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STATIONARY VECTOR MEASURES AND POSITIVE
DEFINITE TRANSLATION INVARIANT BIMEASURES

HANNU NIEMI

Introduction. Let G be a locally compact Abelian group and let I' be its dual
group.

We present a Bochner representation theorem for positive definite translation
invariant bimeasures defined on GXG. In fact, we show that a mapping
B: A (G)X H(G)—~C is a positive definite translation invariant bimeasure, if and
only if there exists a uniquely determined positive Radon measure v: H#(I')—~C
such that #fZgc #1(v) and

(%) B(f,2) = [FfFgdv forall f, ge#c(G).

Furthermore, we present a spectral representation theorem for stationary vector
measures. In other words, we show that a mapping wu: #:(G)—~H, with values
in a Hilbert space H, is a stationary vector measure, if and only if there exists a
uniquely determined orthogonally scattered vector measure pu,: A (I)—~H such
that #fc %1 (u,) and

(%) n()= [ Ffdp, forall ferc(G).

The representation (x) is closely related to (#%). If u: #(G)—~H is a sta-

_tionary vector measure, which has the representation (%) and if (the positive defi-

nite translation invariant) bimeasure B(f, g)=(u(/)|u(2)), f, g€ #¢(G), has the
representation (), then

(1o (@) o)) = v(pp) for all @, yeA ().

The representation (%) is a generalization of a representation theorem for
positive definite Radon measures on G due to Godement (cf. Argabright and Gil
de Lamadrid [1; Theorem 4.1], Berg [4], [5], Berg and Forst [6; Theorem 4.5] and
Godement [11]); and it is closely related to the well-known Bochner—Schwarz
representation theorem for translation invariant positive definite distributions (cf.
Gelfand and Vilenkin [9; pp. 166—169]). On the other hand, the representation
(*x%) is closely related to the spectral representation for second order stationary
random distributions (cf. It6 {13] or Gelfand and Vilenkin [9; p. 271]).
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This paper is closely related to the works of Berg [4], [5], Berg and Forst [6;
pp. 17—26] and Argabright and Gil de Lamadrid [1]. However, one of the main motiva-
tions to this work is to present an approach to the spectral analysis of stationary
vector measures, which is completely free from the use of distribution theory (cf.
Brillinger [7], Daley and Vere-Jones [8] and the references given there).

1. Stationary vector measures. In this section we present some preliminary
results concerning stationary vector measures defined on a locally compact Abelian
group.

Let F be a locally compact Abelian group (or a locally compact Hausdorff
space). By #(F) we denote the linear space of all continuous complex-valued
functions f defined on F with compact support supp f. Let K be a compact subset
in F. By A (F; K) we denote the linear space of all f€#(F) for which supp fC K.
The topology of #(F; K) is defined by the supremum norm. The topology of
A (F) is defined to be the locally convex inductive limit of the Banach spaces
A (F; L) with respect to the canonical injections j,: A (F; L)—~HA(F); LcF, L
compact.

Let H be a complex Hilbert space. Recall that a continuous linear mapping
u: A (F)—H is a vector measure defined on F with values in H. A vector measure
w: A (F)—H is bounded, if the linear mapping p: #(F)—H is continuous when
the space A (F) carries the topology defined by the supremum norm.

Let u be a vector measure with values in H (or a Radon measure) defined on F.
By £7?(u) we denote the set of all functions u: F—C for which |u|? is p-integrable
p=1, 2. (Inthis paper we apply the integration theory for vector measures introduced
by Thomas [18].)

Let E be a normed space. It follows from the reflexivity of a Hilbert space that
all bounded linear mappings 4: E—~H are weakly compact. Therefore, for every
vector measure (resp. bounded vector measure) pu: H(F)—~H all the bounded
Borel functions with compact support (resp. all bounded Borel functions) are
u-integrable [18; pp. 86—87 and p. 101].

Let u: A-(F)—~H be a vector measure. In what follows we use the notation
sp{u}=p(A:(F)); and by sp{u} we denote the closure of sp{u} in H. Recall that

fu duesp{u} forall ucL(n)

[18; p. 69].

In what follows H stands always for a (fixed) complex Hilbert space, G stands
for a fixed locally compact Abelian group and I' stands for the dual group of G.
The group I' carries the usual locally compact Hausdorff topology. Furthermore,
4 and 0 stand for a fixed pair of Haar measures on G and I', respectively, satisfying
the Plancherel relation. In what follows #?(G) stands for #?(1), p=1,2. For
u€ £1(G) we denote by Fu the Fourier transform of u, i.e.,

Fu@y) = [y()u(x) dA(x), 7€l
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By Zu we denote even the Fourier transform of any function u€.%2(G). For
u, v€ L1(G) the function ux*v is the convolution of # and v. Finally, for any func-
tion u: G—-C we put

u,(x) =u(a1x), x€G, a€G; u"(x) =u(x"Y, x€G.

