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ON SOME QUESTIONS OF UNIQUENESS
IN THE THEORY OF SYMMETRIZATION

MATTS ESSEN and DANIEL F. SHEA*

Introduction. In a series of remarkable papers, [1]—[4], A. Baernstein has
solved a collection of extremal problems in function theory, potential theory and
harmonic analysis. A central theme in these papers is the relation between plane
domains D and their symmetrizations D*, and majorization arguments showing
the extremality of certain rearrangements of functions associated with the domains D.

For example, in [2] Baernstein studies the class .S of schlicht functions in the
unit disk U={|z|]<1}, normalized by f(0)=0, f’(0)=1. He proves

2 2n

(1) J @(log |f(re®))do = [ d(log|k(re®))d0 (0 <r<1)
0 0

for any ¢ convex and increasing on (— <o, =) and for all f€S, with k(z)=z/(1—2)%

Further, Baernstein proves that if equality holds in (1) for some increasing, strictly

convex ¢ and some r€(0, 1), then

2 f(2) = e *k(e"z)
for some real a.

(A convex function is termed strictly convex if it is not linear on any interval.)

Baernstein finds other inequalities analogous to (1) for general analytic func-
tions in U, Green’s functions, harmonic measures and conjugate functions; but for
these results he leaves open the question of finding uniqueness results like (2) for
the expected extremal functions.

Our purpose here is to consider this question, and we first study the case of
equality in Baernstein’s result

2n 2n

(3) [ o(ue®)do = [ d(v(re))dd (0 <r <o)

0 0
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for Green’s functions: Let D be a domain in the extended plane having a Green’s

function, let z,€¢ D and let u be Green’s function of D with pole at z,. Let D* be

the circular symmetrization, with respect to the ray =0, of D (the explicit defini-

tion is given in Section 1), and let v be Green’s function of D* with pole at |z,].

Define u (respectively v) to be =0 outside of D (resp. D*). Then Baernstein has

proved (3) for all convex nondecreasing functions @ on [0, «); see [2], Theorem 5.
To this we add

Theorem 1. If equality holds in (3) for some r€ D*n (0, =) and some increasing
strictly convex &, then

“) D = ¢*D*
for some real a. If z,#0 or o, then a=arg z,.

In case the r-value for which equality is known to hold is r=|zy|,» it is to be
understood here that & satisfies also f L ®(—log 0)df<e-, so that the P-means
of u and v on this circle remain finite.

Theorem 1 answers a question posed in [2], p. 142.

Put M/(r, u)=sup, u(re) and notice that (3) implies

®) M@,u)=M@r,v) 0O<r <o)

Theorem 1 suggests that equality here for some r€D*n (0, =), r## |z,|, implies (4),
and we prove this as well in Section 2.

An analogue of Theorem 1 for integral means of harmonic measures is given
in Section 2.

Inequality (3) is a key element in the proof of a striking symmetrization principle
for functions holomorphic in a disk established in [2]: Let f be holomorphic in U,
put D=f(U) and let D, be a simply connected domain, D,DD*. Assume D is
not the whole plane, so that there exists a conformal map F of U onto D, with
F(0)=]f(0)]. Then Baernstein proved

2n 2n

(6) [ ®(log | f(re?))d0 = [ ®(log |[F(re?)))d0 (0 <r<1)
0 0
for all convex nondecreasing @ on (— oo, o).
Using Theorem 1, we prove

Theorem 2. If equality holds in (6) for some rc(0,1) and some increasing
strictly convex @, then

@) D = é*D*, D,=D* f(z)=¢*F(e*z)

JSor some real o. and B.

Theorem 2 and its analogue for M(r, | f|) are proved in Section 3.

Theorems 1 and 2 are similar in form to some of the uniqueness results obtained
by Jenkins in, e.g., [20].
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Let fcL'(T) be real valued, where T={|z|=1}, and define

®) F(o) = o ff( e 2 o,

In [4], Baernstein establishes some sharp bounds on the conjugate function
) f(€®) = lim Im F (re'®).
For example, consider the sharp form of Kolmogorov’s LP-norm inequality
10) Ifl,=Clifls ©<p=<1)
with
1 2n
= |lesc O)|, = [2 f |sin |~ Pde]

due to B. Davis [9]. Baernstein gives an informative proof of (10) in [4], as a limiting,
case of a theorem about the analytic functions

1+ze % ;

an () = [ due,

T
where u€M(T), the class of real valued Borel measures on 7. We denote by ||
the total variation of u, and put
(12) ji(e?®) = rl-ﬁrl Im F,(re®).
Then (10) is equivalent to
13) ldl, = Cpllul O <p=<1D.
Equality holds when u is the singular measure

v——-i(sl——l

2 2
here 6,6M (T) is the unit mass concentrated at (€7, so that

0_1;

2z
Fv(Z) = —1-:—2—2
Let us also put, for each b€[0, 1],
1 1
(14) v,,=7(1+b)51-~3(1—b)5_1

so that [|v,]|=1, v,(T)=>b. Then Baernstein deduces (13) from his inequality

2n 27
(15) [ |Eu(re®)rdo = [ |F,(reé?Pdd O<r<1;0<p=2),
0 0
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valid for all ue M(T) with
lul =1, |u(T)| = b.

Concerning (15), we prove

Theorem 3. Assume equality holds in (15) for some r€(0, 1) and some p€(0, 2].
Then u is a rotation of v,, i.e.
H(E) = v,(e"E) (EcT)
Sor some real a. Thus
F,(2) = F,,(e"2) (|z] <1).

Suppose now that equality holds in (15) when r=1 and p€(0, 1); or, that
equality holds in (13) for some p. Then we must weaken our conclusions. We give
the simpler statement, for (13); recall that one measure giving equality in (13) is
v=y,.

Theorem 4. Suppose pc M(T) has |ull=1 and satisfies (13) with equality
Jor some p€(0,1). Then

1=~

where y;, U, are positive measures singular with respect to Lebesgue measure such that

(1) = po(T) = 7
and
(16) A = §(o(e)

holds a.e. for some inner function w(z) in U with w(0)=0.

Conversely, given any such w(z) there exist positive measures y, and u,, each
of mass 1/2, which are singular with respect to Lebesgue measure and mutually sin-
gular, such that if p=p,—u, then (16) is valid a.e., and equality holds in (13).

A similar statement (see Theorem 4.2 below) holds for the measures yu giving
equality in (15) when r=1 and p<1. (This restriction on p is clearly essential,
since F, ¢ HY(U).)

Theorems 3 and 4 and some variants, concerning e.g. Davis’ sharp form of
the weak type (1, 1) inequality for conjugate functions f, are proved in Sections 4
and 5. Analogues for related problems concerning the 7 and rearrangements of f
are treated in Section 6.

Some results on analogous extremal problems for entire functions have already
been given by Baernstein [3], Edrei and Fuchs [11], and the authors [13]. A key step
in [13] involves a new property of Baernstein’s *-function

a7 u*(re’®) = sup f u(re®)do
IEl=20 g
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where Ec[—m,m) and |E|=Lebesgue measure of E. When 4, is an annulus
about the origin and u is subharmonic in A4,, Baernstein [2] has proved that u*
is subharmonic in A, N {0<arg z<n}. In [13], we consider the case

u(z) =loglf(@l, f(2) = {T(l—Z/Zn) (3 |zt =),

and prove that harmonicity of »* in the upper half-plane implies z,=—e"*|z,| for
all n and some real «, so that » has the key symmetry property
‘]
u*(re'®) = f u(re’@+*Nde (0=0=n).
-8

A basic tool here, Lemma 1.1, yields a similar result for more general subharmonic u.

