THE SUBLATTICE OF AN ORTHOGONAL PAIR IN A MODULAR LATTICE

HERBERT GROSS and PAUL HAFNER

Introduction

We will be concerned with a modular lattice \mathscr{L} together with an antitone mapping \perp : $\mathscr{L} \rightarrow \mathscr{L}$ such that

(1) $x \leq x^{\perp \perp}$ for all $x \in \mathscr{L}$.

The following rules are easily verified:

 $a^{\perp\perp\perp} = a^{\perp},$

(3)
$$x \leq y \Rightarrow x^{\perp \perp} \leq y^{\perp \perp},$$

(4)
$$(x \lor y)^{\perp} = x^{\perp} \land y^{\perp}.$$

If $x = x^{\perp \perp}$ we call x closed; if $x \le y^{\perp}$ we write $x \perp y$.

Under the assumption that $f \perp g$ we shall construct the free modular lattice $\mathscr{V}(f,g)$ generated by $\mathscr{V}(f) \cup \mathscr{V}(g)$, where $\mathscr{V}(f)$ is the orthostable lattice generated by $f \in \mathscr{L}$. $\mathscr{V}(f,g)$ is a distributive lattice. We will also give some conditions ensuring that $\mathscr{V}(f,g)$ or a slight modification of $\mathscr{V}(f,g)$ is orthostable. Certain special cases are studied separately because of their importance in geometry.

The value of lattice theoretical computations such as given here rests on the fact that they yield — in conjunction with certain general theorems proved in [3] and [5] — strong results on the classification of subspaces in quadratic spaces, normal bases, decomposition theorems. The role of the lattice theoretic part has been described in detail in Section 3 of [5]. Further applications of this method are given in [4]. Cf. also Remark 5 (iii) at the end.

doi:10.5186/aasfm.1978-79.0406

1. The lattice: general case

The \perp -stable lattice $\mathscr{V}(f)$ generated by an element $f \in \mathscr{L}$ (modular with \perp) is given by the following diagram

Let $\mathscr{I}(f)$ be the ideal generated in $\mathscr{V}(f)$ by $f^{\perp \perp}$; and let the filter generated by f^{\perp} be denoted by $\mathscr{F}(f)$. Note that $\mathscr{V}(f) = \mathscr{I}(f) \cup \mathscr{F}(f)$ and that $\mathscr{F}(f)$ is a chain. Moreover, $\mathscr{V}(f)$ is distributive.

Considering a second element $g \in \mathscr{L}$ we prove:

Lemma 1. Assume that $f \perp g$. Then the lattice $\mathscr{V}(f,g)$ generated in \mathscr{L} by $\mathscr{V}(f) \cup \mathscr{V}(g)$ is distributive.

Proof. By Theorem 6 of [6] and symmetry it suffices to verify that $(b \lor b') \land c = (b \land c) \lor (b' \land c)$ for all $b, b' \in \mathscr{V}(f)$ and all $c \in \mathscr{V}(g)$. Since $f \perp g$ we have $y \ge f^{\perp} \ge g^{\perp \perp} \ge x$ for all $x \in \mathscr{I}(g), y \in \mathscr{F}(f)$. This and the symmetric fact is expressed by

(5)
$$\mathscr{I}(f) \leq \mathscr{F}(g), \quad \mathscr{I}(g) \leq \mathscr{F}(f).$$

The only elements in $\mathscr{V}(f)$ which are not join-irreducible are $z_1 = f \vee (f \wedge f^{\perp})^{\perp \perp}$, $z_2 = f \vee (f^{\perp} \wedge f^{\perp \perp})$, $z_3 = f \vee f^{\perp}$, $z_4 = f^{\perp \perp} \vee f^{\perp}$. For i = 3, 4 we obtain the distributivity of $z_i \wedge y$ using (5) and modularity. The same works for i = 1, 2 and $y \in \mathscr{F}(g)$. Finally (5) implies that $y = f^{\perp} \wedge y$ for $y \in \mathscr{I}(g)$; therefore

$$z_1 \wedge y = [f \vee (f \wedge f^{\perp})^{\perp \perp}] \wedge f^{\perp} \wedge y = (f \wedge f^{\perp})^{\perp \perp} \wedge y \leq (f \wedge y) \vee [(f \wedge f^{\perp})^{\perp \perp} \wedge y]$$

$$z_2 \wedge y = [f \vee (f^{\perp} \wedge f^{\perp \perp})] \wedge f^{\perp} \wedge y = f^{\perp} \wedge f^{\perp \perp} \wedge y \leq (f \wedge y) \vee [(f^{\perp} \wedge f^{\perp \perp}) \wedge y].$$

This takes care of the remaining cases, bearing in mind the distributive inequality.

