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FRENET THEORY OF SURFACES

TIMO RAVASKA

Introduction

In the present paper we consider smooth mappings y: U-F, UcE, E being
a finite-dimensional real linear space and ,F euclidean. Since the image of U is a
surface in 4 this forms a part of surface theory.

Our starting point is the paper [6] by Rikkonen, on p. 26 of which he formulates

the embedding theorem. We wish to consider this theorem more profoundly, provid-

ing on p. 159 below our own version, which yields more exact information on the

dimensions of the tangent spaces of the surface M.
An embedding theorem is given also by Guggenheimer 12, p.2321, using terms

of differential forms and exterior calculus. This, however, does not give any informa-
tion of the dimensions of the tangent spaces of the surface.

We also refer to [7], Volumes 4 and 5.

We are also able here, on p.162 to establish a theorem concerning the degenera-

tion of a surface, treating this as analogous to the degeneration of a curve

[5, p. 190]. The proof, however, is entirely different.
Having defined the "curvatures" of a surface on p. l55, we shall also go on to

consider surfaces with constant curvatures.

Our method is based on the absolute analysis of several variables from [5],

and employs linear operators in a fashion analogous to that of curve theory [5,
pp. 185-1931. This enables us to avoid the use of Cartesian product spaces as intro-
duced in 16, p.23], gives a more natural setting for the theory, and leads to more

detailed results.

1. Notations and conventions

Let Ebe a k-dimensional vector space over R (k< -) and Iet S: {*r, xz, ..., xn]1

be a set of vectors in E Denote by sp{xr,...,xn}:sp(^S) the linear subspace

of -E spanned by ,S.

Let y<o> be a p-linear function \.!E-F, where lris a real vector space. We

denote the linear closure of the range of y(rl 6,

(1) Im $tr)1 : sp {.yo)xr ... xrlxi( E, i : l, ..,, pl.
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It is enough to take a basis {ar}f of Ein (l) to obtain Im(y{r);;

@ Im (ytrll : sp {y(p)ai, ai,... ai,lair€{oull, j : l, ..., p}.

Since we shall consider symmetric multilinear functions, we will also introduce
the following notations.

Let ,S,,1 be the totality of nondecreasing sequences of positive integers of length
z chosen from {1,2,...,k), n:0, 1,2,.... In particular, so,r:0, and ^Sr,e can
be identified with {1,2,...,k}. The elements of S,,e are denoted by i,j,....

for i€§-,r, J€S,,r, either i<j,i:j or else i>j. In particular, if m<n, 1l1srr

i<J. We denote §,e with this ordering by On,*,, n:0, 1,2, ... .

The values of a symmetrical multilinear function ,(n) for a sequence
(arr,ai",...,ar) can be expressed as

(3) y(o)arr...a*: y(o)arraqr...ctqn> (qrr...,qo)€On,r,,,

by virtue of the symmetry.

2. Tangent spaces

Let E be as above and let ,F be an z-dimensional (k<m<.*) euclidean vector
space. Let M be a &-dimensional C- surface in F parametrized by an open region
U of the parameter space E Hence we have for M a parameter representation

(4) y:y(x), x(.tJcE,
where y: U*F isa C- mapping and its derivative y'(x): E*F is a regular linear
mapping for all x€U 15, p. 1811.

Given any x(U, the 4-th derivative y(o)(x) is a symmetric 4Jinear function
XIE*F, q:1,2,... .

The n-th tangent space of the surface M at y€M is

(5) Tl@): 2 r- (yk)(r)), n : t,2, ....
q:L

These sums of linear subspaces are not necessarily direct sums, since
Im(/D(x)nlm(yo(x)) -uy be +{0} for i*j. Let us assume that there exists
an integer p such that Tf (M):F and that dimTi(M):Zi=rm, (n:1,...,p)
is independent of the point yQM. Thus we say that the surface M is of type
(mr,mr,.-.rmr).

We may now construct a basis tor T!(M) as follows.
Let {ar,a2,...,a1,\ be a basis of .E Since the subspace fm(yt'r(x)) is spanned

by the elements

y@l(x)arrarr... a;, (ir, ...,i)eOo,o, n:1,2,..., p, x€[J,

we can use these vectors of .F in our construction.
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Since y'(x)ai, i:1,...,k are linearly independent vectors of ,F, they form a
basis for r;(M).We then consider the vectors y"(x)a;a1, O,i)(Oz,k, arranged
according to the ordering of Or,p. We proceed in this sequence dropping out any
element which is Iinearly dependent on any elements preceding it (including ele-

ments of T;(M)).
The remaining elements y"ardj define a subset or,o of Or,o.
Hence we obtain a basis for Tj(M), namely,

{y' (x) a I i : l, ..., k} v {y" (x) a,a rl(i, j) ( o r, o}.