Throughout this paper we systematically refer to the results, methods, ter-
minology and notation of [2] and [4].

1. Study of subharmonic u having ©* harmonic

Let u be subharmonic on an open set D in the extended plane. The circular
symmetrization of D is the open set D* defined as follows: If for r€(0, ) the
intersection of T,={|z|=r} with D is T, or the empty set 0, then T, D* is to
be T, or 0, respectively; otherwise T, D*={re"’: [0/<(2r)™* [1.n pd0}. Finally,
D* contains 0 or o if and only if D does. We assume D* is connected.

It is convenient to assume DcC {s,<|z|<t,}=4, for some 5,=0, t{,=c0, and
that u is positive in D. We put u=0 on A,—D and assume that the extended u
is subharmonic on 4,. Then by [2, p. 141], «* (defined in ( 17)) is subharmonic on
Ay {Im z=0}.

Under certain conditions [2, p. 153], Baernstein has proved that u harmonic
on D implies ©* is harmonic on

D% = D*n{Im z > 0}.
The following converse statement is a key tool in our proofs.

Lemma 1.1. Let u and D be as described above and suppose that u* is harmonic
in D*. Then there exists a€[—mn, n) such that

1.n D = e*D*,
/] /]
(1.2) u*(re®) = [ u(reC ) dp =2 [u(re®*?)de (re’c Ay, 0=0=rn).
—0 0

Proof. For each ré(s,, t,), we define v(reé?) for —n=0=n to be the sym-
metric nonincreasing rearrangement of u restricted to {|z|=r} (for an explicit
definition of this term, see [2], p. 149). Then

2]

(1.3) u*(re’y = f v(re®)dp (0 =0=n)

—0
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so that
0
Au*(re’®) = f Av(re®)do (re®c DY)
—o

(cf. [2, p. 153]). Since »* is harmonic in D%, v is harmonic in D*.
Choose any r,€(sy, t,) " D* and o real so that
v(r) = ]nllaxu(z) = u(r,e").
zl=r;

Then z,=r,e”cD.

Define
a+0 [
(1.9 U,(re®) = f u(re®yde, V(re?) = f v(re')do,
a—0 -0

and choose ¢=0 so that {|z—z;|=¢}cD. Then

ri+e a+6(r) .
nou(z) = f u= f f u(re®)rdo dr

lz—z;l=¢ ri—e a—06(r)
r+e r+e

= f w*(ré®)rdr = f V(re®®yrdr = ff v = ne2v(ry).
rn—e r—e lz—ryl=0

Since u(z;)=wv(ry), there is equality throughout. It follows that
1.5) U(2) =u*(2) =V (2)
a.e. on the half-circle {|z—r;|=0}nD%. But U,—V is subharmonic and non-
positive in D% and vanishes at some interior points of D* . From the maximum
principle, we deduce (1.5) throughout D% . Thus (1.1) and the first equality in (1.2)
hold.

At this point we may as well suppose a=0. It remains to note that (i) for
each ré(s,, t,), u(re®) is nonincreasing on [0, 7] and nondecreasing on [—, 0],
and (i) u(Z)=u(z) for all z€A4,. For, if (i) were false, there would exist an r and

0 such that
[}

u*(re'’) > f u(re®)do,
—0
contradicting (1.5). Thus (i) is true, and then we can use (i) and the same argument
to see that (ii) holds.

The same proof yields a useful variant.

Lemma 1.2. Let u and D satisfy the conditions of the first two paragraphs of
this section. Let v be harmonic in D* and define V as in (1.4).

If w*=V in DY, and there exists zy=r,e"€¢D such that u(z,)=v(r,), then
w*=V in D . In particular, u* is harmonic there.

Lemma 1.2 implies Lemma 1.1 if we choose v to satisfy (1.3). A different choice
of v in Lemma 1.2 yields a characterization of the domains for which equality can
hold in Baernstein’s inequality (5) for Green’s functions. For this, see Section 2.

In Section 3 we also need
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Lemma 1.3. Let u and v be Green’s functions as described in Theorem 1. Assume
there exist r=0 and t€(— o, =) such that

(1.6) min u (re’?) < t < max u(re'®).
¢ ]

If for one such pair (r, t),
[luten—n+dp = [ foreém)—a+do,

then u*(z)=v*(z), ze D% .

Proof of Lemma 1.3. Fix (r, t) satisfying the conditions of the lemma, and let
uy=u—t, vy=v—t. Then

T

f uy(re’®)* do = sup ug (re’’) = ug (re'),
f v(re’®)* do = sup v (re’) = v§ (re'’)
]
-
and by assumption u}(re®)=uv}(re'¥). It is a consequence of (1.6) that 0<O<m
and reeD* .

We claim that §=1. To see this, we note that v is nonconstant on {|z|=r}n D*;
thus @ —v(re’”) cannot be constant on any interval (o, B) such that re’”c D* when
a<@-<f. Thus

v (re’?) < vy (re¥), o =Y.
If =0,
vE (re¥) = ug (re'®) = v (re®) < vy (re'),

where the first inequality follows from [2, p. 165]. The contradiction shows that
0=y and u*(reé’)=v*(re"). But u*—v* is subharmonic and nonpositive in D%
(cf. [2, Section 7]); since u*—uv* vanishes at re€D*, u*=v* throughout D%,
as required.

Our proofs of these lemmas generalize to functions in n-space, and lead to
uniqueness theorems for certain results of Gariepy—Lewis [15] and Baernstein—
Taylor [5]. We intend to describe these extensions in a separate note.

2. On Green’s functions. Proof of Theorem 1

Let @ be as in Theorem 1. Then @(0+)=&(0), and integration by parts
yields the representation

Q.1 o) =20+ [(x—n*du(®) O0=x<)

[0, =)
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where the measure u is defined by [0, 7)=®'(t—) (0<t<<), u{0}=9'(0+); by
strict convexity of @, u(J)=0 for any interval JC[0, ) of positive length.
Since u*=v* in {Imz=0} ([2, p. 165]), we have

(2.2) fr [u(re®)—1]* do = f [v(re)—1]* deo

for all r>0 and real ¢ [2, Proposition 3]. Integrating (2.2) against du(z) over [0, =)
and using (2.1), we obtain

kg T

(2.3) f D(u(re®))do = f D (v(re*)) do.

Let r be the positive number in D* for which equality in (2.3) has been assumed.
Then (2.2) holds with equality a.e. (du) on O<z<oo. Since @ is strictly convex
on [0, =) there is equality in (2.2) for all =0, and thus for all real ¢ since u and
v are nonnegative. We conclude, for this r,

u*(re®) = v*(re’®) (0 =0 = n).

