CAPACITY AND MEASURE DENSITIES

O. MARTIO

1. Introduction

Let $h: [0, \infty) \rightarrow [0, \infty)$ be a measure function, i.e. h is continuous, strictly increasing, h(0)=0, and $\lim_{t\to\infty} h(t)=\infty$, and let

$$H_h(A) = \inf\left\{\sum_i h(r_i): \bigcup_i \overline{B}^n(x_i, r_i) \supset A\right\}$$

be the h-(outer)measure of $A \subset \mathbb{R}^n$. The upper h-measure density of A at $x \in \mathbb{R}^n$ is

$$\Theta_h(x, A) = \lim_{r \to 0} H_h(A \cap \overline{B}^n(x, r)) / h(r).$$

Assume that $1 and that C is a closed set in <math>\mathbb{R}^n$. For $x \in \mathbb{R}^n$

$$\operatorname{cap}_p(x, C) = \overline{\lim_{r \to 0}} r^{p-n} \operatorname{cap}_p(B^n(x, 2r), \overline{B}^n(x, r) \cap C)$$

defines the upper *p*-capacity density of C at x. Here cap_p on the right hand side is the ordinary variational *p*-capacity of a condenser.

The purpose of this note is to compare $\Theta_h(x, C)$ and $\operatorname{cap}_p(x, C)$ for various h and p. Among other things we show that $\operatorname{cap}_p(x, C)=0$ implies $\Theta_h(x, C)=0$ for $h(r)=r^{\alpha}$, where $\alpha > n-p$. As a byproduct some measure theoretic properties of sets C which satisfy $\operatorname{cap}_p(x, C)=0$ for all $x \in C$ are given. Observe that such a set C need not be of zero p-capacity.

We shall mainly employ the method due to Ju. G. Rešetnjak, cf. [7, 8]. There is an extensive literature on measure theoretic properties of sets of zero *p*-capacity, see e.g. [1], [6], [7, 8], and [10].

2. Preliminary results

2.1. Notation. The open ball centered at $x \in \mathbb{R}^n$ with radius r > 0 is denoted by $B^n(x, r)$. We abbreviate $B^n(r) = B^n(0, r)$ and $S^{n-1}(r) = \partial B^n(r)$. The Lebesgue measure in \mathbb{R}^n is denoted by m and $\Omega_n = m(B^n(1))$. We let ω_{n-1} denote the (n-1)measure of $S^{n-1}(1)$. For $p \ge 1$, L^p is the class of all p-integrable functions in \mathbb{R}^n with the norm $\| \|_p$. If $A \subset \mathbb{R}^n$ is open, then $C_0^1(A)$ means the set of continuously differentiable real valued functions with compact support in A. For $u \in C_0^1(A)$, $\nabla u = (\partial_1 u, \dots, \partial_n u)$ is the gradient of u. Each u has the representation, cf. [7, Lemma 3],

(2.2)
$$u(x) = \frac{1}{\omega_{n-1}} \int_{\mathbb{R}^n} \frac{\nabla u(y) \cdot (x-y)}{|x-y|^n} dm(y).$$

If A is open in \mathbb{R}^n and $C \subset A$ is compact, then the pair (A, C) is called a condenser and its p-capacity, 1 , is defined by

$$\operatorname{cap}_p(A, C) = \inf_{u \in W(A, C)} \int_A |\nabla u|^p \, dm$$

where W(A, C) is the set of all non-negative functions $u \in C_0^1(A)$ with u(x) > 1for all $x \in C$. Note that for $x \in \mathbb{R}^n$ and $0 < r_1 < r_2$

(2.3)
$$\operatorname{cap}_p(B^n(x, r_2), \overline{B}^n(x, r_1)) = \begin{cases} \omega_{n-1}((r_2^q - r_1^q)/q)^{1-p}, & p \in (1, n) \\ \omega_{n-1}(\ln(r_2/r_1))^{1-n}, & p = n, \end{cases}$$

where q=(p-n)/(p-1). The following subadditivity result for capacities is well-known:

