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DISTORTION THEOREMS
FOR QUASIREGULAR MAPPINGS

RUTH MIMOWITZ

1. Introduction

In this paper we formulate distortion theorems for quasiregular mappings
(qr) in 8", n42. These theorems hold for every point x(.8' and are of particular
interest for points x near the boundary 08", unlike distortion theorems of local
character; cf. [11].

We first consider non-vanishing qr mappings of bounded degree in Theorem l,
and prove as a consequence a theorem for non-vanishing and locally quasiconformal
mappings in,B'. This theorem is valid for n>-3, but not for n:2. Afterwards we
present a theorem for qr mappings in ,B' which omit certain sets, with applications
to quasiconformal and qr maps of spherically mean l-valent.

2. Notation and terminology

Notation and terminology are in general as in [5]; in particular, for x€R'
we write x: Zi=txrer, where €1,...,en are the coordinate unit vectors in .R'.

For a€R' and r>0 we denote B"(a,r):{r€A': lx-al-r\, B"(r):B'19,11,
B":E(l), So-'(o, R):08"(a,r), §'-1(r):å,P(r) and ,S'-r:å,P. The closure
cl A, the boundary 0A and the complement lA of a set A in P are taken through-
out with respect to R'. When writing f: D*R", we assume throughout that D is a
domain in N,f is continuous and n>2. If AcD, /€R' and Bc.R", we define
the following multiplicity (possibly infinite) functions:

N(Y,1, A) : card{f-'(Y) n A)

N(8, f,l) : suP N(Y, f, A)
v€B

NU, A): N(R",f, A)

N(f) : N(N, f, D).

The Lebesgue measure of a set AcN will be written as m,(A).

koskenoj
Typewritten text
doi:10.5186/aasfm.1978-79.0415



64 Rurn Mrmowrrz

Letfbea

where the inf is
Borel functions

(2.1) modA: I M(r (Dr, Dr, J?))

family of non-constant paths in R'. The modulus of l- is defined as

MV) - inf f e" d*n,

taken over all admissible functions Q, i.e. non-negative real-valued
g in Å' with

for all rectifiable 7€i-.
For a family of paths lying in a sphere S:,S'-r(x, r), the n-modulus with

respect to ,S is defined as

Mi(t-) :

where I/'-1 is the normalized (n- l)-dimensional Hausdorff measure, and the inf
is taken over all admissible functions q.

f (A,B,D) denotes the family of all paths which connect A and.B in D. The
modulus of a ring domain, i.e. a domain RcR' such that [R has exactly two con-

nected components Drand D2, is defined as

!rds> 
I

int I Q" dH'-',
s

@n-t

)"* 
-']

where Q) n - 1: 77ln- , ( S' - ') .

3. Quasiregular mappings

A mapping f: D * Rn is said to be quasiregular (qr) if either / is a
or else has the following properties:
(i) / is ACL' (i..., it is locally absolutely continuous on almost all line

parallel to the coordinate axes, and its partial derivatives belong to
(ii) There exists a constant K> I such that

constant,

segments

Llo"(D)).

lI'@)Y = KJ(x, t) a.e. in D.

Here f':(0f,l0x)'i,i:t is the formal derivative ofl and lf'@)l denotes the
supremum norm of the linear operator f'(x) and J(x,f):fls1f'(x). A mapping

f: DtN is said to be quasiconformal (qc) if/is qr and injective. We denote by
Kr(f), KoU) and K(f), respectively, the inner, outer, and maximal dilatation of /;
see [5].
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4. A lower bounil for the modulus of the Grötzsch ring doneain

Lemma 1. (Anderson, G. D.) Let Ro,,U) denote the Grötzsch ring whose com-

plementary comporxents are l(tr) and the line segment

fr : {xQB" : 0 = x, = r = l, x, : O, | =- i =- n-ll.'
Then

(4.1) D,{og[(1+rY(l-r)]+Slog2]t/(t-rr=modÅc,n(r),
where

o, : (#)"t'-"/',r, n t)e-d t b -r't 6,.

For n:2, the following better estimate holds:

(4.r)' $frot(a0+r)10-r))l-'< modR",,(r).