(This argument requires that the ®-means of « and v in (2.3) be finite. When r=|z),
this is clearly the case if and only if [} ®(—log@)dp=[; d(x)e *dx<co.)
Suppose first z,0 or o-. Baernstein has proved [2, p. 166] that

(2.4) u*(z) = u*(2)+2n15g |2/ z,)|

is subharmonic in D% and that v* is harmonic there. Thus «* —v* is subharmonic
and nonpositive in D%, and vanishes on D% n{[z|=r}. It follows that u*=0%
throughout D% . We conclude from (2.4) that »*=v* in D*, and that u* is har-
monic in Dy;=D% n{|z|<|z|} and D,=D* n{|z|>|zl}.

It follows from Lemma 1.1 that there exists o €R such that

0 0
fu(re‘(“v”’))dgo =f v(re’)de, re’cD,

0 0

for v=1, 2 and that u(e’z)=v(z) for z€D_, v=1, 2. Thus oy =a,=0a and u(e™*z)=
v(z) on D*,

If zy=0 or oo, the argument is simpler since there is no need to introduce u*
or the subdomains D,. This concludes the proof of Thebrem 1.

A variant of the above argument gives

Theorem 2.1. Suppose that u and v satisfy the conditions of Theorem 1, except
that equality holds in (5) rather than in (3) for some positive rc D*, r#|z,|. Then the
conclusion of Theorem 1 still holds.
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Proof. Choose « real so that u(re®)=M(r,u), and let z;=re'*. Then z;€D
and u(z;)=v(|z:]), since M(r,v)=v(r), (cf.[2], pp. 153, 154), and thus the hypoth-
eses of Lemma 1.2 are satisfied with ¥=0v* and D replaced by D n{|z]<|z|} or
D n{|z|>|z|} according as r<|zy| or r>|z|. We conclude that u*=v* in D,
or D, respectively, so that u*=0v* throughout D¥ . Now the argument used above
to complete the proof of Theorem 1 yields the conclusions of that theorem for
these u and v.

Baernstein has found an inequality like (3) for harmonic measures ([2, Section 8],
[12, p. 86]) and our methods yield also the corresponding uniqueness result analogous
to Theorem 1. Specifically, let D be a domain in U, assume I'=0D n T has positive
Lebesgue measure, and let u be the harmonic measure of I' with respect to D, i.e.,
the harmonic function in D whose boundary function is 1 on I and 0 on 0D N U.
Denote by v the harmonic measure of I'* =0D* n T with respect to D*, and extend u
and v to all of U by setting them equal to zero outside D and D¥, respectively.
Then Baernstein’s theorem mentioned above is

K T

(2.5) [ o(u@re?))do = [ o(v(re®))dd (O <r<1),

-7 —T

for any convex increasing ¢ on [0, 1].
The arguments used in this section lead immediately to

Theorem 2.2. If equality holds in (2.5) for some ré(0,1) N D* and a strictly
convex D, then D is circularly-symmetric with respect to some ray argz=a.

3. On convex means of analytic functions. Proof of Theorem 2

Let @, f, F, D and D, be as in the assumptions of Theorem 2, let {,=f(0) and
let u, v, w be Green’s functions for D, D* and D, with poles at {,, |{o| and ||, respec-
tively. Then Baernstein has shown [2, pp. 152, 142, 166] that

T i0 ,
= fn [u(ge®)+logrltde = fﬂ [v(0e™®) +1og r]* do
= fn [w(0e®)+log r]* do

—T

— [ 18 1 gy SO
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holds for all ¢=0 and O<r<1; as usual, we set u, v and w equal to zero outside
of D, D* and D,, respectively.
The same argument used for (2.1) yields also
P(x) =)+ (x—1)P'(z—)+ f =0 du®) (—eo<t=<2x)
[z, =)
with p(—eo, )=9@’(r—). Thus if t<inf (x, y) and we put t=log o,

(3.2) 2W)—P() = (x~y) ')+ [ [x—logel* dv(o)— [ [y—logel* dv(o)
n n

where n=expt, v(0, @)=p(—co, loge) and we interpret [r=[, . Let
T—~—oco in (3.2), choose x=log |F(re’®)] and y=log |f(re®)| there, and integrate
the result over [—m, ] to obtain

k3

(3.3) f o(log |[F(ré®)) d0— [ ®(log |f(re)])d6

—T

oo

= L9 (—=)+ lim [ I(¢)dv(e)
n

where

>
I

— [ 1og|FGen|do— [ log\f(re®)]do,

v i0 ad i6
o) = flé”g—[F(ZL)'de— flgg-l—f(r:—)lde.

By Baernstein’s inequality (6), I,=0 and I(g)=0.
Now assume r€(0, 1) is such that equality holds in (6). Then from (3.3), dv=0,
and the fact that @'(—)=0,

oo

(34 Lo (—=)=0, [ I(e)dv(e)=0.

0

Since @ is strictly convex, v(J)=0 for all intervals J<(0, =) of positive length;
since () is continuous, (3.4) implies

(3.5 I(@=0 (0<¢=<e).

We conclude from (3.1) that

(6 [ ulee®)+logr*dp = [ [b(oe®)+logrl* dg = [ [w(ee®)+logrl* do

—-T

for all ¢=0.
It is clear from (3.6) that D,=D*, since otherwise v({)<w({) for all {€D*,

{1
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We claim that «*=v*. This is a consequence of Lemma 1.3 and (3.6), provided
there exists a ¢=0 such that

3.7 infu(ge) < —logr < sup u(ge').
[ 4

Let
D, ={u(() =—logr}, E,={v(()>—logr},
and suppose there exists some g,>0 such that |{|=g, intersects both D, and
C —D,. Then certainly

M (o, u) = infu(gee) =—logr < supu(ge”),
¢ [

and if 9M(gy, u)=0 then (3.7) holds with @=g,. Otherwise the circle |{|=g,
is contained in D, so that (g, #) is a nonconstant continuous function near g,
and thus (3.7) must hold for some ¢ near g,. We conclude that u* (cf. (2.4)) is har-
monic on D* and, by Lemma 1.1,

(3.8) u@ =v(e ) and D = e*D*

where o is a real constant (=arg{, if {,0).

It remains to consider the case when every circle |{|=¢ is either contained in D,
or disjoint from it. Since D, is connected, D,={|{|<g,} or D,={o,<|{|<0.}
In the latter case, we must have {|{|=¢,}cD since D*=D, is known to be simply
connected; then M (g, u) is strictly decreasing on (0, g,) and thus

~logr =z u(0) > Mo, u) (01 <0< 0y,

a contradiction. We deduce that D,={|{|<g,}, and claim that (3.6) implies E,=D,.
In fact, by (3.6)

T n

f [v(ge®)+logr]* dop = f [u(ge!®)+logr]* dep =0

—7 —n

if and only if 0=9p<yg,, so that E,cD,. Further, if {¢D,—E, then (3.6) implies

f [u(oe®)+logrlde > f [v(ge?)+logr]de
for |{|<g=<go,, and this contradicts Baernstein's inequality (3). Thus in this case
uy=u+logr and v,=v+logr are Green’s functions for {{|<g,} with poles at
{o and || respectively, so that again (3.8) holds.
Finally we claim that f(z)=c¢"F(e'’z) for some real f. We know that f(U)=
€D, and f(0)=e™F(0). Define

(3.9 w(z) = F (e ®f(2)) (2€V);

by Schwarz’ lemma, we have w(z)=e”z or |w(z)|<|z| in {0<|z]<1}. To show
that the latter possibility cannot occur, suppose it does and let 4 be the harmonic
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function in {|z|<r} whose boundary values are @(log |F(re®)[). Then we have

T k3

(3.10) f d(log |f(re'®)]) do = f P (log | F(w(re'))|) do

< f" h(w(re®®))d0 = 2nh(w(0)) = f" h(rei®) do

T

= [ ®(log |F(re")])do,
the strict inequality holding because ®(log |F(z)|) is strictly subharmonic (i.e. not
harmonic) throughout {|z|<r}, due to the strict convexity of &. But (3.10) is
inconsistent with our hypothesis of equality in (6), and the proof of Theorem 2
is complete.
Now choose @(x)=exp (px) in (6), take pth roots and let p—~< to obtain

(3.11) M@, |f) = M(r, |F)) ©<r<1).