2.4. Lemma. Suppose that (A, C) is a condenser. If (A_i, C_i) , i=1, 2, ..., is a sequence of condensers such that $A \supset A_i$ and $\cup C_i \supset C$, then

$$\operatorname{cap}_p(A, C) \leq \sum \operatorname{cap}_p(A_i, C_i).$$

If C is closed in \mathbb{R}^n , $x \in \mathbb{R}^n$, and r > 0 we let

$$\operatorname{cap}_p(x, C, r) = r^{p-n} \operatorname{cap}_p(B^n(x, 2r), \overline{B}^n(x, r) \cap C).$$

The set C is of zero p-capacity, abbreviated $\operatorname{cap}_p C=0$, if for all compact sets $C' \subset C$, $\operatorname{cap}_p (A, C')=0$ for all open $A \supset C'$.

If h is a measure function, then in addition to the measure H_h defined in the introduction we use the h-Hausdorff measure

$$H_h^*(A) = \liminf_{i \to 0} \left\{ \sum h(r_i) : \bigcup \overline{B}^n(x_i, r_i) \supset A, r_i \leq t \right\}$$

for $A \subset \mathbb{R}^n$. For $h(r) = r^{\alpha}$, $\alpha > 0$, this defines the usual α -dimensional Hausdorff measure on all Borel sets in \mathbb{R}^n and

$$\dim_{H} A = \inf \{ \alpha > 0 \colon H_{h}^{*}(A) = 0, \ h(r) = r^{\alpha} \}$$

denotes the Hausdorff dimension of A.

2.5. Preliminary lemmas. The first two lemmas are well-known.

Suppose that h is a measure function and that σ is a finite measure in \mathbb{R}^n defined on all Borel sets. For $x \in \mathbb{R}^n$ and r > 0 write $\sigma(x, r) = \sigma(B^n(x, r))$.

2.6. Lemma. (Cf. [3, pp. 196–204].) If $\lambda > 0$ and

$$A_{\lambda} = \{ x \in \mathbb{R}^n : \sigma(x, r) \leq h(r) / \lambda \text{ for all } r > 0 \},\$$

then $H_h(\mathbb{R}^n \setminus A_{\lambda}) \leq c_n \lambda \sigma(\mathbb{R}^n)$, where $c_n > 0$ depends only on n.

2.7. Lemma. [7, Lemma 4] If $F: (0, \infty) \rightarrow R$ is decreasing, absolutely continuous on compact subintervals, and $\lim_{r\to\infty} F(r)=0$, $\lim_{r\to0} F(r)=\infty$, then

$$\int_{\mathbb{R}^n} F(|x-y|) \, d\sigma(y) = -\int_0^\infty F'(r) \sigma(x, r) \, dr.$$

In order to estimate the upper h-measure density an interpolation lemma of type [7, Lemma 6] is needed:

2.8. Lemma. Suppose that $u \in L^p$, p > 1, is non-negative and that $u | \mathcal{C}B^n(r_0) = 0$. Then for all $\alpha > 0$

$$H_h\left(\left\{x \in \mathbb{R}^n \colon v(x) > \Omega_n^{1-1/p}\left(\frac{n-1}{\alpha} \int_0^{r_0} h(t)^{1/p} t^{-n/p} dt + r_0^{1-n/p} \|u\|_p\right)\right\}\right) \leq c_n(\alpha \|u\|_p)^p,$$

where

$$v(x) = \int_{R^n} u(y) |x - y|^{1 - n} dm(y)$$

and c_n is the constant of Lemma 2.6.

