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LOWER T}OUNDS FOR THE MODULI
OF' PATH FAMILIES WITH APPLICATIONS

TO NON.TANGENTIAL LIMITS OF QUASICONFORMAL
MAPPINGS

MATTI VUORINEN

1. Introduction

Given a set äcÅ' and a point x€R', n>-2, we denote by cap dens (d x)

and cap aens tA r) the lower and upper n-capacity densities of E at x. These con-

cepts will be defined in Section 2 by means of n-moduli of path families, and there-

fore one could as well regard these as "lower and upper n-modulus densities". For
an alternative definition involving n-capacities of condensers, we refer the reader

to Martio and Sarvas [7] and to Remark 2.6.

Let now Erand Ez be two sets in R'with capdens(,8r,01:5r=0,i:1,2,
andfor r>0 letl-,denotethepathfamilywhoseelementsjoin Erand.Erin R'\B'(r)
in the sense of Section 2, and let M (f ,) denote the n -modulus of i-, . Our main result
is the following lower bound for M(f ): there exists a constant c>0 depending

only on ör, ör, and n such that for small r>0

(l .1) M(f r'l > clog +
This lower bound is well known only in some particular cases, e.g. when E, ar.d

E, arc connected sets joining 0 and the boundary of the unit ball 8". The estimate
(1.1), together with other lower bounds of Section3, is proved by means of the

so-called comparison principle for the modulus. The comparison principle was

introduced by Näkki in [8] and it is closely related to a lemma of Martio, Rickman,
and Väisälä [6, 3.ll].

In Section 4 we shall use the method of Section 3 to study the following problem.
Let f be a quasiconformal mapping of B', let b(.08", let ErcB" be a set with
bEEi,i:1,2, and assume thatf(x) tends to a limit d.j as x approaches å through
Ei, i:1, 2. How thick must the sets Et be at ä in order tllrat ar:qr' It is easy

to see that this is the case if E, and E, are non-degenerate connected sets. We shall

show that even the considerably weaker conditions cap dens (EL, b)>0 and

capdens (Ez,b)>O imply a.:ar. As regards the sharpness of these conditions,
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we shall show that the former condition cannot be replaced by the weaker condi-
tion cap aens 1fr, å)>0. Problems of this kind are related to the results of [13],
and the main result of Section4, Theorem4.l2, gives us a new proof for a quasi-
conformal version of J. L. Doob's theorem [, Theorem4] (cf. also [13, Section5]).

The results of this paper were announced in [4], where also an application of
(1.1) to quasiregular mappings was given.

2. Preliminary results

2.1. Notation. Throughout the paper we assume that n is a fixed integer and
n>2. We denote the z-dimensional euclidean space by R' and its one-point com-
pactification by .R':R'u {-}. All topological operations are performed with respect
to R' unless otherwise mentioned. Balls and spheres centered at x€Rn and with
radius r=0 are denoted, respectively, by

B"(x,r): lz(N: lz-xl = r\,

Sn-t(r, r): {z€N: lz-xl: y}.

We employ the abbreviations .Bn (r) : B" (0, r), B" : B' (l), 
^Sn- 

r (r) : §'-1(0, r), and
Su-r-Su-l(1). For r>s>0 we denote the spherical ring .B'(r)\,8,(s) by R(r, s).

. 
2.2. Pathfamilies and their modulus. A pathis a continuous nonconstant mapping

yz 10, 1l* A,where A is a subset of R'. The point set y[0, l] will be denoted bV lyl.
Given sets E, F, and G in R', we let /(E, F; G) denote the family of all paths 7
joining E and F in G in the following sense: ll(0)€,E, )l(l)€r' and lylcG. For rhe
definition and basic properties of the (n-)modulus M(f) of a path family f we refer
the reader to Väisiilä's book [0, Chapter l]. Given a set -EcR', r>0, and x(lR",
we introduce the abbreviation

(2.3) M(8, r, x) - pt(Å(,s,-t (r, 2r), B" (*, r) n E; Ä,)).