Theorem 3.1. Let f and F be as in Theorem 2. If equality holds in (3.11) for
some r€(0, 1), then (7) is true for some real o and f.

Proof. Using (3.2) with & (x)=exp (px), 1= —o and x=log | f(re")|, y=—
we see that

|f(re')| —Oflog . P do.

Thus (3.1) implies

4

(3.12) [ |f(re®)Pdo—2z|fO)f = p* [ 0" do [ [u(ee®®)+logr]* do
0 —n

-7

=p* [ o 'do [ [v(ee™)+logr]* do
0

—T

n ™

=p* [ " *do [ [w(pe®)+logrl*dp = [ |F(re?)]?do—2x|f(0)
0 -7 —n
where u, v and w are the Green’s functions introduced at the start of this section.

Let r be the fixed value for which equality holds in (3.11). Taking pth roots and
letting p—~<~ in (3.12), we obtain a chain of equalities. To describe the limiting rela-
tions, we note that if Y€ L'(0, ) is nonnegative with f o ¥=0 and, to fix the
ideas, compact support in [0, =), then

oo

tim {f

- p@de) "= supfo: [ y=0}.
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Thus we deduce from (3.12) that

0o = Sup {QZ f [u(oe®)+logr]tdo = 0} = sup {Q: f [v(ee™®)+log r]* do = 0}

—_T —T

= sup{g: f Iw(ge®)+logr]* do > 0}.

<

We conclude that M (g, u)=max, u(ge'?) satisfies
(3.13) M (g, u) = M(go, v) = M(go, w) =—logr.

It follows that D*=D,, for otherwise v({)<w({) throughout Dy—{|{,|]} and
(3.13) would be violated. Now we apply Theorem 2.1, and deduce D=e“D* and
u(z)=v(e "z).

To complete the proof of (7), we define w(z) as in (3.9) and observe that our
hypothesis

M(r, |f) = M(r, |[Fow|) = M(r, |F])

implies |w(re®)|=r for some 0. Thus, w(z)=ez for some real B, and we are
done.

4. Some extensions of Theorems 3 and 4

Before proceeding to the proofs of Theorems 3 and 4, we state some related
results from [4] and describe our corresponding uniqueness theorems.
Let ucM(T) and F, be as defined in (11), let v, be the extremal measure given
in (14), and put
Gy(z) = F,,(2) (zeU, 0=b=1).

We suppose throughout that

u(T) =0.
Then if
@41 lul =1, b= pu(T)
and O<r<1, Baernstein has proved [4]
2n 2n
(4.2a) [ |E(re®)rd0 = [ [Gy(re®)[Pd0 (0 <p =2),
0 0
2n 2n
(4.2b) [ Im F,(re®)Pdo = [ |Im G,(re®)Pdd (1 =p =2),
0 0
2n 2r
(4.2¢) [ IRe F,(re®)[Pd0 = [ |ReG,(re®)[7df (1 < p <<).
0 0

Our first extension of Theorem 3 is
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Theorem 4.1. Let u satisfy (4.1) and assume equality holds in one of (4.2a)—
(4.2c) for some r€(0, 1) and one value of p in the associated range. Then

4.3) F(2) = Gy(e*2) (lz2[ = D),
(4.4) H(E) = vy(e®E) (ECT)
for some real «.

Inequality (4.2c) obviously holds for p=1 as well, by continuity; but the
corresponding uniqueness statement requires some care. In case

b= u(T) = FO)=0

and r€(0, 1) is such that Re F, (ré®)=0 for all 0, then equality in (4.2¢) with p=1
implies Re G,(r¢?)=0 [i.e. r=r,=b/(1+(1—b2"?)], and obviously nothing more
can be said. Our proof does give, however:

Let p satisfv (4.1) and suppose
2n 2n
(4.5 [ IRe F,(re?)| do = [ Re Gy(re®)| db
0 0

for some ré(r,, 1). Then (4.3), (4.4) still hold.

Since the means in (4.5) fail to be strictly convex, our treatment of this problem
will indicate how our earlier theorems involving convex integral means can be slightly
generalized. In this case we are concerned with means f @ (Re F,) where @ (x)=|x|
is linear except near 0, and we have to assume

mein Re F (re®) <0 < max Re F,(re);

compare hypothesis (1.6) in Lemma 1.3.
Since F,cH"(U) for all p<1 ([10], pp. 2, 35), the boundary values

F (") = linll F,(re®)
exist a.e. and (4.2a) still holds with r=1 and O<p<1. We shall prove
Theorem 4.2. Suppose ucM(T) satisfies |puli=1 and

(4.6) [ IF(e®lrdo = [ Gy(e)d0

for some p€(0,1) and some nonnegative b=u(T). Then u(T)=b, |ul=1 and
I N

where u,, u_ are positive measures singular with respect to Lebesgue measure and
having

@.7) po(T) =3 +b), a(T) = La-b.
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Further,
(4.8) F,(2) = Gy(w(2)) (Iz]<1)

for some inner function w(z) in U with «(0)=0.

Conversely, given any such w(z) and any be[0, 1], then there exist positive
measures .. and pi_ which are singular with respect to Lebesgue measure and mutually
singular, such that if y=p,—u_ then (4.6)—(4.8) all hold.

It is easy to see that the case b=0 of Theorem 4.2 contains Theorem 4.

Baernstein deduces (4.2a)—(4.2¢) from an interesting result for analytic func-
tions not necessarily of the form F, . Following Section 4 in [4], assume Q is a bounded
domain containing 0 and Steiner-symmetric with respect to R ([16], p. 68). Deter-
mine B=>0 by Qn{Rez=0}=(—iB,iB), and define the subdomains

Oy =0—{iy: p=1yl<B} (0<pB=B).
For each real b€Q and f€(0, B], iet Hj, be the univalent map of U onto
Qp with Hy; ,(0)=b and Hj ,(0)=0. Actually, there is no loss of generality in
assuming throughout, as we shall, that
b=0.

To cover the limiting case f=0, define H, , for positive b€Q to be the con-
formal map from U onto Q n{Re w=0} having H,,(0)=b and Hj;,(0)=0; and
put Hy 4(2)=0.

