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ON DECOi\{POSITIOI\ OF SOLUTIOI\S
OF SOME HIGHER ORDER ELLIPTIC EQUATIOi§S

JUKKA SARANEN

We study in R" an equation of the form

(1)

where P (0:
malized with
the operator

Ay == Z (- 1;lel 3a (anB 0P u)
0= ial ,l§l=m

we assume that aor:ao,p*r,p, where a|, are constants and the functions rqp ate

infinitely nany times differentiable so that they vanish at inflnity faster than any

negative power of the radiut ,: lrl. It is also required that af;u:O for all muiti-

indices ial+lBi-=Znt The polynomial P(O can be written as the product

P(A)u : f ,

Zi=oan(u denotes a complex polynomial of the degree r>0 nor-

G,:L an{L A is a partial differential operator of the order 2wt. About

P(O :
q("il

0:1
(c - k!)" .

where 0 I ks : x r* i7 n,0< arg k o-lt, k n+k ", 
c I q. Ow aim is to reduce the problem

(l) to simplår ones by decomposing any solution of (1) into a certain combination of

solutions for equations like

Atory : g, (A-kz)w : g, k+0.

In the cases where these equations have a unique solution in some classes of func-

tions we obtain a unique solution for (1) by fixing the corresponding conditions for

the components of er. There are some earlier articles which deal with equations of

the above polynomial type in unbounded domains. 'v'ekua [8] studied the equation

P(/)u:O and also solved an exterior boundary value problem of the Riquier type.

Paneyah [6] considered the corresponding inhomogeneous equation in the whole

space (for ro:0). He also pointed out that the Laplace operator could be replaced

by a more general second order elliptic operator having constant coefficients. In

paper [9] (for ro:6; Witsch ailowed A to be a uniformly strongly elliptic second

order operator whose coefficients approach those of the Laplace operator at infinity.

He was also able to give a Fredholm type theorem for the exterior boundary value

problem with homogeneous Dirichlet boundary data.
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This article can be considered as a note to the paper of witsch. with it we
would remark that at least the whole space result remains validif A is a certain higher
order operator. Further, the decomposition given in [9] does not cover the case ro>0.
We make use of the general decomposition for a special case where the dimension'of the space R' is large enough; n>2mro+|.

The key to the factorization of the solution is a formula which shows how the
operator Q(A) with an arbitrary polynomial Q operates on the powers of the dif-
ferential expression lu:xi|iu (Aou:u). For the multlindices d:(&r, ...,an)
and ei:(e\,...,ri), where e1:äi.;, we define

öfa, ei): {å
di11
di:0.

Then

holds

(2)

0"(xru) : xi0"u+ar6fu, eif |o-",tt

for all multi-indices a. By applying this equality we easily find

E'(Au) - ^\ou* 
lal\"u.

we make use of some notations in [9]. Let f (resp. i) denote the class of all func-
tions infinitely many times differentiable which vanish at infinity faster than any
negative power of r (resp. which grow more slowly than some positive power of r).
A differential operator whose coefficients are of the class { (resp. g-, c;) is called
g--operator (resp. i-, Cfr-operator). We write the operator Au as a sum Au:
AouiRu with

Ao u _ Z (- 1)t"t a\p 0o+ 0 tt,
lal:l0l:m

o= ldl ,l§lsm
where further

with a

(3)

Ru : 
,o, :ä,:*(- l)* roB a"+ fr u * Mu

{-operator Mu of the order 52m- 1. By using (2) we then see that

A(Au) - l(Au)*2mAu+Mu

with a {-operator

M : -2mfru* ,,:Z^:*1-l)^(Ar,p) 
0"+f u+ frÅu-AMu,

which is at most of the order <2m. we also see that if the functions ro, belong to
the class Cfr, then M is a Cfr-operator.

We denote with d the differential operator dQ G) - EQ' (O ; dt' : fl (lr,-t), do e : e
in the ring of all polynomials we can generalize formula (3) as follows:
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Lemma l. Let Q be a complex polynomial of the degree l. For an arbitrary
non-negatioe integer pt and for a function u(C- we haoe

(4) Q(A)Apu:; (f) tl(2md)u-"Q)(Au)+Mo,rr,uu,

where Morrr,, is a T-operator of the order=2mllp-1. If rop€Cf,, then Mrro,o
is a Ci-operator.