Continuation of this procedure yields

Lemma I. Given a basis {or\!, ,f the parameter space E, there exist subsets

or,1,COq,k with m, elements, 4:1,2, ..., n, such that

(6) [ 1r<tt(x)at,...qi,l(ir, ..., iq)€.oq,k)
q:L

is a basis for the n-th tangent space \(M), n:1,2, ...,p. Here mn:dimNf (M),
Nf (M):Tq(M)' aT§+1(M) being the q-th normal space, q:1, ..., p-l, nt1:ls:
dimr)(M) (see [6, p. 8]).

Suppose that the index sets on,y, /t:0, 1,...,p are independent of x€U. lt
also follows that the type of the surface is independent of x€U.

3. Accompanying orthonormal frame and Frenet formulas

We take n-p in (6) obtaining a basis of f'. Then we orthonormalize this
sequence by means of the Schmidt orthonormalization procedure, the result

ei(x), i(-on,*, n : lr 2, ,,., p, x€U

being the accompanying orthonormal frame of the surface M at y:y(x), x(U.

3.1. Orthonormalization in Tj(M). We obtain in f)(M) the formulas

,i
y'(x)a j : å^i(x)e,(x), i - 1,2, ..., k, x((/

with C* coefficients

(8) Å'i@)-(y'(x)a.ile,(x)), i-1,2,...,j-l
and

(7)

(e)
^l(*) -ly'(x)ai-tZ: 4(*)r,(*)1, j : t, ..., k,

{or];1l being a basis of the parameter space .8.



154 Trrrao R.tvasra

In view of the lact that the first fundamental form G(x): EXE*R (see [5,
p. l93l) of M is defined by

the

(10)

G(x) ab : (alb),: (y'(x)aly'(*)b), a, b€ E, x€(J,

formulas (7) imply

Bi.i(x): G(x)a,ai:'ty'" t!(x)\(x), i, i :1,2,...,k.

Conversely, given {g;(x)lt, "r" 
*oins the coefficients {,f}(x)} recursively from

[ 1i@): gr.i(x)(grr(x)-rrz, j : 1,2, ..., k
(l l) ] cii@)- Zi-=L,A!(x)s,i(x)l,irrl:ffi, z=i=j=k'

3.2. General orthonormalization formulas. The general orthonormalization for-
mulas are

(rz) ,@) (x)ai,ajz--- ctjq: å rr?^,uljalei(x),
i=j

(ir, ... , i r) - i ( or,ri xQUc- E, with C* coefficients

(r3) ti@) -(y(')ai,...aisln), i-i,{;: l'n',ou' 

1 =n= Q'

and

(14) hj1x1 -ly(')aj,...ajq-pjl =0, i(oq,x, 1= Qsp,

where p, is the projection of ,k)(*)air...ojn on the linear subspace of F spanned

by those e1(x) for which i<j.

Remark. The formula (12) applies to the elements of the basis from (6). Since

{r,(r)} is also a basis, all the derivatives of 7 can be expressed by means

of this basis, and we may hereby generalize the formula (12) for all the vectors
y@) a1,...ai,, (ir,, ...,iq)€Oq,t, 4:l,2, ..., P.

Lemma 2. The functions ei as functions of x(U are twice dffirentiable with

a symmetric second deriuatiue.

3.3. Frenet formulas. The construction of the accompanying orthonormal frame
shows that for i(oo,o, xQU,

q(x)€Tl(M) aT!-t(M)' : Ni-'(M), n:2,..., p.

Let us fix an a€E and differentiate e1(x) with respect to a. Then ei@)a(Tl+r(M)
fot i!or,r, n:1, ..., p-1, and hence

(ei(x)alei(r)) - 0 for J(oq,r,, q > n+l
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We now differentiate the relation (er(x)le;(x)):0 with respect to a(E to obtain

(er(x)lej(x)a):0 for j(on,r,,|€.on,r,, q>n*l. With I and j interchanged, the sym-

metry of the scalar product yields

(ei@)alei(r)) - o for or q <. n-1.

Then, for a€E

)=n=p-l
for fr:p,

and we have

Lemma 3. There exist real coeffi,cients xii(x,a), x((IcE, a€E, indexed in

such a way that if J€o,,1,, then iqo,-r,kton,k ot on+r,k for n:1,2, ...,P-l
(oo,r,:0), andif J€oo,x, then i(.oo-1,y or op,*t such that

ei(x)a€

(cf. [7, Vol. 4,

t ri(M)ory,'
{ ,; -'(rur)o
Ir,r -r(u)o

Iicon,k
t;a on,,o' 8>n+l

p. 297)),

(M)
.,^ri-t(M)o N,l (M),

Ni-'(M)

(t 5)

(Lt1

ei(x)a- Z ,i@,a)a(x)+ Z ii@,a)e{x)
i €on -tt k i €onrk

+ Z ,i@, a) et(x), i € o,,0, n - l, 2, ... , P,
i €on+ 1, k

(for n:1, discard the fi.rst of these sums, and for n:P the last).

For each x€UcE the function xj@,a) is lineqr in a€E andfor each a(E
the functions xi@, a) are Cr functions of x.

