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ON OPTIMIZED INEQUALITIES IN CONNECTION
WITH COEFFICIENT BODIES

OF BOUNDED UNIVALENT FUNCTIONS

OLLI TAMMI

f. The first coefficient body

1. Introrluction. We shall consider the class ,S(å) of functions / which are

bounded and univalent in the unit disc U and satisfy the normalization conditions

lfQ)l=l, /(0):0, /'(0)>0. Then

(1) f(r): bz*bzzzl...,

where 0<b=1. We set bnfb:an, n:2,..., and at:|.

The first coefficient body (ar, ar) for S(å)-functions is characterized with the
aid of the variational method in [1]. In [3] the resulting differential equation is used

in showing that the question of finding boundary functions / leads to the problem:

(2) max Re (ä *2xoaz), ö - as- a?,,

where xo is a complex parameter.

In [2] this question is studied in that subclass of ,S(å) which consists of Löwner-
functions. Thus, the inequalities obtained are directly applicable to the entire class

S(å), but the uniqueness of extremum functions is left open by this method. If the
resulting inequalities are optimized with respect to the free parameters they char-
acterize the coefficient body (az, az) completely.

In the present paper we shall continue operating with Löwner-functions. We
want to compare the optimized inequality mentioned above with an inequality
obtained in an entirely different manner, namely by maximizing a proper functional
under the side condition ar:ssr§1ant. It appears that both methods lead to the
same result. This remains to hold also for the next coefficient body (ar, ar, an). Thus,
the parallelism found seems to be independent of the index. Checking this by aid
of direct calculations would be laborious.
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2. The sharp inequality for Re (ö + 2xoa).

Let
u * x(u) : sie(u), u(lb,lf,

be the generating function of Löwner-functions; z is supposed to be piecewise con-
tinuous. For the first coefficients we have

We consider the combination

(3) ö+2xoar:-, j (uxz+2xox)du
b

and vary this by replacing ,9 by § so that

§1a; : s(u)-tea@)'

Here q is of the same type as S and e is a small real number. Because

(4) ic: %+ie%q*O(ez)

we have for (3)

6 a2xod, - ö a2xoar-+er j @x' + xox)4 du * o (e2).
b

The freedom of 4 allows to extract from this the following necessary condition for
x to be extremal with respect to the problem (2):

(5) lm(ux2*xox):0.
Let us write this in two equivalent forms:

(6) u(x2-x-z)*xsN-is%-t :0,
O usin'29-C1sin,9-Crcos,9:0, C:-xo:Cr*iCz.
Observe that integration of (5) over [å, 1] shows that in the extremum case

(8) Im(äf xoa):O.
From this onwards we shall keep a, constant in the inequality found:

(9) Reä < 2CrRe ar-2C2rma2*4 i t-+cos29o*c1cos9o-C2sinso)azt\: M(Cr, C) : M.

Here .90 is the extremum function determined by (7):

'96 
: 

'90(a' C" C)'

az:-2rf ,du, ä- as-a,r:-2f uxzdu.
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3. optimization with respect to xo. we now optimize the inequality (9) with
respect to xo or with respect to the two parameters c, and c, by requiring that

H : 2 Re a2* 4 j 
{-sin 

2eo - c, sin .90 - c, co, sol ff +"o, s,} du : o,
b

H: -2rm tr+4 I [rsin2,9o-C,sin.9o- 
Crcos go] 

#-sin So] du : 0.

Hence, according to fZl åe optimizing conditions for the extremal go assume the form

The inequality (9), under th;. conditions, assumes the;r*

(1 1)

showing that equality is reached for the extremal go.

We may express the result in closed integrated form by aid of the parameters

(12) ar:-90(b), a:-.90(1).

Condition (7) determines the inverse connection in explicit form (,90:g);

u: u(e): **U-*#t,
which allows the following integrations

1 -d, -q.

- Cr(cotd,-cot @+a-ar)+C, log#,
(1 3)

: C2log# * Cr(tan a-tan @--a*a).
sln (I)

condition (7) implies two more connections

(14) b sin 2a- Cr sin @+C, cos o) : 0, sin 2a -Crsin a *Cncos o( : 0.
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These conditions determine C, and C, in a and a; which further are determined

by ar. The inequality (11) assumes in these quantities the form

(ls) Reä = t-bz+Clloglgla -6rz"r#å-#(sin-24-sin-2ar)

- CrCr(cot a - cot a) -2CrCr(a - u).

Clearly, all the results can still be genetalized by the rotation tfk-tz),lrl:1,
i.e. instead of arand ä we may p:ut r-rarand12ö in the above conditions. The

parameter r has a geometrical meaning in connection with the extremum domain [3].

4.Maximizing Reä with the siile condition az:c' In Löwner's class we may

specialize % as a step-function

x:%":ei$u, x€(xr-1,xr] ; y:1,...,N; xo:b, xrv:1.

This gives us

s- N n,

o : - Z @?,-xl)x\, az: -2 Z (xu- x,-1)x".

N
c:-2)(xn-x"-)x,.

Thus the necessary extremum conditions for x are

# : - 2i f(xr, - xr, - ) (xr, - %i z) + 2 (x t - x, - r) (lx 
u - X"t< ; t)l : g.

oöp

The limit process N* - hence gives to the necessary conditions the form

u(x,-%-')+ 7x-Xx-1 - 0, -2 j * au : c,

i.e. we are led to the previous conditions (6) and (10).

As was seen, the problem

max Re ä, c2 : constant,

is solved by the surme necessary conditions which were met with in connection with

the sharp estimate Re(ä*2x6a2) having an optimized parameter xs. We want

to show that a similar situation remains to hold for the next coefficient body, too.

