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PIECEWISE LINEAR APPROXIMATION
OF LIPEOMORPHISMS

JUSSI VAISALA

1. Introduction

1.1. A map f of a metric space (X, d) into a metric space (Y, d") is called Lip-
schitz if there is a constant L such that d’(f(x), f(»))= Ld(x, y) for all x,y in X.
The smallest L=0 satisfying this inequality is denoted by lip f. If every point in X
has a neighborhood in which fis Lipschitz, fis said to be locally Lipschitz, abbreviated
LIP. A lipeomorphism is a bijective map f such that both f and f~* are LIP. If f
defines a lipeomorphism f;: X—fX, fis a LIP embedding. If both f and f;* are
Lipschitz, we set bilip f=max (lip f; lip /;7"). A LIP map of a compact space is
always Lipschitz. For the elementary theory of Lipschitz topology, we refer to [3].

1.2. Outline of results. Let I" be the closed unit cube in R*, n=3, and let
f: I">R" be a LIP embedding. We shall prove that for every ¢=>0 there is a LIP
embedding g: I"—>R" such that g|oI"=f|dI", glintI" is PL, and |g(x)—f(x)|<e
for all x. Moreover, bilip g is bounded by a constant depending only on bilip f, e,
and n. Actually, it does not depend on ¢ (see Remark 2.12), but & does not play any
role in the applications. The proof is based on the clever ideas of Carleson [1]. As
applications, we shall prove the LIP annulus conjecture for n=3 and the LIP
hauptvermutung for n=2. D. Sullivan [7] has proved these results for more general
n by different methods.

1.3. Acknowledgement. 1 have greatly profited from the detailed seminar lectures
of J. Sarvas on Carleson’s method.

2. Approximation

2.1. Notation. We let I" denote the cube [—1, 1]". If a=0, the cube al" can
also be written as I"(a). Let K* be the family of 4"—2" closed cubes of side length
one, giving the natural subdivision of 2I™\iat[". If f: X—R" is a map and
if AcX, we write | fll,=sup {|f(x)|: x€4} and || fll=]flx-

2.2. Lemma. Let n=2 or 3 and let P be the union of a subfamily of K* such
that P and I"OUP are n-manifolds and I"NP is an (n—1)-manifold. Let ¢=0
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and let g: 21"~ R" be an embedding. Then there is =0 with the following property.
If g,: P~R" is a PL embedding with | g,—g|p<9, thereis a PL embedding g*: I"u
UP—R" such that ||g*—gll<e and g*|P=g,.

2.3. If n=3, the lemma follows from a more general and stronger result of
Moise [4, p. 101]. The proof for n=2 is simpler.

The lemma is not true for n=5, because it would yield the hauptvermutung for
compact PL manifolds. Indeed, we could apply it to a fine handle decomposition
of a PL manifold and obtain a PL approximation to every homeomorphism between
PL manifolds. Thus the method of this paper cannot be directly extended to higher
dimensions.

The rest of this section is devoted to the proof of the following result:

2.4. Theorem. Let n=3, let ¢=>0, and let L=1. Then there is L;=1 with
the following property: If f: I"->R" is a LIP embedding with bilip f=L, there is a
LIP embedding f*: I"-R" such that

(1) fHlor"=flor,

(2) f*|intI" is PL,

(3) bilipf*=L,,

@ If —fll<e

2.5. If n=1, Theorem 2.4 is almost trivial. For the rest of this section we
fix n€{2,3}. Given ¢ and g as in 2.2, we let d (e, g) denote the greatest J satisfying
2.2 for all P. Obviously d(e, g)=e. Let H; be the space of all LIP embeddings
g: 2I">R* such that |g(0)|=1 and bilipg=L. In the uniform topology, H
is closed in the space of all continuous maps 2/"—R". Since H, is equicontinuous
and uniformly bounded, it is compact by Ascoli’s theorem. We set 6*(g)=
=inf {J (e, g)|g€ H}-

2.6. Lemma. 6*(e)=0 for every &=0.

Proof. If the lemma is false, there is a sequence of maps g;€ H; such that
0(e, g))—~0. By the compactness of H;, we may assume that g;—~g€H,. If
2|lg;—gl<d(e/2,g), then 2.2 holds with the substitution g—g;, 6—03(e/2, g)/2.
Hence 6(e, g;)=6(¢/2, g)=>0 for large j, which is a contradiction. O

2.7. The family K. We divide int I" into a countable family K of closed cubes
as follows: First let I"(1/3)€K. Next divide 7"(2/3)\.int 7"(1/3) in the natural
way into 4"—2" cubes of side length 1/3. In the general step, we divide
I"(1—-3"127*"1\nt 7"(1—3~127%) into cubes of side length 3-127%"1,

Each Q€K can be uniquely written as z,+A4,1". Here z, is the center and
2A, the side length of Q. Setting oy(x)=zo+4px we have Q=uyl".

