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ON DECOMPOSITION OF SOLUTIONS
OF SOME HIGHER ORDER ELLIPTIC EQUATIONS

JUKKA SARANEN

We study in R" an equation of the form

(h P(Au =1,

where P(&)=3"_,a,&" denotes a complex polynomial of the degree r=0 nor-

malized with @, =1 and A is a partial differential operator of the order 2m. About
the operator

Au= 3 (=1D)"0%*(a,0"u)
o=jal,|fl=m
we assume that aa,,=a2,;+r,_,,, where ay, are constants and the functions r,, are
infinitely many times differentiable so that they vanish at infinity faster than any
negative power of the radius r=|x|. It is also required that aj;=0 for all multi-
indices |a|+|B|=<2m. The polynomial P () can be written as the product

aq
P(Q) =& ]]l(é—ki)’%
o=

where 0=k,=x,+i,, 0=argk,<m, k, =k, 1. Our aim is to reduce the problem
(1) to simpler ones by decomposing any solution of (1) into a certain combination of
solutions for equations like

Arow =g, (A—kHw=g, k=0.

In the cases where these equations have a unique solution in some classes of func-
tions we obtain a unique solution for (1) by fixing the corresponding conditions for
the components of u. There are some earlier articles which deal with equations of
the above polynomial type in unbounded domains. Vekua [8] studied the equation
P(4)u=0 and also solved an exterior boundary value problem of the Riquier type.
Paneyah [6] considered the corresponding inhomogeneous equation in the whole
space (for r,=0). He also pointed out that the Laplace operator could be replaced
by a more general second order elliptic operator having constant coefficients. In
paper [9] (for r,=0) Witsch ailowed A to be a uniformly strongly elliptic second
order operator whose coefficients approach those of the Laplace operator at infinity.
He was also able to give a Fredholm type theorem for the exterior boundary value
problem with homogeneous Dirichlet boundary data.
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This article can be considered as a note to the paper of Witsch. With it we
would remark that at least the whole space result remains valid if 4 is a certain higher
order operator. Further, the decomposition given in [9] does not cover the case r,=0.
We make use of the general decomposition for a special case where the dimension

“of the space R" is large enough; n=2mr,+]1.

The key to the factorization of the solution is a formula which shows how the
operator Q(A) with an arbitrary polynomial Q operates on the powers of the dif-
ferential expression Au=x;0,u (A°u=u). For the multi-indices a=(ay, ..., a,)
and e'=(el, ..., ¢!), where €;=4,;, we define

ij>

o[, €] = {(1)

Then
O (xiu) = X; 0%u+0;0a, €] P~ uu

holds for all multi-indices . By applying this equality we easily find
) *(Au) = A u+ |o| 9*u.

We make use of some notations in [9]. Let I (resp. a ) denote the class of all func-
tions infinitely many times differentiable which vanish at infinity faster than any
negative power of r (resp. which grow more slowly than some positive power of r).
A differential operator whose coefficients are of the class I (resp. 7, Cy) is called
J -operator (resp. -, Cy-operator). We write the operator 4w as a sum Au=
A%u+ Ru with

Au= 3 (=Dl s*+tu,

lal=18l=m

Ru= 3 (=193, 0,

0=|al,|fl=m
where further
Ru= 3 (=1)"r,0*"Pu+Mu

2| =11 =m
with a J-operator Mu of the order =2m—1. By using (2) we then see that
3) . A(Au) = A(Au)+2mAu+ Mu

with a J -operator

M =-2mMu— 3 (=1)"(Ar,s) 0**Pu+ MAu—AMu,
ol =1BT=m
which is at most of the order =2m. We also see that if the functions 7, belong to
the class Cg°, then M is a Cy-operator.
We denote with d the differential operator dQ(&)=¢Q'(€); d*=d(d*™Y), d°Q=Q
in the ring of all polynomials we can generalize formula (3) as follows:
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Lemma 1. Let Q be a complex polynomial of the degree l. For an arbitrary
non-negative integer p and for a function u€C= we have

@ () A*u = 20[ ]Av[(ZMd)"_"Q](A“)‘I‘MQ(:) uths

where My, , is a I -operator of the order =2ml+p—1. If r,€Cy, then My ,
is a Cy-operator.