The following definition is analogous to the definition of a second order sta-
tionary random measure or distribution; see e.g. Daley and Vere-Jones [8; p. 333]
and Itd [13] or Gelfand and Vilenkin [9; pp. 262—263], respectively.

Definition 1.1. A vector measure p: #:(G)—~H is stationary, if

(u(fDlu(gn) = (uNlu(®) for all f, g€ Ac(G), a€G.

The following lemma follows directly from the way to define the semi-variation
u of a vector measure p (cf. [18; pp. 65—66]).

Lemma 1.2. Let u: #-(G)—~H be a stationary vector measure. Then
wuy) =pww foral u: G- RYU{+<} and a€G;
and uc L (y) if and only if u,€ £1(w) for all acG.

Recall that a function p: G—C is called positive definite, if
2 2a;apitx) =0
j=1k=1
for all a;€C; x;€G; j=1, ..., m; mEN.

Theorem 1.3. Let pu: #A-(G)—~H be a stationary vector measure. Then for
any u€ P (u) the function F,: G—C defined by

(1.1) F,(x) = [fu d,u’fuxdu), x€q,

is a bounded continuous positive definite function; and there exists a uniquely deter-
mined bounded positive Radon measure v,: K (I')—~C such that

(1.2 F(x) = [7y(x) dv,(), x€G,
and
(1.3) [ @xwIXEF,R) di(x) = [ FoFwdy,

Sfor all v, we LY(G).

Proof. Let uc #*(u) be given.
First we note that it follows from Lemma 1.2 and from the way to define the
integral with respect to a vector measure (cf. [18; p. 69]) that

(1.4) [fvaduuwady]=(fvd,u|fwdu)

for all v, we £*(u) and a€G. The positive definiteness of the function F, follows
then directly from (1.4).
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Clearly,
|F,(x)| = ”fu d,u”z, x€G,
i.e., F, is bounded.

In order to show that F, is continuous we first note that the continuity of any
function of the type F;, f€#c(G), follows from the continuity of u and from
the uniform continuity of the corresponding function f. The continuity of the func-
tion F, follows then in a straightforward way, by applying Lemma 1.2, from the
way to define the integral with respect to a vector measure (cf. [18; p. 69]).

The existence of a uniquely determined bounded positive Radon measure
v,: Hc(I)—C satisfying (1.2) follows now from the well-known Bochner representa-
tion theorem for continuous positive definite functions.

Finally, the formula (1.3) follows from (1.2) by a straightforward application
of Fubini’s theorem.

The theorem is proved.

Definition 1.4. Let p: A (G)y—~H be a stationary vector measure and let
u€ L (). Then the uniquely determined bounded positive Radon measure v, on T’
satisfying (1.2) is called the Bochner measure corresponding to the pair (u, u).

Lemma 1.5. Let u: A#¢(G)—~H be a vector measure. Then fxu€ L (1) for
all feA:(G), uc L (u) n LHG).
Proof. Throughout the proof, by p, we denote the Radon measure defined by

(1.5) w(f) = (uN)lz), feAc(G); zeH.
Recall that p;=||z| p* for all z¢H.

Since u: H#:(G)—~H is a vector measure with values in a Hilbert space, it is
enough to show that fxuc %' (u,) forall z€ H (cf. [18; Théoréme 5.6, Théoréme 5.3
and Proposition 5.1]).

Suppose z€H, fEA(G) and u€c L () n L1 (G); f=0, u=0, are given. Since
fEA:(G), the function f*u is continuous. Let KCG be a compact set and let
Xx be its characteristic function. Then y,(f*u)€ #*(u,). Furthermore, by Fubini’s
theorem

Sax(frw di] = [1e) ([ Fls)u(s™x) di(s)) d || (x)
= [F6) ([ 1x)u(s7x) d pic] (x)) did(s)
= |zl [f d2

It then follows that the function f*u is u_-integrable and, a fortiori, u-integrable.
The lemma is proved.

Lemma 1.6. Let u: A:(G)—~H be a stationary vector measure. If uc % (u) 0
LYUG) and if v, is the Bochner measure corresponding to (u, u), then

(/fekudﬂ”g*udy):/?gﬁdv“
SJor all f, g€ #:(G).
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Proof. Suppose uc L' (1) n £1(G). Since the Bochner measure v, corresponding
to (i, u) is bounded, all the functions ZfZg; f, g€Xc(G), are v,-integrable. Further-
more, by Lemma 1.5, the functions f*u and g+u are p-integrable.