We call the formulas (15) the Frenetformulas of M and the numbers x!(x, a)<R

the curuatures of M with respect to the uector a(E, and denote x!(x,d:xj(x)a.

Remark. The formulas (15) are formally the same as (1.50) in [6, p. 2l].
See also [7, Vol. 4, p.250].
For each x€U, a(E we define lhe Frenet operator A(x, a) as the linear operator

A(x,a): F*F satisfying

(16) A(x,a)ei@): ej(x)a, i€o,,r, n:1,2,..., P

and being thus completely determined by means of its values for the tasis {e;(x)}
of .F.

It is clear from (16) that A(x,a) as a function of a is a linear map from.Eto
the space L(F; F) of linear mappings .F*F. We denote A(x,a):1(v)a. For
each x€U, A(x) is then a bilinear operator EY.F*F.

The orthonormality of the basis {ey(x)} implies that for each x(U, a(E the
operator A(x)a: F*,F is skew-symmetric:

lA(x) af* : - A(x) a.
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Hence for n:2,3, ,,.,p-1,

(18) it(io : -r!(l )o, j € o,,0, i( on-1,1,, oo,y or on,.t,k

and, in particular, xl(x)a:O, xeU, a(E. The functionats {zi(x)} (l>J) are sub-
sequently referred to as the curuatures of M.

We call the matrix of the Frenet operator A(x) a with respect to the basis {", (r)}
the Frenet matrix. This can be expressed in a partitioned form as

lA(x) a7 :

the asterisk x denoting the transpose of a matrix.
Assuming that the elements of o,,o are in the proper order (i,j, ...,q,F), the

diagonal submatrices ln,, fl--|,...,p from (19) are antisymmetrical mnXm,-
matrices

(19') Ann:

Moreover, if the elements of o,*r,o are allowed to be ([, 1,...,5,1), the sub-

matrices An+r,n from (19) are mn+Lxmn-matrices of the form

(l e)

(19")

( o -xi@)o -x?(io -%;(r)rl
lri(io o -"i@)a -"i@)ol
I t ". : _: l) n-l,...,p.
lxs, (x) a ,4 @) a 0 - x;(x) ol

lri(io xj(ga xi@)a 0 I

[rT@)o x!@)a ... ?4@)a v*@)al

l*1, 
q*1o xj (fl a . . . r4ta@) o %|@) al

An+t,n: I t : : : l,
| ,i (x) o %j @) a .. . %"q(x) a %)(i al

l"l (i o i; (*) o . .. %t-q(x) a %l (i a)

Ar, - A[, 0 ... 0

An Ar, - A[, ... 0

oAnA$
a

a

b o Ae-r,p-l
0 0 Ap, p_t

0

0

- e;,p-r
Aoo

n - 1r..., P-1.

Remark. It is easily seen that the curvatures remain the same if the surface
is transformed by means of an orthogonal transformation of F.

Lemma 2 and (16) together give

Lemma 4. The bilinear operator A(x): EXF*F satisfi.es

(20) AIA' (x) ab - A(x) aA(x)bl : 0 (a, b € E, x € U).
arb

Remark. The formula (20) is not very useful because the operator,4(x) is

defined with respect to a "moving" basis.
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4. Linear operators associated with the surface

Let x6€U be a fixed point. Define an orthogonal operator T(x): F-F by

(21) T(x)et@i : et(x), x€U, |€.on,*, n : l, ..., p.

Then 7 as a function of x is C2 satisfying

(22) T'(x)a - A(x)aT(x), a€ 8, x€U, T(x) - I.

Clearly (20) is the integrability condition for the total differential equation (22)

(cf. [5, p. 164]).

In view of the Remark following (20), we consider a bilinear operator
B(x): EXF*,F defined by the property that it possesses the matrix (19) with respect

to the fixed basis {rr(rJ} of ^F. Then the linear operator B(x)a: lr*F is skew-
symmetric, and we have

Q3) lB(x)al*:-B(x)a
and
(24) T'(x)a : T(x)B(x)a, x€U, qC E, T(x) : 1.

Lemma 5. The bilinear operator B(x): EX F- F satisfies for all a, b€8, x€U

(2s) /1lB'(x)ab*B(x)aB(x)bl: o,

this being the integrability condition for the total dffirential equation (24).

Remark. The formula (25) corresponds to the integrability conditions
(1.51-54) in [6], p.2l,i.e. the Gauss, Codazzi and Ricci equations (see also [7]).

Consider now the orthogonal projection operators P*(x): F*Ni-'(tut),
n:1,2,...,p (I'$(M):T;(M)); cf. [6, p.9]. These can be defined by

Q6) P,(x)e1@) : {e{x) if i(on'x
-tO if i(on,* for g*n, Q,fl:1,...,p.

By reference to (21), an easy computation yields

(27) P"(x)-T(x)P,(xo)T(x)-', n-1,2,...,p.