Proof. For $x \in \mathbb{R}^n$, r > 0, and non-negative measurable w we let

$$Q(w, x, r) = \int_{B^n(x, r)} w \, dm.$$

By Hölder's inequality

(2.9) $Q(u, x, r) \leq \Omega_n^{1-1/p} r^{n-n/p} Q(u^p, x, r)^{1/p}.$

On the other hand

(2.10)

$$Q(u, x, r) \leq \Omega_n^{1-1/p} r_0^{n-n/p} \|u\|_p$$

since $u|\mathbf{G}B^n(r_0)=0.$

If $A \subset \mathbb{R}^n$ is measurable we let

$$\sigma(A) = \int\limits_A u \, dm.$$

Now $\sigma(\mathbb{R}^n) < \infty$ since the support of *u* is compact. Setting $F(r) = r^{1-n}$, r > 0, Lemma 2.7 implies

(2.11)
$$v(x) = \int_{R^{n}} u(y) |x-y|^{1-n} dm = \int_{R^{n}} F(|x-y|) d\sigma(y)$$
$$= (n-1) \int_{0}^{\infty} Q(u, x, r) r^{-n} dr$$
$$= (n-1) \int_{0}^{r_{0}} Q(u, x, r) r^{-n} dr + (n-1) \int_{r_{0}}^{\infty} Q(u, x, r) r^{-n} dr.$$

Now by (2.9) (2.12) $\int_{0}^{r_{0}} Q(u, x, r) r^{-n} dr \leq \Omega_{n}^{1-1/p} \int_{0}^{r_{0}} Q(u^{p}, x, r)^{1/p} r^{-n/p} dr$ and by (2.10) (2.13) $\int_{r_{0}}^{\infty} Q(u, x, r) r^{-n} dr \leq \Omega_{n}^{1-1/p} r_{0}^{n-n/p} \int_{r_{0}}^{\infty} \|u\|_{p} r^{-n} dr$ $= \frac{\Omega_{n}^{1-1/p}}{n-1} r_{0}^{1-n/p} \|u\|_{p}.$

Suppose that $\alpha > 0$ and let

$$B_{\alpha} = \{x \in \mathbb{R}^n \colon Q(u^p, x, r) \leq h(r)/\alpha^p\}.$$

Define $\sigma(A) = \int_A u^p dm$ if $A \subset \mathbb{R}^n$ is a Borel set and apply Lemma 2.6:

$$H_h(\mathbb{R}^n \setminus B_{\alpha}) \leq c_n \alpha^p \sigma(\mathbb{R}^n) = c_n \alpha^p ||u||_p^p.$$

If $x \in B_{\alpha}$, then by (2.12)

(2.14)
$$\int_{0}^{r_{0}} Q(u, x, r) r^{-n} dr \leq \Omega_{n}^{1-1/p} \alpha^{-1} \int_{0}^{r_{0}} h(r)^{1/p} r^{-n/p} dr$$

and hence by (2.11), (2.13), and (2.14) for $x \in B_{\alpha}$

$$v(x) \leq K = \Omega_n^{1-1/p} \left[\frac{n-1}{\alpha} \int_0^{r_0} h(r)^{1/p} r^{-n/p} dr + r_0^{1-n/p} \|u\|_p \right].$$

This gives ${x \in \mathbb{R}^n : v(x) > K} \subset \mathbb{R}^n \setminus B_\alpha$ and the result follows.

3. Upper bounds for measure densities

Suppose that C is a closed set in \mathbb{R}^n and $x \in \mathbb{R}^n$. If h is a measure function and r > 0, then we let

$$\Theta_h(x, C, r) = H_h(\overline{B}^n(x, r) \cap C)/h(r).$$

3.1. Theorem. If $p \in (1, n]$ and

(3.2)
$$\int_{0}^{2r} h(t)^{1/p} t^{-n/p} dt \leq A r^{(p-n)/p} h(r)^{1/p}$$

for some A > 0 and all $r \in (0, r_0]$, then

$$\Theta_h(x, C, r) \leq c \operatorname{cap}_p(x, C, r), \quad r \in (0, r_0].$$

Here the constant c depends only on n, p, and A.

