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LIPSCHITZ APPROXIMATION
OF HOMEOMORPHISMS

PEKKA TUKIA

Results

1. The aim of this paper is to prove a modification of Theorem 2.4 of Viisild
[5], and to prove, using this modification, the LIP hauptvermutung for n=3.

This paper is directly based on Viisdld [S]. We assume the knowledge of [5]
(only Sections 1 and 2 are needed) and use freely its definitions and notations.

Let f: X—>Y be a map between metric spaces and let x€X. We say that f
is locally bilipschitz at x if there is a neighbourhood U of x such that f|U is a homeo-
morphism U—f(U) with bilip (f|U)<<. If ACX, we say that f is locally bilip-
schitz in A if f is locally bilipschitz at x for every x€A.

2. We begin by proving (cf. Theorem 2.4 of [5] and Theorem 3 below).

Theorem 1. Let n=3 and ¢>0. Let f: I"-R" be an embedding. Then there
is an embedding f*: I"-R" such that

(1) f*lo1" = floI",
@) f*intI" is PL,
3 If*=fll <e

In addition, assume that f is locally bilipschitz in a closed set CZdI". Then we may
assume that f* is locally bilipschitz in C.

Thus f*, being PL in int /", is locally bilipschitz in C v int I". This observation
is crucial for the following LIP hauptvermutung for n=3:

Theorem 2. Let n=3 and let f: M—~N be a homeomorphism between two
LIP n-manifolds. Let &: M~(0, =) be continuous. Then there is a lipeomorphism
g: M—~N such that d(f(x),g(x))<e(x) for x€M. Here d is the metric of N.

In addition, if f|U is a lipeomorphism for some open set UCM and if CCU is
closed, we may assume f|C=g|C.

doi:10.5186/aasfm.1978-79.0427


koskenoj
Typewritten text
doi:10.5186/aasfm.1978-79.0427


138 PEKKA TUKIA

Since every paracompact n-manifold, n=3, has a PL-structure which induces
on it a LIP-structure, Theorem 2 has the following

Corollary. Every LIP n-manifold, n=3, is lipeomorphic to a PL manifold.

This was proved in [5] for n=2 by a different method (Theorem 3.8) and the
LIP hauptvermutung was obtained as a corollary for n=2.

Finally we show, using Theorem 2, that a slightly more general version of
Theorem 1 is true:

Theorem 3. Let n, &, and f be as in Theorem 1. Then we may assume that f*
of Theorem 1 is locally bilipschitz at all points of dI" where f is locally bilipschitz.

Since Theorem 1 seems quite satisfactory for most purposes, our proof of
Theorem 3 is rather sketchy.

3. The idea underlying Theorem 2 was used in Sorvali [3, Theorem 2.1] to
show that if two compact Riemann surfaces are homeomorphic, then there is a
quasiconformal homeomorphism between them. The proof was based on Riemann’s
mapping theorem and the Beurling—AhIfors extension of a homeomorphism f: R— R
to a homeomorphism F of U={z€C: Im z=0}. If fis quasisymmetric, F is quasi-
conformal, but in any case F is locally quasiconformal. Originally, the idea was due
to O. Lehto.

4. Quasiconformal versions of the above theorems can most probably be proved
by the same method.

5. I wish to thank J. Luukkainen and J. Véiséld for pointing out errors in the
earlier versions of this paper.

6. Sullivan [4] has proved the LIP hauptvermutung for n=4. His methods
are much more advanced than ours, which are quite elementary, although our
proofs are unduly complicated. In addition to the results of [5] already mentioned,
the LIP hauptvermutung was proved in Luukkainen—Viisild [I, Section 8] for a
space homeomorphic either to R", S", or I" with some restrictions on 7.

Proofs

We assume n=2 or n=3 since proofs are trivial if n=1.