Differentiating (26) and using (16) we obtain

(28) Pi@)a : lA(x)a, P"(x)|, a( E, x€U, n : 1, ..., p,

where the brackets denote the commutator of two linear operators.
A connection with the Rikkonen formulas [6, p. 14], is obtained from the fol-

Iowing
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Proposition l. The orthogonal projections P,(x), x(U, n:|,2, ...,p satisfy

for a(E
Q9) Pi,@)aP,(x): (I-P,(x) A(x)a, n : l, ..., p.

Moreouer,

(30) Pi,(x)aP"*r(x) : - P"(x)A(x)aPn*r(x), n : l, ..., p-1.

5. Relations between curvatures antl orthonormalization coefficients

Let us consider more closely the orthonormalization coefficients {11j\ in (12),

in the light of the curvatures {z}(x)} from (15).

Our starting point in the first tangent space Tj(M) is slightly different from
the one used in [6, p. l9], and therefore we shall consider this case separately.

Lemma 6. Let {a} be a basis of the parameter space E and let us agree that

for the orthonormalization cofficients L'r(x) from (7), 1}@)=0 for i>j, i,j:
1,2,...,k, these cofficients satisfy (omitting for brevity the symbol x)

It=j=k
(31) (),i)'a,+ 

oårlixla, - (),!)'ao-r i o,*!or, lt = 
q = ,i=1 12=r=k,

r58

and

{ (s, t)€ or.*

(32) §4ri,'o,:)),t*1roo, lt=q=,l:1 i=1 l2=r=k.
In particular, for j>r (31) contains no deriuatiues, and hence the number of dtf-

ferential equations in (31) is
(33) k(k2-t)13,

the total number of equations in (31) and (32) together being

(34) (k+m)k(k-t)12,

where k : dim M : dim f; (M), k + mr: 6i111 Ti (M).

Proof. We have by (7) y'ar:Z!=r),,"oei, Q:1,...,k. Differentiate this with
respect to a, (r*q) using (15):

y"a,an: §1Nr1'o,"r+ ) l,or1o,
j:l i:1

k k (k I: ) Q"i)'a,ei+ Z lLi ) @!a)ei+ ) @i,t a)e",,1
j:l i:1 (j:1 oz,u t

k( e I 
zl;1'"xilale""': )lQ,)'a,+ ) )"ix!a,j",* o,.*.,:, ,
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One obtains (31) and (32) by interchanging r and 4 and equating the coefficients

of the corresponding vectors.
The total number of equations in (31) and (32) is obtained by counting the

number of vector equations y"&na,:y'a,a, (rfQ) and the number of vectors

from the accompanying orthonormal frame in these equations. tr
Consider now the general equation (12), taking into consideration the Remark

after (14). Take an a,from the basis {ar} of E and differentiate (12) with respect to
it, use (15), and equate the result to a formula correspondingto y@+r) in (12). Then

we have

Lemma 7. Let l:(rr, ... ,io)€.Oq,t", let r€{1,2,...,k} and denote by

fr:(ir,...,r,...,iq)(Oq+l,k the sequence corresponding to i after inserting r into
it in an appropriate place. Then fot Q:1,2, ..., P, {ai} being a basis of E,

(3 5)

(36)

(37)

and fo, Q<p,
(3 8)

k

7!* : Q»' o,* 2 lixi,a,+ Z l!xia,, j - l, ..., k;

A,* : (AIi)' a,* 
'; 

AI,nl o,',:"''; llri a,* z Altd a,,
I €on- 1r k I €on,u I €on+ 1, k

where j (on,o, n-2, ... , Q-l;

Ä!* : (ti)' a,* Z il,"i o,* Z l!,xl a,, j € or,x)
I €on- 1, k T€oq,x

t*: Z ),!ixla* i€or+L,k, j=m.
I €on,*

(For 4:1, omit (35), (36) and the middle sum on the right side of (37), for
g:2, omit (36).)

Here ),fl(x)>O if m(or,x, e:1,...,p.
Remark. Note that the equations (35)-(38) are recursive by nature, i.e. given

the curvaturet {ri} and the coefficients {2!} where the lower index 7 belongs to
Oq*, the formulas (35)-(38) give the law for obtaining coeffi.cients {,ti} with the

lower index 7 in the "higher" set Or*r,r.

6. Considerations on the embedding theorem

Our version of the embedding theorem is the following

Theorem l. Let usfix the integers p,k<N with 0<k<p, andfix a complete

ordering for the elements of the sets O,,k, n:1,2,...,p such that i<i wheneuer

iQO^,* and j(On,1, with m<n. Letusalsofixsubsets o,,kCOo,t, with catdon,r:
ffir>O, n:|r2, -.., pl mt:k.
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Let E be a k-dimensional linear space ouer R, UcE a connected region and F
a euclidean space with dim F:Z{=tmi.