Proof. We may assume that x=0, and since $\Theta_h(0, C, r) \leq 1$ for all r>0, we may also assume

 $cap_n(0, C, r) < K = \omega_{n-1}^p \Omega_n^{1-p} 2^{n-2p}$ (3.3)for all $r \in (0, r_0]$. Set <u>و</u>

$$I(r) = \int_{0}^{2r} h(t)^{1/p} t^{-n/p} dt.$$

Let $\varepsilon > 0$ and choose $w \in W(B^n(2r), \overline{B}^n(r) \cap C)$ such that

(3.4)
$$\operatorname{cap}_p(B^n(2r), \overline{B}^n(r) \cap C) \ge \int |\nabla w|^p \, dm - \varepsilon$$

and

$$\operatorname{ap}_p(B^n(2r), B^n(r) \cap C) \ge \int |\nabla w|^p \, dm$$

(3.5)
$$\int |\nabla w|^p \, dm < Kr^{n-p}.$$

By (2.2)

$$w(x) = \omega_{n-1}^{-1} \int |x-y|^{-n} \nabla w(y) \cdot (x-y) \, dm(y)$$

$$\leq \omega_{n-1}^{-1} \int |x-y|^{1-n} |\nabla w(y)| \, dm(y).$$

Now apply Lemma 2.8 with $u = |\nabla w| / \omega_{n-1}$ and $r_0 = 2r$. The inequality (3.5) gives

$$\Omega_n^{1-1/p}(2r)^{1-n/p} \|u\|_p \leq \Omega_n^{1-1/p}(2r)^{1-n/p} (Kr^{n-p})^{1/p} \omega_{n-1}^{-1} = 1/2 < 1,$$

hence we may choose $\alpha > 0$ such that

$$\Omega_n^{1-1/p}\left[\frac{n-1}{\alpha}\,I(r)+(2r)^{1-n/p}\,\|u\|_p\right]=1.$$

Lemma 2.8 yields

$$H_{h}(\overline{B}^{n}(r) \cap C) \leq c_{n} ||u||_{p}^{p} \left[\frac{(n-1)I(r)}{\Omega_{n}^{1/p-1} - (2r)^{1-n/p} ||u||_{p}} \right]^{p}$$

$$\leq c_{n} 2^{p} \Omega_{n}^{p-1} \omega_{n-1}^{-p} (n-1)^{p} I(r)^{p} \left(\operatorname{cap}_{p} (B^{n}(2r), \overline{B}^{n}(r) \cap C) + \varepsilon \right)$$

where the inequality (3.5) has also been used. By the assumption (3.2), $I(r) \leq$ $Ar^{1-n/p}h(r)^{1/p}$ and thus

$$H_h(\overline{B}^n(r) \cap C)/h(r) \leq cr^{p-n} \left(\operatorname{cap}_p(B^n(2r), \overline{B}^n(r) \cap C) + \varepsilon \right)$$

where $c = c_n 2^n \Omega_n^{p-1} \omega_{n-1}^{-p} (n-1)^p A^p$. Letting $\varepsilon \to 0$ gives the required result.

3.6. Corollary. Suppose that h satisfies the condition (3.2). If $cap_n(x, C)=0$, then $\Theta_h(x, C) = 0$.

3.7. Corollary. If $1 and <math>\operatorname{cap}_p(x, C) = 0$, then $\Theta_h(x, C) = 0$ for $h(r) = r^{\alpha}$ and $\alpha > n - p$.

Proof. Let $h(r) = r^{\alpha}$, $\alpha > n-p$. In view of Corollary 3.6 it suffices to show that h satisfies the condition (3.2). An easy calculation shows that this is true for all r > 0 with $A = p(\alpha - n + p)^{-1} 2^{(\alpha - n + p)/p}$.

3.8. Theorem. Suppose that $C \subset \mathbb{R}^n$ is closed and $1 . If <math>\operatorname{cap}_p(x, C) = 0$ for all $x \in C$, then $\dim_H C \leq n-p$.

Proof. If $\alpha > n-p$, then for $h(r) = r^{\alpha}$ Corollary 3.7 gives $\Theta_h(x, C) = 0$ for all $x \in C$. By [2, 2.10.19 (2)], $H_h^*(C) = 0$. This shows $\dim_H C \leq \alpha$ and the result follows.

3.9. Remarks. (a) It is well-known, see e.g. [6, p. 136] and [8, Corollary 2], that $\operatorname{cap}_p C=0$ implies $\dim_H C \leq n-p$.

