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LOWER BOUNDS FOR THE MODULI
OF PATH FAMILIES WITH APPLICATIONS
TO NON-TANGENTIAL LIMITS OF QUASICONFORMAL
MAPPINGS

MATTI VUORINEN

1. Introduction

Given a set ECR" and a point x€R", n=2, we denote by cap dens (E, x)
and cap dens (E, x) the lower and upper n-capacity densities of E at x. These con-
cepts will be defined in Section 2 by means of n-moduli of path families, and there-
fore one could as well regard these as “lower and upper n-modulus densities”. For
an alternative definition involving n-capacities of condensers, we refer the reader
to Martio and Sarvas [7] and to Remark 2.6.

Let now E; and E, be two sets in R"” with cap dens (E;, 0)=96,;>0, j=1, 2,
and for r=0 let I, denote the path family whose elements join E; and E,in R™\B"(r)
in the sense of Section 2, and let M (I',) denote the n-modulus of I',. Our main result
is the following lower bound for M (I',): there exists a constant ¢=>0 depending
only on §,, 8,, and n such that for small r=0

(1.1) M(F,)Eclog%.

This lower bound is well known only in some particular cases, e.g. when E; and
E, are connected sets joining 0 and the boundary of the unit ball B”. The estimate
(1.1), together with other lower bounds of Section 3, is proved by means of the
so-called comparison principle for the modulus. The comparison principle was
introduced by Nikki in [8] and it is closely related to a lemma of Martio, Rickman,
and Viisala [6, 3.11].

In Section 4 we shall use the method of Section 3 to study the following problem.
Let f be a quasiconformal mapping of B”, let bcdB", let E;CB" be a set with
beE;, j=1,2, and assume that f(x) tends to a limit «; as x approaches b through
E;, j=1,2. How thick must the sets E; be at b in order that a;=a,? It is easy
to see that this is the case if E; and E, are non-degenerate connected sets. We shall
show that even the considerably weaker conditions cap dens (E,, b))=0 and
cap dens (E,, b)=0 imply o;=a,. As regards the sharpness of these conditions,
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we shall show that the former condition cannot be replaced by the weaker condi-
tion cap dens (E, b)>0. Problems of this kind are related to the results of [13],
and the main result of Section 4, Theorem 4.12, gives us a new proof for a quasi-
conformal version of J. L. Doob’s theorem [1, Theorem 4] (cf. also [13, Section 5]).

The results of this paper were announced in [14], where also an application of
(1.1) to quasiregular mappings was given.

2. Preliminary results

2.1. Notation. Throughout the paper we assume that n is a fixed integer and
n=2. We denote the n-dimensional euclidean space by R" and its one-point com-
pactification by R"=R"u {}. All topological operations are performed with respect
to R unless otherwise mentioned. Balls and spheres centered at x€R" and with
radius r=0 are denoted, respectively, by

B"(x,r) = {z€R": |z—x| <1},
S"1(x,r) = {z€R": |z—x| =r}.

We employ the abbreviations B"(r)=B"(0, r), B"=B"(1), S *(r)=S""*(0, r), and
§""'=8""1(1). For r>s>0 we denote the spherical ring B"(r)\B"(s) by R(r, s).

2.2. Path families and their modulus. A pathis a continuous nonconstant mapping
7: [0, 1] A4, where A is a subset of R". The point set y[0, 1] will be denoted by |y].
Given sets E, F, and G in R", we let A(E, F; G) denote the family of all paths y
joining E and F in G in the following sense: y(0)€E, y(1)¢ F and |y|cG. For the
definition and basic properties of the (n-)modulus M(I') of a path family I' we refer
the reader to Viisild’s book [10, Chapter 1]. Given a set E—R", r=0, and x¢R",
we introduce the abbreviation

.3) M(E, r, x) = M(4(S"*(x, 2r), B"(x,r) n E; R")).