Let there be given an orthonormal basis {e!l of F and

å *,(*,-t)l2aoj m,m,*,
i:l i:l

C- functions xj: tJ*E*(:th" dual space of E), j€o,,o, i€on,r, or on+t,k for
n:1,2,...,p-l and iQoo,o for n-p; J<i, such that thefollowing conditions are

satisfied:
io The bilinear operator B(x): EXF- F (x€U) defined by means of its matrix

(19) with respect to the basis {e!\ satisfies the condition Q.5).

iio The equations (31), (32), and (35)-(38) haoe a solution 1rtrg)1i=i,i(o^,p,
j €oo,o, I =m=-ntpl, satisfying

(3e)

n-1r2, ..., P.

t

fi@) > 0 for all x€U if l(. on,r,,

Then, giuen a point yo(F, there exists a C- surface M: y:y(x), x€U, Mc F,

such that for x€U the functionarc {xii@)} are its curuatures at y(x)(M, y(xo):yo,
and the accompanying orthonormal frame of M at yo is {e!}. The dimension of the

n-th tangent space T! (M) is k + mr* ... * ffi,, n : 1, 2, ..., p.

Proof. The operator B(x): EXF*F being defined as stipulated in io,

B(x)a:.F*F is a linear alternating operator for each a€E, x(U, and satisfies

the integrability condition (25) for the differential equation (24). Hence there exists

a linear operator T(x): F*F for each x€U.
The operator 7(x) is orthogonal, as can be seen by differentiation of T(x)T(x)*

with respect to an arbitrary a(E (a#0) and use of (24) together with (23). Then

(f(x)f(x)*)'a:0, and by the fundamental theorem of integral calculus (see [5,
p. 811) 7(x) 7(x)* : constant : /(xe) 7(xo)* :7.

Let e!:s.Qeo), i:1,2, ..., dim.F. Then the equation

(40) r @) ei(x) : €j(x), J € on,o, n - l, ... , p, x€U

defines an orthonormal basis of Ffor each x€tl (here j is the element on the i-th
place in the sequence of the elements of or,1,, n:1,2,...,P, i:1,2,...,dim,F).

According to the hypothesis there exists a basis {ar} of -E such that the equa-

tions (31) and (32) from Lemmal have a solution. This makes it possible for us to
construct a system of k-dimensional subspaces in ,F (i.e. the first tangent spaces of
our surface) as follows: a solution being {,1i(x)ll=i=i=k, xQU}, define vectors

zi(x)(F,.i:1,2, ..., k by means of k first vector§ from (40) by

j
zi@) - Z I'i@)ei(x), xQu, i - 1,2, ..., k-

i:1
(41)
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Let us

(43)
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Since or,o: {1,2, ...,k\, (39) gives ,lj.(x)>0 for i:1,2,..., k. Hence the vectors

(41) are linearly independent spanning a k-dimensional linear subspace

r;(M) - sp {rr(*), ...1 21,(x)} C F, x(.(1.

now define a linear bijection Z(x)i E*T;(M) by

Z(x)ai : zi(x), i - 1,2, ..., k, x€(1.

We want fj(»t) to be the first tangent space of a surface M. Hence by the

definition (5) for n:1, ttre linear mapping Z(x) must be the derivative of a dif-
ferentiable mapping y: (J*F, i.e. we have the differential equation

(44) y'(x)a : Z(x)a, a(E, x€U c E.

The integrability condition for (44) is (by [5, p. l4l])

(45) rotZ(x) = 0,

where rot Z(x) is the bilinear mapping EXE*F defined by

(46) lrotZ(x)l(a, b) : (ll2)[Z' (x)ab-Z' (x)ba], a, b( E, x€U.

It is enough that (45) holds for the basis {4,} of E, i.e. Z'(x)arar:Z'(x)a1a1,
i,.i:1,2, ...,k, i*j, or, by (43), zi(x)ai:z'.1x)a,, i,i:1, ,..,k, ilj. This, how-

ever, leads us by (41) back to Lemma 6, the equations of which are satisfied by the

hypothesis iio.

Hence (45) is satisfied and the function (see [5, p. 120] line integral)

x

x6
v - v(x)

is defined, representing a C- surface M in F.

It is now necessary to check that this surface actually possesses the properties

of the Theorem. One can perform the orthogonalization procedure described in the

Sections 2 and 3, and, since (39) completely describes the linear dependence and

independence of the vectors in question, the dependence structure in the tangent

spaces coincides with the one given in the Theorem; in particular,

dimTi(M) : k*mz*...*ffio, n:1,..., p.

Moreover, the accompanying orthonormal frame of M is the same as given in
(40), since the coeffi.cients {,ti} of the orthonormalization procedure are obtained

from the recurrence relations (35)-(38) for a given solution {,tj} of (31) and (32).

This implies at once that the curvatures of M coincide with the given functions

{ij(x)}, xeU, the rest of the proof being clear by the initial conditions. tr

Remark l. We have considered C- surfaces. For weaker differentiability con-

ditions, see [6].

(47)
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Remark 2. As regards uniqueness, we note that the equations (31) and (32)

can have several solutions, each of which gives rise to a new set of coefficientr {r,}}
recursively. With suitable additional requirements concerning the parametrization
(e.g. given ttre g;(x)), one could also achieve uniqueness.

