢(2)€E,. Lemma 5.4 implies that ¢ is an injec-
tion. To show that ¢ is a real analytic isomorphism of T(G) onto E, it suffices to
show:

(1) The map @ ok: M(G)—E is real analytic, where M (G) is as in Introduction
and k:M(G)—~T(G) is the canonical projection.

(i) E,cim @ and h—p(F(o~'(h))) is a real analytic map Ey—~M(G), where
F(p=(h)): U~U s the map defined in Section 4.C.

It follows from (i) that ¢ is real analytic and (ii) implies that ¢~ is real analytic.

We prove (i). Let F be the /=-space of sequences (k;), . p of real numbers. Then
T(G)CF, and let k(u)=(k,(),cp for peM(G). If A=(i,j, v), we obtain k(1)
as follows. Let f be a quasiconformal self-map of cl U with dilatation g such that
Sf(v)=e. Then

f)—f(b)
00 =70 f@

where a, b, ¢ and v are the vertices of the triangles T;;(v) and T; ;_;(v) of J and
f(@<f®)<f(c) (cf. eq. (5.1)). Lemma of [15, Section 5 p. 139] implies that k is
real analytic if regarded as a map M(G)—F. Now a glance at (5.10)—(5.14) shows
that ¢ ok is real analytic.

We then prove (ii). Let (h,),co=h€E,. Define k, for A€Q in such a way that
(5.10) is true. By Lemma 5.4 there is a unique normalized, simplicial map «: -7’
such that k,(¢)=k,; for A€Q and that «(v) is a parabolic vertex of J whenever
v is a parabolic fixpoint of 7. Let k,=k,(x) for all AcP. We must show that
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sup,¢p |log k;|<o=. On the basis of (5.11)—(5.13), (ii), (iii), (c) and (2) of (H) in
the definition of # it is to easy see that there is M;>0 such that

(5.16) llog kil < M, for (i,j,v)€ P and v€LUI;.

Eq. (5.11) and (i) in the definition of Q imply that we may assume M, to be chosen
in such a way that (5.16) is true also if v€l, k=2, if j#O0, (i, /)#(0,2) and (i,j)#
#(0, 1). Then, by (3) in the requirement (f) for # (in Section 5.A), so;(v) =5,;(v),
where v'€l,, with k’<k and, if k’>2, j’=0, 1 or 2. Therefore (5.16) is true also
for kg, for all v. The number k,, is calculated from
, 1+ kot

koo = k110 ﬂ_‘ﬁ‘
(cf. (5.3), kqjo=(cj-1/c))ko;, is as in (5.3)). Since we now know that (5.16) is true for
k11> ko3, and kg, there is M,=0 such that

(5.17) [log kool < M, for all ve T°NU.

Finally, requirement (3) of (f) together with (5.17), (5.16), (5.12) and (5.2) implies
that there is M, such that

llog kip,| < M; for all i=0 and v€J°nIU.

Thus we have shown that sup,.p |log k;|<<e.

To prove that h—u(F(¢~1(h))) is real analytic, notice that by Theorem 4.2
it suffices to show that ¢! is real analytic if regarded as a map E,— F. This can
be seen as follows. We have used in calculating k;, A€ P\Q, (5.7), (5.11), (5.12)
and also (5.3) to calculate ky;, if (0,/,v)¢ Q. In (5.11) and (5.12) there is a part
that depends linearly on the 4,’s and that part is bounded by the norm condition
(5.14). The non-linear part depends real-analytically on a finite number of 4,’s and
there is only a finite number of essentially different non-linear parts, i.e. such that
cannot be obtained from others by a permutation of the /4,’s. A similar remark
applies to (5.3). Now a similar argument as in the proof that sup,cp [log k;|<oo
shows that ¢! is real analytic.

E, is clearly open and convex and a homeomorphism E,—~E is constructed as
in Corollary in [15, Section 3 p. 132]. (Note that the definition of E, is slightly dif-
ferent in [15, eq. (6) p. 131].)

To show that E is isomorphic to /= we construct a different “basis” for E.
Let Q,={(i,j,v)€Q: i=1 and j+1€4Z}. If (hy),co€E let hy=h; if A¢Q, and
if (i,7,0)€Q, let, if k=j+1,

i-1
’ —
hijy = 12; (hipork-1,0— izt 20041, 0)-

Then (/)¢ o—(#}),¢o is an isomorphism E-/.
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Finally, we show that a subgroup G of a finitely generated Fuchsian group H
of the second kind acts on a tessellation 4 with a hierarchy # that satisfies the
conditions of the Theorem.

Let D be such a fundamental domain for H as specified in Lemma 4.5 and
let 7 be the tessellation constructed in Lemma 4.5 for G by means of D. We have
already shown that J is quasisymmetric. Therefore it suffices to show that there is
a hierarchy & of J that satisfies also (f).

Let L;, i€cluJUK, be as in Lemma4.5. Let I,CcJ° consist of v€7° that
are elliptic fixpoints for G or parabolic fixpoints for H. (Notice that if v is a fixpoint
for H\{id}, it need not be a fixpoint for G\ {id} and then, if v€U, v¢ ) Let
I, consist of those v€J° that are endpoints of h(L), i€K, heH. If k=1, an
element v of T ON\(f,v1,) is in [ if and only if there is a sequence T, ..., Ty
of triangles of J such that: (i) T;nT;,,= a common side, i<k—1; (i) T;=T;
if’ i5j; (i) each T;cclC, i=k—1, where C isa component of U\(u{h(L) heH
and i€/UJUK} such that bd, C=h(L)c T, for some h€H and i€K; (iv) veT,
if and only if i=k—1.