Proof. Formula (4) represents only a slight extension of a corresponding result
in [9]. For completeness we give the arguments. It is enough to show the validity of
(4) for all monomials Q(¢)=¢" But formula (3) shows the validity in the case
Q&) =¢, p=1. The induction on / gives

%) A'(Au) = Cml+A)A'u+ Mg u
because in the induction step we then have
A (Au) = Cm(I+ D)+ A) (A w)+ AM g u+ M, Alu,

where AM, ,+M, A" is at most of the order 2m(/+1). Through induction on
1 we obtain

6) A (APu) = Cml+ Ay A u+ Mg ,u,
where in the induction step we have now by (5) and (6)
Ma = Cml+A)Ma +Mga , A

which is a J -operator of the order at most 2m/+u. O
By using formula (4) we can prove an extension of a result in [9]:

Theorem 2. If the integer r, is positive, then there exist the j’-operators N,

N, M” v» M? and the T -operators M2:5, M®°, where p, ¢=1, ..., q; v=0,...,r,—1;
=0, . —1 and the numbers B"’O, j=0, ..., v so that
(i) lf uE C= solves equation (1), then the functions
(73.) uu,v = Nu,vu’
(7b) { = Nu
satisfy the equations
(8a) (A—kDuy,y = 8u,v>
(8b) Al =g
with
ro—1

(9a) gu,\':Movf_*_Z; ZM‘?GQU’

¢=1 o=

ro—1

(9b) g=Mf+ 2 2 M®uq,q,

e=1 o=
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and the function u has the representation
q .
(10) u="{_{+2 2 XBiiMu,,.

(ii) If, conversely, the functions u, ,,(€C* solve the system of (8) and (9), then the
Sunction u defined by (10) satisfies (1), and the functions u, ,,{ can be calculated from (7).
(iii) The operators M7 have the property M3 5=0 if lexically (g, c)=(u,v).

If ry€Cq then the operators M2, M*7 are Cg-operators. In the case ry=0
the operator N is absent and we must use only (7a), (8a), (9a) and (10) without the
Sfunction {.

Proof. Assume first that r,=0. In this case the argument follows [9] without
any essential modification. It is also easy to verify from the proof that the operators
M?P%3 are Cg-operators if the functions r,; have finite supports. Suppose then that
ry>0 and let u€C*™ be a function which satisfies (1). Denote P({)=<EQ(¢) and
v=A"u, which gives Q(4)v=f. According to the first case there exist f—opera-
tors N M ., and J -operators M oy such that

q ru—l
(11) b= 3 S A
pu=1 v=0
with
(12) Uy =N, 0, (A—kf;)vu v = &uy
q r,—1
(13) —M°vf+2; 2 V.o
- 3 7=
where M?7=0, (¢, 0)= (,u, V).

We show now that one can choose the numbers B’7, j=0, ..., v such that the
function

a '
(14) w= 2 Bty Ao,

satisfies the equation
q r, -1
(15) Aow =v— > 2’ M*vy, ,—M°f,

n=1 v=
where M*" (u=1,...,q;v=0,1, ..., r,—1) are J -operators and M°is a ﬁopera-
tor. Using the formulae (4) and (12) we get

(16) AN, 22’ ( ) @m)y=* A*(dv, )+ M, v,

i (i .
= K oz;(') (C{C] @my = A% v, AL g+ My 0,y
with an j'—operator L% Noting that the product of a 7 -operator and a j'-operator
is a J -operator we get through the formulae (14), (16) and (13)

r,—1 v q r,—1

q 1, ‘
(a7 Aw=3 3 S BL A, M~ 3 Z M,
a= " v=
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with a J-operator M, and J-operators M!*, where M are Cg-operators if
r.5€ Cg. Here the numbers Bj:] can be calculated by means of the formula