Remark 1. Let \mathcal{D} be given by the following diagram

where the broken lines indicate a relation \leq . The proof given above shows that the free modular lattice generated by \mathcal{D} is distributive.

A situation involving \mathcal{D} appears again in the construction of the \perp -stable lattice generated by two elements $f, g \in \mathcal{L}, f \perp f, g \perp g$. Here

$$\mathcal{I}_{1} = \{ f \land g^{\perp}, f, (f \land g^{\perp})^{\perp \perp}, f \lor (f \land g^{\perp})^{\perp \perp}, f^{\perp \perp} \land g^{\perp}, f \lor (f^{\perp \perp} \land g^{\perp}), f^{\perp \perp} \}$$

and
$$\mathcal{I}_{1} = \{ g^{\perp}, f \lor g^{\perp}, f^{\perp \perp} \lor g^{\perp}, (f^{\perp} \land g^{\perp \perp})^{\perp}, (f^{\perp} \land g)^{\perp} \}$$

take the place of $\mathscr{I}(f)$ and $\mathscr{F}(f)$ respectively. If \mathscr{I}_2 and \mathscr{F}_2 denote the analogous sets with f and g interchanged, then clearly the orthostable lattice generated by f and g must contain the sublattice generated by $\mathscr{J}_1 \cup \mathscr{J}_2 \cup \mathscr{F}_1 \cup \mathscr{F}_2$ which by the proof of Lemma 1 is distributive.

In what follows we construct the free modular lattice generated by \mathcal{D} . We will however do it in the setup of $\mathscr{V}(f) \cup \mathscr{V}(g)$ and leave it to the reader to verify that the result has general validity.

Thanks to the distributivity of $\mathscr{V}(f,g)$ the lattice \mathscr{V}_2 generated by $\mathscr{I}(f) \cup \mathscr{I}(g)$ is the join-closure of

$$\mathscr{I}(f) \cup \mathscr{I}(g) \cup \{x \land y | x \in \mathscr{I}(f), y \in \mathscr{I}(g)\}.$$

As $f \perp g$ we have

 $\{x \wedge y | x \in \mathscr{I}(f), y \in \mathscr{I}(g)\} = \{x \wedge y | x \in \mathscr{I}_0(f), y \in \mathscr{I}_0(g)\},\$

where $\mathscr{J}_0(f) = \{f \wedge f^{\perp}, (f \wedge f^{\perp})^{\perp \perp}, f^{\perp} \wedge f^{\perp \perp}\}$ and similarly for $\mathscr{J}_0(g)$ (compare the proof of Lemma 1). Therefore, we begin by forming the free modular lattice Mgenerated by the two chains $\mathscr{J}_0(f), \mathscr{J}_0(g)$. M has $8!(4!)^{-2}-2=68$ elements ([1] p. 66) and consists of all joins of elements out of the following diagram

(intersections of lines represent meets of elements).

The next step is to form joins of elements in M with $f, g, f \vee g, f^{\perp \perp}, g^{\perp \perp}, f \vee g^{\perp \perp}, f^{\perp \perp}, g^{\perp \perp}, f \vee g^{\perp \perp}, f^{\perp \perp} \vee g, f^{\perp \perp} \vee g, f^{\perp \perp} \vee g^{\perp \perp}$. This produces all elements of \mathscr{V}_2 since any element $x \vee y \vee m$, where $x \in \mathscr{I}(f), y \in \mathscr{I}(g), m \in M$ is of the form $x_0 \vee y_0 \vee m_0$ with $x_0 \in \{f, f^{\perp \perp}\}, y_0 \in \{g, g^{\perp \perp}\}, m_0 \in M$. In an expression like $f \vee x \vee y \vee Vx_i \wedge y_i$, where $x, x_i \in \mathscr{I}_0(f), y, y_i \in \mathscr{I}_0(g)$ one can dispose of terms $x_i \wedge y_i \leq f$. Thus we may assume that $x, x_i \neq f \wedge f^{\perp}$ and hence $f \vee M = f \vee M_1$, where M_1 is the free modular lattice generated by the 2 chains $\{(f \wedge f^{\perp})^{\perp \perp}, f^{\perp} \wedge f^{\perp \perp}\}$ and $\mathscr{I}_0(g)$. We obtain $7!(3!4!)^{-1}-2=33$ elements or 34 elements if we include f. The same kind of reasoning leads to the following enumeration

M: 68 elements; $f \lor M$: 34 elements (including *f*); $g \lor M$: 34 elements (including *g*); $f \lor g \lor M$: 19 elements (including $f \lor g$); $f^{\perp \perp} \lor M$: 4 elements (including $f^{\perp \perp}$); $g^{\perp \perp} \lor M$: 4 elements (including $g^{\perp \perp}$); $f \lor g^{\perp \perp} \lor M$: 3 elements (including $f \lor g^{\perp \perp}$); $g \lor f^{\perp \perp} \lor M$: 3 elements (including $g \lor f^{\perp \perp}$); $f^{\perp \perp} \lor g^{\perp \perp}$: 1 element.