7. We begin by establishing a lemma needed in the proofs of Theorems I
and 3.

Let Ry=/" and R =I"\intI"(1-2*7%/3), k=1. Then,if k=1, R, is a ring-
like subset of I" and we obtain R, 41 from R, by dividing R, into two rings and
discarding the inner one. There is a natural way of dividing R, into cubes of side
length 2*7%/3 if k=1 and of length 2 if k=0 in such a way that, for each cube Q,
Onint]" is a union of cubes of K (cf. the figure in [5]). We denote the family of
these cubes into which we have divided each R, by K,, k=0.
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Let M be an n-submanifold of I". We say that M is of finite K-type if M nintI"
is a union of cubes of K and if there is k=0 such that M n R, is a union of cubes
of K,. Therefore M is a finite union of cubes of Ku K, for sufficiently big k. Let
F be a family of subsets of I" and XcI". We often need to consider a family of
sets of the form {S€%: Sc X} which we therefore denote by & |X.

Lemma. Let CcoI" be compact and contained in some face F of I" or let
C=0I". Then there is a sequence M,=I"DM,DM,>... of submanifolds of 1"
that are of finite K-type such that:

(D) Nizo M;=C.
(ii) M;,,cint M; (int is relative to I"), i=O0.
(iii) cl (IM; ~int I"YnC=0 for i=0.

(iv) Each M, is a union of cubes Q€K (F)={Q€K;: Q n F#0} for some j=0,
or, if C=0I", M;=R,.

(v) Let X be either M, or cl (M\M,,,) for some i=0. Then there is a parti-
tion Ky (X)u...0K, (X) of K|X (m depends on X) such that if K¥(X)=K;(X)u...
UK. (X), F(X)=uK}(X) and PQ(X)=2I"m<x§1F,._1(X) for QK. (X) (cf [5,
2.71), then the conditions (1)—(3) of [5, 2.7] remain true after the substitutions
K,—~K,(X) and Py—Py(X).

(vi) Let X be cl (M\M,,,) for some i=0. Let KJ(X)=K|(cl (M;_\M, v
cl (Mi+1\Mi+2)) (if i=0, M_,=0). Then there is a partition K/(X)u...u K, (X)
of K|X (m’ depends on X) such that if K;*(X)=K(X)u...uK/(X), F/(X)=u K" (X)
and Pp(X)=2I"og' F/_;(X) for Q€K (X), then the conditions (1)—(3) for r=1
of 15, 2.7] remain true after the substitution K,—~K,(X) and Py—Py(X).

Proof. It is easy to see that we can find a sequence M,DM,;>... satisfying
conditions (i)—(iv). In (v) and (vi) we need not care about the condition (3) of
[5, 2.7] since if we can find K;(X) and K/ (X) that satisfy (1) and (2) we can always
have (3) by further partitioning of the families K;(X) and K/ (X), i=1. Also, we
assume n=3 since the proof is much simpler if n=2.

First we note the following fact. Let Y be either a cube Q€K,, /=0, or of the
form cl(Q\(v K, (F))) or cl(Q\R,) where Q¢K, and k=I. Then K,|Y, ..., K\,|Y
is a partition of K|Y satisfying conditions (1) and (2) of [S, 2.7], modified as in ).
This fact is fundamental to our proof of (v) and (vi).

The manifold X is a finite union (UKy)u(UKy) where Ky=K (F)|X (if
C=0I", Ky=K;|X) and K};':{cl (ON(U K (F))): QEK,(F)} X (if c=0I", Ky=
{cl (O\Ry): Q€K}}) for some k=I=0 (or k=0 and Ky=0). We show that
we can arrange the elements of K, uU Ky in asequence, Ky U Ky ={Qy, ..., Qs—1}
in such a way that if

(%) KiM+j(X) =Kj|Qi (K=K u..uKy),
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then K, (X), ..., K,,(X) is a partition of K|X satisfying (v). In fact, it suffices for
this that the sequence {Q,, ..., O,_,} satisfies the following condition, analogous
to (2) of [5, 2.7].

(% %) For r<s, \J_,Q; is an n-manifold and Q,n (U2, Q;) is an (n—1)-
manifold, and Ky =1{Q,, ..., Q,} for some t=—1.

If C=0I", X=R, or X=cl(R\R,,, forsome /=0, and it is easy to see
that there is a sequence {Q,, ..., Q,_,} satisfying (% ). Therefore we now assume
that C is contained in some face F of I".