Let UCN and O<a=.b and let.l' be a path family such that fioS"-t(u,a)+
A*FIa Sn-'(u,å) for every y€I. Then the upper bound

Q.4)

holds [10, 6.4, 7.51

If Ec.R" and
Eatxby

(2.5)

M Q) i o)n-t

and here @n-r is the surface area of So-1.
x€Rn, we define the lower and upper (n-)capocity densities of

cap deng (E, x) - lim fnf M(E, r, x),

cap ded (E, x) - limju p M (8, r, x).

(,"* *)'-"
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2.6. Remark. Martio and Sarvas considered in Ul the condition

cap tlens (8, x1:g for compact ,E. The definition in [7] was based on the use of
condensers and their r-capacities. It follows from Ziemer [5] that the definition of
Martio and Sarvas is, for compact E,' equivalent to (2.5).

The most important lower bounds for the moduli of path families are given by
the following lemma. This result is often called the (spherical) cap-inequality and

was proved by Gehring (cf. [0, Chapter 10]).

2.7. Lemma. Let E and F be disioint non'empty subsets of the sphere

,S:,S'-l(x, r) and let Ms be the n-modulus on S. Then

Ms(/(E, F; s)) > c,lr,

where cnis a positive constant, as inll0, (10. ll», depending only on n.

Throughout the entire paper we let c, denote this constant. The cap-inequality
yields the following standard lower bounds for the quantities M(E, r,0), which will
be frequently used in the sequel.

The euclidean diameter of AcN is denoted by d(A).

2.8. Lemma. Let E be a set in R" and let r>0. Suppose that there is a con-

nected set E,cB'(r) n E. Then

(l)

If E, A S,-L () *A

(2)

M(E,r,0) = c, log W

and E, n Srtt -t(r) *A fo, sonle s€(0, r), then

Proof. The lemma was proved in [3]. For completeness we will prove (2).

To prove the second inequality fix u(E,n S'-r(s) and u(E,n S"-1(r) and choose

a line L through u and o. Let w(L n S'-1(2r) be such that lu - wl< lu-wl. Let p
and g denote the lengths of the projections of u-u and u-w on the line through

0 and o. We get by the cap-inequality (cf. [0, 10.12])

M(E,r, o) z cnrog w-?i+l':"1- -
lu -n'

*t) lcnLos +,'r"r(+
where we have applied the obvious estimate plq>Q-s)lr.

Lemma 2.8 gives us an example of a situation where one obtains a lower bound
for the modulus of a path family joining two sets by means of the cap-inequality.
In many cases this is not possible; see e.g. the situation described at the beginning
of Section 3. In such cases we shall apply the next lemma, which, following Näkki

[8, 3.3], we shall call the comparison principle for the modulus. Martio, Rickman,
and Väisälä have used the idea behind Lemma2.9 in the proof of Lemma3.ll
in [6].
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2.9. Lemma. Let Fr, Fr, and Frbe three sets in R' and write f ,r- 7l(Fi, Fj; R"),
l=i, j<3. If there exist xQ.R" and O=a=b such that Fr, FrcBn(x, a) and
f'rcR\ä'(x,b), the following estimate holds:

3. Lower bounds for the moduli of path families

Let E, and E, be two sets in,Rn with M(Ej,s,0)>ä;=0, j:1,2, for some
s>0. For the estimates of this section it is important to find a lower bound in terms
of ör, ör, and n for the quantity

M(Å(EL, Er; A)),

where ,4isthesphericalring R()"s,slfi and l">l isanappropriatelychosennum-
ber depending only on är, är, and z. Applying the comparison principle of Lemma
2.9 with Ft:ErnB'(s), Fz:Ezn-B'(s), and Fs:5"-1(2s), we get the lower
bound

M(/ (q, Er; N)) = 3-, min {är, är, c,tog2}.

Utilizing this lower bound and the upper bound of Q.$ we shall now give a number
,i> 1 with the desired property.

3.1. Lemma. Let ör,öz=0 and let 7>l be such that

o,-, (log lI)L-" = tls,

where t:3-'min {ä., ör, cologzl. If s>0 and E, and E, are two sets in Rn with
M(Ei,s,0)>ä, for i:1,2, the following lower bound holds:

M(/(4, E,; R().s, sl))) > tl2.