Let ucR" and O<a<b and let I' be a path family such that [y] N S" (i, a) =
P51yl 0 8" *(u, b) for every yeI. Then the upper bound

.4) M) =a,_, (log 5)1_"

holds [10, 6.4, 7.5] and here w,_, is the surface area of S" 1.
If ECR" and x€R", we define the lower and upper (n-)capacity densities of
E at x by
capdens (E, x) = lir,l"l_’l'glf M(E, r, x),
(2.5) —
capdens (E, x) = lir£1_>soup M(E, r, x).




Lower bounds for the moduli of path families with applications to quasiconformal mappings 281

2.6. Remark. Martio and Sarvas considered in [7] the condition
cap dens (E, x)=0 for compact E. The definition in [7] was based on the use of
condensers and their n-capacities. It follows from Ziemer [15] that the definition of
Martio and Sarvas is, for compact E, equivalent to (2.5).

The most important lower bounds for the moduli of path families are given by
the following lemma. This result is often called the (spherical) cap-inequality and
was proved by Gehring (cf. [10, Chapter 10]).

2.7. Lemma. Let E and F be disjoint non-empty subsets of the sphere
S=8""(x,r) and let M5 be the n-modulus on S. Then

MS(A(E, F; S)) = ¢/,
where c, is a positive constant, as in [10, (10.11)], depending only on n.

Throughout the entire paper we let ¢, denote this constant. The cap-inequality
yields the following standard lower bounds for the quantities M (E, r, 0), which will
be frequently used in the sequel.

The euclidean diameter of ACR” is denoted by d(4).

2.8. Lemma. Let E be a set in R" and let r=0. Suppose that there is a con-
nected set E,CB"(r) n E. Then

_ 4r+d(E)
(4] M(E, r,0) = c,log 4r—d(E) "

If E.nS" Y (r)#0 and E,n S" '(s)#0 for some s€(0,r), then

@) M(E, 1,0) = ¢, log 2=

r

Proof. The lemma was proved in [13]. For completeness we will prove (2).
To prove the second inequality fix u€E, n S""*(s) and v€E,n S""'(r) and choose
a line L through u and v. Let w&éL n S""'(2r) be such that jv—w|=|u—w|. Letp
and ¢ denote the lengths of the projections of u—v and v—w on the line through
0 and ». We get by the cap-inequality (cf. [10, 10.12])

—Iu—rzjj_»(vu;—w“ =c, log(g—k 1] = c,log 2r=s ,

M(E, r,0) = c,log -
where we have applied the obvious estimate p/g=(r—s)/r.

Lemma 2.8 gives us an example of a situation where one obtains a lower bound
for the modulus of a path family joining two sets by means of the cap-inequality.
In many cases this is not possible; see e.g. the situation described at the beginning
of Section 3. In such cases we shall apply the next lemma, which, following Nakki
[8, 3.3], we shall call the comparison principle for the modulus. Martio, Rickman,
and Viisild have used the idea behind Lemma 2.9 in the proof of Lemma 3.11
in [6].
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29. Lemma. Let F,, F,, and F, be three sets in R" and write Ijj=A(F;, F;; R"),
1=i, j=3. If there exist x€R" and O<a<b such that F,, F,CB"(x,a) and
F3C R\ B"(x, b), the following estimate holds:

M) =3 min{M(T), M(T), ¢, log 2},

3. Lower bounds for the moduli of path families

Let E; and E, be two sets in R” with M(E;, s, 0)=6,=0, j=1,2, for some
s>0. For the estimates of this section it is important to find a lower bound in terms
of 6, 05, and n for the quantity

M(A(Ey, Ey; A)),
where A is the spherical ring R(/s, s/) and i>1 is an appropriately chosen num-
ber depending only on d,, d,, and n. Applying the comparison principle of Lemma
29 with F,=FE, nB"(s), F,=E,n B"(s), and F,=S8""1(2s), we get the lower

bound
M(A(Ey, Ey; R") = 3="min {5;, J,, ¢, log 2}.

Utilizing this lower bound and the upper bound of (2.4) we shall now give a number
A=1 with the desired property.