In the following lines we apply several times Fubini’s theorem. Its use is justified,
since the function

Fpu®) = ([ gxudp| [u,dp), xcG,

is continuous and bounded and since %1 (WL (u,) for all ze€H; here u, is the
Radon measure defined as in (1.5).
Denote

Howua() = (u(h)| [ gxudp), he H:(G),

F,(x) = (fu d,u'fuxd,u), x€G.
Then

(f7+udu|fexudn) = [feudp,,
= [ #G91(x) d2)) ity (5)
= [7) ([ u15) dugou(s) d2 ()
= [f® (fu. d#! [gxu dy) di(x).

In a similar way we get

(fg*u dy'lextiu) = fg(y) (fuyd,ulfuxdu)di(y)
= [e0) F.(y~1x) d2(y).
Thus, by applying Fubini’s theorem and (1.2) we get
(f Fudu| [ gudy) = ff(x) (S 20 Ry di(») di)
= [ #7g v,

The lemma is proved.

Lemma 1.7. Let u: A (G)~H be a Stationary vector measure. Suppose
ue L (W) N LYG). Then for all feH(G)

Vigw = [g;f.‘m'vu’

where v, and v, are the Bochner measures corresponding to (u,f+u) and (u,u),
respectively.

Proof. Let u€ L' () n £*(G) and fe A (G). Then, by Lemma 1.6,
[ Zhz 7 Ry, = (fhxfsu d,ulfh*fsoeu dy)

= [|Zhkdv,,,
for all h€ A (G).
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The assertion then follows in a straightforward way from the boundedness of
the positive Radon measures v,: Ac(I)—~C and vg,: Hc()~C and from the
obvious fact that any function @€ #¢(I') can be approximated (in the supremum
norm topology) by the elements in the linear span of the functions |F A%, h€ Hc(G).

The lemma is proved.

2. Positive definite translation invariant bimeasures. In this section we present
a Bochner representation theorem for positive definite translation invariant
bimeasures.

Recall that a continuous bilinear mapping B: H¢(G)X H:(G)—~C is called
a bimeasure on G XG.

Definition 2.1. A bimeasure B: A (G)X Ac(G)—~C is called positive defi-
nite, if .
B(f,/)) =0 forall fex:(G);

it is called translation invariant, if
B(ftuga):B(f’g) fora” f’gefC(G) and aEG

Theorem 2.2. A bimeasure B: H:(G)X Hc(G)—~C is positive definite and
translation invariant, if and only if there exist a Hilbert space M and a stationary
vector measure p: Hc(G)—~M such that

(1(Nlu(g)) = B(f.8) for all f,geAc(G).

Proof. Let M be a Hilbert space and let u: #¢(G)—~M be a stationary vector
measure. It is clear that the bilinear mapping B: H¢(G)X A:(G)—~C defined by

B(f, 2) = (u(NHu(@). f.geAc(G),

is a positive definite translation invariant bimeasure on GXG.

On the other hand, suppose B: H#¢(G)X H#¢(G)—~C is a positive definite trans-
lation invariant bimeasure on GXG. Consider the positive definite kernel
Q: Ac(G)X HAc(G)~C,

Q(f’ g) = B(f’g)* f-, gE%/-C(G)’

and the reproducing kernel Hilbert space H(Q) defined by Q (cf. Aronszajn [2;
p. 344)).
For g€ A(G) define Q,: #c(G)—~C by

Then the mapping p: #c(G)—H(Q),
u(f) =Qy, feAc(G),
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is a well-defined linear mapping. Furthermore, since B: H#o(G)X #(G)—~C is a
continuous bilinear mapping, it follows that u: #(G)—~ H{(Q) is a continuous linear
mapping, i.e., u is a vector measure. Finally,

(n(Hlu(®) = (Qr.Q,) = O(f, 8) = B(£,8), f,geA(G);
which proves the theorem.

Definition 2.3. Let M be a Hilbert space and let p: A:(G)—~M be a vector
measure. The bimeasure B: H(G)X H(G)—~C defined by

is called the bimeasure defined by .

Let B: HA:(G)X #:(G)~C be a bimeasure and let (u,v) be a B-integrable
pair of functions u: G—~C, v: G—~C. Then by

[ (u,v)aB
we denote the integral of (u, v) with respect to B. (For the definition of the integral
with respect to a bimeasure we refer to [18; pp. 144—145] and to the references

given there.)
The following theorem was proved in [15; Theorem 2.4.11].