Proof. Denote by F1, Fr, and f's the sets R(s, sl/l)nfr, R(r,sf{l)nnr,
and Sn-1(2s), respectively. From the choice of 2 and Q.4) it follows that

a(8"(sl/D, s,o) < tl6.

This implies for i:1,2 that

M(F,,s,0) = a,-t=-3,+.

Hence by the comparison principle of Lemma2.9,

M(f ,r) = 3*nmin {*rrr,), M(f ,r), cnlog*l

M(A(r'r, Fzi R')) = 3-nmin {" *, cntogrl = *.
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Since ,{.cR(s,sl/l),i:1,2, we get by Q.4) and the choice of ,i,

ru(t(rr, F,; R({Is,V,t))) = M(/(n, F, N))-kon-r(los {l'-"

_5t_2t_t: 6 6 - 2'
which together with the estimate

M(/(q, Er; R()"s,Vl))) = a(t(rr, Fr; R(11s, sll)))

yields the desired lower bound.
We now prove the estimate (1.1) in the introduction.

3.2. Theorem. Let ä1,ä2>0 and let 7>l be the number in Lemma3.l.
Then there exists a constant c>0 depending only on år, ör, and n with the following
property: if r((0,7-rl and Er,ErcRn with M(Et,s,0)>ä; for s(l)'r,l) and
j:1,2, then

Mg) = ' 
tng*,

where l,:l!(Er, Er; R\B'(r».

Proof. Fix r((0,,1-11. Define m:max {ke N: A1-2k=-r}. Then ),-s-=r<
).\-zn and m is a positive integer with z>(log(Ur)lp log,t)). The path families

lo: Å(Er, Er; R(13-zk, 1'-'o)), k : l, -.. , ffi,

are separate in the sense of U0, 6.7) and (Jf=, f ocf .. Hence

M(f ) = u(Ö,rr) =ä Mr).

From Lemma 3.1 it follows that there exists l>0 depending only on ör, 6r, and n

such that M(f )>tl2 for each k. Thus we get

M(r-\ = -! 
I

6log71o87

Since 2 depends only on 6r, ör, and n, this estimate is of the desired type.

3.3. Corollary. Let ErcR' with M(Ei, s,0)>är>0 .for s€(0, ll and
j:1,2, and let ),>l be as in Lemma3J. Then for r€(O,).-tl

M(r) =- cbg!,

where f ,:/(Er, Er; R'\B'(r) and c is as in Theorem3.2.
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3.4. Theorem- Let ö>O and let 7>l be the number in Lemma3.l cor-
responding to the case 6r:öz-ö. Then there is a number d>0 depending only on
ö and n with the following property: if r((0,1-21 and EcR" with M(E,s,0)>ä
for sQflr, ll, and F, is a continuum .ioining S,-1(r) and S"-1, then

Me) = Lbsl,
where l,: 7!(8, F,; .R'\B'(r)).

Proof. Fix r((0,7-1. Since by Lemma Z.B M(F,,s,0)=c,log (2-,i-r) for
s€U.r,l) it follows from Theorem3.2 that

for s€ [,ir, lJ, where c
and öz: cnlog (2 - A-L).

for s(l).r,ll andhence

I c- IMQ)=ctosfi=itoei,

where in the last step we have used the fact r((0, ).-21. We have proved the asserted
estimate with d:c12.

In the next result we show that one may remove the restriction r((0, 1-21 of
Theorem 3.4 if one slightly modifies f , and d.

3.5. Theorem. Let ö=0 and let E be a set in R" with M(E,s,Q)=ö for
s€(0, l]. Then there is anumber d">O depending only on ö andn such that tf r((0, l)
and F, is a continuum joining S'-t(r) and S"-1, then

M[:) = 4*bel,
where f!:/(8, F,; R').

