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ON SOME QUESTIONS OF UNIQUENESS
IN THE THEORY OF SYMMETRIZATIOT{

MATTS ESSEN ANd DANIEL F. SHEA*

Introduction. In a series of remarkable papers, []-[4], A. Baernstein has

solved a collection of extremal problems in function theory, potential theory and
harmonic analysis. A central theme in these papers is the relation between plane
domains D and their symmetrizations D*, and majorization arguments showing
the extremality of certain rearrangements of functions associated with the domains D.

For example, in l2l Baernstein studies the class 
^S 

of schlicht functions in the
unit disk rl:{lzl<.1}, normalized by /(0):0,f'(0):1. He proves

@(1og lf ?e'u)l) d0 o(loglk(reio)l)dO (0= r< 1)

for any @ convex and increasing on (- -, -) and for all ft §, with k 727:210 - z)'.
Further, Baernstein proves that if equality holds in (l) for some increasing, strictly
convex @ and some r€(0, l), then

(2) f (r) - e-i" k1ei" z1

for some real a.

(A convex function is termed strictly convex if it is not linear on any interval.)
Baernstein flnds other inequalities analogous to (l) for general analytic func-

tions in U, Green's functions, harmonic measures and conjugate functions; but for
these results he leaves open the question of finding uniqueness results like (2) for
the expected extremal functions.

Our purpose here is to consider this question, and we first study the case of
equality in Baernstein's result

a(u@eto)) d0 O(r(reto))d0 (0=r<.o)
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for Green's functions: Let D be a domain in the extended plane having a Green's

function, let zo(D and let z be Green's function of D with pole at zr. Let D* be

the circular symmetrization, with respect to the ray 0:0, of D (the explicit defini-
tion is given in Section 1), and let u be Green's function of D+ with pole at lzol.

Define rz (respectively o) to be :0 outside of D (resp. D+). Then Baernstein has

proved (3) for all convex nondecreasing functions @ on [0, -); see [2], Theorem 5.

To this we add

Theorem l. If equality holds in (3)for some r€D*a(0, *) and some increasing
strictly conuex iD, then

(4) D: ei"D+

for some real a. If zn*O sv *, then a:a.tE zo.

In case the r-value for which equality is known to hold is r:lzol,, it is to be

understood here that @ satisfles also /å @(-log 0)d0=-, so that the @-means

of u and u on this circle remain finite.
Theorem 1 answers a question posed in l2l, p. 142.

Put M(r,u):s11pru(reie) and notice that (3) implies

M(r, u) = M(r, u) (0 = r < o.).

Theorem 1 suggests that equality here for some r(D*n(0, -), r*lzol, implies (4),

and we prove this as well in Seclion 2.

An analogue of Theorem 1 for integral means of harmonic measures is given

in Section 2.

Inequality (3) is a key element in the proof of a striking symmetrization principle
for functions holomorphic in a disk established in l2l: Let / be holomorphic in U,

pttt D:f(U) and let Do be a simply connected domain, Dr=D*. Assume Do is
not the whole plane, so that there exists a conformal map .F of U onto Do with
F(0): l/(0)1. Then Baernstein proved

f -(1og lf ?u")l) d0

for all convex nondecreasing @ on (- -, -).
Using Theorem 1, we prove

Theorem 2. If equality holds in (6) for some r€(0,1) and some inoeasing
strictly conoex iD, then

(7) D - eioD*, Do : D*, f (r) - ei'F(ei§ z)

for some real a and B.
Theorem2 and its analogue for M(r,lfl) are proved in Section3.
Theorems 7 and 2 are similar in form to some of the uniqueness results obtained

by Jenkins in, e.g., [20].

(s)

(6) = Jr 
@(log lF(reie)l) d0 (o = t" < t)
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Let f€Ll(T) be real valued, where 7:{lzl:l}, and define

(8) F(z):* f ,*-1ffi0*.
In [4], Baernstein establishes some sharp bounds on the conjugate function

(9) f("'u): IT_ I* F(reio).

For example, consider the sharp form of Kolmogorov's Zp-norm inequality

(10) llf ll, = cnllfll, (o < p < l)
with

c,: llcsc il,:(*1,," rll-ndo)''o

due to B. Davis [9]. Baernstein gives an informative proof of (10) in [4], as a limiting,

case of a theorem about the analytic functions

(u) F,(z): I#dp(ei\,
T

where pCM(7), the class of real valued Borel measures on 7. We denote by llpli

the total varitrtion of p, and put

ll2) it(e'u):,1ip t- F*(reio).

Then (10) is equivalent to

(13) llfrllp= Collpll (o < p < l).
Equality holds when p is the singular measure

l- l^n: zu, 2ö-';
here ä,€M(7) is the unit mass concentrated at (€T, so that

Fn(z): #
Let us also put, for each å€[0, l],

(r4) uu:l(t+b)öL-+(l-å)ä-1

so that llvrl]:1, vu(T):b. Then Baernstein deduces (13) from his inequality

zfr zfr

(15) t lr,@"'\lnae= ! lF"u?e'e)led0 (0=r< 1;0 <.p42),
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valid for all p(M(T) with
llpll = 1, lpT)l: b.

Concerning (15), we prove

Theorem 3. Assume equality holds in (15) for some r((0, l) and some p((0,21.
Then 1t is a rotation of vo, i.e.

p(E) = vu(ei" E) (E c. T)

for some real a. Thus
Fu@): Fnu(ei"z) (zl < l).

Suppose now that equality holds in (15) when r:l and p((0,1); or, that
equality holds in (13) for some p. Then we must weaken our conclusions. We give
the simpler statement, for (13); recall that one measure giving equality in (13) is
V:Vo.

Theorem 4. Suppose peMQ) has llltll:1 and satisfies (13) with equality

for some p((0,1). Then

F: 14- Ltz

where pr, p, are positiue measures singular with respect to Lebesgue measure such that

and

(1 6)

holds a.e. for some inner function a(z) in U with or(0):9.
Conuersely, giuen any such a(z) there exist positiue measures p, and pr, each

of mass ll2, which are singular with respect to Lebesgue measure and mutually sin-
gular, such that if F:th-ttz then (16) is ualid a.e., and equality holds in (13).

A similar statement (see Theorem 4.2 below) holds for the measures p giving
equality in (15) when r:1 and p=t. (this restriction on p is clearly essential,
since d,(IIt(U).)

Theorems 3 and 4 and some variants, concerning e.g. Davis' sharp form of
the weak type (1, 1) inequality for conjugate functions f, are proved in Sections 4
and 5. Analogues for related problems concerning the f and rearrangements of/
are treated in Section 6.

Some results on analogous extremal problems for entire functions have already
been given by Baernstein [3], Edrei and Fuchs [11], and the authors [13]. A key step
in [13] involves a new property of Baernstein's *-function

pr(T): t-tz(I) - +,

fr(r'u) - n(r@tt))

u* (reio) - sup f u@ei*) dE
lEl:20 ;

(1 7)
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where .Ec[-rl,n) and lE|:Lebesgue measure of -E When,4o is an annulus

about the origin and a is subharmonic in lo, Baernstein [2] has proved that u*

is subharmonic in Aon {O=arg z-n}. ln [3], we consider the case

u(z):roglf(z)1, f(z): II (-zlz,) ()12,1-r -*1,
and prove that harmonicity of a+ in the upper half-plane implies zn:-ei"lz,l fot
all n and some real «, so that rz has the key symmetry property

u*(reio) : t uUr'@io)) de (0 = 0 < n).
-e

A basic tool here, Lemma 1.1, yields a similar result for more general subharmonic a.