Altogether the free modular lattice generated by $\mathscr{I}(f) \cup \mathscr{I}(g)$ has 170 elements.

The lattice \mathscr{V}_1 generated by the 2 chains $\mathscr{F}(f)$ and $\mathscr{F}(g)$ is the \vee -closure of the elements which are depicted in the following diagram (intersections of lines represent meets):

Observe that the elements marked by circles are of the form $f \lor x$, $f^{\perp \perp} \lor x$, $g \lor y$, $g^{\perp \perp} \lor y$ for $x \in \{f^{\perp}, f^{\perp} \land a | a \in \mathscr{F}(g)\}$, $y \in \{g^{\perp}, g^{\perp} \land b | b \in \mathscr{F}(f)\}$. Moreover, for

$$r \in \{f^{\perp}, f^{\perp} \land (g \land g^{\perp})^{\perp}, f^{\perp} \land (g^{\perp} \bot \land g^{\perp})^{\perp}\},$$

$$s \in \{g^{\perp}, g^{\perp} \land (f \land f^{\perp})^{\perp}, g^{\perp} \land (f^{\perp} \bot \land f^{\perp})^{\perp}\}$$

we have

 $r \lor s = (r \lor f^{\perp \perp}) \lor (s \lor g^{\perp \perp}).$

As a consequence \mathscr{V}_1 is the lattice generated by the two chains

and

$$\{ f^{\perp \perp} \lor f^{\perp}, (f^{\perp \perp} \land f^{\perp})^{\perp}, (f \land f^{\perp})^{\perp} \}$$
$$\{ g^{\perp \perp} \lor g^{\perp}, (g^{\perp \perp} \land g^{\perp})^{\perp}, (g \land g^{\perp})^{\perp} \}$$

together with the 20 elements below the solid line in the diagram. The total number of elements in \mathscr{V}_1 is therefore at most 68+20=88.

Finally we prove that $\mathscr{V}_1 \cup \mathscr{V}_2$ is a lattice by showing that $x \vee y$ and $x \wedge y$ are in $\mathscr{V}_1 \cup \mathscr{V}_2$ whenever $x \in \mathscr{V}_1, y \in \mathscr{V}_2$. As for the joins it suffices to show that $x \vee y \in \mathscr{V}_1$ for $x \in \mathscr{V}_1$ and y join-irreducible in $\mathscr{V}_2, y \equiv f^{\perp} \wedge g^{\perp}$. Since $f^{\perp} \wedge g^{\perp} \wedge (f^{\perp \perp} \vee g^{\perp \perp}) = (f^{\perp} \wedge f^{\perp \perp}) \vee (g^{\perp} \wedge g^{\perp \perp})$ the only such y are $f, f^{\perp \perp}, g, g^{\perp \perp}$; for these, however, the claim is obvious. Owing to distributivity we will now consider only those meets $x \wedge y$ for which $x \in \mathscr{V}_1, y \in \mathscr{V}_2$ are join-irreducible with $x \equiv f^{\perp \perp} \vee g^{\perp \perp} \vee (f^{\perp} \wedge g^{\perp})$ and $y \equiv f^{\perp} \wedge g^{\perp}$. This means that

$$\begin{aligned} x \in \{f^{\perp}, f^{\perp} \wedge (g \wedge g^{\perp})^{\perp}, f^{\perp} \wedge (g^{\perp} \wedge g^{\perp \perp})^{\perp}, f^{\perp} \wedge g^{\perp}, g^{\perp} \wedge (f^{\perp} \wedge f^{\perp \perp})^{\perp}, \\ g^{\perp} \wedge (f \wedge f^{\perp})^{\perp}, g^{\perp} \} \end{aligned}$$

and

$$y \in \{f, f^{\perp \perp}, g, g^{\perp \perp}\}.$$

These verifications are easy.

We summarize:

Theorem 1. The free modular lattice generated by D has 258 elements.