Theorem 2.4. Let M be a Hilbert space and let p: #o(G)—~M be a vector
measure. If B: H(G)XA:(G)~C is the bimeasure defined by p, then all the pairs
(u, 0); u, v€ L1 (n), are B-integrable and

(/ud,u|fvd,u)=f(u, U)dB.

We are now ready to prove the Bochner representation theorem for positive
definite translation invariant bimeasures.

Theorem 2.5. Let B: A (G)X H:(G)—~C be a mapping. Then B is a positive
definite translation invariant bimeasure, if and only if there exists a uniquely deter-
mined positive Radon measure v on I' such that %, f.g_",_ge,?l(v) and

.1 B(f.8) = [ ZfFgdv forall f, geH(G).

If B: A (G)X H:(G)—~C is a positive definite translation invariant bimeasure,
if v is the positive Radon measure on I' satisfying (2.1) and if p: A(G)~M is any
Stationary vector measure with values in a Hilbert space M such that B is the bimeasure
defined by u, then for all u,ve L' (W)~ L(G) the pair (u,v) is B-integrable,
FuFve LL(v) and

.2 [, 9)dB = [ FuFvav.

Especially, (2.2) is valid for all bounded Borel functions u: G—~C, v: G—~C with
compact support.
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Proof. Suppose B: H(G)XH:(G)—~C is a positive definite transiation invari-
ant bimeasure and suppose u: H(G)—~M is a stationary vector measure with
values in a Hilbert space M such that B is the bimeasure defined by u (cf. Theo-
rem 2.2).

We start by constructing a positive Radon measure v on I'. The construction is
fairly standard (cf. Rudin [17; p. 22], Berg [4], [5], Berg and Forst [6; pp. 19—20]
and Argabright and Gil de Lamadrid [1; p. 14]).

Throughout the proof v, stands for the Bochner measure corresponding to the
pair (1, w), where we Z*(u) n L(G). .

Let KcI' be a compact set. Fix a number d=0 and choose a function 7€ #(G)
such that

|Zh()* = d, y€K.
Define

Ah(<f»)=f 1egé_hlzﬂlvz,, PEA(T; K).

Then A,: A:(I'; K)—C is a well-defined linear mapping. Furthermore,

(2.3) |4, (p)| = suplwstlp Ifh( e fd’»

IIA

sup [pld =" [dv,, @eA (I K):

which proves that the linear mapping A,: #(I'; K)~C is continuous, if the space
A (I'; K) carries the topology defined by the supremum norm.

Suppose now K’ I is any compact set such that KC K’ and suppose /'€ #¢(G)
is a function such that |Fh'(y)[*=d’, y¢K’; for some constant ¢’>=0. Then, by
Lemma 1.7,

) I ’ 1
Ah((p) _-/(de ./qoljh [j]/>d"h*h'

1 ‘
_f 0 G e = A () forall o€ Ae(T': K),

Thus, the mapping

v(p) = /fp,w s dV,,. @EX (D)

where /h,€ Hc(G) is such a funcuon that for some constant d”=0
|F hy (NP =d” forall y&suppo,

is a well-defined linear mapping. Furthermore, it follows from (2.3) that the linear
mapping v: #(I')—~C is continuous, i.e., v is a Radon measure on I'. The posi-
tivity of all the Radon measures v,, /#€X4(G), implies that even v is positive.

Next we show that v satisfies (2.1).

Suppose u, v€ L1 (1) N F£(G). Then, by Theorem 2.4 the pair (u, 7) is B-inte-
grable.
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Let @A (') be given. Choose a function /#€H#¢(G) such that for some
constant d=0 one has |Fh(y)2=d for all y€supp @. By the definition of v and
by Lemma 1.7 we then get

(24) ‘/‘(pdvu :-/\E(%IF dvh*u

=fq>[ﬁu]2 —I—JJ—;/—ITZ- dv, =fgo{,97ulzdv;

which proves that |Ful2.v=v,. Since v, is a bounded Radon measure, it then
follows that
[1Fupdv = [dv,.
Thus, by Theorem 2.4 and Theorem 1.3,
f(u,t"l) dB = ”fu du“zzfdvu =f!ﬁzti2dv.
Furthermore, by applying a well-known polarization formula, we then get

(2.5) [, pdB= [FuFvdv forall u,veL ()0 LHG).

Fu

Especially, the representation (2.5) is valid for all bounded Borel functions u: G—C,
v: G—C with compact support, since all these functions are integrable with respect
to any vector measure with values in a Hilbert space (cf. [18; p. 101]).

We still prove that the positive Radon measure v on I' satisfying (2.1) is uniquely
determined.

Suppose there exist two positive Radon measures v and v' on ' satisfying

B(f.5) = [ ZfFgdv= [ FfFgdv forall f,geHc(G).
By applying exactly the same arguments as in the proof of Lemma 1.7 we then get
\Fhltov = |FhP2 forall heA(G).