(b) Especially for p=n it is interesting to know if the condition (3.2) would allow measure functions *h* increasing more sharply at 0 than $h(r)=r^{\alpha}$ for any $\alpha>0$. Unfortunately, for $p \in (1, n]$ the condition (3.2) always implies that $h(r) \leq cr^{\beta}$ for some $\beta>0$ and c>0 for all $r \in (0, r_0]$. To prove this choose an integer $i_0 \geq 2$ such that $2^{-i_0} \in (0, r_0]$. Then for $i \geq i_0$

(3.10)
$$Ah(2^{-i})^{1/p}2^{i(n/p-1)} \ge \int_{0}^{2^{-i+1}} h(t)^{1/p}t^{-n/p}dt$$

$$\geq \sum_{j=i}^{\infty} h(2^{-j})^{1/p} 2^{(j-1)n/p} 2^{-j} = \sum_{j=i}^{\infty} h(2^{-j})^{1/p} 2^{j(n/p-1)-n/p}$$

Assume first that $p \in (1, n)$. Fix $\beta > 0$ and then an integer $k \ge 2$ such that $i_0 k > i_0 + k$ and

(3.11)
$$2^{\beta/p}A < 2^{k(n/p-1)-n/p}.$$

Now for all $i \ge i_0$
(3.12) $h(2^{-i-k}) \le 2^{-\beta}h(2^{-i})$
since otherwise
 $h(2^{-i}) \ge h(2^{-i-1}) \ge ... \ge h(2^{-i-k}) > 2^{-\beta}h(2^{-i})$
and thus

$$\sum_{j=i}^{\infty} h(2^{-j})^{1/p} 2^{j(n/p-1)-n/p} > 2^{-\beta/p} h(2^{-i})^{1/p} \sum_{j=i}^{i+k} 2^{j(n/p-1)-n/p}$$
$$> 2^{-\beta/p} h(2^{-i})^{1/p} 2^{(i+k)(n/p-1)-n/p}.$$

But this combined with (3.10) and (3.11) gives a contradiction.

If p=n, fix $\beta > 0$ and an integer $k \ge 2$ so that $i_0k > i_0+k$ and $A < 2^{-\beta/n-1}k$. Then it can be shown similarly that (3.12) holds.

To finish the proof let $r \in (0, 2^{-i_0 k}]$. Choose *i* such that $r \in (2^{-i-1}, 2^{-i}]$ and then $m \ge i_0$ so that $mk \le i < i+1 \le (m+1)k$. Since $i_0k \ge i_0+k$ it follows from (3.12) by induction that

Hence

$$h(2^{-jk}) \leq 2^{-\beta(j-i_0+1)}h(2^{-i_0}), \quad j = i_0, i_0+1, \dots, j_{j-1}$$

$$h(r)^{k} \leq h(2^{-mk})^{k} \leq 2^{-\beta(m-i_{0}+1)k} h(2^{-i_{0}})^{k}$$
$$= 2^{\beta i_{0}k} h(2^{-i_{0}})^{k} 2^{-\beta(m+1)k} \leq 2^{\beta i_{0}k} h(2^{-i_{0}})^{k} r^{\beta}.$$

This gives the required result.

4. Lower bounds for measure densities

Here we only consider measure functions h of well-known type.

4.1. Theorem. Let

$$\begin{split} h(r) &= r^{n-p} \quad for \quad p \in (1, n), \quad r > 0, \quad and \\ &= (\ln (1/r))^{1-n} \quad for \quad p = n \quad and \quad 0 < r < 1/2. \end{split}$$

If C is a closed set in \mathbb{R}^n , then

$$\operatorname{cap}_{p}(x, C, r) \leq c\Theta_{h}(x, C, r)$$

for all r>0 if $p \in (1, n)$ and for $r \in (0, 1/2)$ if p=n. The constant c depends only on n and p.