2. The lattice: some special cases

We recall that $f \perp g$ is assumed throughout. From this it follows that $f^{\perp \perp} \wedge g^{\perp \perp} = f^{\perp} \wedge f^{\perp \perp} \wedge g^{\perp} \wedge g^{\perp \perp}$. The following condition requires that $f^{\perp \perp} \wedge g^{\perp \perp}$ is even smaller:

(6)
$$f^{\perp \perp} \wedge g^{\perp \perp} = (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}.$$

Under this assumption

(7)
$$\mathscr{V}_2 = \mathscr{I}(f) \cup \mathscr{I}(g) \cup \{x \lor y | x \in \mathscr{I}(f), y \in \mathscr{I}(g)\} \cup \mathscr{W},$$

where \mathcal{W} is the set containing the following 17 elements:

To prove (7) note that by distributivity \mathscr{V}_2 consists of joins $u_1 \vee u_2 \vee u_3 \vee \ldots \vee u_r$, where (a) $u_i \in \mathscr{I}(f) \cup \mathscr{I}(g)$ or (b) u_i is a meet $x \wedge y$ of join-irreducible elements $x \in \mathscr{I}(f)$, $y \in \mathscr{I}(g)$. From (6) and $f \perp g$ we see that the joins of elements of type (b) form the set

$$\mathscr{V} = \{ f^{\perp \perp} \land g^{\perp \perp}, \ (f^{\perp \perp} \land g) \lor (g^{\perp \perp} \land f), f^{\perp \perp} \land g, \ g^{\perp \perp} \land f, f \land g \}.$$

Under the assumption (6) \mathscr{V}_2 therefore has at most 63+17=80 elements.

Condition (6), which does not have any bearing on \mathscr{V}_1 , can be obtained from

(8)
$$f^{\perp} \vee g^{\perp} = (f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}$$

by applying \perp . Equation (8) has very strong consequences:

Lemma 2. Assume that $f \perp g$ and that (8) holds. Then

(9)
$$(y_1 \land y_2) \lor (y'_1 \land y'_2) = (y_1 \lor y'_1) \land (y_2 \lor y'_2)$$

for all $y_1, y'_1 \in \mathcal{F}(f)$ and all $y_2, y'_2 \in \mathcal{F}(g)$. In particular $\mathcal{F}(f) \cup \mathcal{F}(g) \cup \{x \land y | x \in \mathcal{F}(f), y \in \mathcal{F}(g)\} \cup \{f^{\perp} \lor g^{\perp}\}$ is \lor -closed and hence a sublattice of \mathcal{L} , *i.e. it is* \mathscr{V}_2 ; card $\mathscr{V}_2 \leq 36$.

Proof. It is clear that \leq holds in (9). To obtain the converse inclusion we consider the case $y_1 \leq y'_1$ and $y'_2 \leq y_2$ (the other cases being trivial). The right hand side of (9) then becomes

$$y'_1 \wedge y_2 = y'_1 \wedge y_2 \wedge [(f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}] = y'_1 \wedge y_2 \wedge (f^{\perp} \vee g^{\perp})$$
$$= (f^{\perp} \wedge y_2) \vee (g^{\perp} \wedge y'_1) \leq (y_1 \wedge y_2) \vee (y'_1 \wedge y'_2).$$

This proves the lemma.

Theorem 2. Let \mathscr{L} be a modular lattice with a Galois autoconnection \perp . If $f \perp g$ and (6) holds then $\operatorname{card} \mathscr{V}(f,g) \leq 168$ and $\mathscr{V}(f,g) = \mathscr{V}_1 \cup \mathscr{V}_2$, where \mathscr{V}_2 is given by (7) and \mathscr{V}_1 is generated by two chains. If instead of (6) one assumes (8), then \mathscr{V}_2 is as before, \mathscr{V}_1 is the product of 2 chains and $\operatorname{card} \mathscr{V}(f,g) \leq 116$.

Remark 2. The same considerations are valid in the case $f \perp f, g \perp g$ provided (6) is replaced by

(10) $f^{\perp \perp} \wedge g^{\perp \perp} = (f \wedge g^{\perp})^{\perp \perp} \wedge (g \wedge f^{\perp})^{\perp \perp}$ and (8) is replaced by (11) $f^{\perp} \vee g^{\perp} = (f \wedge g^{\perp})^{\perp} \vee (g \wedge f^{\perp})^{\perp}$. It is easily seen that (12) $f^{\perp} \vee g^{\perp} = (f \wedge g)^{\perp}$

implies (8) if $f \perp g$ and also implies (11) if $f \perp f, g \perp g$.