The family K, (F), which contains Ky, forms a two-dimensional lattice, and
we denote by Q}; the element in i-th row and j-th column. In like manner, K is con-
tained in {cl (Q\(uKk(F))): QEK,(F)} which forms a two-dimensional lattice.
Denote by Q?j the element in i-th row and j-th column. We can define a linear order
in KyUKy by

(@) O5<0F, if k<k orif k=k" and i<i’,
(b) 05,<0%, if j<j' wunless Q. X and QF ,.CX in which case
ij ij

i—1,j i—-1,j
& k
ij,<Qij.

Now we can enumerate Ky U Ky as {Qy, ..., O,_,} in suchaway that Q,<Q;
if and only if i<j. Itis a straightforward verification that (% %) is true. Consequently
(=) defines a partition of K|X satisfying (v).

The proof of (vi) is similar. We use the above notation and again enumerate
K{UKy as {Qy, ..., Q,_1} in such a way that the right hand side of (%) defines a
partition K] (X), ..., K/,,(X) of K|X satisfying (vi). For this it is sufficient that
(% * x) is true where Q_;=F;(X)=u K;(X):

(% % %) For r<s, U;__, Q; is an n-manifold and Q,n (L ;-1 Q) is an (n—1)-

i=-1 i=-1%i

manifold, and Ky={Q,, ..., Q,} for some t=—1.
As above, we define a linear order in Ky U Ky by

@) Q5=<0%, if k=K orif k=k' and i<i’,
(b)) 05<QF, if j<j' unmless QF ,.cX and O, .&X in which case
. ij ij i+1,j i+1,j

k
i’ ij*

Conclusion is as above.

8. Proof of Theorem 1. We can assume that either C=9I" or that C is con-
tained in some face F of I". Otherwise, if C=0I”", there is a PL homeomorphism
h: I">I" such that #(C)c F and we replace f by fA~1.

In these circumstances we can use the above lemma. Let M,>M;>... be
the sequence of the lemma. We use only the portion My>M,>M,>M, of the
sequence and assume that f|M, is a lipeomorphism. Then we find a partition
Ki(My), ..., K,,(M;) of K|Mj as in (v) of the lemma. Define numbers §,=...=6,
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as in [5, 2.8] with L=bilip (f|M;) and M=m. Now Lemma 2.9 of [5] remains
true after the substitutions, when & =0,

L —bilip (f| M), M—m, F,— F.(M,;), K'—K'(My), e—¢,

even if the assumption that f'is a lipeomorphism I"—f(I") of Lemma 2.9 is weakened
into the assumption that bilip ( f|M;) <.

Once this modification of Lemma 2.9 of [5] is proved, one can show as in 2.10
of [5], if &=0 is given:

There is an embedding f,: M,—~R" such that
() fslMznoI"= fIMyn OI",
(i) 1) —f(l=¢"4y if Q€K and x€QCT M,,
(i) filMynintI" is PL,
(iv) f; is locally bilipschitz at points of C.

The next step is to consider the set M,=cl (M \ M) =cl (I"\ M,). Let
¢”: My—[0, =) be a continuous function such that ¢”(x)>0 if x€ M, nint I". Then
we have:

There is an embedding f;: My;—~R" such that
(i) fo|Mg 0 ol" =f[ Mg nol",
i) Ife)—f@l =e"(x) if xe€M,
(iii") fy|Mg nintI" is PL.
This follows e.g. from Theorem 1 of Moise [2, Section 36]. (If this Theorem is used
it is better first to seek an approximation for f|(/"\M3) and then restrictitto M;).

We finish the proof by glueing f; and f; together by finding a function f;: M, =
cl (M\M,;)—~R" such that

0”) fs.fo and fs define together an embedding I" — R",

(ii") fi|Mz 0 oI" = f| M3 0 0I",

(") |fe)—f@ =e if xeMs,

V") fo|M; nint I" is PL.

If we have found such a function f;, then f*=f; U fyUf, satisfies the conditions
of Theorem 1, provided that ¢’ and ¢” are sufficiently small.