Proof. We may assume x=0. Consider first the case 1 . Fix <math>r > 0 and choose a covering $\overline{B}^n(x_i, r_i)$ of the set $\overline{B}^n(r) \cap C$ where $x_i \in \overline{B}^n(r)$. Assume $2r_i < r$ for all *i*. Now by Lemma 2.4 and by (2.3)

(4.2)
$$\operatorname{cap}_{p}(0, C, r) = r^{p-n} \operatorname{cap}_{p} \left(B^{n}(2r), \overline{B}^{n}(r) \cap C \right)$$
$$\leq r^{p-n} \sum_{i=1}^{\infty} \operatorname{cap}_{p} \left(B^{n}(x_{i}, r), \overline{B}^{n}(x_{i}, r_{i}) \cap C \right)$$
$$= c_{1} \sum_{i=1}^{\infty} \left[(r/r_{i})^{q} - 1 \right]^{1-p} \leq c_{1} (1 - 2^{-q})^{1-p} \sum_{i=1}^{\infty} (r_{i}/r)^{n-p}$$

where $c_1 = \omega_{n-1}q^{p-1}$, q = (n-p)/(p-1), and the inequality $2r_i < r$ is used in the last step. Thus

$$\operatorname{cap}_p(0, C, r) \leq c \sum h(r_i)/h(r).$$

If $2r_i \ge r$ for some *i*, then, since $\operatorname{cap}_p(0, C, r) \le \omega_{n-1}((1-2^{-q})/q)^{1-p}$, the result is obvious.

In the case p=n the estimate (4.2) can be written in the form

$$\operatorname{cap}_{n}(0, C, r) \leq c \sum \left[\frac{-\ln r_{i}}{-\ln r} \right]^{1-n}$$

when the conditions r < 1/2 and $2r_i < r$ are used for the inequality $(\ln (r/r_i))^{n-1} \ge c_1(-\ln r_i)^{n-1}(-\ln r)^{1-n}$, $c_1 = (\ln 2)^{n-1}2^{1-n}$ and $c = \omega_{n-1}c_1$. This yields the conclusion as above.

4.3. Corollary. Suppose $1 and let h be as in Theorem 4.1. If <math>C \subset \mathbb{R}^n$ is a closed set, then $\Theta_h(x, C) = 0$ implies $\operatorname{cap}_p(x, C) = 0$.

4.4. Remark. It is well-known, see e.g. [6, Theorem 7.2] or [10], that if h is as in Theorem 4.1, then $H_h^*(C) < \infty$ gives $\operatorname{cap}_p C = 0$.

4.5. Corollary. If C is a closed set in \mathbb{R}^n and $\operatorname{cap}_p(x, C)=0$ for all $x \in C$, then $\operatorname{cap}_a C=0$ for $q \in (1, p)$.

Proof. By Theorem 3.8 dim_H $C \le n-p$. Consequently $H_h^*(C) = 0$ for $h(r) = r^{\alpha}$, $\alpha > n-p$. By Remark 4.4 cap_a C = 0 for $q \in (1, p)$.

4.6. Corollary. Suppose that $1 . If C is a closed set in <math>\mathbb{R}^n$ such that $\operatorname{cap}_p C > 0$ and $\operatorname{cap}_p (x, C) = 0$ for all $x \in C$, then $\dim_H C = n - p$. Moreover, $H_h^*(C) = \infty$, $h(r) = r^{n-p}$.

Proof. The case p=n has been handled by Theorem 3.8. If $\alpha = n-p>0$ and if $H_h^*(C) < \infty$, $h(r) = r^{\alpha}$, then by Remark 4.4 cap_p C = 0. Consequently, dim_H $C \ge n-p$ and the opposite inequality follows from Theorem 3.8.

4.7. Example. Here we construct for p=n a compact set $C \subset \mathbb{R}^n$ such that $\operatorname{cap}_n C > 0$ but $\operatorname{cap}_n (x, C) = 0$ for all $x \in \mathbb{R}^n$. In fact we shall show that even the condition $M(x, C) < \infty$ for all $x \in C$ holds. The condition $M(x, C) < \infty$, cf. [4] and [5], means that there exists a non-degenerate continuum $K \subset \int C \cup \{x\}$ such that $x \in K$ and the *n*-modulus of the curve family joining K and C is finite. By [5, Theorem 3.1] $M(x, C) < \infty$ implies $\operatorname{cap}_n (x, C) = 0$. A set of this type is of function theoretic interest, see [11].