3. Orthostability

We want to be sure that $x^{\perp} \in \mathscr{V}(f, g)$ for all $x \in \mathscr{V}(f, g)$. Since $(a \lor b)^{\perp} = a^{\perp} \land b^{\perp}$ and $\mathscr{V}(f, g)$ is a lattice we need only find the orthogonals of join-irreducible elements. If $x \in \mathscr{V}_1$ is join-irreducible, then $x \in \mathscr{F}(f)$, or $x \in \mathscr{F}(g)$, or $x = u^{\perp} \land v^{\perp}$ for some $u \in \mathscr{I}(f)$, $v \in \mathscr{I}(g)$. In the latter case $x^{\perp} = (u \lor v)^{\perp \perp}$ and the following condition must be satisfied for x^{\perp} to belong to $\mathscr{V}(f, g)$

(13)
$$(a \lor b)^{\perp \perp} \in \mathscr{V}(f, g)$$
 for all $a \in \mathscr{I}(f), b \in \mathscr{I}(g)$.

Another problem appears when we check orthogonals of elements in \mathscr{V}_2 : $f \wedge g = (f \wedge f^{\perp}) \wedge (g \wedge g^{\perp}) \leq (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$ and therefore $(f \wedge g)^{\perp} \geq [(f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}]^{\perp \perp}$. Since $(f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}$ is the largest element of

 $\mathscr{V}(f,g)$, this lattice will have to be extended at the top end unless $(f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}$ is closed and $(f \wedge g)^{\perp \perp} = (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$. Postponing the problem of such an extension at the moment we consider only $x \in \mathscr{V}_2$ such that $x > (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$, or $x \ge f \wedge f^{\perp}$, or $x \ge g \wedge g^{\perp}$. The join-irreducible ones among them are elements of $\mathscr{I}(f)$ or $\mathscr{I}(g)$ or meets $x = a^{\perp \perp} \wedge b^{\perp \perp}$, where $a \in \mathscr{I}(f)$, $b \in \mathscr{I}(g)$. In the last case $x^{\perp} = (a^{\perp} \vee b^{\perp})^{\perp \perp}$. Thus, a further condition must be satisfied:

(14) For a∈𝒴(f), b∈𝒴(g) such that a[⊥] ∨ b[⊥] <(f∧f[⊥])[⊥] ∨ (g∧g[⊥])[⊥] the closure of a[⊥] ∨ b[⊥] also belongs to 𝒴(f,g).

The only join-irreducible elements of \mathscr{V}_2 not yet considered are

$$f \wedge g^{\perp \perp}, f \wedge (g \wedge g^{\perp})^{\perp \perp}, f \wedge g, g \wedge (f \wedge f^{\perp})^{\perp \perp}, g \wedge f^{\perp \perp}.$$

To be able to deal with $f \wedge g^{\perp \perp}$ and $g \wedge f^{\perp \perp}$ we must require that

(15) $(f \wedge g^{\perp \perp})^{\perp \perp}$ and $(g \wedge f^{\perp \perp})^{\perp \perp}$ belong to $\mathscr{V}(f, g)$ and are comparable to $(f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$.

The elements below $(f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$ make it necessary to extend $\mathscr{V}(f, g)$ at the top end; again we must require that

(16) the closures of elements $\leq (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$ belong to $\mathscr{V}(f, g)$.

Assuming (16) one can add up to 6 elements at the top end of $\mathscr{V}(f,g)$; the maximum number of 6 is needed if $(f \wedge f^{\perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}$ is not closed, and all four elements below $(f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$ are closed:

We summarize the result as a theorem:

Theorem 3. $\mathscr{V}(f,g)$ or a small extension of $\mathscr{V}(f,g)$ is orthostable provided the conditions (13), (14), (15), and (16) hold. The maximum number of elements in the orthostable lattice is 264.

The conditions in Theorem 3 are satisfied in the following situation:

- (16) closures of elements $\leq (f \wedge f^{\perp})^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp}$ belong to $\mathscr{V}(f, g)$.
- (17) $(f \wedge g^{\perp \perp})^{\perp \perp} = (f \wedge f^{\perp})^{\perp \perp} \wedge g^{\perp \perp}; \quad (g \wedge f^{\perp \perp})^{\perp \perp} = f^{\perp \perp} \wedge (g \wedge g^{\perp})^{\perp \perp};$
- (18) $[(f \wedge f^{\perp})^{\perp \perp} \vee (g \wedge g^{\perp})^{\perp \perp}]^{\perp \perp} = (f \wedge f^{\perp})^{\perp \perp} \vee (g \wedge g^{\perp})^{\perp \perp} \vee (f^{\perp \perp} \wedge g^{\perp \perp});$

(19) the following are closed:

$$f^{\perp \perp} \lor g^{\perp \perp}, f^{\perp \perp} \lor (g^{\perp} \land g^{\perp \perp}), f^{\perp \perp} \lor (g \land g^{\perp})^{\perp \perp}, g^{\perp \perp} \lor (f^{\perp} \land f^{\perp \perp}),$$