Proof. From [, Theorem 2] and [, Proof to Corollary 1] one can obtain:

mod .Ro,, (r) =',(+)'' " 
u' 

(Z Lu)'''" "',

where K and K'are the complete elliptic integrals

K - K(k) - [ t(l - t')(l-kzvz)f-rtz fls, K' : K(k'),

k-(W\r/z_ ( r t) and k, : (1 - kz)Ltz.

According to 14, Section 2.11, if we denote

?ry_ ptc),
2 K(k)

then using (2.1) and (2.10) in t4l we obtain:

,(( t' L - * - (t -,))' =) _ 
+. 

rog i# #t' ==r] 
.'(t 

r

It is easy to see that 
1 

=1 

- 

12 -.- = 2
2 (1 +r)(1 -1/G) 

-'

Thus we sett 
*od R6, .?) 1 Dn[log (tr 1 .,l(l - r)) * g log 27','r',-n) .
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For n:2, according to [4, Seotion 2.2] we have:

[mod Äo,,(r)] . 
[*oa ^",,(#)l 

: *,
therefore, using inequality (2.10) in [4, Section2.3) we obtain (4.1),.

The author wishes to thank Prof. G. Anderson for his remarks that yield
the final form of Lemma l.

5. Distortion theorems for quasiregular rnappings of bounded degree

and for locally quasiconformal mappings in Bn, fr>3

In this section we apply Rickman's method [9] for finding a lower bound for
the modulus of a certain family of paths in terms of multiplicity. With that bound
and Lemma l, we shall get a distortion lemma, Lemma 2. An immediate consequence
is a distortion theorem, Theorem l, for qr mappings of bounded degree. Another
consequence valid for n>3 but not for n:2, is a distortion theorem for locally qc
mappings, Theorem 2.

Lemma 2. Let I B'*A'\{0} be a K-quasiregular mapping. For x(8, Iet

and

Also, let l/x - supy 
€ A* Irt (y, f, B'). Then

(5.1)

where

and
A:28f

§ - 23n-L KrU)rrI*'
For n:2, the following better estimate holds:

(s.l)' l/(0)I. r-rcr,171u8*(++)"*"''i= l,f(r)I= l/(0)I .rrar<,171n!(8,J""u""*.

Proof. Let x be a point in,R and Iet Å, : l/(0) l, A, : l/(x) | and g : {tx : 0 
= 

r= I }.
Suppose Äz=Rrl if .R1>R2, the argument is similar. For ,R€[Rr, Rr] choose a
point y(fE n,S'-r(R). If Rickman's path construction [9, Theorem3.l] is used,
thereexistsafamily,l-*ofpaths y: [0,rr]*,S'-r1,R) suchthatforany e((0, l-lxl),

a) r(0) : y if y€r*,
dnb) Mi(/-") =

^r(r, 
f,Bn(t-u))

n+1,
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f - utf^: Ar < R = Ar), f*: u{/-är l?r 
=.^R = Är}.

Integration with respect to R yields:

67

where 
a,: ffi(i'n* t)-,--.z)t.*-r) o')'-''

c) Every y€i-" has a lift yx which starts atf-'(y) nE and meets §'-1(1-e).
Denote ,l-[ : {y*: 7: f (y*), ? (]-R}, and define

Ms)= i'##:#ros*
R1

f - f (f\ and l-*c f -f (8, S"-'(tr - t), B" (1 -s)); hence, see [8],

(5.2) M(D € Kr(fi M(r*) € Kr(fl M(n.

Since x*x/(l -e) maps clB"(l-e) conformally onto cl -B', we have in view of
Lemma 1

(s.3) M(n =- (Di-'la,-)-1[og{28(1 -e+r)l(-e -r)}], " 
: Ixl.

If one lets e *0, (5.2) and (5.3) yield:

[d^lN!*'l log (RrlR) = &Ui)(Dl-'lan-r)-' [og {28(1 + r)/(1-r)}],

and therefore

l/(x)l = tfe)tA(+*)1

To find the lower bound, we take hof, where å is a composition of two inversions,

the first in the sphere ,S'-1 and the second in the plane x,:0. The mapping hof
is qr with Kr(hof)=Kr(f), as å is conformal, and hof: B"*R'\{0} satisfies

the conditions of the theorem. Thus

M(r, hof): illS lhof (z)l = Alhof (o)l (j+)1

Since /+0, M(r,hof):llm(r,f), where m(r,f):mint,t:,lf(z)1, and we have

the lower bound. For n:2 we use the estimate for n:2 in Lemma I and ob-
tain (5.1)'.
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Remarks.