It is easy to see that [, k=0, is a partition of 7°. If vel,, k=2, thereis a
unique way of defining the triangles T;/(v), i=0,j€Z, in such a way that (3) of (f)
is true. Notice that 7;;(v) become defined in a G-compatible manner. If vel,, we
can define the triangles 7T;;(v) arbitrarily, taking only care that the result is G-com-
patible. Condition (1) of (f) is automatically true.

Let then v€I;. This is the most complicated case. We show first that there is
such N, as specified in (2) of (f). Let D’ be the closed domain of U whose boundary
is UL, ieluJuUK. Let

D’ = {h(D): he H is elliptic and h(D')~D’ = 0.

Then bdy D” consists of a finite number of hyperbolic lines that are of the form
h(L), h€H and i€clUK. Each line L,cbdyD”, i€K, and clD” (closure in
C u{=}) is obtained from D” by the addition of the endpoints of the sides. Thus
each component of bd, D” is a side of 7. If v€l;, then v is an endpoint of a side
of 7 of form (L), h€H and i€K. Therefore vécl h(D”) for some hcH. If
s€J* has endpoints v and v’, where also v’€I, Ul;, then we must have sCh(D”).
Since D” contains only a finite number of vertices of J, there is such N; as claimed
in (2) of (f). Now it is easy to see that we can define the triangles T;;(v) in such a
way that (2) of (f) is true and that a G-compatible hierarchy # results.

Remark 1. If we use the “basis” 4}, A€Q, constructed above for E to show
that E is isomorphic to /=, we get a simpler expression for the norm of E (the
supremum norm) but the price to be paid is that the image of T(G) is more com-
plicated.

Remark 2. Our method applies also if G is a finitely generated group of the
first kind such that U/G is non-compact. In fact, it seems that in this manner a
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particularly simple set of “moduli” for T(G) results. In this case it is better to para-
metrize T(G) by the use of the glide coefficients k,, s€F, where F is some set that
contains exactly one point from each orbit GZ . If s has an endpoint v that is an
elliptic fixpoint for G, then we must have k;=1. This is true also if v is a parabolic
fixpoint for G and there is only one triangle of /G with vertex cl; v. For each
remaining parabolic fixpoint v of F we have a relation since we must choose the
numbers k, in such a way that a parabolic fixpoint results. Let k,, ..., k, be the
glide coefficients of the sides s,, ..., s, of JY/G with vertex cl; v, where sy, ..., s,
are in cyclic order. Note that we may have that s;=s; even if />j since the end-
points of a side of ! may be equivalent under G. Then an equation similar to (5.3)
(set ky;=1 in (5.3)) can be used to obtain the condition for v to be parabolic.
We have, after some manipulation,

1 =kj..k,

where k;=d;k, and d, is a constant (=c;_,/c; of (5.3)) that depends on the angles
of the triangles with side s; (if they have three zero-angles then d;,=1). Thus, if
h;=log k;, then for each parabolic puncture of U/G we have a relation of the form

hy+...+h, = 0.

Hence we can choose a subset F'C F insuch a way that A, s€ F’, can be determined
freely and that they determine the other 4’s uniquely. Consequently 7'(G) is equivalent
as a real analytic manifold to a finite dimensional euclidean space.

References

[1] Bers, L.: On moduli of Riemann surfaces. - Lecture notes, Eidgendssische Technische Hoch-
schule, Ziirich, 1964, (mimeographed).

[2] Bers, L.: Universal Teichmiiller space. - Analytic methods in mathematical physics, edited
by R. P. Gilbert and R. G. Newton, Gordon and Breach, New York—London—
Paris, 1968, 65—83.

[3] CARLESON, L.: The extension problem for quasiconformal mappings. - Contributions to
Analysis, edited by L. V. Ahlfors et al., Academic Press, New York—London, 1974,
39—47.

[4] EARLE, C.: The contractibility of certain Teichmiiller spaces. - Bull. Amer. Math. Soc. 73,
1967, 434—437.

[5] EARLE, C.: On quasiconformal extensions of the Beurling-Ahlfors type. - Contributions to
Analysis, edited by L. V. Ahlfors et al., Academic Press, New York—London, 1974,
99—105.

[6] EARLE, C., and J. EELLs: On the differential geometry of Teichmiiller spaces. - J. Analyse
Math. 19, 1967, 35—52.

[7] Keen, L.: Intrinsic moduli on Riemann surfaces. - Ann. of Math. 84, 1966, 404—420.

[8] KEEN, L.: On Fricke moduli. - Advances in the theory of Riemann surfaces, edited by L. V.
Abhlfors et al., Annals of Mathematics Studies, No. 66, Princeton University Press,
Princeton, N. J., 1971, 205—224.

[9] KEEN, L.: A correction to ““On Fricke moduli”. - Proc. Amer. Math. Soc. 40, 1973, 60—62.



372 PexkA TUKIA

[10] KEEN, L.: On infinitely generated Fuchsian groups. - J. Indian Math. Soc. 35, 1971, 67—85.

[11] LenHTO, O.: Group isomorphisms induced by quasiconformal mappings. - Contributions to
Analysis, edited by L. V. Ahlfors et al., Academic Press, New York—London, 1974,
241—244.

[12] PercszyNskI, A.: On the isomorphism of the spaces m and M. - Bull. Acad. Polon. Sci. Sér.
Sci. Math. Astronom. Phys. 6, 1958, 695—696.

[13] TuKkIA, P.: On discrete groups of the unit disk and their isomorphisms. - Ann. Acad. Sci. Fenn.
Ser. A 1504, 1972, 1—45.

[14] Tukia, P.: Extension of boundary homeomorphisms of discrete groups of the unit disk. - Ibid.
548, 1973, 1—16.

[15] Tukia, P.: The space of quasisymmetric mappings. - Math. Scand. 40, 1977, 127—142.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland

Received 2 November 1977