3.1. Lemma. Let 0,,0,>0 and let .=>1 be such that
®,-1 (log V) ™" = 1/6,

where t=3""min {0y, J,, c,log2}. If s=>=0 and E, and E, are two sets in R" with
M(E;, s,0)=0; for j=1,2, the following lower bound holds:

M(A(E,, Ey; R(s, s/2))) = /2.
Proof. Denote by Fy, F,, and F, the sets R(s,s/VA)nE;, R(s,s/V2) N E,,
and S"7'(2s), respectively. From the choice of /. and (2.4) it follows that
M (B (s/V7), s, 0) = 1/6.

This implies for j=1,2 that
F ! 5t
M( 1,8,0)251.__?>3n6.

Hence by the comparison principle of Lemma 2.9,

5t

M(A(F,, Fy; R)) = 37" min{3”%, c,,logZ} ==
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Since F;CR(s, s/VZ), j=1,2, we get by (2.4) and the choice of 4,
M (A(Fy, Fy; R(V7s, 5/2))) = M(A4(Fy, Fy; R) =20, (log V7)™
5t 2t ot

6 6 2

v

which together with the estimate
M(A(E,, Es; RUs, s|2))) = M(4(Fy, Fy; R(V3s, 5/2))

yields the desired lower bound.
We now prove the estimate (1.1) in the introduction.

3.2. Theorem. Let &;,0,>0 and let A=1 be the number in Lemma 3.1.
Then there exists a constant ¢>=0 depending only on 0, d,, and n with the following
property: if r€(0, A7 and E,, E,CR" with M(E;,s,0)=0; for sc[ir,1] and
j=1,2, then

M) = clog%,
where T',=A(E,, Ey; R™B"(r)).

Proof. Fix r€(0,A7Y. Define m=max {k€ N: '~ *=r}. Then A *"=r=
A7 and m is a positive integer with m=(log (1/r)/(3 log 2)). The path families

Fk=A(E1, Ez; R().3;2k, }41.—2,()), k= 1, ey, m,

are separate in the sense of [10, 6.7] and {J;_, I'y<TI,. Hence

mry = M| )= 3 may.
k=1 k=1

From Lemma 3.1 it follows that there exists =0 depending only on J,, J,, and n
such that M(I',)=t/2 for each k. Thus we get

1

M(F,) zmlogT.

Since A depends only on d;, J,, and n, this estimate is of the desired type.

3.3. Corollary. Let E;CR" with M(E;,s,0=6,>0 for s¢(0,1] and
j=1,2, and let A=1 be as in Lemma3.1. Then for ré(0,27]

1
M) = clog—r—,

where I',=A(E,, Ey; R™\B"(r)) and c is as in Theorem 3.2.
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3.4. Theorem. Let 6=>0 and let A>1 be the number in Lemma 3.1 cor-
responding to the case 6,=03,=9. Then there is a number d=0 depending only on
6 and n with the following property: if r€(0, 7% and ECR" with M(E, s, 0)=6
SJor s€[Ar, 1], and F, is a continuum joining S"*(r) and S™, then

MT,)=d log’—l.,
where T',=A(E, F,; R"™\B"(r)).

Proof. Fix re(0, A7%. Since by Lemma 2.8 M(F,, s, 0)=c,log 2—A~1) for
s€[Ar, 1] it follows from Theorem 3.2 that

M(A(E, F,; R"™\B"(s))) = ¢ log%
for s€[ir, 1], where c is the positive constant given by Theorem 3.2 for &,=6
and J,=c,log (2—A7Y). Then

M(I',) = M(A(E, F,; R"™\B"(s)))
for s€[Ar, 1] and hence

1 c
M(TI,) = clogﬂ = 710g7,

where in the last step we have used the fact r€(0, 22]. We have proved the asserted
estimate with d=c¢/2.

In the next result we show that one may remove the restriction r€(0, A1~% of
Theorem 3.4 if one slightly modifies I', and d.

3.5. Theorem. Let 6=>0 and let E be a set in R* with M(E,s, 0)=5 for
s€(0, 1]. Then there is a number d*=>0 depending only on & and n such that if ré o, 1)
and F, is a continuum joining S"~*(r) and S"™*, then

M) =d* log%,
where I'f=A(E, F,; R").