For all nonnegative b€Q and €[0, B], define F(B, b) to be the class of all
analytic functions F with
4.9 F:U-~Q, FO0)=5b

2n 21
(4.10) [ Re F(e®)|d0 = [ |Re Hy, 4 ()] do.
0 0

With these assumptions, Baernstein proves:
For all FE (B, b) and 0<r<l1,

2n 21
(4.11a) [ |Fre®)Pdo = [ |H,,(re®)?d0 (0<p=2),
0 0
2n 2n
(4.11b) [ Im F(re®)|Pd6 = [ 1tm Hy y(re)Pdo (1 = p = 2),
0 0
2n 2n
@.11c) [ [Re F(re®)pdf = [ |Re Hy,(re®)|Pdf (1= p=-o).
0 0

In order to formulate this result as the solution of an extremal problem, Baern-
stein observes that

() = 5 [ ReHy (@] d) 0= p=5)
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is, for fixed nonnegative b€ Q, strictly increasing on [0, B]; further, ¢(0)=5b and,
for each F satisfying (4.9), there exists a unique S€[0, B] such that

2n

o(p) = % Of [Re F(e®®)| df.

Thus, for the problem of maximizing the integral means in (4.11) among all F in
the subclass

F(B, b) = {FEF(B, b): equality holds in (4.10)},
H, , is the unique extremal in
{H,,:0=1t=B}nF@B b).
We now consider to what extent this extremal is unique in the full class §(f, b).

Theorem 4.3. Given any FeF(B, b), the inequah'ties (4.11) are all strict, for
each r€(0, 1) and admissible p, unless
F(z) = Hﬁ,b(emz) (Izl =D
for some real o.
There is one gloss here: we do not regard as admissible the choice p=1 in
(4.11c¢) for any r€(0, 1) such that
Re F(re?®) =0 and Re H;,(re) =0 (0= 0= 2n).

There is a variant of Theorem 4.3 concerning the FEF (B, b) for which equality
holds in (4.11a) or (4.11b) for r=1 and some appropriate p. It will be clear from
the proofs of Theorems 4.2 and 6.2 how to state and prove this variant.

In [4, Section 2], Baernstein also gives a function theoretic proof of Davis
sharp form of Kolmogorov’s weak type (1, 1) inequality for conjugate functions.
To state this, let f¢L(T) be real valued and define f by (9). Put

(4.12) E(f) = {e": |/(e")] = 1},

and for measurable ECT let us also put |E|=Lebesgue measure of E. Then Davis’
inequality is

@.13)

L}

E(f) = 2n0t 7| fll, (0 <1 <o)

where

. I+:z
071 = Re Gy, G(2) = log (1)

1—-z)°

Theorem 4.4. Suppose f satisfies (4.13) with equality for some t=0 and f#0.
Then
f(e) = tRe G(w(e™))

for some inner function @ on U having «(0)=0.
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Conversely, every such f satisfies

Jor th |E,(f)| =27, |fll, =101
or this t.

In particular, there never is equality in (4.13) if f rf#0.
We proceed to prove Theorems 4.2 and 4.4; the proofs of Theorems 4.1 and 4.3
will be given in Section 5.

Proof of Theorem 4.2. We start from the elegant formula

2n oo co
@14) [ |F(re®)Pdo=p> [ [ N(w, F)wlP~2du dv+2r|F(0)?

—oo0 —oo

used in [4] (cf. [16], p. 42), and valid for all F analytic in U, say. Here O<r<1,
O<p<oe, w=u+iv and N(r, w, F) is the usual Nevanlinna counting function for
the value w of F[17, p. 6].

We shall need (4.14) also for r=1. Let us write

F=F,, G=G,=F,

and recall that FEH?(U) for p<1 since uc M(T) ([10], pp. 2, 35). Thus F is of
bounded characteristic and so by Jensen’s theorem

(4.15) N({,w, F) = lirrllN(r, w, F) = B(w)
where
2n
1 [+ | w—F(e")
B = %0/ g |5 —F@ |

is uniformly bounded except near F(0), and B(w)—0 uniformly when |w|—>co.

On O<r<l1, {N(r,w, F)+log |w—F(0)|} is an increasing family of functions
subharmonic (by Jensen’s theorem) and continuous in C. Thus, N(1, w, F) inherits
lower semicontinuity and the subharmonic mean value property from {N(r, w, F)},
and subharmonicity of N(1, w, F) is a question of continuity. In any case, the upper
regularization

(4.16) q(w) =limsup N(1, {, F)

of the limit (4.15) is subharmonic throughout C—{F(0)}, with
4.17) gw) = N(,w, F) (weC—6)
where & has capacity zero,

(4.18) N(1,w, F) = g(w)
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in C ([19], Theorems 7.39 and 7.33); and ¢(w)+log |w—F(0)| is subharmonic
throughout C. Thus, by (4.17),

v

f q(u+is)ds

is continuous in {v=0}.
We shall need some basic results on *-functions from Section 5 of [4]. If
4.19) N*(r,w, F) = sup fN(r, u+is, Fyds (v=0)
|Ei=20 g
then for r<l1

(4.20) N*(r,w, F) = N*(r, w, F)+2n[u—Re F(0)]*

is subharmonic in {v=0} and continuous in {v=0}. By (4.15), the definition (4.19)
remains valid when r=1; because of (4.17) we can define g* (w) in the same way.
Further, it is easy to see that

g*w)=N*(1,w, F) = Iinll N*(r,w, F) (v=0).
We observe also that
g*(w) = g*(w)+2rn[u—Re F(0)]*

is subharmonic in {v=0} and continuous in {v=0}. To see this, notice that for
each ¢=>0 the function ¢,(w)=[q(w)—e]™ has compact support, so that

qf (w) = q; (w)+2n[u—Re F(O)]*

has the subharmonicity and continuity properties claimed for g* (cf. [4], Section 5).
Now our assertion for g* follows from the fact that the majorants

0.(w) = g7 (w)+2ve
decrease to g* (w) when ¢}0.

These considerations lead to two lemmas, analogues of Lemmas 1.1 and 1.2,
which will be needed in Sections 5 and 6. Motivated by the assumptions of Section
1, let p(w) be positive on an open set DCBy={w=u-+iv: {,<u<1t,}, put p=0
on B,—D, and suppose the extended p is subharmonic on B,. Assume further that

lim p(utiv) =0 (& <u < 1),

uniformly on compact subintervals of (&g, 7o), and define p*{#) as in (4.19). Let D*
be the Steiner symmetrization (with respect to R) of D, and let D¥ =D*n{v=0}.
Then by the remarks in the previous paragraph, p* is subharmonic on B, {v=0}
and continuous on By {v=0}.

In this setting, Lemmas 1.1 and 1.2 have exact analogues which we shall refer
to as Lemmas 4.1 and 4.2 respectively. The proof of Lemma 4.1 (and its slight variant
for Lemma 4.2) is the same as that for Lemma 1.1 (except that rectangular rather
than polar coordinates are used). Let us explicitly state only the first of the two
lemmas.
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Lemma 4.1. Let p(w) and D be as described above and suppose that p*(w) is
harmonic in D¥ . Then there exists o€ R such that

D = D*+ia,
a+v a+v
pr(w) = f plu+is)yds=2 f pu+is)yds (w=u+ivEBy, v=0).