Proof. Let ),>l be the number in Lemma 3.1 corresponding to the case
är:äz-ä. If r((0, )"-21, the desired estimate follows from Theorem 3.4 with d*:d.
Fix r€(,1-2, l). Applying the comparison principle of Lemma 2.9 to the sets .8, n,E,
B" n F,, and S'-1(2) we get

MQ) = 3-'min {6, M(F,,1,0), cnlog2}.

In combination with the lower bound of Lemma 2.8 Q) this estimate yields

M(fi) > 3-n min {ä, c,log (2-r)1.

M(/(8, F,; Å,\8"(r))) > ct"g+

is the positive constant given by Theorem3.2 for är:ä
Then

M(r) = M(Å(E, F,; Ä'\B'(t)))
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Let a:(3"1o9)'27-r min {ä, c,log(2-),-2)}. Since r€(1-2,1) we obtain

MQ» =- olos!.
Hence

M[:) = d*bc+
for all r€(0, l), where d*:min {d,a\=O.

3.6. Remark. In Lemma 3.1 we assumed that M(Ei,s,0)>ä;=0 for i:1,2
andobtainedalowerboundfor M(f U.s,s/,l)),wherel-(As,sl1):/(Er,Er;rR(,ts,s/,1)).
If we assumethat M(Ejn.Bu(s),s,0)>är=0 for 7:1,2, we can prove a related
lower bound for M(f (s,tlll)) by making use of (2.4) and,the reflection principle
for the modulus (cf. Lemma 4.5).

3.7. Remark. Observe that the lower bound of Theorem 3.2 follows from
the cap-inequality, Lemma 2.7, in certain special cases, e.g. when both E, and E2

meet S'-1(r) for each r€(0, 1l (cf. [0, 10.14D. However, the condition of Theo-
rem3.2 may be satisfied even if (ErvEr)nS'-r(r):fl for almost every r€(0, ll.
In fact, by a result of Wallin there are sets Er, ,8, with M(Ej,r,0)>är>0 for
every r€(0, l) j:1,2, such that the Hausdorff dimension of .8, is zaro, j:1,)
(see [13, 2.5 (3»). Various sufficient conditions for cap dens (E, 0)=0 were given
in [13, Section 2] and in Martio [5].

Let E, and E, be two sets with capdens(,Ej,0)>0, j:1,2, and for r>0
let f ,:/(Er, Er; rR'\B'(r)). Then Theorem 3.2 shows that M(r) tends to infinity
with a certain rapidity when r*0. In the next two theorems we study the behavior
of M(f ) under the more general assumptions that cap dens (8r,0)=0,
cap dens (Ur,0)=0. We show that

liq M(r) : -
also in this case, but the convergence may take place as slowly as we wish.

3.8. Theorem. Let E, and E, be two sets with capdens(8r,0):är=O and
cap dens (E2,0):ör>0, and let f ,:A(Er,Er; R\B-'(r)) .for r=0. Then
M(f)-* as t*0.

Proof. Choose a sequence (rJ tending to zero such that M(8j,r1,,0)>_öi12,
j:1,2, for every k:1,2,... . Let ),>l and l>0 be the constants corresponding
to örf2, örf2, andn given by Lemma3.1. Passing to a subsequence and relabeling
if necessary, we may assume that the rings Ä(/.ro,r*l)), k:1,2,... are separate,
Let lr:A1(Er, Er; R()"r1,,r11))), k:1,2, .... Since the families f r are separate
and M(f )>tl2>0 for all k, the assertion follows from [10, 6.7].

3.9. Theorem. Let å: (0, 1]*(0, -) be a non-increasing function with
Iim,*o+ h(t):*. Then there exist sets E and F with capdens(r,0)=0 and
cap dans (4 0)=O such that M(f )<h(r) for all r€(0, Il, where l,:
l(r, r; -R'\.B"(r».
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Proof. Let E*:5"-L(2-'k), Fo:5"-t(2-zk-tt), k:1,2,..., and E:vE*.
Then capdens (E,0)zc,log(5i3) by Lemma2.8 (l). We shall now choose an
infinite set PcN such that the set F: v {F*: k€P} has the desired property.
Observe that for any infinite set PcN cap <lens- (F,O)=c,log 3 by Lemma 2.8 (1).