 $g^{\perp \perp} \lor (f \land f^{\perp})^{\perp \perp};$

(20) the following are closed:

 $(f^{\perp} \wedge f^{\perp \perp})^{\perp} \vee (g \wedge g^{\perp})^{\perp}, (f \wedge f^{\perp})^{\perp} \vee (g^{\perp} \wedge g^{\perp \perp})^{\perp}, (f^{\perp} \wedge f^{\perp \perp})^{\perp} \vee (g^{\perp} \wedge g^{\perp \perp})^{\perp}.$

Remark 3. Note that the right hand side in (18) is closed provided (19) holds, since it is the meet of $f^{\perp \perp} \vee (g \wedge g^{\perp})^{\perp \perp}$ and $g^{\perp \perp} \vee (f \wedge f^{\perp})^{\perp \perp}$. Given (19), the joins $a \vee b$ of closed elements $a \in \mathscr{I}(f)$, $b \in \mathscr{I}(g)$ are closed, being meets of elements listed in (19).

To conclude this section we return to the special cases treated in Section 2 and consider the question of orthostability. As before, \mathscr{V}_1^{\perp} is taken care of by assuming

(13)
$$\mathscr{V}(f,g)$$
 contains $(a \lor b)^{\perp \perp}$ for all $a \in \mathscr{I}(f), b \in \mathscr{I}(g)$.

The set of join-irreducible elements of \mathscr{V}_2 which are not contained in $\mathscr{I}(f) \cup \mathscr{I}(g)$ is the set \mathscr{V} as defined at the beginning of Section 2. If $[\mathscr{V}^{\perp}]$ is the lattice generated by \mathscr{V}^{\perp} , then $\mathscr{V}_0 = \mathscr{V}(f, g) \cup [\mathscr{V}^{\perp}]$ is a lattice because $\mathscr{V}(f, g) \leq (f^{\perp \perp} \wedge g^{\perp \perp})^{\perp} =$ $(f^{\perp} \vee g^{\perp})^{\perp \perp}$ by (6). If \mathscr{V}_0 is to be \perp -stable we must have the elements of $[\mathscr{V}^{\perp}]^{\perp}$ in $\mathscr{V}(f, g)$; this will happen precisely when $(\mathscr{V}^{\perp})^{\perp} \subset \mathscr{V}$. This proves

Lemma 3. Assume (6). Then, with the notation introduced above, $\mathscr{V}(f,g) \cup [\mathscr{V}^{\perp}]$ is a lattice. This lattice is orthostable if and only if $(a \lor b)^{\perp \perp} \in \mathscr{V}(f,g)$ for all $a \in \mathscr{I}(f)$, $b \in \mathscr{I}(g)$ and

$$(21) \qquad \qquad (\mathscr{V}^{\perp})^{\perp} \subset \mathscr{V}.$$

We now prove

Lemma 4. For all
$$x \in \mathscr{L}$$
 with $f^{\perp} \leq x^{\perp} \leq f^{\perp} \lor g^{\perp}$ we have

(22)
$$[x^{\perp \perp} \lor (g^{\perp \perp} \land f^{\perp \perp})]^{\perp \perp} = (x^{\perp \perp} \lor g^{\perp \perp})^{\perp \perp}$$

Proof. We have $x^{\perp} \wedge (f^{\perp} \vee g^{\perp}) = x^{\perp} \wedge (f^{\perp} \vee g^{\perp})^{\perp \perp}$ since both sides reduce to x^{\perp} by the assumption of the lemma. By modularity the left hand side is equal to $f^{\perp} \vee (x^{\perp} \wedge g^{\perp}) = f^{\perp} \vee (x^{\perp} \wedge g^{\perp})^{\perp \perp}$; the right hand side equals $[x^{\perp \perp} \vee (f^{\perp \perp} \wedge g^{\perp \perp})]^{\perp}$. Taking orthogonals on both sides yields the asserted equality.

 $\wedge f^{\perp \perp}$.

Remark 4. Obviously, if $f^{\perp} \vee g^{\perp}$ is assumed closed, then by the above proof (22) holds for all $x \in \mathscr{L}$ with $f^{\perp} \leq x^{\perp}$.