We express K as the union of a finite number of disjoint subfamilies K, ..., Ky
such that setting K=K, u...UK,, F,= u{Q|Q€K}} and P,=2I"nauy'F,_, for
Q¢€K,, the following conditions are satisfied:
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(1) The members of K, are pairwise disjoint.
(2) Py and I"UP, are n-manifolds, and I"NP, is an (n—1)-manifold.
(3) If O, R€K,, then Py=Pg.
It is obvious that this can be done. In the figure we indicate this for n=2 with

M=22.
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2.8. For the rest of the proof we fix ¢=0 and L=1. Let M be the integer
given by 2.7. Choose positive numbers 6,=...=0, such that Jy=min (¢, 1/8L)
and 568,_,<4%(5,). Observe that the numbers 6, only depend on ¢ and L (and n).

Suppose now that f: I"—~R" is a LIP embedding with bilipf=L. For every
Q€K choose a point by€iy,Z" such that |f(zg)—bo|<4y. Define By: R'~R"

by Bo(x)=(x— bo)/Ag.
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2.9. Lemma. There are finite families A,(L,¢), 1=r=M, of PL embeddings
I">R" such that if f: I">R" is a LIP embedding with bilip f=L, there are injec-
tive PL maps ¢,: F,—~R" such that

() Bopragll"€A, (L, &) for every QEK,

() | f—o,19=26,4y for every Q€KX

2.10. Proofof 2.4 modulo 2.9. Since F,,=int I", we obtain a function f*: I"—~R"
by setting f*=qy U(f|0I"). If a>0, the set U(a)=(dI"+al") nintI" is con-
tained in the union of those Q€K for which Ag=<a. Hence (ii) implies || f—f*| U@y =
=206ya, which proves the continuity of f*. Moreover, f* is an embedding, im f*=
=im f, and f*|int I"=¢,, is PL. Since | S =fll=supg || f—@ullg=26y supy Ag=
=20y/3<e, it remains to show that bilip f* has an upper bound L, which only
depends on L, ¢, and n. Since f*|Q=p5"Yay" for some WEAy (L, e) and since
I" is convex, lip f*=max {bilip Y|y € Ay (L, &)}=L, [3, 2.35]. Since f*[int ["]=
=flint I"] is L*-quasiconvex, lip (f*)"'=L2L,. Thus bilip/*=1?L,. O

2.11. Proof of 2.9. We shall inductively construct the sets 4,(L, &) and the
maps ¢, such that (i) and (ii) are satisfied. Since H; is compact, there is a finite set
H(L,e)c H; such that H is covered by the open balls {heHy: |h—gll<é,)},
g€H(L,¢). For every hc¢H(L,&) we choose a PL embedding g,: I"~R" such
that |lg,—Al <0, [5, p. 239] and set A, (L, e)={g,/h€ H(L, ¢)}. For every Q€K,
the map f,=p, fuy|2I" belongs to H,, since | f(0)|=|f(z9) —byl/ig<1. Choose
maps ho€H(L, ¢) such that ||hy—fpll<d, and set 80=28h,- Then || fo—golln<20;.
Define ¢,: F,—~R" by qollQ:ﬁéngaél for Q€K,. Then ¢, is PL, (i) is true,
and (ii) follows from | f— ¢illo=40 | fo—goll;n. To show that ¢, is injective, sup-
pose that Q and R are two cubes in K;. Assuming Ao=Aigp we have d(Q, R)=4,,
which implies 4(f0Q, JRY=/y/L. Since 6,=0,=1/8L, (ii) implies d(¢,Q, p,R)=
=]4/2L=0.

Suppose now that 4, ;(L,¢) and ¢,_,: F._,~R" have been constructed so
that (i) and (ii) are satisfied. Let Q€K,. The polyhedron P=P, is independent
of () by the condition (3) of 2.7. Set Vo=BoPr-1%o|P. If x€P, thereis REK}
such that ap(x)€R and QnR#0. Then Yo(x)= BQ ,B;lz//oz;locQ(x), where
Y=PBr@r-101["€A,_; (L, ¢) and

agtog(x) = AoX/2r+ (29— 28)/ 7

BoBr*(y) = ArY/Ag+(br—bg)/4q.
Since O NR#0, Ap/Ax€{1/2,1,2} and (zp—zg)/Ax also belongs to a finite set
depending only on n. Hence the maps 32, belong to a finite set A. Furthermore,
since bg—bo| = b —f(zx) | +|/(z8) ~f(zg) |+ | f(zg — bg| <(3+6L) Ay, the maps fo Bz
belong to a finite set B(L). Hence the maps yo belong to a finite set C,(L, ¢).