(18) By = ki 2 Big(2my~—* (i) , O0=a=v.
This system has the form

v

By = KBy,
By = kel By ot om () Bl
' 1
Biy = k2 {B;‘;ov—i—Z [ o ] B o+ .+ (Q2m) (;) Bi‘;ov}
and is therefore uniquely solvable; if the numbers B} are known, then the numbers

Bf:§ are uniquely defined. When we apply again the operator 4 to the equation (17)
(l —1)-times, we can denote generally

(19) Al :Ié : =2 M—M,f—‘é; ::ZTM{"“v,,,V

with a 7 operator M, and with the J -operators M}*" together with the coefficients
(20) : _ ZB,, 1(2m)f_“[i).

This system is uniquely solvable as above. Choosing at the stage /=r,

21 By =1, By =0, 0=a<v

and, accordingly, the constants B}/, /=0, ..., r,—1 such that the equation (20) is
valid for every /=1, ..., ry, we obtain from (14) the function w which satisfies the
equation (15) with M °:M M"Y = M" V. For the function {=u-—w we then

have

q T, -1
(22) Al = Avu—AQrow = Z‘ M“’Vv + M°f.
p=1 v=
Choosing the operators
(Mg,a _ M@ o
|N,,,v =N, A%
(23) ,{ g r,—=1 v
lN =1-2 2 BYgAIN,,
n=1 v=0 j=0
Mg, =My, Mi7=Mg]
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we see that the functions u, ,=N, ,u, { = Nu satisfy the equations (8) and (9) and that
u has the representation (10). If, conversely, u, ,, {€C™ are functions satisfying
the equations (8) and (9), and if u={+w is defined by (10), we have

q ru—-l
(24) Aow =v— > > M*‘u, ,—M°f
p=1 v=0
with v=3"_ 3" 1A, ,, and hence further by (9) and (24)
25) Afou = v.

On the other hand, we have from the case r,=0 the relations Q(A)v=f, u, ,=
N, ,v and therefore also

P(Au =Q(4dv=f
with u, , =N, v=N, ,Au=N, ,u. Finally we obtain

r -

13

M

{=u—

U
—

v=0

1 v
3 Bij Alu,,, = Nu. a
j=

u

Let us assume that the coefficients satisfy a,z(x)=da,,(x) and that the operator
A is uniformly strongly elliptic so that

D au(x)EE=clEPm, >0

lal, |Bl=m

for every x€R", £€R". For a given A we define for every complex number z an
operator Ay,+z in L*=L%*(R") with the domain

D(Ay+2) = {uc H™|3feL*: Y€ Cq® B, (u, p) = (f9)o}

(which in fact is independent of z) and define further Agu+zu=f for u€D(Aq+2).
Here we have used the defining formula

B.(u,0) = 3 (a,50°ul0%0)o+z(ul0),

0=|af,|Bl=m

for the sesquilinear form B,: H™XH™—~C with H™=H™(R")=H'(R"). The opera-
tor A, is symmetric and by the inequality of Garding ([1])

Re B_ss(u, u) = cyf|ull},—co |l
with ¢,>0, ¢,=0 as well as by the formula
Im B_ja(u, u) =—2Ax||ul|3
we get in the case A=0, »¥#0, k=x+iA for a sufficiently small number O<n=1
for all ucH™
1By, 0)] = %(ane B (u, )]+ [Im B_ya (u, w)])