If k>2, then by ll0, 7.5, 6.2, 6.47

M(/(Fk, E; R')) :2ao-1(log2)'-' : b'

For k>1 and O<r<2-2*+L

Let
M(Å(Fo, E; R'\B'(r))) = b.

Pt : min {ke nr: hQ-2k+2) = b}

pm+1 : min {ke N, k > p^: h(2-zk+2) = (m+ 1)b}

m: lr2, .,..

We show that the set P: {po: k(N) has the asserted property. Fix r((0, ll. If
r>-z-zpr+r, there is nothing to prove, since then M(D:Ia1\:0=h(r). Hence
we may assume r((0,2-ztt+1). Let

s : max {ke U: 2-zpk+L = r} = 1.

Then by UO,6.2l

as desired. 
Mg) < sb = h(2-zt"+21 = h(r\

3.10. Remark. In Theorem 3.8 one may not replace the assumptions by
cap<lens-(8j,0)>0, j:1,2. To show this we construct for a given e>0 sets,E
and Erwith M(A(Er, Eri .R'))=e and cap äerrs 1Ar, 0)>0, i:1,2.

Let e>0 and rr:1. Choose 4a1€(0, rpf2), k:1,2,... such that

,,-, (rog-LJ'-n = u2-o.

Thenitfollows from Q.4)thatthesets E1:U* o §n-t(rro*r) and Er:g; , S'-t(rro)
satisfy M(/(EL, Er; N))<e. From Lemma2.8 (l) it follows that cap dens- (Ej, O)>0,
j:1,2.

4. Non-tangential absolute values of quasiconformal maps

In the present section we shall use the method of Section 3 to study boundary
behavior of quasiconformal mappings. A homeomorphism f: G*G', where G and
G' are domains in Ä', is quasiconformal if there exists a constant K([1, -) such
that for every path family f in G

(4.1) MQ)IK= MUr) < KM(r),

where /-- { f oy: y(f}. The smallest possible K is denoted bV K(f).
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Letf be a quasiconformal mapping of 8", let b(08", and let EcB" be a set

with cap dens (Z, å)>0. The first theorem of this section shows that each non-
tangential lim sup of the absolute value of/is bounded by the lim sup of the absolute
value of/through the set E. As a consequence we get an extension of Tord Hall's
theorem [4, Theorem II], which was proved in [13, a.fl by different methods. The

second and the last theorem of this section gives an alternative proof for the quasicon-

formal counterpart of J. L. Doob's theorem in [13, 5.5].

4.2. The hyperbolic metric. The hyperbolic metric p in B" is defined by the
elcment of length

dq : )!]]-.
r-1xlz'

If aandåarepointsof .Bn,then g@,b) denotesthegeodesicdistancebetween aandb
corresponding to this element of length. For b(8" and M((0, -) we let D(b,M)
denote the hyperbolic ball {x(8": g(b,x)-M}. Let ru:pin {lz-bl: z€|D(b, M)}.
By integrating we get

(4.3)
(1 - lbl\ tanh M

rb
1 + lbltanh M

The next result follows from the proof of [13, 6.5].

4.4. Lemma. Let f: Bn *G' be o
sequence in Bn with lbnl*l as k * *.

ri#liyp l/(x)i
x€E

A corresponding result holds for lim inf.

quasiconformal mapping and let (b) be a
If MC(0, -) and E- v D(bo, M), then

- riplrp lf (b)1.

We shall need the following symmetry property for the modulus, which was

proved in [3, Section 4].

4.5. Lemma. Let E and F be two subsets of 8". Then A(11n, f; B\)=
a(e, r; a\)12.

For b€08" and E€(0, nl2) welet K(b,q) denote the cone{z(R": (blb-z)=
lb-zl cos q).