Throughout this paper we systematically refer to the results, methods, ter-

minology and notation of [2] and [4].

1. Study of subharmonic a having z* harmonic

Let u be subharmonic on an open set D in the extended plane. The circular

symmetrization of D is the open set D* defined as follows: If for r((0, -) the

intersection of f,: {lrl:r} with D is 7, oi the empty set 0, then [nD* is to

D* contains 0 or - if and only if D does. We assume D* is connected.

It is convenient to assume Dc{so=izl-.to}:As for some Jo>O, /o<-, and

thatu is positive in D. We put zu =0 on Ao-D and assume that the extended a

is subharmonic on lo. Then by [2, p. l4l], u* (defined in (17)) is subharmonic on

Aoa{Im z>O\.
Under certain conditions [2, p. 153], Baernstein has proved that u harmonic

on D implies a* is harmonic on

D\

The following converse statement

l,emma 1.1. Let u and D be

in D\. Then there exists c€l-ri,

(1.1)

0

(I.2) u* (reio) -= f "(reit'+E\) 
dE

D*n{I* z > 0}.

a key tool in our proofs.

described aboue and suppose that u* is harrnontc

such that

D - 
:'" 

o*'

:

is

AS

7T)

Proof. For each r((s6, le), we define u(reie) for -n<0<n to be the sym-

metric nonincreasing rearrangement of u restricted to {lrl:r} (for an explicit

definition of this term, see [2], p. 149). Then

un(reie)-- 
{r@eio)dE 

(o= o=n)(1.3)
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so that

Åu* (rr") : 
_f 

Åu(rei*) dq (rn"€ Di)

(.tf. 12, p. 153]). Since u* is harmonic in Di, u is harmonic in D* .

Choose any rr€(so , to) n D* and a rcal so that

Then zL- rreio €. D . 
lzl: rr

Define
d*0 0

andchoose Q=0 sothat"ii,-_zll=s) cD. Then 
-0

r, *o d*0(r)
TEQzu(zr)= t{ u- I f u(reivlrdEdr

lz - zlse rt- e a-9(r)
rrta 11* e

= I u* (reio(r)) r dr - f V (rei\(,))r dr - il u - nQzu(r).
lz-rl=o

that

(1 .5)

rt- Q rt- Q

Since u(zt)-u(rt), there is equality throughout. It follows

U,(r) - u*(r) - V(z)

a.e. on the half-circle {lr-rrl:q}nD}. But U"-Z is subharmonic and non-
positive in D| and vanishes at some interior points of D|. From the maximum
principle, we deduce (1.5) throughout D|. Thus (1.1) and the flrst equality in (1.2)

hold.
At this point we may as well suppose a:0. It.remains to note that (i) for

each r((so, t), u(ren) is nonincreasing on [0, n] and nondecreasing on [-zr, 0],
and (ii) u(z):41r1 for all z(Ar. For, if (i) were false, there would exist an r and
0 such that

0

u*(reio) - _f 
ulreio)dq,

contradicting (1.5). Thus (i) is true, and then we can use (i) and the same argument
to see that (ii) holds.

The same proof yields a useful variant.

Lemma 1.2. Let u and D satisfy the conditions of the first two paragraphs of
this section. Let u be harmonic in D+ and define V as in (1.4).

If u*=V in D\, and there exists .zL:rLei'€D such that u(zr):u(rr), then
tt*:Y in D\. In particular, u* is harmonic there.

Lemma 1.2 implies Lemma l.l if we choose u to satisfy (1.3). A different choice
of u in Lemma 1.2 yields a characterization of the domains for which equality can
hold in Baernstein's inequality (5) for Green's functions. For this, see Section 2.

In Section 3 we also need
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Lemma 1.3. Let u and u be Green's functions as described in Theorem l. Assume

there exist r=0 and t€(-*,*) such that

(1.6) minu(reio) <. t < maxu(reiq).

If for one such pair (r, t),

_i lu(r"'*)-tl* dE : 
_[fu(reio)-tf+ 

dE,

then u*(z):u*(z), zqD\

Proof of Lemma 1.3. Fix (r, l) satisfying the conditions of the lemma, and let
llo:ll-t, Uo:U-t. Then

3l'l

1t

{ "o(rei*1* 
dE - räp

-lt
,c

u[ (reiE) - uff (reie),

_! 
oo@et')+ dE : sltp u[(rew1 : ut@eiv)

and by assumption u[(ren):u;7vei't). It is a consequence of (1.6) that 0<0<n
and re'o€D\.

We claim that 0 :*. To see this, we note that o is nonconstant on {lzl:r) n D* ;

thus g*2(leie) cannot be constant on any interval (a, B) such that reiq<D* when

a<g<p. Thus
u[(rero) =ot(rei{), E *{/.

lf {/ t0,
o[, (rett1 : ut (rei9) = uff (rete) - ut (reiv),

where the first inequality follows from [2, p. 165]. The contradiction shows that

0:{r and u*(reiil1:p*1yei*;. But tt*-t)* is subharmonic and nonpositive in D}
(cf. [2, Section 7]); since u*-u* vanishes at reiv(D\, u+:u* throughout Df ,

as required.
Our proofs of these lemmas generalize to functions in n-space, and lead to

uniqueness theorems for certain results of Gariepy-Lewis [15] and Baernstein-
Taylor [5]. We intend to describe these extensions in a separate note.

2. On Green's functions. Proof of Theorem I

Let itr be as in Theorem l. Then @(0+):@(0), and integration by parts

yields the representation

(2.1) @(x) - a(0)+ [ t*-t)* dp(t) (0 = x < oo)

[0, *)
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where the measure p is defined by p[0, t):Q'(t-) (0=t=-;, p{0}:@'(0+); by
strict convexity of @, p(J)>O for any interval .Ic[0, -) of positive length.

Since z*<u* in {Im z>0} (12, p. 1651), we have

(2.2)

(2.4)

I f,(reiq)-tJ* dE fu (rsiv) - tl* dE

rating (2.2) against dp(r) over [0, -)

=-[

Integfor all r>0 and rcal t f2, Proposition 3].

and using (2.1), we obtain

(2.3)
[ 

@{u(ret*11 dE = { 
@(u(ret*11 dE.

Let r be the positive number in D* for which equality in (2.3) has been assumed.
Then Q.2) holds with equality a.e. (dp) on 0<r<-. Since @ is strictly convex
on [0, -) there is equality in Q.2) for all t>0, and thus for all real t since u and
u are nonnegative. We conclude, for this r,

u*(tei\:u*(reio) (0= 0 = n).

(This argument requires that the @-means of u and u in Q.3) be finite. When r: Izol,
this is clearly the case if and only if /|O1-tog ddE:l? <D(x)e-,dx=.*.)