We want to apply Lemma 2.2 with the substitution PP, e—5,, g—>rg|l" UP,
81—>7o. We must verify the condition [lyg—hgylp<5*(5,). Let x€P and choose
R as above. Then [yo(x)—fo(x)| =0, -1 (a9 (x)) —f (0t (X))| /20 =20, -1 AxfAg =43, 1,
which implies [y, —hglp=58,_,<56*(5,).



Piecewise linear approximation of lipeomorphisms 381

By 2.2, there is a PL embedding gj: I"UP—R" such that gj|P=y, and
g —gpll i, p<9,. Since the pairs (g, 7,) belong to the finite set H(L, &) X C,(L, &),
we can choose the maps g, so that they belong to a finite set G,(L, &). Define
¢,: F,~R" as follows:

(orlFr—l = (pr—ls
?|Q = Bg'gpugtlQ for Q€K,.

It is clear that ¢, is a well-defined PL map. The condition (i) is satisfied with 4, (L, &)=
=4,.,(L, &) UG, (L, ¢). If Q€K,, then | f—o,lo=4gll fo—gglin<2496,, which
is (ii). The restrictions of ¢, to F,_, and ay[I" UP], Q€K,, are injective. To show
that ¢, is injective, it suffices to prove that 4=|p,(x)—¢,(»)|>0 whenever xcQ€K,
and y€F\op[I"UP]. Choosing REK) containing y we obtain A=|x—y|/L—
—20,(Ag+4g) and [x—y|=Ay. If Ag=2A,, then A=Ay/4L. If Ag=>24,, then
ONR=0, whence |x—y|=Az and 4=5/x/8L. 0O

2.12. Remarks. 1. One can prove that the constant L, in Theorem 2.4 only
depends on L and n, not on ¢. This is done by replacing the cube family K by a suit-
able subdivision of small mesh. For example, we may bisect the sides of each cube
in K and iterate this process. One must only verify that there are subfamilies
K,, ..., Ky of K" as in 2.7 such that M is independent of K'.

2. A direct application of Carleson’s method also gives the following result:
For every n=3 and L=1 there is L;=1 such that if f: R*>R" is a strong
lipeomorphism with bilipf=L and if ¢=0, there is a PL homeomorphism
f*: R">R" such that | f*—f] <e and bilip f*=L,.

3. A quasiconformal version of 2.4 has been recently proved by M. Kiikka.

3. Applications

3.1. LIP stability. A lipeomorphism f: R"—-R" is called LIP stable if it can
be expressed as f;...f;, where each f;: R"—>R" is a lipeomorphism which is the
identity map on some non-empty open set. If fis LIP stable and if g: R">R" is
a lipeomorphism agreeing with f on some non-empty open set, then g is also LIP
stable.

Suppose that n=3 and f: R"—~R" is an arbitrary lipeomorphism. It follows
from 2.4 that there is a lipeomorphism g: R"—R" such that f=g in R"™\J" and
glint 7" is PL. An elementary argument shows that an affine map with positive det-
erminant is LIP stable. Hence we obtain:

3.2. Theorem. If n=3, every sense-preserving lipeomorphism f: R"—R" is
LIP stable.

3.3. The LIP annulus conjecture states that if S; and S, are disjoint locally
LIP flat LIP (n—1)-spheres in S”, [3, 3.8], then the closure of the domain bounded
by S,US, is lipeomorphic to S" 'X/I. Or equivalently, there is a lipeomorphism
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S"—~S" mapping S; and S, onto round spheres. In the topological category, the
annulus conjecture follows from the TOP version of 3.2. This proof [2] is based on
the Schonflies theorem, which is also true in LIP, [3, 7.8]. Hence it can be rewritten
in LIP, and we obtain:

3.4. Theorem. The LIP annulus conjecture is true for n=3. O

3.5. A metric space J is a LIP arc, half string or string if it is lipeomorphic to
a closed, half open or open interval, respectively. If JCR", it is called locally LIP
flat if each point of J has a neighborhood U such that (U, UnJ) is lipeomorphic
to (R", RY) or (R", R1+). In this case, there is a neighborhood G of J such that (G, J)
is lipeomorphic to (R", I'), (R", R%) or (R", RY). This is seen by rewriting the cor-
responding TOP proofs [6, 3.4] in the LIP category. This justifies the abbreviation
“LIP flat” for “locally LIP flat LIP” arcs, half strings and strings. If JCR" is a
LIP flat arc, it follows from the LIP Schonflies theorem that (R”, J) is lipeomorphic
to (R, I').

3.6. Theorem. Let n=2 or 3 and let GCR" be a domain containing sets
Ji, Jy each of which is a LIP flat arc or half string, closed in G. If P is an end point
of J, and Q an end point of J,, there is a LIP flat arc JC G joining P and Q such that
JiuJulJ, is a LIP flat arc, half string or string.