Proof. Formula ( ) represents only a slight extension of a corresponding result

in [9]. For completeness we give the arguments. It is enough to show the validity of
(4) for all monomials Q(Q:1t But formula (3) shows the validity in the case

Q(O:t, trr:1. The induction on / gives

(5) At(tlu): (2ml*A)Atu*M4,yu

because in the induction step we then have

ar+r(1lu) : Qm(l*l)+ A)(A|+Lu)+ AMe,,fl+ Mq,1Atu,

where AMr,'*Ms,1At is at most of the order 2m(l+1). Through induction on

p we obtain

(6) A'Qlt'u1: (2ml*tl)PAtu*M4,ru,

where in the induction step we have now by (5) and (6)

M {, p+r : (2ml + A) M at,1* M 4, rA,

which is a {-operator of the order at most 2ml*p. n
By using formula (4) we can prove an extension of a result in [9]:

Theorem 2. If the integer ro is positiue, then there exist the i-operators Nu,",

N,Ml,,,Moandthe{-operators Mfi'I,,Ma'",where F,Q:1,...,Qi.,v:0,...,ru-li
o:0,...,rr-l and the numbers Bl.i,i:0,...,'v so that

(i) if u(C- solues equation (l), then the functions

(7a) up,n : Nr,nlt,

(7b) (: Nu

satisfy the equations

(8a) (A-kzu)uu,, : gp,u,

(Sb) A'o(: I
with

(9a) sp,n: M!,,"f + å'5' *i,{u,,,,
o:l o:O

(eb) s: Mof + § '§' Mo,'u,,,,
o:1 o:0
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and the function

(10)

(11)

with
(t2)

(13)

tr has the representation

u - (-r å'5' i rr,;Ajltu,,.
N:! v:0 ,l:o

(ii) If, conuersely, the functiotts uu,,, ((C- solue the system of (8) and (9), then the

functionudefinedby(10)satisfies(l),andthefunctionsur,u,( cenbecalculatedfrom(7).

{ilr) The operators Mfl,,\ har:e the property Mf;X:a if kxically (Q,o)=(p,y).
If ,.p€Ctr then the operators Mat',"", Ma'' are Cf,-operators. In the case rr:Q

the operator N is absent and we must use only (7a), (8a), (9a) and (10) without the

function (.

Proof. Assume first that ro:Q. In this case the argument follows [9] without
any essential modification. It is also easy to verify from the proof that the operators
Mao','" are Cfr-operators if the functions roo have finite supports. Suppose then that
ro=0 and let u€C* be a function which satisfies (l). Denote P(O:*Q(O and
t):A'ou, which gives Q(A)u:f. Accorcling to the first case there exist i-opera-
to.r {,,, Ii(},, and {-operators f[ar'i suchthat

q ,u_l
t)- Z Z A'1,u,,,

p:l 1 :0

fi u,u,), (A- kfl)uu,, == gu,"
q ro-7

tvtX,"f + Z Z mf,:{ur,o,
Q:l o:0

choose the numbers tsi:ä, "i 
:0, ..., y such that the

where mf,:f,:0, (g, o)=(,u, v).

We show now that one can

function

(14)

satisfies the equation

(15) A'ow: "- ;'§' 1f[r,nuu.n-Mof,
P:1 v:0

where i[p" (p:1,...,Qiv:0, 1,...,rr,- 1) are {-operators and Mois ai-operu-
tor. Using the formulae (a) and (12) we get

A (tti u u,,) (2m)i - o Ao {Au u,,) + M 
e, j L, t,,,.

q

l-t:L

'u-L 
y

z z By;i Ai u1"'
y:0 j :0

(2m)i - o Ao D u, n + Ly, u g u, n * M e, j u tr,,

at the product of a { -operator and ?L i-operator
he formulae (14), (16) and (13)

q r^,-l
B#:l Ao ru,n- Mrf - Z Z l,ty,v Li11,v

It:L v:0

(1 6)

with an ?-op"rator L!"'.
is a d -operator we get

: z,(l)

q ,*-L yzzz
Ir:1 v:0 a:0

4Ä(*)
Noting th
through t,

(1 7) Aw:
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with a i-operator M, and {-operators t[7'", where frly," are Cfr-operators if
r,pCCf,. Here the numbers B!;i can be calculated by means of the formula

(r8) Bt:i : r<,, 2ay;;12*lt-,(*), o = d, = v.