Remark 3. Note that the condition io with only that part of iio which refers
to the tangent space T;(M) gives the embedding theorem of 16, p.261.

7. Degeneration of the surface

We have assumed in the above discussion that a basis can be found for the
embedding space ,F from the flrst p derivatives of the embedding function y: (I* F
differentiated with respect to a basis {a,} of the parameter space ,8.

We say that a surface M is degenerate if there exists an integer p such that
for all i,j: l<i<j<p, f;(M)ETl(M), but

(48)

(4e)

(50)

ri*,(M) - ri (M) 
= 

r'.

The integer p is then called the degree of degeneration of the surface M and M
is degenerate to the degree p.

Theorem 2. Suppose a surface M is degenerate to the degree p. Then it lies
within the ffine subspace

y(x)+Ti,(M) (y, : y(x)€. M, xo€ u fixed)

of the embedding space F.

Proof. We cau construct an orthonormal basis for T! (M) by using Schmidt's
orthonormalization procedure. For a fixed xs€UcE, we can define the operator
T(x): Tf,*F by means of the formula (21). T(x) is now an isometric operator
T(x): T!"(M)*T|(M), where y:y(x) varies as a function of x€U.

Now
P(x) - T(x)T(x)*

is an orthogonal projection P(x): F*Tfl(M), since it satisfies P(x):P(a)*:
P(x)z by virtue of the fact that T(x)* 7(x):1hs identity of ffl(M).

The operator A(x)a: fi(M)*Ti(M) from (16) and B(x)a: Tp-TÅ can
be defined, and (23) is satisfied.

Moreover, the differential equation (24) holds with the initial condition 7(xo):
I:the identiry of Tf"(M).

Differentiation of (50) with respect to an a€E (a*0), by use of Q$ and the
skew-symmetry of B(x)a, yields P'(x)a:O. Now the fundamental theorem of
integral calculus (see [5, p. 8lD implies that P(x):constant:P(xo).
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Since y' (z) dz < r) (a) c T i (M ) f or z € (J, dz ( E, we have y' (z) dz : P (z) y' (z) dz :
P(xo)y'(z) dz, and 

x x
y(x)-y(xJ: ! fQ)az: { P(xs)y'(z)dz:

ro rg

- p(xo) i ,' (z) dz - P(xo) (y (*) - y(rJ),

showin g that y (x) - y (xJ e Ti (xo) for all x €U. I

8. Particular cases

8.1. Hypersurfaces. A hypersurface is a k-dimensional non-degenerate surface

in a (k* l)-dimensional euclidean space f'. By Theorem 2, there exists a pair
(s, t)(O2,y such that y"(x)a"aris linearly independent of {y'(x)a,}f for all x€flcE.
Hence a hypersurface is always of type (fr, 1).

In the Frenet matrix (19) An is an antisymmetric kXk-matrix and A* is a
1Xk-matrix, i.e. a row vector, Arrbeing the scalar 0.

We are examining a connection between our Theorem 1 and the embedding

theorem for hypersurfaces [4, p.129; 5, p.226).

The Frenet matrix of a hypersurface takes the form

(5 1) lA(x) a) _

- %f@) a

-xU@) a

0

%'i'@) a

- x'i' (x) a

- x'ä'(x) a

:

- %'ir' (x) a
0

0

x!(x) a

:

xl(x) a
x'i'@),

the accompanying orthonormal frame being {e,(x)}f u{e",,(x)}.
Given the first fundamental form G(x)ab and fixing a basis {ai}f of E, one

obtains the orthonormalization coefficients {,tj} from (11). Letting

(52) {xj(x)arll =i = i =k, q:1,...,k\

be the unknowns, one has in (31) a system of linear equations with an equal number
*'(k-l)12 of equations and unknowns. Since alinear functional il1$): E*R is

uniquely determined by means of its values for the basis vectors {a;} of d one gets

from (31) the curvatures {zj(x)11= j<.i=k) in terms of g,;(x):G(x)aiai, I=i=
j=k.

Since the practical computation appears rather tedious in the general case, we
give the formulas for k:2 only. In this case (31) yields only two equations: 4:1,



r:2 and -t:1 or j:2. Bearing in mind that ),1:7s!:xZ:O arrd xl,ar:-%?ar,
we obtain from (31), omitting the symbol x,

(53) {:;::=it^?"::;'Ål:r"1:tlr:,
Now we obtain from (11)

(54) 1!. : Slf , AL : grrglr't', 1Z : (grgzz- g?.r)rtz g-Lttz.

Inserting (54) into (53) yields

x! a, : (U 2) Q s,si, a t - g p git a t - fu git a z\ g|.,-l (g r I zz - gz z)- | t 2

and
xla, : (l12) {gngi2at- grzgi.az} gia (E.,gzz- g2z)-rt,.

Moreover, we have the equations (32), the number of which is k(k-l)12
in the case of a hypersurface. This is not enough to solve all the unknowns

(55) {r"l'oili, i : l, ..., k},
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the number of which is k2.