Proof. Choose an open LIP n-ball DCG containing P and Q such that
D\ (J;UJ,) is connected. For n=3 the latter condition is automatically true. For
n=2 we can use the fact that an open TOP disk in R? is also an open LIP disk by
the Riemann mapping theorem or by [3, 8.4]. Let g: D—~R" be a lipeomorphism.
Set J¥=g[DnJ;]. We may assume that J is a line segment near g(P). There is
a sense-preserving lipeomorphism f: R"—~R" such that fJ is a line segment near
f(g(Q))‘ By 3.2, f can be written as f;...f;, where each f;: R">R" is a lipeo-
morphism and f;|U;=id for some open U;#0. (Actually, it is possile to choose
k=2, which would slightly simplify the proof.) Choose a PL arc A, joining g(P)
to a point y,€U; such that A;nJ}f=g(P) and A;nJ;=0. Next choose a PL
arc A, joining y; to y,€ U, such that A, nfi[J;" w4 ]=y, and 4,nf,J5=0. Con-
tinuing similarly we obtain PL arcs As, ..., 4, with end points y;c€U;. Finally
join y, to f(g(Q)) by a PL arc A4, which does not meet the sets fJ;, fJ; and J*=
=fA; Ufy...fA,U... Ufi A, except at the end points. Then J=g 1f71[J* U]
ist the desired arc. (J

3.7. Theorem. Every LIP 2-manifold is lipeomorphic to a PL manifold.

Proof. Let M be a LIP 2-manifold. Then there is a PL manifold P and a homeo-
morphism f: P—M. Choose a triangulation K of P such that for every simplex
€K, fois contained in an open LIP disk or half disk U(o). For the vertices v of K
we can choose U(v) so that f~1U(v)Cst (v, K) and the sets U(v) are disjoint.
Let g be a lipeomorphism of U(v) onto R? or R? such that g(f(v))=0. Let 7 be
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a l-simplex having v as a vertex. Let b(v, t) be the last point of fr lying in g=1/2,
and let 4 (v, 7) be the line segment joining 0 and g(b (v, 7)). Then J(v, 1)=g 14 (v, 7)
is a LIP flat arc in U(v).

Let T be an arbitrary 1-simplex of K, not lying on dP. It has two vertices vy,
v,, and is a face of two 2-simplexes o, 6,. Set b;=b(v;, 1), and let 7, be the sub-
arc of fr having end points b;. Choose an open neighborhood V(1) of 7, in U(oy) N
NU(0,) N( fo, Ufo,) such that the sets V() are disjoint. By 3.6, we can join b; and
b, in V(1) by an arc which together with J(v,, t) and J(v,, 7) forms a LIP flat arc
A () whose end points are f(v;) and f(v,).

If t<dP, weset A(t)=fr. For every l-simplex 7, we choose a lipeomorphism
h: t—=A(t) such that Ah|dt=f|0t. These maps give a LIP embedding
h: |[KY—~M. If ¢ is a 2-simplex of K, hdo is a locally LIP flat LIP circle in U(o).
By the LIP Schonflies theorem, /0o can be extended to a LIP embedding o— M,
and we obtain a lipeomorphism P—-M. O

3.8. Theorem (Lipvermutung, n=2). If My, M, are homeomorphic LIP 2-mani-
folds, they are lipeomorphic.

Proof. By 3.7, M, is lipeomorphic to a PL manifold P;. By the classical 2-dimen-
sional hauptvermutung, P, and P, are PL homeomorphic, hence lipeomorphic. O

References

[1] CARLESON, L.: The extension problem for quasiconformal mappings. - Contributions to Analysis,
edited by L. V. Ahlfors et al.,, Academic Press, New York—London, 1974, 39—47.

[2] KIrBY, R. C.: Lectures on triangulations of manifolds. - Mimeographed notes, UCLA, 1969.

[3] LUUKKAINEN, J., and J. VAISALA: Elements of Lipschitz topology. - Ann. Acad. Sci. Fenn. Ser.
A3, 1977, 85—122.

[4] Moisk, E. E.: Affine structures in 3-manifolds V. The triangulation theorem and Hauptvermu-
tung. - Ann. of Math. 56, 1956, 96—114.

[5] Moisk, E. E.: Geometric topology in dimension 2 and 3. - Springer-Verlag, New York—Heidel-
berg—Berlin, 1977.

[6] RuUsBING, T. B.: Topological embeddings. - Academic Press, New York—London, 1973.

[7] SuLLivaN, D.: Hyperbolic geometry and homeomorphisms. - To appear in the Proceedings of
the Georgia Topology Conference 1977. ’

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland

Received 9 February 1978