= cglulln
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with a positive number c;=c;(n). According to well-known arguments it then
holds for the ranges R(A,—k?)=L2% if x>0, 1>%0. The operator 4, is therefore
selfadjoint ([2]). We assume that the operator A, is also positive, in other words,
(Aoulu)e=0 for every ucD(A,). If we then take f€L? and k=il, 1>0, there
exists exactly one function u€D(4,) with A,u—k*u=f. If in addition f€C*, then
the function u is also regular and satisfies the equation Au—k2u=f in the clas-
sical sense.
In the case k>0 we utilize a result of Vainberg ([7]). Let
2= 2 agﬂfﬁﬁ—kz
la|=18|=m

be the characteristic polynomial of the operator A°—k? and suppose that A° is
elliptic with ag,,=a§,. Denote by N, the set of the zeros for Q, in R". It is then
easy to see that NV, is compact, connected and non-empty, so that grad, Q(£)=0
if £€N,. Hence N, is also a smooth (n—1)-dimensional surface. In order to use [7]
we must consider operators where the part Ru containing variable coefficients
depends on a parameter. Let therefore R® be a differential operator of the order
at most 2m such that its coefficients are in Cg". Denote with D the open set of points
e€C where the operator A4°+¢R° is uniformly strongly elliptic and let D, stand
for the connected component of D which contains the origin. If the total curvature
(Gaussian curvature) vanishes at no point of N,, then for any f€Cg the equation

(A°+eRYu—k?u =f

has for almost all values &€ D, (apart from a discrete set), especially including ¢=0,
a unique solution u€C* satisfying for r=0

(26) lu(x)| = Cra—m/z gar—u—i,u(a))u(x) = Cr—n2

with a C>0. Here p(w)=(c(w)lw) with w=x/r and o(w) is the point on the
surface where a continuously chosen normal has the same direction as w.
To put all the foregoing things together we require the following:

QD) 1) Adu=D" 3 a%d*Pu, = aly,
lae|=1Bl=m
is strongly elliptic.
2) The total curvature of the surfaces N,, k=0 does not vanish.

) Ru=_ 3 (D@00, 12 =reCT
lal, 1Bl=m
satisfies (R°¢|p),=0 for every @€Cy .
In particular, assumptions 1) and 3) imply that the corresponding operator
(A°+€RY), in L? is positive for every £=0.
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Theorem 3. Let A=A°+¢R° be a differential operator such that assumptions
1)—3) are valid. Then apart from a discrete set of points £¢=0 including ¢=0 the
equation P(A)yu=f€Cy has for any polynomial P(&) which does not vanish at the
origin, a unique solution u€d such that N, ucH™ for Imk,>0 and N,u satisfies
(26) for k,>0.

Proof. It suffices to note that the solution u for the equation (4—k%u=geCy,
where uc H™ if Im k=0 and where u satisfies (26) if k=0, belongs also to the
class . In the first case the characteristic polynomial for A°—k? does not have
real zeros and there exists a fundamental solution E for the equation A°u—
k*u=h which approaches zero exponentially at infinity ([5]). In the second case
the equation A°z—k?u=h has a fundamental solution E which satisfies (26) for
|x]=R=0 so that every solution u which satisfies also (26) has the form u=FE=xh
([7]). Convolving the equation A% (x)+eR%u(x)=g(x) with E we obtain

u(x)=—¢ [ EGx—y)Ru()dy+ [ E(x—y)g()dy

I¥I=Ry Iy|=R,

if the functions r,;, g vanish for |x|=R,. For |x|=2R, we get

Fux)=—¢ [ E(x—y)0*Ru(y)dy+ [ E(x—y)d*g(y)dy
IyI=R, lyI=R,
and therefore
0% (x)] = clx|~ = VE,

which implies uc . In the case Imk=0 we conclude even uc7. We can now
obtain the unique solution u€J by solving the system of (8a) and (9a), starting from
the indices (u, v)=(1,0) and moving in the general step from the pair (y, v) to
the pair (u,v+1) if v=r,—2 and to (u+1,0) if v=r,—1. Because of (iii) the
function g,, can always be calculated from the known functions and g,, belongs to
the class Cg” since f€Cy and M2 7 are Cg-operators. [J