Since f|M, is a lipeomorphism we can again use the construction of [5, 2.11]
to prove the existence of such f;. Let K;(M,) be as in (vi) of the above lemma and
let K;(M,), ..., K, (M,;) be the partition of K|M, in (vi) of the lemma. Since
bilip (f|M;)<e we can apply Lemma 2.6 of [5] and find numbers §,=...=6,,
as in 2.8, with L=bilip (f|M;). Now, assuming that ¢’ and &” are sufficiently small,

we can extend fj U f; (which is defined in a set containing F,(M;)) first to F,(M,),
then to F;(M,), ..., and finally to F,, (M) as in [5, 2.11]. Notice that the situation
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is now simpler since we do not require (i) of Lemma 2.9, (ii) being sufficient. As in
2.10, it is shown that we obtain in this manner an embedding f, : M, —~R" (which
need not be a LIP embedding) satisfying (i”)—(iv”).

9. Proof of Theorem 2. We can assume ¢ to be chosen in such a way that, for
each x€M, the set {y€N: d(y,f(x))=e(x)} is contained in a set lipeomorphic
to R (or to R". if x€0M). We can find a family ¥~ of closed LIP n-balls in M
such that ¥ is locally finite in M, U¥ CcM\C, and U {int V: Ve¥ 1D M\ U.
There are also continuous functions 7;: M—(0, =), 0=i=k, where k depends only
on n, such that:

(D) no+... +m—_1=mn=s.

Q) If x€oV, VEY¥;, x has a neighbourhood U, such that (U,, U,nOV) s
lipeomorphic to (R", R"™Y) or to (R"., R'"Y), according to whether x¢OM or x€OM.

(3) There is a partition 7, ..., %; of ¥ such that each ¥; consists of disjoint balls.

(4) Let Ve¥ and x€V. Then diam f(V)=ny(x).

(5) If Vv and i<k, 3(max,.,n,(x))=min,, n;,(x).

It is not difficult to see that there is such a family ¥~ and such functions #,.
We give only some hints for (3). Choose first an open cover % of M\ U such that
the elements of % have a sufficiently small diameter. In addition we assume that
% is locally finite and that there is a partition %, ..., %,,, of % such that each
%; consists of disjoint sets and that U %, is lipeomorphic to an open subset of R’ .
We can also assume that there is a cover #'={C,: VE#} of M\ U whose ele-
ments are compact sets with C,c V. Let C,=u{C,: VE%}. Since now a neigh-
bourhood of C; is lipeomorphic to an open subset of R” , we can find a locally
finite (in M) cover ¥"* of C, such that the elements of ¥ are closed LIP n-balls (with
u{int V: V€7}oC;) and such that there is a partition ¥ _y,441115 > i)
of ¥! where each ¥ consists of disjoint n-balls. Then ¥ =%{U...U¥ ) is
the desired cover of M\ U. This construction gives k=(n+1)2 but most certainly
we could have k=n+1.

We can also find for each V¢¥" a closed LIP n-ball W, cCint V' such that
{int W,: Vey} still covers MN\U. Let V*CU be some closed set such that
{int V*} U {int W,: V€¥'} is a cover of M. (Then int V*>C.) Let ¥;={V*}
and set Wy.=V*

We prove Theorem 2 by showing:

There is a sequence f=f,,f, ..., . of homeomorphisms M—N such that:
() Each f;, is locally bilipschitz in O {Wy: VEY; with j = i}.

Gi) diamf,(V) = n,(x) if xc€Ve¥, 0=i=k

(i) d(fi(x), fi=1(®)) =m—1(x) for x€M and 0<i=k.

) If xeM\(V7), fi(x)=fi-1(x) for 0<i=k
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We have already set fo=f. Assume that we have defined f; for 0=j=m—1
satisfying (i)—(iv). Choose some ball V¢¥;,. By (i) (since #,,_,=¢) there is some
set WCN containing f,,_,(V) and a lipeomorphism ¥: W-—R". There is also
a lipeomorphism ¢: V—I". Then yof,,_,op~1: I">R" is an embedding which
is locally bilipschitz at x€I" if f,,_, is locally bilipschitz at ¢~ 1(x)€V. Let C’'=
POV n(U{Wy,: VEY; with j<m})). Then C’coI" and, by (i), Yof, _,op™?
is locally bilipschitz in C’. Therefore we may apply Theorem 1 and find an embedding
f*: I">R" with the same boundary values as yof, ,o¢~! that is PL in int /"
and locally bilipschitz in C’. Therefore fF=y~lof*op: V—N is locally bilip-
schitzin U {W, nV: V'€¥; with j<m}uintV.