Consider now the function G =G, of Theorera 4.2. From the discussion in [4],
Sections 3—35, G is univalent and N(1,w, G) is Green’s function of the Steiner
symmetric domain G (U), with pole at G(0)=b. In particular, N(1, w, G) +log|w —b|
is harmonic in G(U) and, for all real u, v~ N(1, u+ iv, G) is nonincreasing on 0 <v <o
and even; it follows that

N*(1,w, G) = fN(],u—!—is, G)ds+2n[u—>b]*

is harmonic in G(U)*=G(U) n{v=0}. We need Baernstein’s key inequality
(4.21) N*(r,w, F) = N*(r,w,G) O<r<1;0=0).

Recall that we can let r—~1 here and obtain

(4.22) N*(l,w, F)= N*(1l,w,G) (v=0).

After these preliminaries, we seek consequences of our assumption (4.6). In
the first place, we must have b=p(7T) and |ul|=1. For, if we put wy=p/lul,
then |u,||=1 and c=u,(T) satisfies, by assumption, c=u(T)=b. If c=b,

21 2n 21 2n
@.23) ul=" [ |F(e®)Pdo = [ |F,(e*)Pdo = [ |G.(e")rd0 < [ |G,(e?)|"dB
0 0 0 0
by Baernstein’s inequality (4.2a) and the fact that

(l—l-bcose) 20

W) = f Gy(e™) P do = 2 f

is strictly decreasing on 0=b=1 when p<1. Since (4.23) contradicts (4.6), we have
shown b=u(T); another look at (4.23) yields [u|=1.
Recalling (4.14), the fact that F(0)=b=G(0) together with (4.6) implies

oo o oo

(4.24) [ [ NG w, B)lwp—2dude = [ [ N, w, G)|w]P=2du dv

—oco —oo —oco —oco

for some p€(0, 1), since GeH?(U). We use (4.24) to deduce next that
(4.25) FU) c G).
Using (4.19) and (4.21), we see that

(4.26) K(u+iv) = fN(l,u+is,G)ds— fN(l,u-i—is, F)ds=0
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in the upper half plane. Fix 0, and put
m(v) = —|u+iv|P~2

Then an integration by parts gives

4.27) fK(u+iv)m’(v)dv :f k(u-t+iv)ju+iv/P~2dv
0 )
where
(4.28) k(w) = dK/ov = 2N(1,w, G)— N(1,w, F)—N(1, w, F).
Using (4.24), we obtain
(4.29) [ [ Kwym’ (v)dv du = [ [ k) |wp=2dvdu = 0.
—oo 0 —oo 0

Since m'>0 and K=0, K(w)=0 a.e. in {v=0}.
Thus, by (4.19), (4.21) and (4.17),
(4.30) f N, u+is, F)ds = f q(u+is)yds = q*(w) = N*(1, w, G)
a.e. in the upper half plane. The second term here is subharmonic in {v=0, ub)
and continuous in {v=0}, as we have already noted. Since also

4.31) N*(1,w,G) is continuous in {v = 0},

we must have

v

(4.32) 7w = [ qlu+is)ds

throughout {v=0}, and so by a simple argument (cf. last paragraph of the proof
of Lemma 1.1)

(4.33) qg) = g(w) (welQ).
Using (4.18), we deduce
(4.34) N{1,w, F)=qw)= N(,w,G) (weC).

This relation implies (4.25), and we have completed the first step in the proof.
We can now define w=G oF. Then w(0)=0 and we claim that w: U~U
is an inner function [10, p. 24]. For (€U, define

{—w(2)

1-Cw(z)

Since w,(z) is subordinate to ({—z)/(1—{z), Jensen’s theorem implies, if {0
and w=G({),

(4.35) w,(z) =

(436)  N(r,w, F) = N(r, {, ») = 1og

%I =N w,G) O=<r=1).
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By (4.17) and (4.34), there is equality in (4.36) when r=1if {¢&, where cap £§=0
Thus &,=G (&) also has capacity zero, and
(4.37) N(1,{ o) =—logll] ((eU=&).

Applying Jensen’s theorem again, we deduce
2
(4.38) lin11—2—17? f log {w,(re)| d0 = linll N(r, {, 0)+loglll =0 ((EU—Ey).
r— $ r—-

Thus, for any such {, w, is a Blaschke product [14, p. 107] [7, p. 32], and it follows
that o is inner.
We conclude that

H—w_l_ l1—w

o1 0 p o
F=Gpow= 2(1—|—b) T 2(1 b) To =F,—F_

where

1 £z
(4.39) F.=Giom, Gi(2)= 3(1tb) ETh
Since G, and so also F., map U into {Re w=0}, the Herglotz representations

etz ;
(4.40) Fi(2) = fﬁ dus(e')
T
obtain; here u, and u_ are positive Borel measures with
v 1

(4.41) s (T) = F+(0) = — (1£b)

[10, p. 3]. Recall that F=F, has the form (11); by uniqueness of ©[10,p. 4], u=p+—
u_. Further, since w is inner,

L= |w(e?)P

(4.42) lim Re F. (re”) = %(1 +b) =0 ac

w(eiO)'2
and thus u/ (¢®)=0 a.e. [10, p. 4]. Similarly, W _(e°)=0 a.e., so that u, and p_
are singular with respect to Lebesgue measure. Notice that, since pu, and u_ are
positive with

\ - 1 1
L=l = e+l = 5 (D) +5 (=b) = 1,

. and p_ are mutually singular. This completes the proof of the first half of Theo-
rem 4.2.

Conversely, given b<[0, 1] and an inner function w on U with w(0)=0, we
can define F, and F_ by (4.39). Then, as above, there exist positive measures ..
and p_ such that (4.40)—(4.42) hold. Thus x, and p_ are singular with respect to
Lebesgue measure and, if we put p=p, —p_, then

F,=F,—F_=Gyco.
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Since w is inner in U, w, defined by (4.35) is a Blaschke product for all (€ U —&,
where cap &,=0 [14, p. 111], [7, Theorem 2.15]. Since (0)=0, (4.38) and thus
also (4.37) hold for such ¢ [14, p. 107], [7, p. 32]. Consequently,

(4.43) N(l,w,F)= N(,w,G,) (weC—&)

where cap §=0. Now (4.6) follows from (4.14), for all p€(0, 1), and we deduce
lul=1; thus [lull=|u.|+llp-|, so that u, and u_ are mutually singular. The
proof of Theorem 4.2 is now complete.

It might be interesting to characterize directly the measures ., p_ for which
the converse part of Theorem 4.2 holds, i.e. the u=pu, —u_€M(T) for which
there exists some inner function @ on U satisfying F,=G,ow and o(0)=0. As
a simple example we observe that, for =0 and any n=1, the measures

I nZt 1 ozt .
= — = — . .= ijn/n
My 2n kg) 5€2k’ H- o k;:) 5szk+1 (CJ e )
correspond to w(z)=z".

Remark 1. Once (4.34) has been proved, our argument could have been based
instead on the following elementary result: Let GEHP(U) for some pé€(0, o),
G # constant, and let @: U—~U be analytic with (0)=0. Then w is inner if and
only if

[ G(a(e®)|rdo = [ 16 ao.

The proof is a slight variant on the argument given with (3.10).