Now, the second fundamental form L(x): EXE*R (x€U) is defined by (see

[5, p. 196])
L (x) ab : (y" (x) ab I e 

",, 
(x)).

This being symmetrical with respect to aandb<8, it can be given by Irresns

of the k(k*1)/2 quantities

Iti(x): L(x)aiai, 1= i = 
j=k.

Since by (12)
k

y" (x) aia, : ) 11, i e"* li:j 
",,,

lwhich, incidentally, is one form of Gauss's derivative formula; see [5, p. 196]),

we have

(56) l,i(x):1i:i@) t=i<i=k.

If we use Lemma 7 for q:1 (or, equivalently, the equation used in the proof
of Lemma 6), (38) gives

(s7) U:i:*).!x"ita;1<i= j=-k,

and now (56) and tsz) togetni]*nn (11) yield the missing k(k+l)12 equations

for the unknowns (55). Now we have k2 equations for these k2 unknowns, and solving
them we obtain the curvatures by means of the first and second fundamental forms.
Hence we get from Theorem I as a corollary the embedding theorem for hypersur-
faces [4, p. 129; 5, p. 226].
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In the particular case of k:2, the equations needed in addition to those fol-
lowing (54) are

%'it ctL : /rr(grr) -rl2)

%'i'az : lrr(grr)-r12,

%'ä' aL : (g, lrr- grrlrr) glr'12(g, gzz- g?r)-L12,

%'åt az : (g, lrr- grrlrr) glr'l'(g, gzz- g?r)-112.
and

(s8)

8.2. On surfaces with constant curvatures. Consider the problem of flnding
a non-degenerate surface with given constant curvatures, i.e. with a given Frenet
matrix of constant functionals.

Fixing an orthonormal basis (r)I of the embedding space d one obtains the
operator Ba: F*F, a(E.

The integrability conditiot (25) for the differential equation (24) reduces to

BaBb - BbBa, d,b€8.

Hence {Bxlx(E) is a system of intercommuting linear skew operators, i.e.

an Abelian system of skew operators (can also be considered as a commutative
semisimple set [, p. 432]), depending linearly on the parameter x€8.

Lemma 8. Giuen an Abelian system {Bxlx€E\ of skew operators F*F,
depmding linearly on the parameter x(8, there exists an orthonormal basis (h)i
of F, an integer 4, and nonzero linear functionals q,: E-R (i:1,...,q) such that

1 Bxhrr-r: Qi(x)hzi(59) I,*rr, : - q,(x)h2i-, ' 
: l' "" Q' x( E'

and

(60) Bxhr:0 for i:2q*1,...,ffi:dim.F.
Proof. Denote by G:F*iF the complexification of F [3, pp. 150-152].

Then G possesses a Hermitian form (l)": GXG-C such that its restriction to
,F coincides with the euclidean scalar product of lr. Hence we can consider G as a
unitary space.

Also an R-linear operator A: F*F can be extended to G in such a waythat
its algebraic properties are preserved, e.g. if I is skew in fl then its extension
A": G*G is skew-Hermitian.

Fix a conjugation in G [, p. 331, 3341such that .F is the set of real vectors with
respect to this conjugation.

Let {(,Bx)'lx€E} be the skew-Hermitian Abelian system h L(G; G) correspond-
ing to {Bxlx€E)cL(F;,F). For each x(E, (Bx)'is a real operator with respect
to the conjugation (i.e. it commutes with the conjugation). In a unitary space there
is no essential difference between selfadjoint and skew mappings; hence the nonzero
proper values of (.Bx)" are located symmetrically with respect to zero on the imaginary
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axis. Given an xo(E, G can be decomposed as an orthogonal direct sum of the
eigensubspaces of (.Bxo)', corresponding to distinct eigenvalues, the dimension of
an eigensubspace being equal to the multiplicity of the corresponding eigenvalue

[3, p. 154].

After these prerequisites we start proving our Lemma.
First we prove that G can be decomposed into mutually orthogonal subspaces

G; (i:1, ..., r):
(61) G : Gr@GzO... OG, (dim G, > I for all j)
such that for all 7, every element u(Gi is an eigenvector of every (Bx), x€E.

The decomposition (61) can be established as follows. Take xrcE, xt*O. The
operator (Bxr)" divides the space G into an orthogonal direct sum of its eigensub-
spaces Gj'), dimGr(')=1, j:1, ...,rr
(62) G: G{1)@G[')e...oCIl).

As regards a Gr(1) from (62), there are two possibilities:
io every element rCG\D is an eigenvector of every (-Bx)", xCE, and
iio there exist an xr(E and a u€Gg) such that ar is not an eigenvector of (Bxr).
If io holds, then Gr(r) is acceptable to (61). suppose that iio holds. Then necessarily

x, and x, are linearly independent and dimGjt)>2.
Since (Bxr)" and (Bxr)" commute, G.lt) isa stable subspace of (Bxr); in fact,

for uCGjt), (Bxr)(Bxr)u:(Bxr)(Bx)u:).i(Bxz)u, where .[, is the eigenvalue
of (,Bxr)" corresponding to Gjr).