Furthermore, by applying the same technique as in proving (2.4) we then get that
v and v must be identical.

In order to complete the proof we must still show that any mapping B: #¢(G)X
A (G)—C defined by (2.1), when v is given, is a positive definite translation invari-
ant bimeasure.

Thus, let v: #:(I')~C be a positive Radon measure such that F[Fge L(v)
for all f, g€ #¢(G). It is clear that the mapping B: H¢(G)X #¢(G)~C defined by

B(f, &) = [ FfFgdv, [ gcAc(G).
is a well-defined bilinear mapping satisfying the conditions
B(f,/) =0, B(f,,g)=B(f,g forall f, getc(G); acG.

It follows from the way to define the locally convex inductive limit topology of
A (G) that in order to show the continuity of B it is enough to show that B is sep-
arately continuous (cf. [18; p. 144]).
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Let g€ A#(G) be fixed. We show that the linear mapping B(., ): He(G)—~C,
B(., 8)(/)=B(/, &), f€#c(G), is continuous. Since g€ H¢(G), the support of Fg
is g-compact (cf. Benedetto [3; p.20]) and, a fortiori, even the support of the Radon
measure #g.v is o-compact. Let L,CI', n€N, be an increasing family of compact
sets such that

supp (Fg.v) C UNL,,.
n€

Let KCG be a compact set. For n€N define B,(., §): #(G; K)~C by
B.(.9(f) = [FfFgdv, feAe(G;K).
L,

Then B,(., &) is clearly a well-defined linear mapping. Furthermore,

B.(.&) (Nl =suplf| [di [|Fgldv, feAc(G; K,
K L,

which shows that the linear mapping B,(., §): #¢(G; K)—~C is continuous. It fol-
lows from the Lebesgue convergence theorem that

lim B,(., &)(f) = lim fffﬁ—gdv
n—oo n—>oco L

= [ FiFgdv = B, 9)(f), feAc(G; K.

Thus, the restriction of B(., g) to the Banach space #(G; K) is a pointwise limit
of the continuous linear mappings B,(., §): #¢(G; K)~C, n€N. Therefore, it fol-
lows from the uniform boundedness principle that even the linear mapping
B(., 8)(f)=B(/, 3), fe#(G; K), is continuous (cf. Horvath [12; pp. 62—63]).
It then follows that even the mapping B(., §): #-(G)—~C is continuous.
The separate continuity of B: #¢(G)X H#(G)—~C follows then by symmetry.
The theorem is proved.

Example 2.6. Recall that a Radon measure pu: #(G)—~C is called positive
definite, if
[f#f*du=0 forall feA(G)

(cf. [4], [5], [6; p. 18] or [1; p. 23)).
Let p: #c(G)—~C be a positive definite Radon measure. Define a mapping
B: A (G)X A (G)—~C by

(2.6) B(f,9) = [fxg"du, f, geAc(G).

Then B is a well-defined bilinear mapping. Furthermore, it follows from the Bochner
representation theorem for positive definite Radon measures (cf. [4], [5], [6; p. 19]
or [1; p. 23]) that there exists a uniquely determined positive Radon measure
v: Hc(I)—C such that for all f, g€ #-(G) one has ﬁfg?gegl(v) and

B(f,8) = [fxg*du= [ FfFgav.



Stationary vector measures and positive definite translation invariant bimeasures 219

Thus, it follows from Theorem 2.5 that B is a positive definite translation invariant
bimeasure.

We show that there exist positive definite translation invariant bimeasures
B: A (G)X A (G)-~C for which there does not exist any positive definite Radon
measure u: Ac(G)—~C satisfying (2.6).

Choose G=R. Suppose /h: R—R is a non-negative bounded Lebesgue meas-
urable function. Then the positive Radon measure

2.7) v=h.dx

has the property that |Ff|2€ £1(v) for all f€ #:(R), i.e., vis the Fourier transform
of a positive definite translation invariant bimeasure (cf. Theorem 2.5). If all posi-
tive Radon measures v: #-(R)—~C of the type (2.7) were Fourier transforms of
positive definite Radon measures, then even the function

h(x) =signx, x€R,

were the Fourier transform of a Radon measure on R. But it is well-known that
. the function irh is the Fourier transform of the so-called Hilbert distribution (which
is not a Radon measure on R).

Next we consider some special cases of Theorem 2.5.