(i) Note that Ä( may be finite for some x's and infinite for others. The lemma is
meaningful for x's with N,<-.

(ii) The constants A ar,.d B in Lemma 2 are probably not the best possible.
An immediate consequence of Lemma 2 is

Th e o rem l. Let f: B' * rR'\{0} b e a K-quasiregular mapping with N : N (f) < -.
Tlten

ry(++)'=r(x)l = tro)tAti{)i r:txt,
where

A :28§
and

B - 2sn-tyr(,f)N,*r.

For n:2 we can get the estimate (5.1)' with N*:N.
Remark. For n:2 and K:1, the theorem reduces to a result on analytic

functions which is weaker than the classical result; cf. [3, Theorem 5.1].

Lemma 3. Suppose n>3. Let f: Bn*N be a local homeomorphism and
K-quasiregular andfor r€(0, 1) let N(r):1{(7f,,111). fnen

rfr,)"
N(r) : c(r, n, *) = [',/(r, K)(r_r) ),

where ttt:*(n,K) rs the uniuersal radius of injectiuity for locatly K-qc mappings
in 8", and C(r,n, K) is a constant which depends only on r, n, and K.

Proof. lf n>3 and f: Bn*R" is a K-quasiregular local homeomorphism, then
/is injective in a ball B'(fu(n,K)), where ,lr:rlr(n,K) is a positive number depend-
ing only on n and K. The existence of r/ is asserted in l7 , 2.31and an estimate is found
in [10]. It then follows that for every x€.8, the mapping flB"(*,,tr.!-lxl)) is
injective. Hence r/(r) is less than the number of cubes with main diagonal 2r!t . (l-r),
needed to cover E(r), and is also less than the given upper bound.

Remark. The upper bound for N(r) presented in Lemma 3 is not the best
one. A better estimate, but harder to write out, can be achieved by use'of balls of
constant hyperbolic radius.

Theorem 2. Suppose n>3. Let f:,8'*Å,\{0} be a K-quasiregular local
homeomorphism. Then

(s.2) lf(o)l.z-,,0<r(J{"t')= Lf(r)l = f(o)l .2-8tso) ['r:'i)'"', l*l:r,
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where

2sn-, ({i)"(r *1)

{/n(n 
+ L)

and r!:rlt (n, K) is the uniuersal radius of injectiuity for locally K-qc mappings in N"

Proof. From Lemmz3, it follows that for 0<r<l

,(+) =(ffi,;:
Fix x€.Bo with lxl:r<.1and let r': .Bp*rR'\{0} be defined as F(z):f(((l+r)lZ)z)
for z€8". Then /(x): f(p11t+r))x) for lxl<(l +r)12. Fsatisfies the conditions
of Lemma 2 with ,af-=C(t *r)l2,n,K). Hence, for lxl:r we have the sought
estimate.

Remarks.

(i) Lemma 3 is false for n:2, as can be seen from the sequence d,, k:1,2, ... .

(ii) Since any function of the form f (27:rn<">, where g(z) is analytic and g'(z)lo
for lzl=1, satisfies the conditions of rheorem2, and since any such function
may have an arbitrary growth it follows that Theorem2 is false for n:2.

(iii) when this paper was completed S. Rickman pointed out that the following
theorem can be proved.

Theorem. Let f: B'*Å'\{0} be K-quasiregular and a local homeomorphism.
Let x(B',lxl:r and suppose that lf (x)l>lf (0)1. Then

)(1 - r)@+1)/(n-1)

where E(n, K) is a positiue constant which depends only on n and K.