The following lemma elaborates on the first condition ennunciated in Lemma 3:

Lemma 5. Assume that $f \perp g$ satisfy (8) and the closedness condition

(23) $f^{\perp \perp} \vee g^{\perp \perp} = (f \vee g)^{\perp \perp}.$

Then we have

(24) $x_1^{\perp \perp} \vee x_2^{\perp \perp} = (x_1 \vee x_2)^{\perp \perp}$ for all $x_1 \in \mathscr{I}(f), x_2 \in \mathscr{I}(g).$ Proof. By (23)

$$(x_1^{\perp\perp} \vee x_2^{\perp\perp})^{\perp\perp} = (x_1^{\perp\perp} \vee x_2^{\perp\perp})^{\perp\perp} \wedge (f^{\perp\perp} \vee g^{\perp\perp}) \leq (x_1^{\perp\perp} \vee g^{\perp\perp})^{\perp\perp} \wedge (f^{\perp\perp} \vee g^{\perp\perp}).$$

By distributivity and Lemma 4 therefore $(x_1^{\perp \perp} \lor x_2^{\perp \perp})^{\perp \perp} \leq (x_1^{\perp \perp} \lor (g^{\perp \perp} \land f^{\perp \perp}))^{\perp \perp} \lor g^{\perp \perp} = x_1^{\perp \perp} \lor g^{\perp \perp}$ (the last equality by (6)). By a symmetric argumentation $(x_1^{\perp \perp} \lor x_2^{\perp \perp})^{\perp \perp} \leq (f^{\perp \perp} \lor x_2^{\perp \perp})$ so that $(x_1^{\perp \perp} \lor x_2^{\perp \perp})^{\perp \perp} \leq (x_1^{\perp \perp} \lor g^{\perp \perp}) \land (f^{\perp \perp} \lor x_2^{\perp \perp}) = x_1^{\perp \perp} \lor x_2^{\perp \perp}$ by again using (6). Obviously, if in this proof $f^{\perp} \lor g^{\perp}$ is assumed closed then by Remark 4 we need not assume (8) in order to quote Lemma 4. In other words, we have also proved the

Lemma 5'. Assume that $f \perp g$ has $f^{\perp \perp} \vee g^{\perp \perp}$ and $f^{\perp} \vee g^{\perp}$ closed. Then (24) holds for all $x_1, x_2 \in \mathscr{L}$ with $f^{\perp \perp} \wedge g^{\perp \perp} \leq x_1^{\perp \perp} \leq f^{\perp \perp}, f^{\perp \perp} \wedge g^{\perp \perp} \leq x_2^{\perp \perp} \leq g^{\perp \perp}$.

Another possibility to obtain (24) is to require (23) and condition

(25)
$$f^{\perp \perp} \vee (g \wedge g^{\perp})^{\perp \perp}, g^{\perp \perp} \vee (f \wedge f^{\perp})^{\perp \perp}$$
 are closed;

for, simple calculations show that (23) and (25) imply closedness of all spaces $x_1^{\perp \perp} \vee x_2^{\perp \perp}$ occuring in (24).

In order to satisfy (21) we may require condition

(26)
$$f^{\perp \perp} \wedge g^{\perp \perp} = (f \wedge g)^{\perp \perp}$$

— which means that the lattice \mathscr{V}^{\perp} of Lemma 3 reduces to $\{(f^{\perp} \lor g^{\perp})^{\perp \perp}\}$ — or

(27) $f \wedge g, f \wedge g^{\perp \perp}, g \wedge f^{\perp \perp}, (f \wedge g^{\perp \perp}) \vee (g \wedge f^{\perp \perp})$ are closed,

which means that the elements of \mathscr{V} are closed so that $\perp : \mathscr{V} \to \mathscr{V}^{\perp}$ is a bijection. Notice that (26) implies (6). We summarize:

Theorem 4. Let \mathscr{L} be a modular lattice equipped with a Galois autoconnection \bot . Assume that $f, g \in \mathscr{L}$ satisfy $f \perp g$. Let $\mathscr{V}(f, g)$ be the sublattice generated by the set $\mathscr{V}(f) \cup \mathscr{V}(g)$, where $\mathscr{V}(f), \mathscr{V}(g)$ are the \bot -stable sublattices generated by f and g respectively. In order that the \bot -stable lattice $\mathscr{V}(f, g, \bot)$ generated by $\mathscr{V}(f) \cup \mathscr{V}(g)$ (i.e. the \bot -stable lattice generated by $\{f, g\}$) is finite and distributive either of the following four conditions is sufficient: (26) & (23) & (25), (8) & (23) & (26), (6) & (23) & (25) & (27), (8) & (23) & (27). We then have $\mathscr{V}(f, g, \bot) = \mathscr{V}(f, g) \cup \{(f^{\bot} \lor g^{\bot})^{\bot \bot}\}$ in the first two cases and

$$\begin{aligned} \mathscr{V}(f, g, \perp) &= \mathscr{V}(f, g) \cup \{ (f^{\perp} \lor g^{\perp})^{\perp \perp}, (f \land g^{\perp \perp})^{\perp} \land (g \land f^{\perp \perp})^{\perp}, (f \land g^{\perp \perp})^{\perp}, \\ (g \land f^{\perp \perp})^{\perp}, [f \land (g \land g^{\perp})^{\perp \perp}]^{\perp} \lor [g \land (f \land f^{\perp})^{\perp \perp}]^{\perp}, (f \land g)^{\perp} \} \end{aligned}$$

in the last two cases. Upper bounds for the cardinality of $\mathscr{V}(f, g, \perp)$ in the four cases listed are respectively 169, 117, 174, 122; they are attained in the "free" cases.