Theorem 2.7. Let B: A(G)X H:(G)—~C be a positive definite translation
invariant bimeasure and let p: A (G)—~M be any stationary vector measure with
values in a Hilbert space M such that B is the bimeasure defined by p. Then the uniguely
determined positive Radon measure v: HA(I')—~C satisfying (2.1) is bounded, if and
only if there exists a constant ¢=0 such that

(2.8) B(f,f) = csup |Zf® forall feAc(G).

If (2.8) is satisfied, then L*(GYC LY (w); and for any u, vE L (G) the pair (u, v) is
B-integrable and
[, 5)dB = [ FuFvdv.

Proof. The condition (2.8) is clearly satisfied in the case when v is bounded.

On the other hand, let B: HA:(G)X #:(G)—~C be a positive definite transla-
tion invariant bimeasure satisfying (2.8) and let u: #-(G)—~M be a stationary
vector measure such that B is the bimeasure defined by u (cf. Theorem 2.2). It fol-
lows from the condition (2.8) that

lu(Hl = 2 [1f|dr for all feA(G).

Thus, LY (G)c L (n) (cf. [18; p. 69]). By Theorem 2.4 we then get that for any
u, € L1(G) the pair (u, 0) is B-integrable. Furthermore, by Theorem 2.5,

[, 8 dB = [ FuFvdv,

where v: A (I)—~C is the positive Radon measure satisfying (2.1).
We still show that v is bounded.
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Let KcI' be a compact set. Choose a function h€A(G) such that for some
constant 1=d=0 one has

Fh()P=d, yeK; |Fh()P <2, yel.

It then follows from (2.8) that for the Bochner measure v, corresponding to (u, /)
we have

[ dv, = B(h, k) = csup |Fh* < 2.
Thus,

i
[foar|= ,f ? FhE
= sup |o| d‘lfdvh = 2cd ™" sup [o]

for all pc A (I'; K). Since the constant 2¢d ' is independent of the set X, it then
follows that the Radon measure v is bounded.
The theorem is proved.

Theorem 2.8. Let B: #(G)XHc(G)~C be a positive definite translation
invariant bimeasure, let v: A-(I')~C be the uniquely determined positive Radon
measure satisfying (2.1) and let p: Ho(G)—~M be any stationary vector measure with
valuesin a Hilbert space M such that B is the bimeasure defined by u. Suppose there exist
constants ¢=0, ¢’>0 such that

(29) B(f.[y=c[\frdi forall feAc(G),
(2.9) v(pl) = ¢ [pld0 for all  peA(D),

then L*(G)c L (n), LX) L2(v) and for any u, VEZLA(G) the pair (u,7©) is
B-integrable and

(2.10) J@.®dB = [ FuFvav.
Proof. If (2.9) holds, then #*(G)c#*(u) and
(2.11) | fhdu|f=c [ihpdz forall hez2G)
(cf. [18; p. 69]). Similarly, the condition (2.9’) implies that LI L2 (v) and
(2.11%) S Inpdv=c [|h2do forall heg2(I).

Since Z*(G)c L' (), it follows from Theorem 2.4 that for any u, v %2(G)
the pair (u, 0) is B-integrable and

S dB=(fudu|fvdy).

Furthermore, a straightforward application of the inequalities (2.11), (2.11”) and
the well-known polarization formula shows that even (2.10) holds.
The theorem is proved.
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3. A representation theorem for stationary vector measures. In this section we
present a representation theorem for stationary vector measures with values in a
Hilbert space. Our result is closely related to a representation theorem for second
order stationary random distributions (cf. Ité [13] or Gelfand and Vilenkin [9;
p. 271)).

First we recall some basic properties of orthogonally scattered vector measures
with values in a Hilbert space.

Let M be a Hilbert space and let S be a locally compact Hausdorff space.
Recall that a vector measure p: A(S)—M is called orthogonally scattered, if

(u(NH|u(g)) =0 forall f, ge#c(S) such that suppfrsuppg = 0.

A vector measure pu: A¢(S)—>M is orthogonally scattered, if and only if there
exists a (uniquely determined) positive Radon measure v on S such that

(3.1 (r(Nlu(g)) = v(fg) for all f, geA(S).

If (3.1) is valid, then £2(v)=%'(n) and

{fu dulfv du) = qu dv forall wu,ve%(w)

(cf. Masani [14; Theorem 5.9] or [16; Theorem 24]).

Let v: #:(S)—~C be a positive Radon measure on S. In what follows we
consider the space L2(v), formed by all equivalence classes [1] of locally v-almost
everywhere equal functions u: S—C such that |u[*> is v-integrable, as a Hilbert
space with the inner product

@ll[e) = [ubdv, [ul, [e]eL20).

We shall use also the notation [u]=u, [u]€ L2(v).

The following lemma can be proved in a straightforward way by applying
Theorem 24 in [16].