Proof. Let A>1 be the number in Lemma 3.1 corresponding to the case
0,=0,=0. If re(0, A72], the desired estimate follows from Theorem 3.4 with d*=d.
Fix r€(A7% 1). Applying the comparison principle of Lemma 2.9 to the sets B" N E,
B"n F,, and S"(2) we get

M(I7) = 37" min {6, M(F,, 1,0), ¢, log 2}.
In combination with the lower bound of Lemma 2.8 (2) this estimate yields

M(IY) = 37" min {5, ¢, log 2—r)}.
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Let a=(3"log A?)~*min {4, ¢, log 2—A72)}. Since r€(172,1) we obtain
MI)H = alog%.

Hence
M) = a* log%

for all r€(0,1), where d*=min {d, a}=0.

3.6. Remark. In Lemma 3.1 we assumed that M(E;, s,0)=6;>0 for j=1,2
and obtained a lower bound for M (I (s, s/2)), where I (/s, s/2) = A (Ey, Ey; R(4s, 5/2)).
If we assume that M(E N B"(s), s, 0)25 ;>0 for j=1,2, we can prove a related
lower bound for M(I'(s, s/ VI)) by making use of (2.4) and the reflection principle
for the modulus (cf. Lemma 4.5).

3.7. Remark. Observe that the lower bound of Theorem 3.2 follows from
the cap-inequality, Lemma 2.7, in certain special cases, e.g. when both E; and E,
meet S"*(r) for each r€(0, 1] (cf. [10, 10.14]). However, the condition of Theo-
rem 3.2 may be satisfied even if (E,u E,;)nS" '(r)=0 for almost every re(0, 1].
In fact, by a result of Wallin there are sets E,, E, with M(E;,r,0)=6;>0 for
every r€(0,1] j=1,2, such that the Hausdorff dimension of E; is zero, j=1,2
(see [13, 2.5 (3)]). Various sufficient conditions for cap dens (E, 0)>0 were given
in [13, Section 2] and in Martio [5].

Let E, and E, be two sets with cap dens (E;, 0)>0, j=1,2, and for r=0
let I',=A(E,, E;; R"™\B"(r)). Then Theorem 3.2 shows that M(I",) tends to infinity
with a certain rapidity when r—0. In the next two theorems we study the behavior
of M(I',) under the more general assumptions that cap dens (E;, 0)>0,
cap dens (E,, 0)>0. We show that

l,ifé M) =o
also in this case, but the convergence may take place as slowly as we wish.

3.8. Theorem. Let E, and E, be two sets with cap dens (E;, 0)=6,>0 and
cap dens (B, 0)=06,>0, and let TI,=A(E,, Ey; R™\B'(r)) for r=0. Then
M(T,)—~>< as r—0.

Proof. Choose a sequence (r;) tending to zero such that M(E;, r,, 0)=6;/2,
Jj=1,2, forevery k=1,2,.... Let A>1 and =0 be the constants corresponding
to 64/2, 6,/2, and n given by Lemma 3.1. Passing to a subsequence and relabeling
if necessary, we may assume that the rings R(Ar, r/%), k=1, 2, ... are separate.
Let Iy=A(Ey, Ey; R(Ar,r/3)), k=1,2,.... Since the families I', are separate
and M(I',)=t/2=0 for all k, the assertion follows from [10, 6.7].

3.9. Theorem. Let h: (0,1]—-(0, ) be a non-increasing function with
lim, ,, h(t)=co. Then there exist sets E and F with cap dens (E, 0)>0 and
cap dens (F,0)=0 such that M(')=h(r) for all re(, 1], where I.=
A(E, F; R'™N\B"(r)).
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Proof. Let E,=S""1(2"%), F,=S8""1(2-%*) k=1,2,..., and E=UE,.
Then cap dens (E, 0)=c, log (5/3) by Lemma 2.8 (1). We shall now choose an
infinite set PCN such that the set F= U {F,: k€ P} has the desired property.
Observe that for any infinite set PN cap dens (F, 0)=c, log 3 by Lemma 2.8 (1).
If k=2, then by [10, 7.5, 6.2, 6.4]