Suppose first zo*0 or @. Baernstein has proved B, p. 166l that

u+ (z) - u* (r) *2nlåe lrl ,rl

is subharmonic in D| and that a+ is harmonic there. Thus u+ -u+ is subharmonic
and nonpositive in D|, and vanishes on D| n{lzl:y\. It follows that u+:u+
throughout Di. We conclude from (2.4) that u*:u* in Df,, and that u* is har-
monic in D1:Dln {lzl=lzol} and Dr: D1n{lzl= lzol}.

It follows from Lemma 1.1 that there exists a,€R such that

reio€ D,
o0

for v- 1,2 andthat u(eio"z):u(z) for zCD,,,t):1,2. Thus ry-:cz:d,
u (z) on D*.

If zo:0 or *, the argurnent is simpler since there is no need to
or the subdomains Dn. This concludes the proof of Thebrem 1.

A vari ant of the above argument gives

Theorem 2.1. Suppose that u and o satisfy the conditions of Theoreml, except
that equality holds in (5) rather than in (3) for some positiue r(D*, r*lzol. Then the
conclusion of Theorem I still holds.

i "(rei(o,a'o\ 
de : i u(reiw1 dE,

and u(ei" z) -

introduce u+
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Proof. Choose c real so that u(reio1:141r,u), and let zr:1sto. Then zleD
ard u(zr\:1t (lzrl), since M(r,u):t1(v), (cf. [2], pp' 153, 154), and thus the hypoth-

eses of Lemma 1.2 are satisfied with Y:u* and D replaced by D n{lzl<lzol} or

Da{lzl=lzol} according as r<lzol or r=lzol. We conclude that u*:ls* ii Dt
or D, respectively, so that u+:o+ throughout D|. Now the argument used above

to complete the proof of Theorem 1 yields the conclusions of that theorem for
these a and u.

Baernstein has found an inequality like (3) for harmonic measures ([2, Section 8],

[12, p. 86]) and our methods yield also the corresponding uniqueness result analogous

to Theorem l. Specifically,let D be a domain in U, assume f :0D n 7 has positive

Lebesgue measure, and let u be tlie harmonic measure of .l- with respect to D, i.e.,

the harmonic function in D whose boundary function is 1 on i- and O on |DaU.
Denote by o the harmonic measure of f* :0D* n I with respect to D* , and extend z

and u to all of U by setting them equal to zero outside D and D*, respectively.

Then Baernstein's theorem mentioned above is

(2.5) _i o(u(re'\1ot 
= _i @(u(reto))it0 (0 < r < 1),

for any convex increasing @ on [0, l].
The arguments used in this section lead immediately to

Theorem 2.2. If equality holds in Q.5) for some r((0,1)nD* and a strictly
conoex iD, then D is circularly-symmetric with respect to some ray argz:q,.

3. On convex means of analytic functions. Proof of Theorem 2

Let iD, f, F, D and Do be as in the assumptions of Theorem 2,let (s:f(O) and
letu,a, wbeGreen'sfunctions for D,D* andDowithpolesat(0, l(ol and l(ol,respec-
tively. Then Baernstein has shown 12, pp. 152, 142, 166l that

(3.1)

lråerydo-2ntögry
lt 7l

-nn-ft

låerydo-zntåsry:T



(3.2) o(x)-@(y): (x-y)iD'(r)+ I [x-log d+ dy(p)- { b-toes7* dy(s)
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holds for all q>0 and 0=r= 1; as usual, we set u, u and w equal to zeto outside
of D, D* and Do, respectively.

The same argument used for (2.1) yields also

iD(x): iL(t)+(x-r)@'(r-)* t @-0+ duQ) (--= , - x)
lz, -)

with p(--,t):itr'(t-). Thus if z<inf (x, y) and we put t:logQ,

where 4:exp r, v(0, q):p(--, log q) and we interpret 17: Irr,*r. Let
x+-6 in (3.2), choose x:loglrQet9)l and 7:lsg lf?r\l there, and integrate
the result over [-2, z] to obtain

(3.3) 
_[ o(toglF(ret0)l)ot- 

_{ 
o(toglf(rete)l)d0

: Ioil,(--)+Xrrn* i ,61arp1

where

,, : i toslF(reto)lot- i toglf(ret)1d0,

: 
iÅrtr9"'\t n-" jÅeP!))-ao.1(s) ,

By Baernstein's inequality (6), 1o=0 and 1(q)>0.
Now assume r€(0, 1) is such that equality holds in (6). Then from (3.3), dv>O,

and the fact that @'(--)>0,

(3.4) Io@'(--) :0, I ,tnldv(q) : g.

Since @ is strictly convex, v(.f)>O 
". 

r, intervals ./c(0, -; of positive length;
since 1(q) is continuous, (3.4) implies

(3.5) I(d :0 (0 = I < -).
We conclude from (3.1) that

(3.6) 
_[ lu@e*)+logr]+ o* : _[ [u(sero)+log r]+ dE : _[ lwket )+tos r]+ dE

for all p>0.
It is clear from (3.6) that Do:1t*, since otherwise u(O<w(O for all CQD*,

utht.
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We claim that u*:rs*. This is a consequence of Lemma 1.3 and (3.6), provided
there exists a Q=0 such that

(3.7) inf u(qeio) = -log , < sup u(Qeie).

Let

and suppose there exists some Qo=0 such

C - D,. Then certainly

Dt(qo, u) : inf u(qoeia) = -log r = sup u(poeie),

and if !Jt(qo, a):0 then (3.7) holds with Q:eo. Otherwise the circle l(l:So
is contained in D, so that Dt(q, u) is a nonconstant continuous function near qo

and thus (3.7) must holdfor some I near qo. We conclude thatu+ (cf. (2.+) is har-
monic on Df and, by Lemma l l,

u(O - u(e-'"O and D - eioD*

where a is a real constant (:arg(o it (o*0).
It remains to consider the case when every circle l(l: g is either contained in D,

or disjoint from it. Since D, is connected, D,:{l(l-Sr} or D,:{sr=l(l=Sr}.
In the latter case, we must have {l(l=Sr}c, since D*:Do is known to be simply
connected; then fi(q, a) is strictly decreasing on (0, qr) and thus

-logr >u(0)=!It(p,u) (qr= Q = qr),

a contradiction. We deduce that D,: {l(l=er}, and claim that (3.6) implies E,:D,.
In fact, by (3.6)

f,fr

I lutor'*)+logr]+ aE: I [u(qeto)+logrf+ dE>0

if and only if 
-;A=Qr, 

so tnat A,cO,. Further, 1f C€D,-E, then (3.6) implies

i lu(oe',) +tog rl dE = i luter'*)-ttog r) ctE

for l(l=g=n., ,;; this contrad,"u r".r^*in's inequality (3).Thus in this case

uo:u*togr and uo:ullogr are Green's functions for {i(l=er} with poles at
(o and l(ol respectively, so that again (3.8) holds.