4.6. Theorem. Let f: B"*G' be a quasiconformal mapping, let b€48", and

let EcB" be a set with cap dens(då)>0. Thenfor et:ery EQ(0,n12)

lim s.up lf @)l = lim s.up lf (x)1,
X+D X+D

x€K(b,E) x€E

lim lnf l/(x)l = lim i.nf l/(x);.x+b x* b
x(E x€K(b,c)
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Proof. Fix VC(O, nl2). It suffices to prove the first inequality, since the second

one can be proved in the same way. Denote by § and f the left and right hand sides

of the first inequality, respectively. Assume that §>f. Choose l, s€(f, S) with
,<J. By Lemma 4.4there is a sequence (ar)in B"nK(b, g) with at*$ ss k-*
andwith l/(x)l=s for all x(vD(ao,l):F. Choose rr((0, 1) such that lf(x)l<t
for x(Er:[,o8"(b, rr). Since a1,QK(b,E) and a*.*b, there exists an integer ko

such that for k>ko

ffi> (cos q)12> o'

Write ro:6in {lz-ayl: z(0D(a*,1)}. For k=ko we obtain by (a.3)

ffi=- ffi@osE)l2 
> (tanh tcosE)l2'

By Lemma2.8 (2) this implies that capAens(Cå)>0. Let f :/(Et,F; B\. It
follows from Lemma4.5 and Theorem 3.8 that M(f):*. This conclusion con-
tradicts (4.1) and the upper bound

given by (2.4).

4.7. Corollary. Let f: B'*G' be a quasiconformal mapptng, let b€08", attd

let E,FcB" be two sets with capdens (E,b)=O and capäens(n b)>0. Suppose

that f(x) tends to a limit q. os x approaches b through the set F. Then lol=
lim sup,*r,, ,r lf@)|

Proof. The proof follows from the proof of Theorem 4.6.

4.8. Remark. It is not possible to replace the condition capdens (E,b)>O
of Corollary 4.7 by cap dens (E, b)>0. We shall now show this with the aid of the
following argument, which resembles the reasoning in [13, 6.6].

Let f: Bz-G' be a conformal mapping which does not possess a radial limit
at eL:(|,0)e0n,. Wemayassumethat0, aQC*u(f, e.), where ull andC*u(f,er)
is the cluster set of/ on the radius (0, er). Choose sequences (a) and (åe) in (0, er)

with ak*€t and b*t€r such that f(o)*Q and f(bo)*q as k**. Write
E:vD(ar,,l) and F:vD(b*,l). From Lemma4.4 it follows that /(x)*Q 6
x*el through the set E andf(x)*d, äs x+€r through F. Lemma 2.8 Q) implies that
cap <lens- (E, er)>O and cap äens (F, er)>Q. Hence the assumption cap dens (,E, å)>0
of Corollary 4.7 cannot be replaced by cap aens 1f, a;=0.

We now give a consequence of Theorem 4.6, which was proved in [3] by dif-
ferent methods. This consequence extends Tord Hall's theorem [4, Theorem II] on
bounded analytic functions (see [13, Section 4]). See also F. W. Gehring's result
in12, p. 2ll.

M(JD s o)n-, (,or+)'-'
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4.9. Corollary. Let f: B" *G' be a quasiconformal mapping and let f(x) tend
to a limit a as x approaches b<AB" through a set E in B" with capdens (E,b)=O.
Then f has the angular limit a at b.

4.10. Cluster ualues. Given a continuous mapping f: B"*R", e=0, and a(R',
we denote by E"the setf-LB"(u,e) when d.#* and 7-t(n'18'(1/e)) when a:-.
Then the cluster set C(f,b) of f at å (cf. [0, p. 52D can be alternatively defined as

the set of all points a€R' such that b(E" for all e=0.
Let now f: B"-G' be quasiconformal and bC\B". Then Corollary4.9 gives

us a sufficient condition for the fact that a point a is the angular limit of f at å. The
next theorem provides us with a more general result of this kind, and for this purpose
we introduce some terminology (cf. [3, Section 5]). Let a€C(f, å) and for e>0
write äe:capdens (E",b). Then s is a capacity cluster ualue of f atb if for some
d>0

(4.1 1) lim eä3 - 0.
e-*0

The least upper bound of numbers dfor which condition (4.11) holds, is called the
order of a. Adopting this terminology we shall now prove the following theorem,
which extends Doob's theorem [, Theorem 4] to the case of quasiconformal map-
pings. Theorem4.l2 was proved in [3, 5.5] by a different method involving a nor-
mal family argument. For a comparison between Doob's original theorem and 4.12,
see [3, Section 5].