Proof. We let a, and a, be paths as in [9, Remark 4.lll, ar: [0, l]*p, sr"1,
that ar(0){(0), ar(l):g and ar[0, l]ccl B'(l"f(O)l), ar: [0, 1)*R, such that
a2(0):/(x), az(t)**, t*1, and ar[O, 1)c[8,(l,f(x)l). Let af and uf, be maximal
liftings of a, and a, starting at 0 and x, respectively. Let f :f (al, aj, ,B(s)\cl .B(r)),
s:(1ar)/2. Then

M (r) = c,log (sf r), see [l l, l0.l2], M UD s a,_rl {togtLf(x)l/l,f(O)ll},-r;
see [11,7.5].



70 Rurn Mrmowrrz

Using [5, 3.2lwe obtain:

and therefor " 'g) = Koui)N(s)M(fD'

{loe Il/(x)I/l/(0)ll}'-' = lA(n, ON(s)l/log ft/r).

Since log(slr)=(l-r)14 when r is near l, we obtain by Lemma3 1/(s)=
B(n, K)lQ-s)-'; hence

{toetlf @)ll lf(O)ll}'-' = D (n, K)I (t - r) +1,

and therefore

lffii = E (n,K) exp {1-, - a,lr.="}
It is also clear that there are in Lemma 2 ÅI, for which a better estimate than

(5.1) can be obtained by this direct method.

The author wishes to thank Prof. S. Rickman for his remarks.

6. A distortion theorem for quasiregular mappings which omit certain sets

Theorem 3. Let /: B'*Å'\E be a K-quasiregularmapping, EcR' satisfying

,E'n S'-l(R) *0 for euery R>0. Then

(6.1) ry(f,J"= r(x)t= t/(o)tc(++)1 r:txt,
where 

a :2,-r Kr(f) and c : 28,.

For n:2, the following better estimate holds:

(6.2) l/(0)1. 4-zk,(!'t (++)*'t= l,r(x)l - l/(0)1. +,.,«n{fr)'*ut' , , : l,l.

Proof. Sappose first that n>3. Fix x€,8' with lxl:r=I, and let x*C.Bn

be such that lxl:lx*l and that l/(x*)l:M(r,f):maxt,t=,lf(z)1. Denote the line
segment between the origin and x* by l.Thenf(1) is a curve in clB"(M(r,f)) con-

necting /(x*) and/(0). Let A:aly(M(r,"f»\B'(l/(0)l), r:/(1) o A and t' :
f (E, F,,4). Using U2,l0.l2l we find:

(6.3) C,tos{M(r,/Yll(0)l} = M(r'),
where

C, : @n-z' r'* ( f' {rrn t)-b -2) to -' o4'-'.
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7. A distortion theorem for non-vanishing qc mappings or spherically mean
l-valent qr mappings

Suppose f: GtN is sense-preserving, discrete and open; every x(D has

arbitrarily small normal neighbourhoods U (i.e. domains t/ with clUcG, f 0(I:\f(l
and (Inf-'("(x)):{x}) with connected complement in Å'[5, 2.9].

The local topological index of f at a point x(G, denoted i(x,f), may be
defined as

(7.1) i(x, I) : NU, U),

where [/ is any normal neighbourhood for x [5, Theorem2.l2]. Define

(7.2) n(y, f, O) :*rÄrrri(x, f),

7t

l' majorizes the family f of all paths which connect F and 0f B" in,4 ; hence M (f ' ) =M(F) U2,6.41. Foreach !(f, there existsapath }l: [0, l)*il' such that y(0)€1,
luO)-AY as t*l and /(7)c!; see [7, Theorem 3.121. Let r:{y: Ief}. Then

ff <f , andll2,6.4l we obtain:

M(r) = MG) = M(fD = K{fi Mg).

This, in conjunction with (6.3) and Lemma l, yields:

C,tog{M(r, f)Ilf @l} = &U){Di-'la;,-,}-,[oe{(I +r)/(I -r)}+s log21,

and consequently

M(r, f)= I/(0)l . r' (-l+):
where 

a:2'-rKr(r)'
Hence

(6.4) l/(x)l = l/(o)1.2*t-|+)1

We obtain the lower bound from (6.4) as in Lemma2, by considering hof. For
n:2, we repeat the same construction using (4. 1)' instead of (a.1) to estimate M q).
We find

)t
i.rrt{M(r, f)llf(o)l} = ; .&(f) Iog {a(t +r)/(l -r)}

and conclude in the same way as for n -3, and get (6.2).