Finally we claim that f(z):sioFlei§21 for some real fr. We know that f((I):
eioDo and f(0):et"f(O). Deflne

(3.e) c»(z) - F-'(r-'" f (r)) (z€U);

by Schwarz'lemma, we have a(z):sifi, or la;(z)l=:lzl in {0=lzl=1}. To show
that the latter possibility cannot occur, suppose it does and let h be the harmonic

- {u(0 = - log r},

that l( I 
: qo intersects both D, and

(3.8)
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function in {lzl=r} whose boundary values are ib(loglF(ret01l). Then we have

= _{ n(r{rete))dT:znh(a(o)): _! h@ete)d0

: 
_i ,@rlF(reto)l)d0,

the strict inequality holding because @(log lf'(z)l) is strictly subharmonic (i.e. not
harmonic) throughout {lzl=r), due to the strict convexity of @. But (3.10) is

inconsistent with our hypothesis of equality in (6), and the proof of Theorem 2

is complete.
Now choose @(x):sxp (px) in (6), takepth roots and let p** to obtain

(3.11) M(r,lfD=M(r,lFl) (0<r-l).
Theorem 3.1. Let f and F be as in Theorem2. If equality holds in (3.11) for

some r((0,1), then (7) is true for some real u and fi.

Proof. IJsinC Q.2) with O(x;: exp (px), x: -@ and x:log lf?rtu)|, y: - *
we see that

V@en11' : i ,[rW# p'Qo-L dQ.

Thus (3.1) implies

(3.12) [ lftrr'1pa0-2xlf(o)le = p, I QP-rdQ { lu{er',)+togr)+ drp

= n, { Qp-r dQ _[ lw@e*)+logr]+ dE: :[ lF@ete11n4g-2nlf (o)le

where u, u and w are the Green's functions introduced at the start of this section.

Let r be the flxed value for which equality holds in (3.11). Taking pth roots and
letting p*- in (3.12), we obtain a chain of equalities. To describe the limiting rela-

tions, we note that if {tQLt(O, -) is nonnegative with I3 ,lr=O and, to f,x the

ideas, compact support in [0, -), then

j,e {i p'-'{@)onl''o :,ur{*, ! r = o}

€ p' i n'-' ,lQ i t"(Qr'*)*log r.,t dE
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Thus we deduce from (3.12) that

Qo : sup {n, _i t"«eio)+tosrl* dq= o} : ,,rr{n, _i tu(e"g+logrl+ av = o}

: sup{e: ! wrr"'.1*logrl+ a*=ol.

We conclude that M(p,u):max.r@d') satisfies

(3.13) M(Qo, u) : M(Qo, u) : M(Qo, w) : -log r.

It follows that D*:Do, for otherwise u(O<w(O throughout Do-{l(ol} and
(3.13) would be violated. Now we apply Theorem2.l, and deduce D:ei"D* and
u(z):u1r-i" 11.

To complete the proof of (7), we define a(z) as in (3.9) and observe that our
hypothesis 

M?,lfl): M(r,lroarl) : M(r,lFl)
imFlies la(retg)l:r for some 0. Thus, at(z):eif z for some real fr, arrd we are
done.

4. Some extensions of Theorems 3 and 4

Before proceeding to the proofs of Theorems 3 and 4, we state some related
results from [4] and describe our corresponding uniqueness theorems.

Let p€M(T) and Fube as defined in (11), let v, be the extremal neasure given

in (14), and put
G6(z): F"o(z) (z€U, o=b=l).

We suppose throughout that
P(T) = o'

Then if
(4.1) llpll = 1, b: p(T)

and 0<r=1, Baernstein has proved [4]

21 2n

$.2a) [ lrrte")Pao= [ lGu@e\1n49 (o=p=2),

Zrc Ztt

(4.2c) { lRe Fu(reie)V ao = [ lRe Gu(reio)P ao (1 < p = oo).

Our first Jrrrn*ion of Theorem , ,-

(4.2b) t [Ln Fu(reio)P ao = { llm Gu(reie)V ao (1 = p = 2),
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Theorem 4.1. Let p satisfy (4.1) and assume equality holds in one of (4.2a)-

(4.2c) for some r((o,l) and one ualue of p in the associated range. Then

(4.3) F*(z) : Gu(einz) (lzl - l),

(4.4) p(E) : to(ei"E) (E c T)

for some real a.

Inequality(4.2c)obviouslyholdsforp_laswell,bycontinuity;butthe
corresponding uniqueness statement requires some care' In case

b : p(T): f'(Q) > 0

and r€(0, 1) is such that Re F*(reie1=O for all6, then equality in(4.2c) with p:1
implies Re Gr(re'e)=0 [i'e' r<ru=bl(l+(l-bTt'))' and obviously nothing more

can be said. Our proof does give, however:

Let p satisflt (4.1) and suqqose

(4.s)

for some r€(r, l). Then (4.3), (4.4) still hold'

Since the means in (4.5) fail to be striotly convex, our treatment of this problem

will indicate how our earlier theorems involving convex integral means can be slightly

generalized.Inthis casewe are concerned with means / Olne d) where @(x):lxl

is linear except near 0, and we have to assume

f tR. 4, (rr'u)l do -- { lRe G6(reio)l do

mrin R. 4, ?r'u) < 0 <

comparo hypothesis (1.6) in Lemma l'3'
Sinse Fu(H'(U) for all p=l (t101, pp' 2, 35), the bound ary values

Fr(eio):lim Fu(re")

exist a.e. and (4.2a) still holds with r:1 and 0=P<1' We shall prove

Theorem 4.2' Suppose 4CMQ) satisfies llttli=l and

(4.6) f v,k'\P ou : f lGu@io)l, cto

for some p€(0, l) and some nonnegatiue b=p(T)' Then p(T):b' llpll:l and

where

hauing

(4.7)

It+, tt- are positiue

P- Lt+-H-

measures singular with respect to Lebesgue meosure and

max R. 4, Ur");

)oi,P*(T) : +b), p-(T): - b).
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Further,

(4.8) Fu(z): G6(a(z)) (zl = t)
for some inner function a(z) in U with co(0):9.

Conuersely, giuen any such a(z) and any å€[0, l], then there exist positiue
measures p* and p- which are singular with respect to Lebesgue measure and mutually
singular, such that if p:tt*-1t- then (4.6)-(4.8) all hold.

It is easy to see that the case å:0 of Theorem 4.2 contains Theorem4.
Baernstein deduces @.2a)-{a.2c) from an interesting result for analytic func-

tions not necessarily of the form d. Following Section 4in[4], assume Q is a bounded
domain containing 0 and Steiner-syrnmetric with respect to R ([6], p. 68). Deter-
mine .B>0 by Qn{Re z:O}:(-iB,iB), and define the subdomains

Qp:Q-{iy: §= iyl = B} (0< B<-B).
For each real b(Q and B((0, Bl, let Hp,6 be the univalent map of [/ onto

Qp with Hp,u(O):b and H'p,u(0)>0. Actually, there is no loss of generality in
assuming throughout, as we shall, that

b>0.
To cover the limiting case B:0, define f10,, for positive b(8 to be the con-

formal map from Uonto Qn{Rew>0} having Ho,u(O):b and ä[,u(0)>0; and
put äo,o(z):0.

For all nonnegative bQQ and P(IO, Bl, define g(B, å) to be the class of all
analytic functions F with
(4.9) F: U * Q, F(0):6

(4.10)

With these assumptions, Baernstein proves:

For all r'€ 8 $, b) and 0= r<1,

/,*. F(r,r)rdo = f rRe Hp,o(eio)rd,,.