Theorem 5. Assume that $f \perp g$ has $f^{\perp \perp} \vee g^{\perp \perp}$ and $f^{\perp} \vee g^{\perp}$ closed. Then $(f^{\perp \perp}, g^{\perp \perp})$ is a modular and dual modular pair in the lattice $\mathscr{L}_{\perp \perp}$ of all closed elements of \mathscr{L} . If in addition (8) and (26) resp. (8) and (27) are assumed, then $\mathscr{V}(f, g, \perp)$ is distributive and has at most 116 resp. 121 elements.

Proof. By Remark 3 $(f^{\perp\perp}, g^{\perp\perp})$ is a modular pair in $\mathscr{L}_{\perp\perp}$; in order to show that it is a dual modular pair we have to prove that $((z \wedge f^{\perp\perp}) \vee g^{\perp\perp})^{\perp\perp} = z \wedge (f^{\perp\perp} \vee g^{\perp\perp})^{\perp\perp}$ for all $z \ge g^{\perp\perp}$ in $\mathscr{L}_{\perp\perp}$. Since $f^{\perp\perp} \vee g^{\perp\perp}$ is closed and \mathscr{L} is modular the right hand side is $(z \wedge f^{\perp\perp}) \vee g^{\perp\perp}$. In order to show that this is closed we quote Lemma 5' with $x_2 = g^{\perp\perp}$, $x_1 = z \wedge f^{\perp\perp}$. Cardinalities for $\mathscr{V}(f, g, \perp)$ follow from Theorem 4.

Remark 5. (i) See Theorem (33.4) in [7] for modular and dual modular pairs in hermitean spaces. (ii) We have constructed sesquilinear spaces E with subspaces F, G such that (23) & (26) & (8) resp. (23) & (27) & (8) is satisfied and such that all 117 resp. 122 elements of $\mathscr{V}(F, G, \bot)$ are different. (iii) Let E be a vector space equipped with a non degenerate alternate form, dim $E=\aleph_0$ and F, G subspaces with $F \cap G = (0), F^{\perp \perp} + G^{\perp \perp}$ closed and $F^{\perp} + G^{\perp} = E$. Brand [2] gave a recursive construction for an orthogonal decomposition of $E, E = E_1 \oplus E_2$, such that $F \subset E_1$, $G \subset E_2$. From this geometric result it follows readily that the lattice $\mathscr{V}(F, G, \bot)$ is given by $\mathscr{I}(F) \cup \mathscr{I}(G) \cup (\mathscr{I}(F) \vee \mathscr{I}(G)) \cup \mathscr{F}(F) \cup \mathscr{F}(G) \cup (\mathscr{F}(F) \wedge \mathscr{F}(G))$, in particular $\mathscr{V}(F, G, \bot)$ is distributive and has 98 elements. The fruitfulness of the method hinted at in Introduction is based on a *reversal* of steps: First $\mathscr{V}(F, G, \bot)$ is computed, then the theorems of [3] are applied in order to conclude that E must split in the manner indicated.

References

- [1] BIRKHOFF, G.: Lattice theory. American Mathematical Society Colloquium Publications, XXV, Providence, R. I., 1973.
- [2] BRAND, L.: Erweiterung von algebraischen Isometrien in sesquilinearen Räumen. Universität Zürich, Dissertation, 1974.
- [3] GRoss, H.: Isomorphisms between lattices of linear subspaces which are induced by isometries. -J. Algebra 49, 1977, 537-546.
- [4] GROSS, H.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. -J. Reine Angew. Math. 297, 1978, 80-91.
- [5] GRoss, H., and H. A. KELLER: On the non trace-valued forms. To appear in Advances in Math.
- [6] Jońsson, B.: Distributive sublattices of a modular lattice. Proc. Amer. Math. Soc. 6, 1955,
 - **6**82—688.
- [7] MAEDA, E., and S. MAEDA: Theory of symmetric lattices. Die Grundlehren der mathematischen Wissenschaften 173. Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Universität Zürich Mathematisches Institut CH-8032 Zürich Switzerland University of Auckland Department of Mathematics Auckland New Zealand

Received 22 December 1977