Remark 2. The part of our argument proving o inner can easily be modified
to give a factorization result: Let F be analytic in U, and let G be univalent there with
G(0)=F(0). Then

F=Gow

Jor some inner function w on U with ®(0)=0, if and only if
N(,w,F)= N(1,w,G) (weF())
with equality holding for one we F(U), w# F(0).
Proof of Theorem 4.4. Suppose f(#0) satisfies (4.13) with equality for some
t>0; replacing f'by ¢ ~'f shows that we may assume ¢t=1. Thus E=F,(f) satisfies
(4.44) |E| =2m0|fl, (=0).

To f we associate the analytic function F(z) defined by (8).
Following Baernstein’s proof of (4.13) in [4], we let ¢ (w) be the subharmonic
function in C which is |Re w| outside the strip

S= {weC: |Imw| <1},
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and which is harmonic in S with boundary values

@(w) = [Rew| (w€dS),
with
e(w) = O(Rew]) (w —co).
Baernstein proves that
0 =090,

(4.45) @(FO)) = If 1+ 0) {1 —|E|/27}
[4, Section 2].

Using (4.44) in (4.45), we deduce ¢(F (0))=¢(0) and thus F(0)=0, since ¢ is
even and strictly increasing on (0, ) [4, Section 2].

From formula (6) in [4], the boundary values of F satisfy

o(F(e?) = | f(e®)]+00)x(e"?) ae,

where y is the characteristic function of 7'—E. Thus, using (4.44) again,
2n
0 [ ¢(F(e")d0 = 270| f|,+2n—|E| = 2n.
0
Since @ o F is subharmonic in U, we deduce
1 2n
-1 — = e i = -1
o o(F(0)) = 5> Of @((Fe')do = 61,

We conclude that ¢ o F is harmonic in U, and this is possible only if F(U)c< S.
Thus E={e: [Im F(¢®)|=1}. Since G defined in (4.13) is univalent in U with
G(U)=S, we can define w=G *oF. Then

w: U—’U, (O(O):O,

and it remains to prove that o is inner, i.e. that |E|=2n.
To see this, we start with inequality (5) in [4], which we write in the form

@(w) = [Re w|+¢@(0)—p(w)
where p is continuous in C and
pw)=0 (weS—{0}), p(w)=(0) (weas).
Putting w=F(z) and letting |z|—>1, we obtain

@(F(e) = |f(e®)|+¢0)—p(F(e?)) ae.
Thus (4.44) implies

@) = ||o(F(e)|l, = ¢ |E|2n+ 0 (0)— || p(F ()|,

2n

[ p(F(e)do = ¢(0)|E].

0

so that



334 MATTS EssEN and DANIEL F. SHEA

Since p(Ww)=¢(0) on JS, we must have
[ p(F(e?)do = o.

T—E
But p(w)>=0 on S—{0}, so that |T—E|=0, as desired.
Conversely, if F=Gow where w is an inner function on U, it is clear that
[f(@®)|=1 a.e., that |E|=2n and that

o(F(") = |f(e?)] ae.

Integrating, we see that @(0)=| f|; if ®w(0)=0, and the proof of Theorem 4.4 is
complete.

5. Proofs of Theorems 4.1 and 4.3

Suppose first that F, satisfies (4.1) and that equality holds in (4.2a) for some
r€(0,1) and some p€(0,2). Using (4.14) for this choice of r yields (4.24) with
N(1,w, -) replaced by N(r,w, +), and the argument for (4.34) now yields
5.1 N(r,w, F) = N(r,w,G) (weC).

Here, as in Section 4, we have put F=F,, G———szFvb.
Thus

F({jz) = ) = G({lz] = ),
and we can put

w(z) =G 0F(z) (z| =n).
Then |w(z)|=|z| in |z|=r, and a slight variant of the argument used for (3.10),
now with @ (x)=exp (px), shows that equality in (4.2a) implies |w(z)|=r on |z|=r.
Thus, an application of the reflection principle yields that w(z) is meromorphic in
the extended plane, with
(5.2) w(z) = e?zB(z), B(z)= U% (0= la,l <r, BER).

—a,z
Here the product B(z) is either finite, or empty (B(z)=1). In the former case,
lw(z)|=1z| in |z|=r, so that M(o, |Re F|)=max, |Re F(ge)| would satisty
M(o, IRe Fl) = M(g, Re Gowl) > M(g, [Re G))
forall o, r<p<sup {¢=1: w(oU)cU}. But Baernstein’s inequality (4.2¢) obviously
implies
M(o, IRe Fl) = M(g, [ReG)) (0 =g <1),

thus B(z)=1 in (5.2).

This completes the proof of the part of Theorem 4.1 dealing with inequality
(4.2a), 0<p<2. If p=2, we use the consequence of (4.21):

(5.3) [ NG u+tis, Fds= [ N(,u+is, Gyds (0 <v <o),
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together with (the analogue for |z|=r of) formula (4.24), to deduce
5.4 fN(r,u+iv, F)dv= fN(r,u+iv, G)dv (u€R).

We now apply Baernstein’s formula
5.5 fn[Re F@re?)—ul*do = joN(r, u+iv, Fydv+2n[Re F(0)—u]*

6 %
(see [4], Section 5) with (5.4) to obtain
(5.6) jﬂ [Re F(re®)—ul™ do = jgr [Re G(re®)—ul*dd (ucR).
0 0

But if we put f=Re F, g=Re G and
(57) f*ee = sup [ flee)dp (0= <1,

then (5.6) is equivalent (cf. [2], Proposition 3) to
(5.8 f*(@re’®) = g*(re’®) (0 =6 = n).

By Baernstein’s arguments in Sections 5 and 6 of [4], /* is subharmonicin Ut =
U n {Imz=0}, g"is harmonic there with

[}

g (ee") = [ g(ee)dp (0=0=n),
-0
and f*=g* in U*. By (5.8), we can apply Lemma 1.1 to obtain f(e *z)=g(z)
for some real o; this implies (4.3) and (4.4).
Next suppose equality holds in (4.2b) for some r€(0,1) and some pé(l, 2).
Now the analysis depends on another formula of Baernstein ([4], Section 5):

(5.9)

2 oo o
J tm F(re®)Pdo = p(p—1) [ [ N(,w, F)[olP~2du dv+2a|Im FQ)] (p=>1),
0 —e e
and only trivial changes in the argument already given for (4.2a), p<2, are required
to prove Theorem 4.1 in this case.

Further, if equality holds in (4.2b) for some r<1 and p=2, precisely the argu-
ment given above for (4.2a), p=2, yields Theorem 4.1 in this case as well.

If equality holds in (4.2b) with p=1, we use

(5.10) [ NG, u, Fdu = [ NG, u, Gydu,
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a simple consequence of the case u=0 of (5.5) with F replaced by —iF. By (5.3),
N(r,u, F)=N(r, u, G), so that (5.10) implies

(5.11) N(r,u, F) = N(r,u, G) (ucR).

Since (4.21) holds Lemmas 4.1 and 4.2 can be applied with p(w)=N(r, w, F), and
we again obtain (5.1). Thus the argument given after (5.1) yields also the assertion
of Theorem 4.1 for (4.2b), p=1.