2n 2r
(4.11a) t lF@eie)P ae =- I lHB,u(rei,)P ag (0 - p =- 2),

2n 2n

(4.11b) I llm F(rei,)Pae = [ llm Hp,u(rei0)Vag (1 = p =2),
'rn 

o 

,n
(4.11c) I IR. F(reie)lo Ao = I lRe Hp,u(re'e)lo Ao (1 = p = -).

In order to formulate this result as the solution of an extremal problem, Baern-
stein observes that

E(fi) : * { ltelo;@t)ldo (o = B = B)
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is, for fixed nonnegative b(Q, strictly increasing on [0,,8]; further, E(O):b and,

for each F satisfying (4.9), there exists a unique P€[0, B] such that

t2:
E$): z, J ln. F@to)ldo.

Thus, for the problem of maximizing the integral means in (4.11) among all Fin
the subclass

8$,D: {F€8(8, D): equalitv holds in (4.10)},

H6,6 is the unique extremal in

{H,,u: O =- t = B} ^*$, b).

We now consider to what extent this extremal is unique in the full class S(8, å).

Theorem 4.3. Gioen any F(B$,b), the inequalities (4.11) are all strict, for
each r((O,l) and admissible p, unless

F(z): Hp,b(einz) (lzl = l)

for some real a.

There is one gloss here: we do not regard as admissible the choice p:l in

(4.11c) for any r€(0, 1) such that

Re f'(re'o) = 0 and ReI1B,6(rei0) = 0 (0 = 0 = 2r).

There is a variant of Theorem 4.3 concerning the F(B(P, å) for which equality

holds in @.lla) or (4.llb) for r:1 and some appropriale p.It will be clear from
the proofs of Theorems 4.2 and 6.2 how to state and prove this variant.

In [4, Section 2], Baernstein also gives a function theoretic proof of Davis'

sharp form of Kolmogorov's weak type (1, 1) inequality for conjugate functions.

To state this, let fiJL(T) be real valued and deflnelUy (q). put

(4.12) E,(i) : {eio: liletell = t\,

and for measurable EcT let us also put lEl:Lebesgue measure of E Then Davis'

inequality is

(4.13) lE,("fl]< 2n@t-rllf ll, (0 < r < -)
where

@-r: llRe G("'\llr, G(z): i"t(E)
Theorem 4.4. Supposef satisfies (4.13) with equalityfor some t>O and f *0.

Then

f (e'u) : r Re G(cr;(eio))

for some inner.function e) on U haoing co(0):0.
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Conuersely, euery such f satisfies

lE,(f)l: zn, llfli: t@-r
for this t.

In particular, there never is equality in (a.13) if Irf#O.
We proceed to prove Theorems 4.2 and 4.4; the proofs of Theorems 4.1 and 4.3

will be given. in Section 5.

Proof of Theorem 4-2. We start from the elegant formula

2fr

(4.14) [ lF\en)le dO : p, f I *@, w, F)l,,vln-z 4u dut2nlr(g)1,

used in fOf ("r. [6], p. qrl, 
^rdt*lafor all F analyticin t/, say. Here 0<r<1,

0<p<.-, w:u*io and .ly'(r, w, lc) is the usual Nevanlinna counting function for
the value w of F [17, p. 6].

We shall need (4.14) also for r:1. Let us write

F: Fu, G : G6: Fnu

and recall that F€HV(U) for p-l since p<M(T) ([10J, pp.2,35). Thus ,Fis of
bounded characteristic and so by Jensen's theorem

(4.15) .l[(1, w,r) : I,r-$ N(r,w,f) = B(w)

where

B(w): 
^L!"rårlffiVt

is uniformly bounded except near F(0), and B(vf -0 uniformly when lwl*-.
On 0=r-1, {N(r, w, F)*log lw-f'(O)l} is an increasing family of functions

subharmonic (by Jensen's theorem) and continuous in C. Thus, N(1,w, F) inherits
lower semicontinuity and the subharmonic mean value property from {N(r, w, n},
and subharmonicity of N(1, w, .F') is a question of continuity. In any case, the upper
regularization

(4.16) q(w) : li?*s#e N(1, C, n

of the limit (4.15) is subharmonic throughout C-{le(0)}, with

(4.17) q(w) : N(|,w, F) (w€C -S)
wherc E has capacity zero,

(4.18) N(1, w, F) = q(w)
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in C ([19], Theorems7.39 and 7.33); and q(w)-llog lw-f(0)l is subharmonic
throughout C. Thus, by (4.17),

;
J t@+is)ds

is continuous
We shall

(4. 19)

then for r <l
(4.20)

in {, =0}.
need some basic results on * -functions from Section 5 of [a]. If

N*(r, w, F):t;g, 
! 

*rr, u*ls, ^F)ds (u = 0)

/Yr+ (r, *, F) : N* (r, w, F) * 2n[u - Re F(0)] +

is subharmonic in {o>0} and continuous in {r=0}. By (4.15), the deflnition (4.19)

remains valid when r:l; because of (4.17) we can define 4*(w) in the same way.

Further, it is easy to see that

q*(w): nf*(I, w, r') : }E N*(r, w, .F) (o = 0).

We observe also that

qo (w) : q* (w)+2n[u-Re .F(o)]+

is subharmonic in {u=0} and continuous in {u>0}. To see this, notice thal for
each e>0 the function q"(w):lq(w)-e]+ has compact support, so that

q{ (w) : q!(*)+z"lu-Re r(o)l+

has the subharmonicity and condinuity properties claimed for q+ (ct. l4l, Section 5).

Now our assertion for q+ follows from the fact that the majorants

Q"(*) : q! (w)+Zue
decrease to q+(w) when e10.

These considerations lead to two lemmas, analogues of Lemmas 1.1 arrd 1.2,

which will be needed in Sections 5 and 6. Motivated by the assumptions of Section

1, let p(w) be positive on an open set DcBo: {w:u*iu: (a<u<xo\, put p:S
on Br-D, and suppose the extendedp is subharmonic on Bo. Assume further that

,!X1r{r+ iu) - o ((o< u <ro),

uniformly on compact subintervals of ((o,ro), and definep*(r,) as in (4.19). Let D*
be the Steiner symmetrization (vrith respect to R) of D, andlet D\:D*n{u=O}.
Then by the remarks in the previous paragraph,p* is subharmonic on ,B6n{u=0}
and continuous on ,Bon{u>O}.

In this setting, Lemmas 1.1 and 1.2 have exact analogues which we shall refer
to as Lemmas 4.1 and 4.2respectively. The proof of Lemma4.l (and its slightvariant
for Lemma 4.2) is the same as that for Lemma 1.1 (except that rectangular rather
than polar coordinates are used). Let us explicitly state only the first of the two
lemmas.
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Lemma 4.1. Let p(w) and D be as described aboue and suppose that p*(w) is

harmonic in D\. Then there exists a(R such that

D : D* +ia,
q+o d+o

p*(w) : I ,t"f is)ds :2 I p@*is)ds (w : uriu(Br, o > o).

Consideruo-* ,r. function C:Crof Theorern 4.2.Fromthe discussion in [4],

Sections 3-5, G is univalent and N(1, w, G) is Green's function of the Steiner

symmetric domain G(U), with pole at G (0) : 6. In particular, N (1, w, G) + loglw - bl

is harmonic in G(U) and, for all real u, u * N(l,u * iu, G) is nonincreasing on 0 < o < -
and even; it follows that 

o

N+(1, w, q: I N(1, z*is, G)ds*2nlu-bl+

is harmonic in G(U)+: c(u) nö=o). w" need Baernstein's key inequality

(4.21) N+(r,w,F)= N*(r,w,G) (0- r< l; u >0).