Consider the problem of maximizing Re ä with the side conditiofr. a2:g:ssnstant.
This implies introducing the functional ,Fwith aLagtatge multiplier,l:

(16)

.F : Re {ö + 2i (a 2 -c)} : Re {- å O, -. 1 -,) xl + il" (-, ä{,, - r, - J,, - r)},

where

(t7)



On optimized inequalities in connection with coefficient bodies of bounded univalent functions 49

II. The seconil coefficient body

1. The sharp optimizerl inequality. The Löwner-coefficients satisfy the following
identity 

1

(1S) öz+216r+pdz:-2 [ Il'+tu-12)xldu.
b

Here

In the special case p:72 this identity was introduced by 0. Jokinen who pointed
out that the second Power inequality is a direct consequence of it.

Let us keep ,t and pr free complex parameters and consider the problem

(19) max Re (ö,+Da,+pa,): maxl-, i Re {,4'z*(p- t"')x}duJ.
b

Again, we derive the necessary extremum condition for x by using step functions.
Thus, we consider the functional

G : I' lAz + (p- tz)xl du : § w,* <r- ),2) xJ Å",
;r

where
/n: x"-xn-1, A": k!"12q".

Because

fr*"c: neff, *: r*o*,
we have

a§ ( k l
0go ? A1Å": ilolzxo ) uuxulu+aftr"1,-2xoaoxf)'

Hence, the following necessary extremum conditions hold:

(20) *""&§w*a-ff)xnf/n
: - t^ 

{z* o §. u u x u / u + af; x o - 2x o a o xft + (p - i'z) x r} -- g.

öz: a4-2araa* # rZ,

är : os-],A - z i ,{i t< du-,r) du,

1

A - %Ltzo,, a - { " 
du-Lt%-Ä.
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The limit process gives the integral form for the necess ary condition :

(21)

where

m{zn 
{ 

." du * d3 % -2uax, * (tt- 12)r} : O,

1

d,: 
! 

xdu-u%- 1.

Inserting the expression of a, the result assumes the form

e2) ,^{-(i ,au)'-+u,, ! -0"-r. i uxzdu

*3uxs -21x j * r, + $.ux'+ pxl : O.

b

Integration of this over [å, 1] yields in the extremum case

(23) lm(3öz-t4.ör*pa) : g.

We may, of course, use also the variation (4) of z<, which gives us a variational
formula (fr: {:xq du-ux4):

I f* +Qt- 
^')fi] 

du - I lA' + (tt- 72)xl du

: iu f l2aBx*a2%ry+@-7')xry1 du*o(e')

:,, 
i l* i ax du + 2x i ax du - 2auxz + az % + Qt - ),\ nJ n du + o (e,).

Hence, the factor of 4 gives again the necessary condition (21) for that x which is
an extremal for the problem (19).

Observe that in the conditions (18) we differentiate with respect to ,90 in the sum.
In the integral form this means differentiation with respect to S for a fixed z. Thus,
we may write the necessary condition (21) in the equivalent form

e4) * iRe 
{,4,*(p- tz)x}dtt : o.

The problem (19) introduces the following sharp inequality:

- M(1t, 12, ltt, p) - M;
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where
1 : )"r+il.r, lt : lttliilz.

Here { }s is determined by %:?ro obtained as solution of (19) or of the equivalent
form (24). ln M we consider ä1 and a, to be given fixed numbers and .90, determined
by Q4)' to be a function 

,9s : ,gs(a, )"r, rr, pt, rtz).

The inequality Q5) is now optimized with respect to the parameters. First we

determine by using (24)

0M0h1
fr : # : - ö'-6'-2 *;[ n' {Az +(rt- 

^z)'l'au ff

! t* --'**ffo*'*110'
: -ä,-ä,- it#--r**(T o,-rÅln .

Here 
b

! nr-y* : 2A(-xlt2)-21x : -r.( i *au-u*lil." ^) *\!^-""^)
and thus, according to (18),

y :-2 Re ä1+2 Re ä1,
dt,

where äf is determined by zo. Hence, the optimizing condition |Mlil"r:Q
implies that
(26) Reär: P951.

Similarly

H : # : -| {,,-a) -,*./ n" {A' + (p- )"')fi, au ff

i.e. the condition \Ml|pr:g implies that

Q7) Re a, : Re a!.

Corresponding calculations show that the conditions |Mlil.r:g and 0Ml0pr:0
yield

(28) Imä, :1651
and
(29) Im ar:Im al.
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Altogether, we are led to the optimizing conditions Q6)-(29) which are similar to
those in (10).

2. Maximizing Re ä, with the side conditions ör: cr, az: cz, The above results
clearly suggest repeating the procedure of Section I.4. We have to find a necessary

condition for z maximizing Reä, with the side conditions är:cr-coflstant and
a2:sr:ssvlstant. Again, let us introduce the functional

(30) H - Re {ä, +2^(är-cJ* F(ar-cr)}
_ Re {ä, +21öL+ pa}- Re (27c1* pcr).

Because the second part of this expression is a constant, we obtain the same neces-

sary extremum condition (21) as in the previous problem of Section I.4. The side

conditions are actually those of Q6)-Q9).
Hence we have checked that also in the present case the proper optimized

inequality and the corresponding extremum problem with side conditions do agree.

In Section I.3 the equality case, corresponding to the boundary function of
the coefficient body, was parametrized by using integrated equations and two para-

meters a and o. In the present case integration in closed form is no more possible.

However, also here the problem can be considered to be parametrized in a and p.

The generating function z belonging to these parameters is determined by (22)

and the side conditions (26)-(29). The corresponding optimized inequality

Reä, = Reä!

gives the range of ä,. Observe finally that as before, we can add a normalizing para-
meter ? by aid of the rotation rf('r-rz).
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