Now the restriction of (Bxr)" into Cr{t) is a skew-Hermitian mapping GjD*GjD,
and this space can be decomposed according to the eigensubspaces of that mapping.

Accordingly, the decomposition (62) of G can be refined with (.Bxr)" ortho-
gonally into
(63) G : G{2)O.. .6G17.), dim Gr(2) > 1, j :1,2,..., rz,

(rr=rr) such that every element u(Gjz) is an eigenvector of both (,Bxr)" and (Bxr).
Now one can check the possibilities io and iio for the decomposition (63).
However, this refinement cannot be continued infinitely, because we are dealing

with finite-dimensional spaces. After a finite number of steps we obtain the decom-
position (61).

Then, given any u(Gi, there exists for each x(E areal number q(x) such that
(64) (Bx)"u: iQ(x)u

(since (Bx)" is skew-Hermitian) and the dependence of q on x is linear.
Fix now an orthonormal basis for each Gi (j:1, ..., r) from (61).

The aggregate of these bases is then an orthonormal basis of G, denoted by

{ui\i (m : dim" G : dim"F).
Then, according to (64), we have nonzero linear functionals Q i : E * R, i - l, ..., Q

such that
(65) (Bx)"ui : ipi(x)ui, j : l, ..., q.
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Letting il, be the conjugate vector of ui, we have in view of the reality of (Bx)",

(66) (Bx)"ut : -iqi(x)ui. i - l, ..., 8,

oy(x) depending linearly on x€.8,i:1,...,Q.
Since (a, la-r)' :0, we have lu i * u il: lu, - u rl: 12, i : l, 2, ..., Q. Letting

hzi-t:lg,+Q and hr,:*(ui-ili), i :1,2,...,q,ar, 12." '. y2_,
we obtain the orthonormal real unit vectors satisfying (59).

(60) is obtained in a natural manner by means of a real orthonormal basis of
f-),., Ker (.Bx)'. n

Remark. Note that (59) holds for an arbitrary orthonormal set {k.;}la such that
kr,-, ard k, belong to the two-dimensional (over R) linear space sp {h2i-1, hr,}c F,
i:1, ..., Q.

Now (e!)f span the tangent space Trro(M) at yo:y(xr). Projecting e! on
sP {krr'-r, kri} U:1,...,Q, i:1,...,k), where (ki)io is an orthonormal system

satisfying (59), and denoting the projectiotby ai,hrt (lhril:l), we have

e?: Z alhzi+ ._)*rqihi, i:1,..., e.

Then, after some calculations involving the exponential T(x):sxp (Bx) (see

[5, p. 166]) one obtains, letting hri-r€sp {kri-r,kri} be a unit vector orthogonal
to hrr, i:1, ...,4,

(67) ei(x) : f@)e! :- ;af{sing,(x)ft2tr-1-cos q,(x)hr,}

m

+ Z alhn,
n:2q*L

Note that here the linear functionals {g,} should be pairwise different ele-

ments of E*, and m-2q=11, or else the surface will be degenerate. Note also that
the expression (67) bears some resemblance to the expression for curves with con-

stant curvatures [5, p.1921.
The vectors (r,(r))i are a result of the orthogonalization of (y'(x)a,) in Tj(M),

where the coefficients (,1j) satisfy (31) and (32). These equations contain too much
arbitrariness due to the lack of a canonical parametrization (e.g. arc length for
curves).

Let
surface

(68) Y'(x)ai: )'irr(x), i - l, .'',k,
... , k (g,i being constants, too).
and g, (x) - 2f =, fr'n*r, xL, . . . , xk€ R. In order that (67)

certain constant factors, the derivatives of an embedding

Li, beins constant, i:1,
Let x- Zf=txrat

should represent, up to

us impose some extra conditions for more detailed results. We want a
with constant curvatures and with an orthogonal parametrization. We take
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y- y(x), it is sufficient that the factors 1i=0 should satisfy for all x€(I

^i#(x)-^i*(x), 1

This leads to the qk(k-l)/z equations

l"ai fri : r'iioj §'", n - 1,2, .-. ,

=i<j=la.

Q, 1=i= i=k(6e)

for the k unknowns (A',)\, Ä!i=0, i:1, ..., k.
If these equations are satisfied, the embedding

(70) y - y(x) - ),,,{åffWrs Q, (x)h,,-r* sin

gives such a surface. However, this does not yield a very wide
because the number of equations in (69) increases rapidly with k.

k

Z aT xrhn, x(.U
. i:L

class of surfaces,

Examples of these surfaces are Cartesian products of curves with constant
curvatures, e.g. the ordinary cylinder in R3, the Cartesian product of a circle with
itself in Ra (being of type (2, Z)), and the Cartesian product of the circular helix
and the straight line:

A : {@ cosbu, a sinbu, cu, du)l(u, o)€ Rr}

(a, b, c, d(R, a, b, c, d*0), this surface in Ra being of type (2, l,l).
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