Recall that we oan let r*1 here and obtain

(4.22) iy'*(l, w, F) = tr[*(I, w, G) (u = 0).

After these preliminaries, we seek consequences of our assumption (4.6). In
the first place, we must have b:p(T) and llpll:1. For, if we put pr:pllll4l,
then llprll:1 and c:pr(T) satisfies, by assumption, c>1t(T)=b. lf c=b,

zfr zfr zfr zft

@.23) llp11- 
o I lrut"'\P a0 : I lFr,(ete)lp d0 = [ le"{r")lo d0 = [ leu@'\10 ao

by Baernstein's inequality @.2a) and the fact that

,t, (» : { lGuTet'11o 46 :, i tl!u"r^ u'!)' *
is striotly decreasing on 0<å< 1 when p- t. 

oSio". 

(4.23) contradicts (4.6), we have

shown b:p(T); another look at (4.23) yields llpll:1.
Recalling (4.14), the fact that F(0):å:G(0) together with (4.6) implies

(4.24) I I *0,w, F)lwlt-z*udu : f I *Q,w,G)lwlp-zdudu

for some ,a*lr, since G€Hp(t/). we ;:;;rto deduce next that

(4.2s) F(U) c a(u).
Using (4.19) and (4.21), we see that

(4.26) K(u*it:): i *{r,utis,G)dr- i N(l,u*is, F)ds > 0
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in the upper half plane. Fix u#0, and put

Then an integration by parts gives

(4.27) f tt1" * iu)nt' (u) du - I k@ t iu) lu * iulo-z du

where

(4.28) k(w):0Kl0u - 2N(l,tu,G)-If(l ,w,f,)-If(l ,fr, F).

Using (4.24), we obtain

(4.2s) f f K(u,) m'(u) du cttt: f I k(w)lwlr- z ctu du - 0.
-J* ö

since m'=0 *; 
'o=0, 

K(*)-g a.e.in {u=0}.
Thus, by (4.19), (4.21) and (4.17),

(4.30) 
_{ 

*rr,utis, F)ds: _l 
q@*is)ds : q*(w): rry'*(l, w, G)

a.e. in the upper half plane. The second term here is subharmonic in {u=0,u*b}
and continuous in {r=0}, as we have already noted. Since also

(4.31) tr[*(l, w, G) is continuous in {u = 0},

we must have

(4.32) q*(*): I q@+x)a,

throughout {r=0}, and so Uy u .impt" argument (cf. last paragraph of the proof
of Lemma 1.1)

(4.33) q(w): q(w) (w€C).

Using (4.18), we deduce

(4.34) N(1, w, F) =- q(w) : N(1, w,G) (w€C).

This relation implies (4.25), and we have completed the first step in the prcof.
We can now define o):G-r o.F. Then co(0):0 and we claim that a: [J*(J

is an inner function [10, p. 24). For (Q(1, define

(4.35) ata(z):f#
Since ar6(z) is subordinate to ((-z)l$-Q), Jensen's theorem implies, if (*0
and w:G(O,

(4.36) N(r, w,F) : N(r, (, a) =,4 l;[ : N(r, w, G\ (0 < r = l).
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By@.17)and(4.34),thereisequalityin(a.36)whenr:lif(4E,wherecapd:0
Thus do:6-1(d) also has capacity zeto, ar.d

(4.37) ir(I, (, o) : -log I(l (KU-aoY

Applying Jensen's theorem again, we deduce

1 '^*
(4.38) \y+/ "* ia,rQete)lde:lYN(r,(,rp)*loe l(l :0 (Ku-no1'

Thus, for any such(, ar, is a Blaschke product Ll4,p'1071U,p'321, and it follows

that a is inner.
We conclude that

F: G.".,: irr+b)#-io- b)#: F*-F-
where

(4.3g) P+ : G+co,, Gt@): 4,, XAlff'
L rt.

Since G*, and so also f'* , map (J into {Rew=0}, the Herglotz representations

(4.40) Fa(z) .= I#dp*(e'')
T

obtain; here p* and p- are positive Borel measures with

(4.41) p+(r): Ft(o) : I Oxol

[0,p.3].Recallthat F:Fp hastheform(11);byuniquenessof ,r^t[10,P'47, F:tt+-
,u-. Further, since co is inner, I [fffi:, a.e.(4.42) l,jlR. F*(reio) : ,0+ A1

and thus p'*(e"):o a.e. [10, p. 4]. Similarly, {-(ei07:0 a'e'' so that p* arld p-
are singular with respect to Lebesgue measure. Notice that, since p* and p- afe

positive with

r -r 
I I

I : tl1rli = ilpnll+iip-ii : Z0+b)+r(l -b) : 1'

p* and p- arc mutually singular. This completes the proof of the first half of Theo-

rem 4.2.

Conversely, given å([0, l] and an inner function a on (I with o(0):0' we

can define F* and l7- by (4.39). Then, as above, there exist positive measures p+

and p- such that (4.40)-(4.42) hold. Thus pr* and pr- are singular with respect to

Lebesgue measure and, if we put lt:lt+ -1t-, then

Fu: F*-F- - Goca'
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since a; is inner in u, a, defined by (a.35) is a Blaschke product for an (e U-an
where cap Eo:O ll4, p. 1111, [7, Theorem2.l5]. Since or(0):9, (4.38) and thus
also (4.37) hold for such ( [14, p. 107], 17, p. 321. Consequently,

(4.43) lf(l , w, Fu) : If(l , rr, G) (w€ C -S)
where capd:0. Now (4.6) follows from (4.14), for all p€(0,1), and we deduce
llpll:l; thus llfrll:llp*ll+llp_ll, so that p* and p- arc mutually singular. The
proof of Theorem 4.2 is now complete.

It might be interesting to oharacterize directly the measures F+, F_ for which
the converse part of Theorem4.2 holds, i.e. the F:F+-tt_€M(T) for which
there exists some inner function a on (J satisfying Fu:Guoar and co(0):9. 4,
a simple example we observe that, for å:0 and arry n>1, the measures

I r-1 I r-1
il*: fi Z ö<,n, u- : fi J:oör,*,, 

((i: sii"r,)

correspond to a(z):7".

Remark l. Once (4.34) has been proved, our argument could have been baseil
instead on the following elementary result: Let G€Hq(U) for some p€(0, -),
Glconstant, and let a: Ut(J be analytic with a(O):O. Then a is inner tf and
only if

lG (r")lo do.

The proof is a slight variant on the argument given with (3.10).

Remark 2. The part of our argument proving ar inner can easily be modified
to give afactorization result: Let F be analytic in U, and let G be uniualent there with
G(o):r1s1.77"n

F: Goa

for some inner function @ on U with o(0):9, if and only if
N(1, w, F) < N(l,w,G) (w€f(Q)

with equality holdingfor one w€F(U),w*F(0).