Lemma 3.1. Let S be a locally compact Hausdorff space and let v: A (S)—~C
be a positive Radon measure. Then the mapping p: Kc(S)—-L*(v),

u(f) =[f1 feAc(S),

is an orthogonally scattered vector measure such that L(u)=F2(v), spiu}=L2(v),

SJudu=1[ul forall ueL(w
and

(fu d,ulfv d,u] = fuﬁ dv  for all u,ve L (u).

Lemma 3.2. Let v: #(')~>C be a positive Radon measure. Suppose all the
Sfunctions |Ff 2, f€AH(G), are v-integrable. Then the set {Ff|feH(G)} is a dense
linear subspace in L*(v).
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Proof. Since the set A (') is a dense linear subspace in L2(v), it is enough
to show that for a given @€ # (') and a given ¢=0 there exists a function f€ A4 (G)
such that
(f \Zf— o|? dV)1/2< ce
for some constant ¢=0.
Choose functions g, h€ #-(G) such that
D(g, ) = sup [I-Fg(y)| <e

yEsupp @
and

sup [p—ZFh| < &(( [ |Zg dv)*+1)7".
Furthermore, f=h*gcA:(G) and
(1o —FhFeldv)®= ([ 11—l 0P dv)* +( [ lo—Fh?|Fel dv)™
= D(g, o) ([ loP dv)* +sup lo—7h|( [ |Fg dv)"”

<¢ (f |(p|2dv)1/2+ e

The lemma is proved.
We are now ready to present the representation theorem for stationary vector
measures.

Theorem 3.3. A mapping p: A(G)—~H is a stationary vector measure, if
and only if there exists a uniquely determined orthogonally scattered vector measure
Uo: Ac(D)—~H such that Ffe % (uy) and

(32) w(f) = [Ffdu, forall feAc(G).

Suppose p: Kc(G)—H is a stationary vector measure and suppose y: Hc(I')—~H
is the orthogonally scattered vector measure for which (3.2) is satisfied. Then Sp{u,}=

sp{u}; u€ L (uo) and
f udy = j’m du, for all ue L (u) N LYG);

especially for all bounded Borel functions u: G—C with compact support. Suppose
B: A (G)X A (G)—~C is the (positive definite translation invariant) bimeasure defined
by u. If v: A (I)—~C is the uniquely determined positive Radon measure satisfying

B(f,8) = [ FfFgdv forall f,geXc(G),
then

(fu d/,¢0|fvduo) -—-fuz') dv  for all u,veL2(v);
especially for all bounded Borel functions u: I' ~C, v: I -~C with compact support.

Proof. Suppose a mapping u: H#(G)—~H can be represented in the form
u(h) = [ Ffdu,, feA:(G),
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where po: A(I)~H is an orthogonally scattered vector measure such that
Ffe L (uy) for all feA:(G). Let v: A (I')~C be the positive Radon measure
for which

(Lo @) oW)) = v(ey) for all o, YA (D).

Then, |Zf2€L1(v) for all f€ #:(G). By Theorem 2.5 the mapping B: A(G)X
'%/‘C(G)—)Ca

B(f,8) = (u(Nu(g) = [ FfFgdv, [, genc(G),

is then a positive definite translation invariant bimeasure, which clearly implies
that p is a stationary vector measure.

On the other hand, suppose pu: #-(G)—~H is a stationary vector measure.
Let B: H(G)XA:(G)—~C be the (positive definite translation invariant) bimeas-
ure defined by u and let v: #(I')~C be the positive Radon measure for which

[ @, 0)dB= [FuFvdy forall u,veL () L (G)

(cf. Theorem 2.5).
Put

E= {fudu[uéi”l(,u)mﬁfl(G)}.
Define a mapping j: E—~L?*(v) by setting

jx)=Fu, if x =fu dp  for some u€ L (u) N LG).
Since

| [udu|f= [, ydB = [|FuPdv forall ueL'(n)n L1 (G),

the mapping j: E—~L2(v) is a well-defined inner product preserving linear mapping.
Since E is a dense linear subspace in §p {¢} and since L?(v) is a complete normed
space, the mapping j: E—~L2?(v) can be extended, by continuity, to a uniquely
determined inner product preserving linear mapping J: sp{u}—L3?(v). Further-
more, by Lemma 3.2, the linear span of the functions ZFu, uc £ (u) n L1(G), is
a dense linear subspace in L2(v). Thus, the mapping J: sp {u}—~L*(v) is a surjec-
tion; and it has an inner product preserving inverse J': L*(v)—~Sp {u}.