This system has the form 
r:q

B!:i : k'uBl:d,

Blltt : 4{ny,-',,, + z*(" ll ) 
Bf;4,

i

Bi:i : ur,{u# *r*(.I') rrrr,.* ... *(2m)-,(;) r*4

and is therefore uniquely solvable; if the numbers B#li are known, then the numbers
Bl;i are uniquely defined. When we apply again the operator A to the equation (17)

(/-l)-times, we can denote generally

q ,r-1 | q ,u-l 
-(19) u'* : 

,:Z__ "Z ÅBt'itut,n- u,t- Ä ,Z_-* 
frf'" u,,"

with a i-operator M, and with the {-operators t[f," together with the coefficients

(20) Bi:i : k'- å s!;i-,Qn)i-'(i).

This system is uniquely solvable "J;;"".. ctoorirg ut,n.,,ur" ,:.0

(21) B!:)o:1, Bt;lo:0, 0=a=v

and, accordingly, the constants Bf,;i, l:0,...,ro- I such that the equation (20) is

valid for every /:1,...,rs, we obtain from (14) the function w which satisfies the
equation (15) with Mo:M,* 1i4u'v:1i4u'v. For the function (:u-w we then
have

(22) A'o(: A'ou-A'ow: ;'5' i[t'.nuu,,+Mof.
P:I Y:0

Choosing the operators

fr r,,

fl u, n A',
q ,*_L

1-zzzBr:dAiN1;,n,'.
&:l v:0 j :0

frf,,u, Mf,:$ - ftfr,,{,

(23)
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we see that the functions zr,,:Ä(, ,nu, (:Nu satisfy the equations (8) and (9) and that
n has the representation (10). lf, conversely, up,n, ((C* are firnctions satisfying
the equations (8) and (9), and i1 la:(*w is defined by (10), we have

Q4) A'ow: r- ;'§' Mu,nuu,-Mof
P:l v:0

with a:Zqt,=r275'rl"ur,v, änd hence further by (9) and (24)

(25) A'ou : o.

On the other hand, we have from the G&se re:Q the relations Q(A)u:f, ur,,:
frr,no and therefore also

P(A)u: Q(A)u:f
with u u,n: ft u,nu 

: ftu,n A'o u : N r, nu. Finally we obtain

q rp-l a

( : u- 
Ä "4 ÄuYtl 

ni uu,n : Ntt. tr

Let us assume that the coefficients satisfy a,B(x):dB,(x) and that the operator
,{ is uniformly strongly elliptic so that

,.,,å:^o,u(r)t'EP = cl(l'^, c>o

for every x€R', ((R'. For a given ,4 we define for every complex number z an
operator Ao+z in L2:L2(R") with the domain

D(Ao*z): {u(H^l1f(Lz: YE(Cf, B,(u,q): Uldo)

(which in fact is independent of z) and define further Asulzu:f for uqD(Ao*z).
Here we have used the defining formula

B,(u, E) : o=r,iu,=^(a"u0qul0"q)s+ 
z(ulE1,

for the sesquilinear form B, : H^ X H^ *C with H^ : H' (R') : äf (R'). The opera-
tor Ao is symmetric and by the inequality of GårdinC (ll)

ReB-1.(a, u) = crllullz^-crllull|

with cr>0, cr=O as well as by the formula

Im B-.r(u, u) : -2lxllull6
we get in the case A*0, x*0, k:x*il for a sufficiently small number O.<lJol
for all u€H^

lB-p(u,Ot = fit lRe8-pr(u, u)l+llm.B-p.(u, u)l)

= c'lltrll*
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with a positive number cs:cs(tl). According to well-known arguments it then

holds for the ranges R(Ao-k2):Lz if x*0, )'*0. The operator lo is therefore
selfadjoint (t2l). We assume that the operator lo is also positive, in other words,
(Anulu)s>O for every u(D(A). If we then take f(Lz and k:il.,.1>0, there

exists exactly one function u(D(Ar) with Aou-k'u:f.ff in addition fQC* , then
the fnnction z is also regular and satisfies the equation Au-kzu:f in the clas-

sical sense.