Proof of Theorem 4.4. suppose f(10) sarisfies (4.13) with equality for some
l>0; replacingfby /-fshows that we may assume r:1. Thus A:Er(f) satisfies

(4.44) lEl - 2n@ lllll, (= 0).

To / we associate the analytic function F(z) deflned bV (8).
Following Baernstein's proof of (4.13) in [4], we let E@) be the subharmonic

function in C which is lRe wl outside the strip

5: {w(C: llmwl = l},

Ztt 2n

{ lc(, (r',))1, ao - [00
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and which is harmonic in 
^S 

with boundary values

E(w): lRewl (w€å,S),
with

E(*): O(lRewl) (w *-).
Baernstein proves that

@ : E(O)-L,

(4.4s) E(i'(0» = ll"fl[+E(o) {|-lEll2n\
[4, Section2].

Using (4.44) in(4.45), we deduce E(r(0))=E(0) and thus F(0):9, since E is
even and strictly increasing on (0, -) 14, Section 2].

From formula (6) in [4], the boundary values of r' satisfy

a(F(et,)) = lf@'u)l* E (0) fiet,) &.a.,

where X is the characteristic f'unction of T'-E. Thus, using (4.44) again,

o f ,o@@'\) ae = 2n@ llfllt+2n - lEl : 2v.
o

Since EoF is subharmonic in U, we deduce

@-L -E(r(o» =- * i ,«Fet\)do < @-1.

We oonclude that E o ,F is harmonic in U, and this is possible only if .F(U) c .S.

Thus .E:{eie: llmF(e'0;l:11. Since G defined in (a.13) is univalent in u with
G(U):,S, we can define o):G-r o,F'. Then

a:U-U, ar(0):9,
and it remains to prove that co is inner, i.e. that lEl:Zn.

To see this, we start with inequality (5) in [4], which we write in the form

E(w) : lRe wi+e(0) - p(w)

where p is continuous in C and

p(w) = 0 (w(,S- {0}), p(w) : EQ) (rr'( åS).

Putting w:F(z) and letting lzl*1, we obtain

E(F(e,r)) : lf@")l+Ee)- p(F(etq)) a.e.
Thus (4.44) implies

E (0) : 
| | e (r(r,,))l l, : E (0) lE ll 2,8 + E e) - | I 

p (r'(e,g) 
| l,

so that 
zn

f n(r{r'\1as : q(o)lEl.



334 Mnrrs EssfN and DnNrpr F. SHEa

Since p(w):E(0) on å§ we must have

I n(r@"))do :0.
T.E

But p(w)>0 on S-{0}, so tbat lT-El:O, as desired.

Conversely, if F:Goar where co is an inner function on U, it is clear that

li@'u)l:l a.e., that lEl:2n and that

E(F(e*)): lf("'\l a.e.

Integrating, we see that E(0;:il,fll, if co(0):9, and the proof of Theorem4.4 is
complete.

5, Proofs of Theorems 4.1 ud 4.3

Suppose flrst that d satisfies (4.1) and that equality holds in (4.2a) for sorne

r€(0, l) and some p((0,2). Using (4.14) for this choice of r yields (4.24) with
N(|,w,.) replaced by fl(r, w, .), and the argument for (4.34) now yields

(5.1) tr{(r, w, F) : N(r, w, G) (w€C).

Here, as in Section4, we have put F:Fr, G:Gu:Fno.
Thus

F({lrl = r}) : G({lzl = r\),
and we can put

a(z) : G-ro F(z) (lzl = r).
Then lco(z)l<lzl in lzl=r, and a slight variant of the argument used for (3.10),

now with @(x):e1p (px), shows that equality in(4.2a) implies la(z)l:v on lzl:v.
Thus, an application of the reflection principle yields that a(z) is meromorphic in
the extended plane, with

(5.2) a(z) : eirzB(z), B(z) : U W 
(0 < la,I = r, B€R).

Here the product B(z) is either finite, or empty (S(4=1). In the former case,

lrk)l=lzl in lzl>r, so that ,lZ(e, lRe Fl):maxe lRe F(qe'o;l would satisfy

M(q, lRe Fl): M(e, iRe Gool) = M(Q,lRe Gl)

forallq, r<g<sup {q=1, ro(qU)cU}. ButBaernstein'sinequality@.2c) obviously
implies

M(9, lRe F) = M(0,lRe Gl) (0 < s < 1),

thus -B(z):l in (5.2).

This completes the proof of the part of Theorem4.l dealing with inequality
(4.2a), Q<.p<.2. lf p:2, we use the consequence of $.21):

(5.3) { I,{(r, u+is, F) ds < f l/(r, Lt+is, G) ds (0 = t) <*),
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together with (the analogue for lrl-, of) formula (4.24), to deduce

(5.4) 
t 

I,{(r, u*iu, F) clu - { 
N(r, u*iu, G) du (u€R).

We now apply Baernstein's formula

2n oo

(5.5) t [Re F(reil)-u]+ clT: t N(r,u*iu, F)du*2zz[Rer(0) _ u)*

(see lll,Sl.rion 5) with (5.4) to "O;
2n

(5.6) / t*. F(rei^)-u)+d0 -/ t*. G(rei.)-ul+d0 (u€R).

But if we put ./:Re 4 g:Re G and

(5.7) f*(er't): suP f fkr'\aE (o = I - 1),
lil:ze I

then (5.6) is equivalent (cf. [2], Proposition 3) to

(5.8) f*(rr'u): g*(reio) (0 < 0 = n).

By Baernstein's arguments in Sections 5 and 6 of l4), f* is subharmonic in U+:
U n {Im z=0}, g* is harmonic there with

s*(Qe,r): f s{or,\ao (o=0=n),
-e

and f*<g* in U+. By (5.8), we can apply Lemma 1.1 to obtain f(e-i'z):g(z)
for some real a; this implies (4.3) and (4.4).

Next suppose equality holds in (4.2b) for some r((0, l) and some p((1,2).
Now the analysis depends on another formula of Baernstein ([4], Section 5):

(5.e)

2fr

/ lr- F(reto11e 4g : p(p-U 
_[ J 

N(r, w, F)lulo-z 4u drs*2n]Im F(0)le (p-r),

and only trivial changes in the argument already given for (4.2a), p<2, are required
to prove Theorem4.l in this case.

Further, if equality holds in (4.2b) for some r< I and p:), precisely the argu-
ment given above for (4.2a), p:2, yields Theorem4.l in this case as well.

If equality holds in (a.2b) with p:1, we use

(5.10)
{ 

N(r, u, F) du : 
_[ 

I,{(r, u, G) d,u,
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a simple consequence of the oase a:0 of (5.5) with Freplaced by -iF. By (5.3),

N(r, u, F)=N(r, u, G), so that (5.10) implies

N(r,u, F) - //(r, u, G) (u€R).

Since (4.21) holds Lemmas4.l and 4.2 can be applied with p(w1:N(r,w, r'), and

we again obtain (5.1). Thus the argument given after (5.1) yields also the assertion

of Theorem4.l for (4.2b), p:1.
Next we assume equality in (4.2c) for some r< I and p> 1. There is a formula

equivalent to (5.9) in which Im.E is replaced by Re F and u by u. Using this with
(5.3) yields (5.4), and the argument given after (5.4) again establishes (4.3) and (4.4).