Remark. For n:2 and K: 1 a similar result was obtained by other methods;
cf. [3, Theorem 4.17].



72 RurH MrNtowrrz

that is, n(y,f, G) counts the number of roots of the equation f(x):y in G with
their multiplicity.

Definition. Let f: G*P be a sense-preserving, discrete and open mapping;
said to be spherically mean p-valent (p>0) if,f is

(7.3) p(R) p(4, G, f) : t=,- r n(y, f , G)dA(y) = p
Dn-l4" -' fonr/- r1n)

for every O<.rR<-, wherc dl is an element of spherical measure of ^S'-l(,R).
Fot n:2 and analytic functions, this definition coincides with circumferentially

mean p-valent [3, p. 94].

Theorem 4. Let f: B"*Ro be open, discrete and sense-preseruing and spher-
ically mean l-ualent. Then there exists a number /:ä€ [0, -] with the following
properties:
(i) If R<l and y<B"(R), then n(y,f, B"):1.
(ii) If R>1, there exists y*(.5'-1(R) such that n(yn,f,Bn):0. If, in addition,

f is qr, then l<.*.

Proof. Denote n(y):n(y,f, B'). We shall show first that the set {y: n(y)= M}
is open for every finite number M. lf n(y)>-M, there exists a finite number of
points xy...,xq€.B'suchthat f(x):!0, i(x1,f):ni,.i:1,2,...,q and Z3=rni=-U.
Ixt U1Q) denote the xr-component of f-'(B"(yo,i), i:1,2,...,Q. Then there
exists 6>0 such that Ui:Ui(ö), j:1,2, ...t Q zta normal neighbourhoods of
xL,..,,x0, respectively. Now for y€B"(!o,ö),

2 i(x,f): n, and Z i(x,f) : f n, = A.
rQf-l$)nU, - x€f-L(y) j:r -

Therefore the set {y: n(y)>M} is open.
Suppose n(a)>\, a€,S'-I(it). Then n (y)>2 in some neighbourhood of a

relative to S'-r(,R). Since/is spherically mean l-valent, it follows that n(y)<l for
some points /€,S'-l(R). Therefore, if n(y)>l for all lr€^S'-l(R), then n(y):l
for all y€S"-l(R).

Suppose n(y)=l forall y€,S'-1(A). Then/maps E:f-t(Sn-1(R)) homeo-
morphically onto S'-1(Å). Let D denote the bounded component of -R'\,E. Then

tD:B"(R), since /B'c,P, and f|D:fE:S'-1(R):\fD. Hence D is a normal
domain; so N(y,f, D):const for y€cl Bn{R), whereby n(y):l for every
y(cl -B'(l?). Let I: {R>0: n(y): t for all lr€,S'-r(R)}; then, in view of the open-
ness of {yz n(y)>l) and the last argument,lis either void or else an open interval.
Thus (i) and (ii) hold for /:sup 1 when I+0, and /:0 otherwise.

If/is qr, then n(y):l for every ycB'(l), and thus/is qc. It follows that
I< * -, because otherwise the inverse function f -1, that is qc, should map -R' on Bn,

contradicting Liouville's theorem for qc mappings [6].
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Remark. If /is analytic and circumferentially mean l-valent, the theorem re-

duces to a known result; see [3, Lemma5.2].

Corollary l. Let /: B'*R\O| be K-quasiconformal or K-quasiregular and

spherically mean l-ualent. Then

(7.s) ry(#)'= Lr(x)l = r/(o)tc(-i+)",,:txt,

where a and C are the same os in Theorem3.

For n:2, we can get:

r(0) I 
. 4-2K,(!'t (-l#)'"u"= l.f (x) I = lf (o)1. 4zK,r, (1+)'*"'.

Proof. The property f+0 implies /r:g by Theorem 4; hence all conditions
of Theorem 3 are satisfied, and the assertion follows from the latter.

Remarks.

(i) For qc mappings Corollary I is better than Theorem 1 with i/:1.
(ii) Gehring proved (see [12, 18.1]) distortion theorems for qc mappings in general

domains in terms of the distortion function .9? (r). Corollary I yields an explicit
form of .9p (r) in certain cases.

(iii) The constants C and a in Corollary I are probably not the best possible.
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