We are not able to solve an equation of the type A™u=f uniquely for a gen-
eral ry=0. In the following we assume that the dimension of the space R" is suffi-
ciently large; n=2mr,+1. Let H, denote the completion of C;> with respect to
the norm ||+ [},
aau 2

k
iz = >
and let |- [, ¢ be the usual seminorm,

ulie = 2 lo*ullfc.
lal =k

)

laj=v 0

With [ul,=|u, g we get

Lemma 4. Let n=2k+1, k=0. Then there exists a constant y=1y(n, k)=0
such that the inequality

(28) lullle = 7 lulk
is valid for every ucH,.
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Proof. For the technique of the following argumentation see [4]. Denote B(r, ¢)=
{x€R"r<|x|<g} with 0=r<g=c. Take 1=I=k, B=B(1/2, ) and veCZ(B).
Partial integration gives

2 2

+s[s—

0,B

“I T l;:!’ IXT’UI

for every real number s. Choosing s=n—2/#0 we get

OB

v ‘ Vo x v “

_— < + —_—

Pelllo,s= X" ] [x[llo 5 IXI’ - x|~
and further by induction
(9 |2, = alon

We fix a test function ¢ supported in BI(O, 2)={x€R"|]x|<2} suchthat ¢(x)=1,
|x|=1. By using (29) and ([4]: Lemma 3.6) we obtain

(1-@)u (1—@)u _
A+ 1xD* llo X[ o, sas < ¢ |(1=@)ule. sz,
= cy(lulli—1, a2+ lulp) = c5luly

for n=2k+1. On the other hand, the Poincaré inequality gives

- b2

s

= colouly, pyo,2) = c(lullk-1,Ba, 2+ |k, Byo,2)) = s [ty

ou
0 [,
From (30), (31) we get

[
T ll= olleo

which easily implies (28) in Cy” and thus in H,. O
To solve the equation A"u=f we define a [ll - lllmr,-bounded sesquilinear
form B, : H,, XH,, ,—~C by the formulae

Bl(“& U) = 2 (aaB 3ﬁulaau)0,

0s=laf, [bl=m
By, (u, v) = (Ad'uld'v),, 1=1,2, ...,
By 1 (u,v) = By (A'u, A'v), 1=1,2, ....
When we write 4=A°+¢R® and r,=2/ the form B, (u,v) becomes
Byy(u, 1) = (A u| (A% 0)g+ 6B, (u, 5 ),
where F,o(u, v;e)isa |||+ ||l -bounded sesquilinear expression with
50D (B, 03 9] = cuol [ty el

= 11 [u lmro |v|mro
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for every u, v€Cy’. On the other hand, we have in Cg°
(A ul (A u)y = cra|ufhm,
([1]: Lemma 7.7). Hence for a sufficiently small g,>0

(32) B, (u, u) = (c12—8C10) [Ul3ry = Caallltlll3er,

holds with a positive number c¢;5 for every 0=e=¢,, ucH,, . We can prove the
inequality (32) analogously in the case ro=2/+1, /[=0. If f€7, then the scalar
product (u|f), is continuous in Hy, :

@1l = 1L+ [xD =™ oullo[I(1+ X)) f [lo
= H]u”lmro“(l + ]xl)mr“fllo;

for this reason the equation A4™u=f has a unique solution u€H,, NnC” by the
theorem of Lax—Milgram.

Theorem 5. Let A=A"+¢R° be a differential operator such that assumptions
1)—3) are valid and let n=2mr,+1. Then apart from a discrete set of points 0=e=¢g,
including ¢=0 the equation P(A)u=feCy for a sufficiently small e,>0 has a
unique solution u¢ T for Im k,>~0 N,cH™ and for k,>0 N,u satisfies (26)
and Nu belongs to H,, .

Proof. We only have to show that a solution ucH,, nC~ of AMu=fecCy
belongs to J. But this follows exactly as in [9] because we have

tlllmry = €A+ |x[)™ fllo

with a number ¢ independent of u. [
It may be pointed out that if [3] is used instead of [7], a stronger result can be
obtained in the second order case.
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