To this end let $k \in (1, 2)$ and define $l'_i = \exp(-k^{ni/(n-1)})$, $i=0, 1, \ldots$. Fix i_0 such that $4\sqrt{n} l'_{i+1} < l'_i$ for $i \ge i_0$ and write $l_i = l'_{i+i_0}$, $i=0, 1, \ldots$. Let Δ_0 be a closed interval of length l_0 and set $E_0 = \Delta_0 \times \ldots \times \Delta_0$ (*n* times). Denote by F_1 the union of two closed intervals Δ_1^1 and Δ_1^2 of length l_1 lying in Δ_0 and containing both ends of Δ_0 . Set $E_1 = F_1 \times \ldots \times F_1$ and carry out the same operations in the intervals Δ_1^1 and Δ_1^2 using l_2 instead of l_1 . Four intervals Δ_2^i , i=1, 2, 3, 4, are obtained. Let their union be F_2 and set $E_2 = F_2 \times \ldots \times F_2$. This process can be continued and define $C = \bigcap_{i=0}^{\infty} E_i$. Each set E_i consists of 2^{in} closed cubes Q_i^j , $j=1, \ldots, 2^{in}$, with sides of length l_i .

The set C is of positive *n*-capacity since

$$\sum_{i=1}^{\infty} 2^{ni/(1-n)} \ln (l_i/l_{i+1}) < \infty,$$

cf. [6, Theorem 7.4 and the following Remark]. For relations between the capacity used in [6] and the variational capacity used in this paper see [8, Theorems 6.1 and 6.2].

Next we consider the condition $M(x_0, C) < \infty$. Fix $x_0 \in C$. For each $i \ge 1$ choose a cube Q_i in the collection $\{Q_i^j\}$ such that $x_0 \in Q_i$. Now it is easy to construct a continuum $K_{i+1} \subset Q_i$ consisting of line segments L_1 , L_2 , L_3 in the plane $T = \{x \in \mathbb{R}^n : x_j = (x_0)_j, j = 3, ..., n\}$ and such that L_1 joins the midpoint of a face of $T \cap Q_i$ to the center of $T \cap Q_i$, L_2 is a part of a similar segment and L_3 is perpendicular to L_2 and joins the midpoint of a face of $T \cap Q_{i+1}$ to the endpoint of L_2 . Now $d(K_{i+1}, Q'_{i+1} \setminus Q_{i+1}) \ge l_i/4$ and $d(K_{i+1}, Q'_{i+2}) \ge l_{i+1}/4$ where $Q'_k = Q_{k-1} \cap \bigcup_j Q'_k$.

Set $K = \bigcup_{i=1}^{\infty} K_{i+1} \cup \{x_0\}$. Then after a suitable selection of the continua K_{i+1} , K is a non-degenerate continuum with $x_0 \in K$.

If E and F are closed sets in \mathbb{R}^n we denote by $\Delta(E, F)$ the family of all paths joining these sets in \mathbb{R}^n . For properties of the *n*-modulus $M(\Delta(E, F))$ of the path family $\Delta(E, F)$ we refer to [9].

It remains to show $M(\Delta(K, C)) < \infty$. By [9, Theorem 6.2] for each $i \ge 1$

$$(4.8) \qquad M(\Delta(K_{i+1}, C)) \leq M(\Delta(K_{i+1}, Q'_{i+2})) + M\left(\Delta\left(K_{i+1}, \bigcup_{j=1}^{i+1} (Q'_j \setminus Q_j)\right)\right)$$
$$\leq M(\Delta(K_{i+1}, Q'_{i+2})) + \sum_{j=1}^{i+1} M(\Delta(K_{i+1}, Q'_j \setminus Q_j))$$

and we estimate each term separately.