In the case k>0 we utilize a result of Vainberg ([Z). Let

Qo(O : 
,,, 

Z:^o\ato*o -u'

be the characteristic polynomial of the operator Ao-kz and suppose that ,40 is

elliptic with alu:d.. Denote by.Äie the set of the zeros for Qoin, R".It is then

easy to see that No is compact, connected and non-empty, so that grad, QG)#O
if (€^fk. Hence.ÄIo is also a smooth (n -l)-dimensional surface. In order to use [7]
we must consider operators where the part Åu containing variable coefficients

depends on a parameter. Let therefore .R0 be a differential operator of the order

at most 2m stchthat its coefficients are in Cf,. Denote with D the open set of points

e€C where the operator ,40+€R0 is uniformly strongly elliptic and let D, stand

for the connected component of D which contains the origin. If the total curvature
(Gaussian curvature) vanishes at no point of Nk, then for any feCf the equation

(Ao-leRo)u-kzu:f

has for almost all values e€Do (apart from a discrete set), especially including e:0,
a unique solution z€C- satisfying for r>0

(26) lu(x)l = Cr$-n)t2,

with a C>0. Here p(a):(o(o)lco) with a:xft and o(ar) is the point on the

surface where a continuously chosen normal has the same direction as co.

To put all the foregoing things together we require the following:

(27) 1) Aou: (-r)^ 
,,Å:*af;pT"+§u, 

alp: a'p,,

is strongly elliptic.
2) The total curvature of the surfaces Np, k>0 does not vanish.

3) Nu : Z (- t;1"1 0"Q!p}ou), r2u : ro*e C;
lul,lSl=n

satisfies (R0919)o=0 for every E<Ctr.
In particular, assumptions 1) and 3) imply that the corresponding operator

(,40*eÅ0)o in L2 is positive for every e>0.

l*u-irt(a)r(r)l
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Theorem 3. Let A:Ao+eÄo be a dffirential operator suchthat assumptions

l)-3) are ualid. Then apart from a discrete set of points e>0 including e:0 the

equation P(A)u:fEgf, has for any polynomial P(O which does not oanish at the

origin, a unique solution u(i such that Nrnu€.H^ for Imkp=O and Nrnu satisfies

Q6) for kr=O.

Proof. It suffices to note that the solution z for the equation (A-kz)u:gqg;,
where u(H' if Im k>0 and where z satisfies Q6) if k=0, belongs also to the

class h. In the first case the characteristic polynomial for Ao-kz does not have

real zeros and there exists a fundamental solution ,E for the equation Aou-
kzu:h which approaches zero exponentially at infinity ([5]). In the second case

the equation Aou-kzu-h has a fundamental solution ,E which satisfies Q6) for
lrl=n=O so that every solution a which satisfies also (26) has the form u:Exh
(Fl). Convolving the equation Aou(x)+eRou(x):g(x) with E we obtain

u(x) : -6 ! n@- flnou(y) ity* I E@-»sO)dy
lyl=Ro lylsÅo

if the functiors rnp, g vanish for lxl>.R'. For lxl>2Ro we get

0. u(x)

and therefore

la"u@)l € clxl-b-r)rz,

which implies u€i In the case Imk>O we conclude evenu€{. We can now

obtain the unique solution uci ay solving the system of (8a) and (9a), starting from
the indices Qt,v):(1,0) and moving in the general step from the pair (p,v) to
the pair (p,v*l) if vsrr-2 and to (;rtl,0) if v:ru-l. Because of (iii) the
function g*n car. always be calculated from the known functions and gu" belongs to
the class Cfl since f€.C; and, Mf i are Cfi'-operators. tr

We are not able to solve an equation of the type A'ou:f uniquely for a gen-

eral ro>0. In the following we assume that the dimension of the space Rn is suffi-
ciently large; n>2mro*|. Let Hp denote the completion of Cfr with respect to
the norm lll. lll*, t rr 0,u ll,lll,lll? : Ä,.7=,llir + t,,)*-, il,,

and let I. Io,n be the usual seminorm,

lull,n : 
, 
Zoll0'ull\,o.