Next we assume equality in (4.2¢c) for some r<1 and p=1. There is a formula
equivalent to (5.9) in which Im F is replaced by Re F and v by u. Using this with
(5.3) yields (5.4), and the argument given after (5.4) again establishes (4.3) and (4.4).

Finally, let us suppose that (4.5) holds for some ré(r,, 1). Then, if we define
£, g, f*, g" as in (5.7) and (5.8), we have

2n

(5.12) I f+(re"")d9=% Of [If (re®)| +f (rei®)] do = Of g+ (ret?) do.

0
Since G(—ry)=0, G(—r)<0<=G(r); thus, by (4.5), f(reé’)=Re F(re"®) also changes
sign on 0=0=2rn, and there exists y€(0, m) such that

2m
(5.13) frre™y = [ fr(re®)do.
0
By the remarks after (5.8), f*=g* in U™ so that (5.12) and (5.13) imply
2n
fH(re?) = g*(re) = f gt (re’)do = f*(re').
0

Another appeal to the remarks after (5.8) yields f*=g* throughout U™*, and Lemma
1.1 again implies (4.3) and (4.4).

It remains to prove Theorem 4.3; but since the functions Hj, have all the
symmetry, univalence, ... properties of G, used in the proof of Theorem 4.1, precisely
the arguments already used suffice to give Theorem 4.3 as well.

6. Conjugate functions and rearrangements

Let feL*(T) be real valued, and define F and f as in (8) and (9). Let g be the
symmetric decreasing rearrangement of f:
g(e) = g(e=%) = inf {s: |[E(f), =20} (0=0=n),
where E, is defined in (4.12). With g we associate as in (8) and (9) an analytic func-
tion G and conjugate function &. In [4], Baernstein proves the following relations:

2 2n

(6.1a) [ |F(re®)Pdo = [ |G(re®)Pdo (0 <p =2),
(6.1b) [ " IIm F(re®)|? do = j ’ IIm G(re®®)|rdo (1 = p =2),

2n 2n
(6.1c) [ Re F(re®)|Pd0 = [ ReG(re")Pdf (1 = p <o),
0 0
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In particular, if Ge€H? for some p€(0, 2], then also FEH? and

(6.2a) f2 |F(e)Pdo = [ " IG(e?)Pdd (0 < p =2),
(6.2b) [ 1fe)Fdo= [ 2@E)Pdo (1 =p=2).

It is easy to see that Baernstein’s methods in [4, Section 6] also yield the ine-
qualities

(6.3a) [ IFE)PFdo= [ |GE?)Pdo (p=2)
2n 2n
(6.3b) [ 1fEerao = [ |g)rd0 (p=>2),

provided fecLP(T). A proof of (6.3) is given below, in the proof of Theorem 6.2.
Simple examples (e.g. f=cos 20) show, however, that the analogue for r<1 of
(6.3) cannot be true.

Theorem 6.1. The inequalities (6.1) are all strict, for each r€(0, 1) and admis-
sible p, unless

6.4) () = g(e'®+?) a.e.
Jor some real o.

As in the statements of Theorems 4.1 and 4.3, we do not regard as admissible
the choice p=1 in (6.1c), unless r is such that Re F(re”®) or Re G(re’®) changes

sign on 0=0=2zn. The proof of Theorem 6.1 is the same as (the first part of) that
of Theorem 4.1, and we omit it.

Theorem 6.2. Assume that equality holds in one of the inequalities in (6.2)
and (6.3) for some admissible p, p+#2, for which the integrals involved are finite.
Then

(6.5 f(®) = g(w(e) a.e.

Sfor some inner function w on U with w(0)=0.
Conversely, if f has the form (6.5) for some such w, then equality holds throughout
(6.2) and (6.3).

We observe the following

Corollary. Let ECT be measurable and put E*={e": |0|<(1/2)|E|}. Then
there exists an inner function w on U such that, for almost all 0,

(6.6) w ()€ E* o eCE.
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For, if we choose f=yg=characteristic function of E, then g=yx;. and, by a
well known result of Stein and Weiss [22], § and f have the same distribution func-
tion. Thus there is equality in (6.2b) and (6.3b) for all p=0. Now Theorem 6.2
implies

1e(€?) = ype(w(e?) a.e.
for some inner function w on U, proving (6.6).

Baernstein has shown us (personal communication) a function-theoretic proof
of the Stein—Weiss theorem which gives an alternate proof of the Corollary. See
also [6] for a related result.

Proof of Theorem 6.2. We first observe that the key formulas and inequalities
used in Sections 4 and 5 remain valid for the present choices of F and G (cf. [4],
Section 6). In particular, the fact that f and g are equidistributed shows that (5.6)
holds with r=1; using (5.5) with r=1 then yields (5.4) with r=1. Thus if we put

Kw) = [ k@+is)ds (w=u+iv, v=>0),

then (5.3) implies
6.7) Kw)=—Kw)=0 (w=u+iv, v=0)

where K and k are defined as in (4.26), (4.28).
Assume equality holds in (6.2b) or (6.3b) for some p€(l, <), p=2. Letting
r—1 in formula (5.9) then yields

co

(6.8) [ [ N w, F)llp~2dudv = [ [ N w, Glplr-2dudy
where the integrals are finite.

If 1<p<2, the integration by parts argument given in (4.27) remains valid
here, now with m(v)=—vP"?% and we deduce K(w)=0 a.. in {Im w=>0).

When p=2, the same argument applied to K;(w) yields

oo

le(u+iv)d(v"‘2) =f P2k (u+iv) dv,
0

0
6.9) (r—2) ffv"“3K1(u+iv)dudu= ffvp”2k(u—|—iv)dvdu,
—co 0 —oo 0

and (6.7) and (6.8) together with (5.9) again imply K(w)=0 a.e.

From the definition of K we see that (4.30) remains valid here, with ¢ again
being given by (4.16), and we deduce (4.34) and its consequence (4.25). Now the
arguments in (4.35)—(4.38) yield
(6.10) F(z)=G(w(2) (z]<1)

where w: U-U is an inner function with (0)=0.
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Since G is univalent, Lindel6f’s Theorem [7, pp. 19, 56] shows that
(6.11) fe®)+if(e?) = lim G(w(re) = G(liirll w(re'))

a.e., and the assertion of Theorem 6.2 for (6.2b)—(6.3b) and p=1 is proved.
The same arguments, using (4.24) instead of (6.8), yield the assertion of the
theorem for (6.2a)—(6.3a) and O<p<oo, p%2.

Remark. To prove inequality (6.3b), observe first that, for p=2, (6.7) and
(6.9) imply (6.8) with = instead of =. (All integrals considered are finite, since we
have assumed f€LP.) Then (5.9) and the definition (4.28) of k(w) imply (6.3b).
The proof of (6.3a) is similar.

It remains to consider the case of equality in (6.2b), p=1. We use (5.10) with
r=1 to deduce (5.11), a.e. in —eo<u<oo. Since G is univalent, the argument given
after (5.11) shows that, outside a set of capacity zero, we have

gw) = N1, w, F) = N(1, w, G)

(cf. (4.17)). Thus (4.25) holds, and we can again deduce (6.10) and (6.11) as above.
The converse assertion in Theorem 6.2 is proved by the argument in the last
paragraph of the proof of Theorem 4.2.
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