Finally, let us suppose that (4.5) holds for some r((ru,1). Then, if we define

f, g,.f*, g* as in (5.7) and (5.8), we have

(5.1 1)

(s.r2)
2n

f
J

0

)-

:+r
Since G(-ru):O, G(-r)=Q < G(r); thus,

sign on 0= 0=2n, a$d there exists ?€(0,

(5.13) .f 
* (re") : f

By the remarks after (5.8), -f* =g* in U +

: s@-'u) - inf {r: lE,(f)r = 20} (0 = 0

(4.12). With g we associate as in (8) anC

function g. In l4l, Baernstein proves the

lF(reio)y,to =- f iG@eio)Y do (o = p =r
OaI )L

={
0

Zrc

=fJ
0

f
2n

f

i t. @eio) cto |f ?n'u)l+f (reio)J d0 - g* (reiu) ,10.

Re ^F'(re'o) also changesby (a. 5), f(reie
Tt) such that

f * (rr'u) do.

so that (5.12) and (5.13) imply
2ft

f* (rr,r7 4 g* (reit1 = f {?eio) d0 : f*(reit).

Another appeal to the remarks after 1S.SltyietA, f* : g* throughout (J + , andlemma
1.1 again implies (a.3) and (4.4).

It remains to prove Theorem 4.3; but since the functions Hp,6 have all the

symmetry, univalence, ... properties of G6 used in the proof of Theorem 4.1, precisely

the arguments already used suffice to give Theorem 4.3 as rvell.

6. Conjugate functions and rearrangements

real valued, and define F and i ut in (8) and (9). Let g be the

feaffangement of f:

(6.1a)

(6.lb)

(6.1c)

a n),

(9) aL analytic func-

follorving relations:

2),

Let "f€L'Q) be

symmetric decreasing

g (e'u)

where E, is defined in
tion G and conjugate

llm F(reio)lo ae

lRe r(reia)P ag

llm G(reie)lo ae (1 = p = 2),

lRe G(reio)lo ag (1 = p =..).
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In particular, if G€.Hp for some p€(0,21, then also F€Hp and

(6.2a) irF(e'u)lrAs=f lG@'u)lrAo (0= p=z),

(6.2b)

It is easy to see that Baernstein's methods in [4, Section 5] also yield the ine-
qualities 

zn zft

(6.3a) [ lr{",\P ae = I p@t11n 7s (p = 2)

(6.3b) i tra,\P do > i ,u@,,)P ae (p = 2),

provided fet-o 1f1. A proof of (6.3) is given below, in the proof of Theorem 6.2.
Simple examples (e.g. /:s6s20) show, however, that the analogue for r<1 of
(6.3) cannot be true.

Theorem 6.1. The inequalities (6.1) are all strict,for each r((0, 1) and admis-
sible p, unless

(6.4) f(""): g(ei{e+et1 a.e.

for some real a.

As in the statements of Theorems 4.1 and 4.3, we do not regard as admissible
the choice p:l in (6.1c), unless r is such that Re F(reie) or Re G(rei0) changes

sign on 0<0<2n. The proof of Theorem 6.1 is the same as (the first part of) that
of Theorem 4.1, and we omit it.

Theorem 6.2. Assume that equality holds in one of the inequalities in (6.2)

and (6.3) for some admissible p, p*2, for which the integrals inuolued are finite.
Then

(6.5) f (e"): s(a(ete1) a.e.

for some inner function @ on U with a;(0):9.
Conuersely, f f has the form (6.5) for some such a, then equality holds throughout

(6.2) and (6.3).

We observe the following

Corollary. Let EcT be measurable mtd put E*-{etq: l0l=(ll2)lEl}. fhen
there exists an inner function a on U such that, for almost all 0,

(6.6) co(ei)<E* + eieqE.

,f li@'u)P ao = uf 
l§@'u)l'As (1 = p = z).
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For, if we choose f:Xp:cltaracteristic function of E, then g:Xn* and, by a
well known result of Stein andWeiss [22], § andf have the same distribution func-
tion. Thus there is equality in (6.2b) and (6.3b) for all p>0. Now Theorem 6.2
implies

XBki\ : 14r*(a(eio)) u...

for some inner function co on I/, proving (6.6).
Baernstein has shown us (personal communication) a function-theoretic proof

of the Stein-Weiss theorem which gives an alternate proof of the Corollary. See

also [6] for a related result.

Proof of Theorem 6.2. We first observe that the key formulas and inequalities
used in Sections 4 and 5 remain valid for the present choices of lr and G (cf. [4],
section 6). In particular, the fact that f and g are equidistributed shows that (5.6)
holds with r:1; using (5.5) with r:1 then yields (5.4) with r:1. Thus if we put

K'(r) - k(u*is)ds (w- u+iu, u>0),

then (5.3) implies

(6.7) Kr(w):-K(w)<0 (w:u*iu,u=0)
where K and k are defined as in (4.26), (4.28).

Assume equality holds in (6.2b) or (6.3b) for some p((1, -), p*2. Letting
r-l in formula (5.9) then yields

(6.8)
{ tr(l , w, F)lrlr-, du ctu - [ [ tr(l ,w,G) I ulo-z dtt ctu

where the integrals are finite.
If l<p<.)., the integration by parts argument given in (4.27) remains valid

here, now with m(u):-1)o-2, and we deduce K(w):6 a.e. in {Imw>0}.
When p>2, the same argument applied to Kr(w) yields

Kr(u * iu) cl(uo-z;1 tsP - 2 
l< (u * iu) du,

7
J

l)

(6.e)

:i
0

r
0

(p -» _[ { 
,,-3K1 (u * iu) du ctu : 

_[ { "-'k(, 
* iu) du du,

and (6.7) and (6.8) together with (5.9) again imply K(w):g 3.".
From the definition of K we see that (4.30) remains valid here, with q again

being given by (4.16), and we deduce (4.34) and its consequence (4.25). Now the
arguments in (a.35)-(a.38) yield

(6.10) F(z): e (.@) (lzl < t)
where ar: U*U is an inner function with rrr(0):0.
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Since G is univalent, Lindelöf's Theorem l7,pp.19, 56] shows that

(6.11) f(et0)+if(ete) :1,S G(a(rete)): GqiS a(ret9))

a.e., and the assertion of Theorem 6.2 for (6.2b)-(6.3b) and pl l is proved.

The same arguments, using (4.24) instead of (6.8), yield the assertion of the

theorem for (6.2a)-(6.3a) and 0<.p<*, p#2.

Remark. To prove inequality (6.3b), observe first that, for p>2, (6.7) and
(6.9) imply (6.8) with > instead of -. (All integrals considered are finite, since we
have assumed fcLn.) Then (5.9) and the definition (4.28) of fr(w) imply (6.3b).

The proof of (6.3a) is similar.
It remains to consider the case of equality in (6.2b), p:1. We use (5.10) with

r:1 to deduce (5.11), a.e. in -@<u!<@. Since G is univalent, the argument given

after (5.11) shows that, outside a set of capacity zero, we have

q(w) :.0y'(1, w, F) : N(1, w, G)

(cf. (a.17). Thus (4.25) holds, and we can again deduoe (6.10) and (6.11) as above.

The converse assertion in Theorem 6.2 is proved by the argument in the last
paragraph of the proof of Theorem 4.2.
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