M(A(F,, E; R") = 20,_;(log 2)'~" = b.
For k=1 and O<r<27%*!
M(A(F,, E; R™\B"(r))) = b.
Let
py = min {kE N: h(2-%+%) = b}
Pm+1 = min{k€éN, k> p,: h(2=%**%) = (m+1)b}
m=1,2,...
We show that the set P={p,: k€ N} has the asserted property. Fix r€(0,1]. If
r=27?nt1 there is nothing to prove, since then M (I',)=M (§)=0<h(r). Hence
we may assume r¢€(0, 272P1%Y), Let
s=max {k€N: 27 %* =r} = 1.
Then by [10, 6.2]

M(T,) =sb=hQ%:*%) = h(r)
as desired.

3.10. Remark. In Theorem 3.8 one may not replace the assumptions by
capaa_ﬁg(Ej, 0)=0, j=1,2. To show this we construct for a given &¢=>0 sets E;
and E, with M(A(E,, Ey; R")<e and cap dens (E;, 0)>0, j=1, 2.

Let ¢e=0 and r,=1. Choose r,,,€(0,r,/2), k=1, 2, ... such that

T

1—n
Wy—1 [log ) < g2~k

Tr+1

Then it follows from (2.4) that the sets Ey=J;_, S"  (ra+1) and E;=J;, S" 7 (ra)
satisfy M(4(E,, E,; R"))<e. From Lemma 2.8 (1) it follows that cap dens (E;, 0)=0,
j=12.

4. Non-tangential absolute values of quasiconformal maps

In the present section we shall use the method of Section 3 to study boundary
behavior of quasiconformal mappings. A homeomorphism f: G—G’, where G and
G’ are domains in R", is quasiconformal if there exists a constant K¢[l, =) such
that for every path family I' in G

“.1 M)/K = M(fT') = KM (I,
where fI'={foy: yeI'}. The smallest possible K is denoted by K(f).
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Let f be a quasiconformal mapping of B", let b€0B", and let ECB" be a set
with cap dens (E, b)>0. The first theorem of this section shows that each non-
tangential lim sup of the absolute value of fis bounded by the lim sup of the absolute
value of f through the set E. As a consequence we get an extension of Tord Hall’s
theorem [4, Theorem II], which was proved in [13, 4.4] by different methods. The
second and the last theorem of this section gives an alternative proof for the quasicon-
formal counterpart of J. L. Doob’s theorem in [13, 5.5].

4.2. The hyperbolic metric. The hyperbolic metric ¢ in B" is defined by the
element of length
|dx|
1—|x[?”

do =

If @ and b are points of B", then ¢(a, b) denotes the geodesic distance between a and b
corresponding to this element of length. For 4¢ B" and M<(0, ) we let D(b, M)
denote the hyperbolic ball {x€B": o(b, x)<M}. Let r,=min {|z—b|: z€dD (b, M)}.
By integrating we get

_ (I—|b[»tanh M
(4.3) "= T¥|b[tanh M °

The next result follows from the proof of [13, 6.5].

4.4. Lemma. Let f: B"—~G’ be a quasiconformal mapping and let (b,) be a
sequence in B" with |b|~1 as k—oo. If Mc(0, ) and E= v D(b;, M), then

lim sup | (x)| = lim sup | (by)].
xX€E

A corresponding result holds for lim inf.

We shall need the following symmetry property for the modulus, which was
proved in [13, Section 4].

4.5. Lemma. Let E and F be two subsets of B". Then M(A(E, F; B")=
M(E, F; RY)/2.

For bc0B" and ¢€(0, n/2) we let K(b, ¢) denote the cone {z€ R": (b|b—z)>
Ib—z| cos ¢}.