4.12. Theorem. Let f: B"-G' be a quasiconformal mapping, let b€08', and
letf haue a capacity cluster ualue a of order greater than ll(n-l) at b. Thenf has

the angular limit q, at b.

Proof. Performing a preliminary Möbius transformation if necessary, we may
assume that a*-. Suppose thatf does not have the angular limit q at å. Then
there is a((0,n12) and a sequence (åo) in K(b,E)nB" with bo*$ and f(h)t
fr*a as k**. Fix ro>0 such that f€R\a'(a,2rr;. For e((0, ro) let E":
f-18"(a, e). Since byQK(b, q) and b**b, there is k. such that I -lbkl=
lå1-ål(cos E)12 for k=kr. By Lemma 4.4thereis ko>k, such that fD(br,l)c
.R'\B'(a, ro) for k=ko. Let E:U*=4 D(b1,,1). By (4.3) B"(bk, (tanh l)(1 - lå*D)c
D(bk,l) for all k:1,2,.... Hence it follows from Lemma2.8 Q)thatfor k>k,

M(E,lbk-bl,b) = c(n, q) : cnlog(t +(tantr I cos q)12).

For e((0, r) write f ":/(E, E"; B"). Let ä":sap dens (E", å). Then for e((0, r)
there is k"=ka such that M(E",lbo.-bl,b)=ö"12. For e((0,r0) let Ff:frn
B"(b, lbk.-bl), Fi:E"nB'(b, lbo"-bD, and Fr":sn-t(å, zlbk.-bl). Because

Å(Ff, F[; B')cf " we get by ihe comparison principle of Lemma 2.9 and by
Lemma 4.5

MQ) > 2-L .3-'min {åo12, c(n, q), c,log2}
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for e €(0, ro). By (2.4) we get

MUf ,) = @n-t

for e((0,r). This together with the preceding lower bound tor M(f ) and (4.1)

shows that ä"*0 as e-0. Hence there exists r1€(0, ro) such that M(f )>J-n-25"
for e((0, rr). This lower bound, together with the above upper bound for M(ft")
and (4.1), yields for e((0, rr)

(,"r?)'-'

(4.13) 0 < (3,,*'K(f)o)n-r)-t = (1og rf"-1og t§')L-',

where B,:fll(tr-1). Since a is a capacity cluster value of order greater than ll@-l),
condition (4.11) is satisfled with d:ll@-l) and thus (4.13) yields a contradiction
when e tends to zero.

If we examine the proof of Theorem 4.12 we see that the following result holds.

4.14. Corollary. Let f: B"-G' be a quasiconformal mapping, let b(.08",
and let E,:f-rB"(e), ä":capdens(,E", b). If limsup,*sä"(log(l/e))'-r-*, then

f has angular limit 0 at b.

4.15. Remarks. (1) The assumption of Theorem 4.12 implies that

lim ä,(log (l/e))'-t : -.

Hence the assumption of Corollary 4.14 is slightly more general.

(2) For further results connected with Corollary 4.9 and Theorem 4.12 we refer
the reader to [13]. Observe that these results can be easily generalized to cover the

case of closed qtasiregular mappings as well (cf. tl2l). For the theory of general

quasiregular mappings we refer the reader to the papers of Martio, Rickman, and

Väisälä (cf. [6] and the references in [1 1]) and for the theory of closed quasiregular

mappings to [1, ChapterII].

(3) It is possible to extend Corollary 4.9 to the case when the set E is a compact

set on the boundary of 8". Perhaps the most natural way to do this is to introduce

the asymptotic extension J of a quasiconformal mapping / of B' (cf. Näkki [8]) and

then to define the values of/on -E in terms of /. Since E is compact, we can use a

result of Gehring [3, Lemma 1] in place of Lemma 4.5. We can also extend Theorem
4.12 in the same way.
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