With lzlo:lzlo,*" we get

Lemma 4. Let n>2k*1, k>0. Then there exists a constant y:y(n,k)>0
such that the inequality
(28) lllulll6 = ylale

is ualid for euery u(Ho.

- - t I EU- » 0" Ro u(y) dy * { ,t*- y) 0o s(y) dy
lyl = 

Ro lyl= Ro
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Proof. For the technique of the following argumentation see [4]. Denote B(r, q):
{x€R'fr=lrl=e} with 0<r=Q<-. Take l=l<k,B:B(112,-) and u(Cf,(B).
Partial integration gives

ll#.,å #l|,,: ll#ffi ,.srs-(n-2r)] ll*ll, "
for every real number s. Choosing s:n-21#0 we get

, ll#11.,= ll#.' å#11,.. ll#11.,.=,ll#11.,
and further by induction

(2s) llmll.,= c,ktt*,a.

we fix a test function <p supported in B{0,2):{xeR'llxl=2} suchthat E(x)=|,
lxl=1. By using Q9) and, ([4]: Lemma 3.6) we obtain

(30) llfrffill,=,,lls#Ll[,,oo,_,= c,t(L-E)ut1,,B,tz,a,

= cn(llallo-r,a1r,zy* lul) = cululo

for n>2k* l. On the other hand, the Poincard inequality gives

(31) llffill, = culEulk,a,(o,zy= c.llull/r-l,8(r,e;* lulo,r,to,r>) = crlul.

From (30), (31) we get

lla;*1;, = cstut*,

which easily implies (28) in Cfl and thus in I1o. D
To solve the equation A'ou:.f we define u lll. lll.,r-bounded sesquilinear

form ,B"o: H.,.Y.H^,,-C by the formulae

B1(u, u): X (a,u0Pul|"u)o,

Bu@, D) :';):l:,'i;;,, t : t, 2, ...,

Brr*r(u, u) : Br(Atu, Ato), I : 1,2, ... .

When we write A:Ao+eRo and ro:21 the form B,o@,u) becomes

B,o@, u) : ((Ao)tul(Ao)tu)o+eE,o(u, o; e),

where E,o(u, u; e) is a lll. lil.,.-bounded sesquilinear expression with

-sup, lE"(u, u; e)l= r*lllrlll,*lllalll..
0=€=1

= crrlul^rolul*ro
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for every u,u(Cf,. On the other hand, we have in Cfr

((Ao)t u | 
(Ao)t u) o =- c rrlu l!-, o

([1]: Lemma 7.7). Hence for a sufficiently small er>O

(32\ B,o(u,u) > (crr-ecro)lul'*,o=- c*illalllå.

holds with a positive number c* for every O<e<eo, uQH^,o. We can prove the

inequality (32) analogously in the case ro:21*1, />0. lf f<tr, then the scalar

product (ulf)o it continuous in H^,o:

l(rllLl = ll(l + lxl)-*.ulloll(1 + lxl)"./ll0

= lllulll.,. ll(1 + lxl)".1110'

for this reason the equation A'ou:f has a unique solution u(.H^,oi C- by the

theorem of Lax-Milgram.

Theorem 5. Let A:Ao+e-Ro be a dffirential operator such that assumptions

1)-3) are ualid and let n>Zmro*|. Then apart from a discrete set of points 0<e 5e,
including e:O the equation P(A)u:fqgf fo, a sfficiently small eo>O has a

unique solution u€?; for Imkr>0 Ntn€H* andfor kr>O Nonu satisfies (26)

and Nu belongs to H^,o.

Proof. We only have to show that a solution u(H-,oaC- of nnv:f€Cf,
belongs to i But this follows exactly as in [9] because we have

lllrlll.,. = c ll(l + lxl)".7;10

with a number c independent of a. n
It may be pointed out that if [3] is used instead of [7], a stronger result can be

obtained in the second order case.
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