4.6. Theorem. Let f: B"—~G’ be a quasiconformal mapping, let b€OB", and
let ECB" be a set with cap dens (E, b)=0. Then for every ¢@€(0, r/2)

lim sup | f(x)| = lim sup |f(x)],
x €xK(b, ) i €E

lim inf | (x)| = lim inf |£(x).
x€E x ExK(b, 0)
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Proof. Fix ¢€(0, n/2). It suffices to prove the first inequality, since the second
one can be proved in the same way. Denote by § and # the left and right hand sides
of the first inequality, respectively. Assume that §=7. Choose ¢, s€(7, §) with
t<s. By Lemma 4.4 there is a sequence (@) in B"n K(b, ¢) with a,—~b as k-
and with | f(x)|=s for all x€ U D(a,, 1)=F. Choose r,€(0, 1) such that | f(x)|<¢
for x¢E,=En B"(b, r;). Since a,€K(b, ) and a,—~b, there exists an integer k,
such that for k=k,
1—|a
——F = (cos ¢)/2 = 0.
@ —b| (cos @)/

Write r,=min {|z—a,|: z€dD(a, 1)}. For k=k, we obtain by (4.3)

Te M
lag—b| = 1—lay

| (cos ¢)/2 = (tanh 1 cos ¢)/2.

By Lemma 2.8 (2) this implies that cap dens (F, b)=0. Let I'=A(E;, F; B"). It
follows from Lemma 4.5 and Theorem 3.8 that M (I')=<. This conclusion con-
tradicts (4.1) and the upper bound

1—n
MUT) = w,_, (1og%]
given by (2.4).

4.7. Corollary. Let f: B"—~G’ be a quasiconformal mapping, let b€OB", and
let E, FCB" be two sets with cap dens (E, b)>0 and cap dens (F, b)>0. Suppose
that f(x) tends to a limit o as x—a_gproaches b through the set F. Then |a|=
limsup, 4 .cp [f()l.

Proof. The proof follows from the proof of Theorem 4.6.

4.8. Remark. It is not possible to replace the condition cap dens (E, b)=0
of Corollary 4.7 by cap dens (E, b)=0. We shall now show this with the aid of the
following argument, which resembles the reasoning in [13, 6.6].

Let f: B*-~G’ be a conformal mapping which does not possess a radial limit
at e;=(1, 0)€0B%. We may assume that 0, a€ C4(f; €;), where a0 and C,4(f, &)
is the cluster set of f on the radius (0, ¢;). Choose sequences (a,) and () in (0, e;)
with a,—~e, and b,—e, such that f(g)—0 and f(b)—>a as k—o. Write
E=uD(g,1) and F=uD(b,1). From Lemma 4.4 it follows that f(x)—~0 as
x—e, through the set E and f(x) >« as x—e; through F. Lemma 2.8 (2) implies that
cap dens (E, e;)>0and cap dens (F, e;)=>0. Hence the assumption cap dens (E, b)=0
of Corollary 4.7 cannot be replaced by cap dens (E, b)=0.

We now give a consequence of Theorem 4.6, which was proved in [13] by dif-
ferent methods. This consequence extends Tord Hall’s theorem [4, Theorem II] on
bounded analytic functions (see [13, Section 4]). See also F. W. Gehring’s result
in [2, p. 21].
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4.9. Corollary. Let f: B"~G’" be a quasiconformal mapping and let f(x) tend
to a limit o as x approaches bEOB" through a set E in B" with cap dens (E, b)=>0.
Then f has the angular limit o« at b.

4.10. Cluster values. Given a continuous mapping f: B"—~R", ¢=0, and «€R",
we denote by E, the set /™1 B"(a, &) when ac and f~'(R"™\B"(1/¢)) when a=co.
Then the cluster set C(f, b) of fat b (cf. [10, p. 52]) can be alternatively defined as
the set of all points «€R" such that b¢E, for all &>0.

Let now f: B"—~G’ be quasiconformal and b€dB". Then Corollary 4.9 gives
us a sufficient condition for the fact that a point « is the angular limit of fat 5. The
next theorem provides us with a more general result of this kind, and for this purpose
we introduce some terminology (cf. [13, Section 5]). Let ac€C(f, b) and for &=0
write §,=cap dens (E,, b). Then o is a capacity cluster value of f at b if for some
d=0 -

(4.11) lim e =0.