Fix $1 \leq j \leq i$. Now $K_{i+1} \subset Q_i$ and $(Q'_j \setminus Q_j) \cap B^n(x_0, l_{j-1}/2) = \emptyset$, thus

(4.9)
$$M(\Delta(K_{i+1}, Q'_{j} \setminus Q_{j})) \leq \omega_{n-1} \left(\ln \left[(l_{j-1}/2) / (l_{i} \sqrt{n}/2) \right] \right)^{1-n}$$
$$= \omega_{n-1} k^{-n(i_{0}+i)} \left[1 - k^{n(i_{0}+i)/(1-n)} \ln \sqrt{n} - k^{n(j-1-i)/(n-1)} \right]^{1-n} \leq c_{1} k^{-ni}$$

where c_1 depends only on n, k, and i_0 .

If j=i+1, then because of the quasi-invariance of the *n*-modulus under bi-Lipschitz mappings, see [9], it is easy to see that there is $c'_2>0$ depending only on *n* such that

(4.10)
$$M(\Delta(K_{i+1}, Q'_{i+1} \setminus Q_{i+1})) \leq c'_2 M(\Delta(\bar{B}^n(l_{i+1}), S^{n-1}(l_i)))$$
$$= c'_2 \omega_{n-1} (\ln(l_i/l_{i+1}))^{1-n} \leq c_2 k^{-ni}$$

and c_2 depends on the same constants as c_1 .

As above the estimate

(4.11)
$$M(\Delta(K_{i+1}, Q'_{i+2})) \leq c'_3 M(\Delta(\overline{B}^n(l_{i+2}), S^{n-1}(l_{i+1}))) \leq c_3 k^{-n(i+1)}$$

is obtained where c_3 depends on the same constants as c_1 .

Finally, the inequalities (4.8)-(4.11) yield

$$\begin{split} M(\Delta(K,C)) &\leq \sum_{i=1}^{\infty} M(\Delta(K_{i+1},C)) \\ &\leq \sum_{i=1}^{\infty} [c_3 k^{-n(i+1)} + c_2 k^{-ni} + (i+1) c_1 k^{-ni}] \\ &\leq (c_1 + c_2 + c_3) \sum_{i=1}^{\infty} (i+1) k^{-ni} < \infty. \end{split}$$

This shows that $M(x_0, C) < \infty$.

References

- CARLESON, L.: Selected problems on exceptional sets. Van Nostrand Mathematical Studies 13, D. Van Nostrand Company, Inc., Princeton, N. J., Toronto-London-Melbourne, 1967.
- [2] FEDERER, H.: Geometric measure theory. Springer-Verlag, Berlin—Heidelberg—New York, 1969.
- [3] LANDKOF, N. S.: Foundations of modern potential theory. Springer-Verlag, Berlin—Heidelberg—New York, 1972.
- [4] MARTIO, O.: Equicontinuity theorem with an application to variational integrals. Duke Math. J. 42, 1975, no. 3, 569–581.
- [5] MARTIO, O., and J. SARVAS: Density conditions in the n-capacity. Indiana Univ. Math. J. 26, 1977, no. 4, 761-776.
- [6] MAZ'JA, V. G., and V. P. HAVIN: A nonlinear potential theory. Uspehi Mat. Nauk 27, 1972, no. 6 (168), 67–138 (Russian).
- [7] REŠETNJAK, JU. G.: Space mappings with bounded distortion. Sibirsk. Mat. Ž. 8, 1962, 629–658 (Russian).
- [8] REŠETNJAK, JU. G.: The concept of capacity in the theory of functions with generalized derivatives. - Ibid. 10, 1969, 1109—1138 (Russian).
- [9] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin—Heidelberg—New York, 1971.
- [10] VÄISÄLÄ, J.: Capacity and measure. Michigan Math. J. 22, 1975, 1-3.
- [11] VUORINEN, M.: Exceptional sets and boundary behavior of quasiregular mappings in *n*-space. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 11, 1976, 1–44.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 13 March 1978