We choose such a mapping f7: V—~N for each V¢¥,. Now we can define

fFx) if xeve,,
f-1(x) otherwise.

fu(x) = {

Since for each Ve, fflOV=,f,-110V, f, is a homeomorphism M-N. Let
Ve, andlet xcoVn (u{W,: VE¥; with j<m}). Then f,_; is locally bilipschitz
at x, as is f,,|V. Therefore, since 7" is locally finite, f;, is locally Lipschitz at x.
Since f,,_,(@¥) has a local LIP collar at f,_,(x), also S is locally Lipschitz at
JSu-1(X)=fn(x). Thus f, is locally bilipschitz in U{W,: Ve¥], j=m}. We have
shown that f,, satisfies (i). Clearly, it satisfies (iii), (iv), and, by (5), also (ii).
Consider the function g=f;. Since (U?¥)nC=0 and fy=f, we have by
(iv) g|C=f|C. By (i), g is a lipeomorphism M-N. By (iii) and (1), d(g(x),
f(x))=e(x) for x€M. Thus g is the lipeomorphism M—N sought for.

10. Proof of Theorem 3. We first show that we may assume f|I"™\ X to be a
LIP embedding where X={x€0I": f is not locally bilipschitz at x}. Then X is a
closed subset of 97"

Let A=0I"™\X and let U be an open subset of I" containing A4 such that f|U is
a lipeomorphism U-f(U) and let CcU be a closed neighbourhood of 4 in
I™NX. We regard int I" and f(int /") as LIP-manifolds, the LIP-structures being
those of open submanifolds of R". Let &": int I"—-(0, ¢/2) be a continuous function
such that if A: int I"—~R" is a continuous function and |[[A#(x)—f(x)|<¢'(x) for
x€int /", then we can extend # to a continuous function I"-R" by setting
hloI"=f|dI". Now we can apply Theorem 2 with the substitutions

M—intI", N~ f(@(intI"), U—~Unintl", C— Cnintl", e—¢.

Let g’: int I"—>f(int I") be the lipeomorphism obtained. Then we can extend g’
to a continuous map g: I"—R" by setting g|oI"=f|0I". But then g must be an
embedding I"—~R" such that g|/"™\X is a LIP embedding. Clearly, if f* is the
map given by Theorem 3 with substitutions e¢—¢/2 and fi—-g, then f* satisfies the
conditions of Theorem 3 also with respect to the original f and e.

We now assume that f|/"™\ X is a lipeomorphism onto f(I"™\X). As in the
proof of Theorem 1, we can assume that X is contained in some face F of I", other-
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wise either X=@I" and there is nothing to prove in addition to Theorem I, or
we can replace f by another map. Let M,DM;>... be the sequence of the lemma
of Section 7 where we replace C by X. Then bilip (flcl (M\M,, )<< for i=0.

Let M'=J;zocl (My\ My, ;) and let M”=J;oocl (My, N\ M, ,). Then
INX=M"uM". Let ¢=0 be given for i=0,2,4,.... We can now apply sep-
arately to each subset cl (M,\ M, ) of M’ the method of [5] in 2.10 and 2.11
using (v) of the lemma of Section 7 to obtain a map f’: M’—R" such that

@ f'lcd (Mg \My; 1) is a LIP embedding, i=0,
(@) 1f ) —fXl =eudp if x€Q€K and QC cd(MyNMyi,), =0,
Giii) f/|M’ noI"=f|M noI",
@Gv) f|M" ~nintI" is PL,
W If iz=0, {Bof ogl2I" 0 ag'M’ : QEK|cl(My N\ Myii0)}y s finite.

If the ¢’s are suitably chosen, f” is an embedding. Again, given ¢>0, i=1,3, ...,
and assuming that ¢;:s, i=0,2, ..., are sufficiently small, we can find as above,
using (vi) of the lemma of Section 7, a map f”: M”—~R" that satisfies conditions
similar to (i)—(iv) and such that f” and f” together define a LIP embedding
for M"OUM” = I'™\X -~ R" (resembling the construction of f, in the proof of
Theorem 1). If ¢—0 sufficiently fast as i—~e<o, we can extend f, to an embedding
f*: I">R" with the desired properties.
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