The least upper bound of numbers d for which condition (4.11) holds, is called the
order of a. Adopting this terminology we shall now prove the following theorem,
which extends Doob’s theorem [1, Theorem 4] to the case of quasiconformal map-
pings. Theorem 4.12 was proved in [13, 5.5] by a different method involving a nor-
mal family argument. For a comparison between Doob’s original theorem and 4.12,
see [13, Section 5].

4.12. Theorem. Let f: B"—~G’ be a quasiconformal mapping, let b€0B", and
let f have a capacity cluster value o of order greater than 1/(n—1) at b. Then f has
the angular limit o at b.

Proof. Performing a preliminary Md&bius transformation if necessary, we may
assume that o=o. Suppose that f does not have the angular limit « at . Then
there is ¢€(0, #/2) and a sequence (b,) in K(b, ) N B* with b,—~b and f(b,)—~
B#a as k—oo. Fix ry>=0 such that BER™B"(a, 2r,). For ec(0,r) let E,=
f1B"(a,¢). Since b,cK(b,9) and b,—~b, there is k, such that 1—|b|=
lb—bl(cos @)/2 for k=k,. By Lemma 4.4 there is ko=k; such that fD(b,, 1)C
R™B"(a, ro) for k=k,. Let E=Jy=y, D(by, 1). By (4.3) B"(b, (tanh 1)(1—|b,]))
D(b;, 1) for all k=1,2,.... Hence it follows from Lemma 2.8 (2) that for k=k,

M(E, |b,—b|, b) = c(n, ) = ¢,log (1 +(tanh 1 cos ¢)/2).

For ¢€(0, ry) write I',=A(E, E,; B"). Let §,=cap dens (E,, b). Then for &€(0, ry)
there is k,=k, such that M(E,, [b, —bl|, b)=0,/2. For e€(0,r)) let Fi=En
B"(b, b, ~bl), F;=E,nB'(b,|b, —b]), and F;=5""'(b,2[b, —b|). Because
A(Ff, Fy; B"ycI', we get by the comparison principle of Lemma 2.9 and by
Lemma 4.5

M(T,) =27*-3 " min {6,/2, c(n, @), c,log 2}
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for &€(0, ry). By (2.4) we get
7 1—n
MUT) = 0, (10572

for €€(0, ry). This together with the preceding lower bound for M(I',) and (4.1)
shows that §,~0 as e—0. Hence there exists r,€(0, r,) such that M(I',)=3"""%5,
for &€(0, r,). This lower bound, together with the above upper bound for M (fT,)
and (4.1), yields for &€(0, ry)

4.13) 0 < (3" 2 K(f)w,—;)~* = (log rf:—log ef=)'~n,

where B,=8Y"~Y. Since « is a capacity cluster value of order greater than 1/(n—1),
condition (4.11) is satisfied with d=1/(n—1) and thus (4.13) yields a contradiction
when ¢ tends to zero.

If we examine the proof of Theorem 4.12 we see that the following result holds.

4.14. Corollary. Let f: B"~G’ be a quasiconformal mapping, let bcOB",
and let E,=f'B"(¢), 5,=cap dens (E,, b). If limsup,_,d,(log (1/e))" *=eco, then
f has angular limit O at b.

4.15. Remarks. (1) The assumption of Theorem 4.12 implies that
lgg J,(log (1/e))"~t =eo.

Hence the assumption of Corollary 4.14 is slightly more general.

(2) For further results connected with Corollary 4.9 and Theorem 4.12 we refer
the reader to [13]. Observe that these results can be easily generalized to cover the
case of closed quasiregular mappings as well (cf. [12]). For the theory of general
quasiregular mappings we refer the reader to the papers of Martio, Rickman, and
Viisila (cf. [6] and the references in [11]) and for the theory of closed quasiregular
mappings to [11, Chapter 1I].

(3) It is possible to extend Corollary 4.9 to the case when the set E is a compact
set on the boundary of B". Perhaps the most natural way to do this is to introduce
the asymptotic extension f of a quasiconformal mapping f of B" (cf. Nikki [8]) and
then to define the values of f on E in terms of f. Since E is compact, we can use a
result of Gehring [3, Lemma 1] in place of Lemma 4.5. We can also extend Theorem
4.12 in the same way.
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