Define an orthogonally scattered vector measure p': A (') —~L*(v) by p'(¢)=0o,
Q€A (') (cf. Lemma 3.1). Since, by Theorem 2.5, |Fu/2¢ ¥ (v) for all u€ L (u) N
£L1(G), we get by Lemma 3.1 that Fuc ¥ (") and

[ Fudy = Fu forall ucL () L*(G).

Since the mapping J~!: L?(v)—~sp{u} is an inner product preserving linear
mapping, the vector measure p,: H¢(I)—~sp{u}, defined as p,=J ~toy’, is ortho-
gonally scattered and (uo(@)|uo(Y))=v(py) for all ¢, YA (). Thus, L (up)=
&%(v) and

(fu duolfvd,uo) =fuz7 dv for all u,veZ2(v);
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especially for all bounded Borel functions u: I'~C, v: I -C with compact support.
Furthermore, for all u€. % (u) n £1(G); especially for all bounded Borel func-
tions u: G—C with compact support

fu du = J Y (Fu) = J‘l(fﬁ"u d/x'] =f?ud(J‘1o,u’) :ffu dug.

Finally, it follows from Lemma 3.1 that sp{u’}=L%(v). Since the mapping
J~1: [2(v)~5p {u} is an inner product preserving surjection, it follows that

spluoy = J1(sp {u'}) = sp{u}-

We still prove the uniqueness of the orthogonally scattered vector measure
Ho: Hc(I)—sp {u} satisfying (3.2).

Let py: Ae(I)—~sp{u} and pg: A (I)—~sp{u} be two orthogonally scattered
vector measures such that

u(f) = [ Ffdp, = [ Zfdu; forall fEA(G).

Furthermore, let v: #-(I)~C and V: A(I')~C be the positive Radon meas-
ures for which

(1o(@o(0)) = v(o) and  (5(@)us(W)) = V' (@), @, € A (D).
It then follows that
B(f.5) = [ ZfFgdv = [ FfFgdv' forall f, gcHc(G).
Thus, by Theorem 2.5, v=v". Therefore, L*(ug)=%*(n;) and

| = |

Let €X(I); and let e=>0 be given. Since, by Lemma 3.2, the set {Zf] f€ #(G)}
is dense in L2(v), there exists an f€ A (G) such that

(17— oladv)= || [ Ff =0y duo|| = || [ (77~ 0) dui| < &

for all  u€ L (uy)-

Therefore,

= 2g;

= | [ Ff—o) du||+ | [ (FF—o)dug

[ ¢ dua— [ o du|

which implies that p, and g are identical.
The theorem is proved.

Remark. The mapping J~1: §p{u}—~L2%(v), defined in the proof of Theo-
rem 3.3, is exactly the same as the mapping % : #,—~L2(j1) defined in Theorem 5.1
by Argabright and Gil de Lamadrid [1]. Theorem 3.3 thus serves a new interpreta-
tion of this theorem which is essentially due to Godement [10; p. 76], [11].

The following theorem is a direct consequence of Theorems 3.3, 2.7 and 2.8.
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Theorem 3.4. Let u: #A-(G)—~H be a stationary vector measure and let
Ug: Hc(D)~sp{u} be the uniquely determined orthogonally scattered vector measure
satisfying (3.2). Then:

(1) po is bounded, if and only if there exists a constant ¢=0 such that

(3.3) lu(NI* = csup |Zf* for all  feAH(G).
If (3.3) holds, then £ (G)c L (w) and

fu dy = fﬂ'u duy for all uceZ(G).
(i) If there exist constants ¢=0, ¢’>=0 such that

luHIE = ¢ [If2dh,  fe#e(G);
luo(@)I? = ¢ [lo[2do, et (D),
then Z2(G)c L (u), LI P (uy) and
Sudu= [Fudy, foral ucZG).
We close this paper by recalling an example due to Masani [14; pp. 92—94].

Example 3.5. Suppose u: #:(G)—H is a stationary vector measure which is
also orthogonally scattered. There then exist positive Radon measures v,: #(G)—~C
and v: A (I')>C such that for all f, g€ #-(G)

(r(Nlu(@) = vo(f2) = [ FfFg dv.

Since u is stationary, the Radon measure v, is translation invariant, a fortiori, there
exists a constant ¢=>0 such that vo=cA. (If u=0, then ¢=0.) It is clear that v
is the Plancherel measure corresponding to v,. Thus, there exists a constant ¢’=0
such that v=¢0. (If u=0, then ¢'=0.)
Finally, we note that the condition (ii) stated in Theorem 3.4 is satisfied for u.
On the other hand, it is clear that any vector measure u: #(G)—~H for which
there exists a constant ¢=0 such that

(w(Nlu@) = c [f2d2, f, geHc(G),

is orthogonally scattered and stationary.
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