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ON GENERALIZED RESOLVENTS OF SYMMETRIC
LINEAR RELATIONS IN A PONTRJAGIN SPACE

PEKKA SORJONEN

Introduction

In [4] we gave a characterization of the generalized resolvents of a symmetric
operator with arbitrary defect numbers in a Pontrjagin space II,. The purpose
of this note is to extend this and related results to symmetric linear relations in
II,.. As was pointed out in [5], the need for this kind of extension arises e.g. in con-
nection with differential relations with an indefinite weight function.

Because this paper is a continuation of [5], we shall freely use the notions and
results from [5].

1. Generalized resolvents

Throughout this paper $ denotes a Pontrjagin space II,, with an (indefinite)
inner product [-|-] which has » negative squares, and $? is the product space
HDH. Furthermore, T always stands for a closed symmetric linear relation in $;
ie., T is a closed subspace of $? with TcT*, where

T+:= {(h, NS [gl k] = [f|K] for all (£, DET}.

A self-adjoint extension S of T,ie. St=SDT, is said to be regular if ScCK?,
where 809 is a Pontrjagin space with 3 negative squares. Let S be such an
extension. The function R: ¢(S)—>%(9),

R(z) = P(S—z)7Ys (z€0(5)),

is called a generalized resolvent of T; here P denotes the orthogonal projector of
! onto $. If in addition S extends a maximal symmetric relation 77 in
with the upper defect number n.(7”)=0 (resp. lower defect number n_(7")=0),
then R is upper canonical (resp. lower canonical).

We suppose that the domain D(T) of T includes the negative component
$_ of a fundamental decomposition of . Then T has regular self-adjoint exten-
sions ([5], Corollary 4.7), and there exists a constant ¢=>0 such that the spaces
N :=R(T—-zI)* with |Imz|>c are Hilbert spaces with respect to the indefinite
inner product [-|-]; see [5], Theorem 4.10.
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Take a fixed complex number w with Im w>c and denote by ¥ the Cayley
transform C,(7) of T:

Vi={(g—wf, g—Ww/)|(f, 2€T}.
Then N;=D(V)* and N, =R(V)*; see[5]. Let Iy (resp. I'.) be the orthogonal
projector of $ onto N, (resp. M,). The characteristic function of ¥V is defined
by the equation
X() =1L (I=2V") Yy, (7] < );
here ¥V’ is the zero extension of ¥:

h Vf for fed(V),
Vf‘:{o for fea.,.

Then the characteristic function of T is Y(z):=X(A(z)~"), where A(2):=(z—w)/(z—w)
for z in the complex plane C. Note that Y is a meromorphic function in the open
upper half-plane C. of C with values in Z(%,,, N.); see [2] or [4].

Let S be a fixed regular self-adjoint extension of 7 and R the corresponding
generalized resolvent. For z€¢(S) we define (see [2])

Iri(z) =re+E—w)R(2rI.,
I'_(2) :=To+(z—W)R(2) I,
F(2) = (z=w) T {(z— W) I— (= W) [T+ (z—w) RG] Y.
Then F belongs to the class A7 (9N, N,) of the functions which are holomorphic
in C, with contractive operator values in Z(M_, N,). In the following we shall
use the phrase “for almost all z€C,” or shortly “for a.a. z€C,” to mean “for all

z€C, with the possible exception of a countable set which does not have any cluster
points in C,”.

Theorem 1.1. Let T be a closed symmetric linear relation in a Pontrjagin space
9 with D(T)>9H_ and n, (T)>0 and let w be a complex number with Im w=c.
If R is a given regular generalized resolvent of T, then the formula

(1.1 R(2) = R(2)+(w—w)"'T,(2) B()T-(D)*,
where
1.2 B(2) := (I-F(9)Y (2))(I-F(2)Y (2)) " (F(2) - F(2))

JSor almost all z€C ., defines a bijective correspondence between all regular generalized
resolvents R of T and all functions Fc A +(O, ).

Furthermore, R is upper (resp. lower) canonical if and only if F is independent
of z and F(z) (resp. F(z)*) is isometric.

This result extends [2], Satz 4.2. The proof follows in the same way as in the
operator case via the Cayley transformation; see [2] and [4].
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In the case of equal defect numbers the characterization o} the generalized
resolvents of a symmetric linear operator or relation uses the so-called Q-function
instead of the characteristic function Y and dissipative operators or relations instead
of contractive operators F£(z); see [1] and [3]. We show that this kind of charac-
terization can be given by use of Theorem 1.1.

For this, let T be as in Theorem 1.1 and suppose that the defect numbers
of T are both equal to n. In this case 7" has a self-adjoint extension in the original
space 9. Indeed, the Cayley transform V=C,(T) of T is an isometric operator
with dim D(V)t=dim R(¥V)*=n and D)+ as well as R(V)L are Hilbert
spaces, so that ¥ has a unitary extension in $. The inverse Cayley transform of
this unitary operator is then a self-adjoint extension of 7 in $.

Choose a self-adjoint extension S of T in $ andlet R be the corresponding
generalized resolvent. Then, by Theorem 1.1, the function Fe.#"p (9, N,) is inde-
pendent of z and FF*=F™*F with F:=F(z).

To form a Q-function of T we first choose a Hilbert space ® with dim G =n
and a bijective operator '€ Z(®, R,). Define

o (C_y,) " (FY(2)) for zeC,,
(2= {Q’(E)+ for zeC_;
here y:=Imw. It is not too difficult to show that the functions
0@):=T*Q'()[c#(®) and I'(2):=T,(2)T€B(G,N,) satisfy the equation
=02 @-20*) =TT (2) (2, L€0(9)),

ie., Q is a Q-function of T in the sense of [1].

Let R be an arbitrary regular generalized resolvent of 7' and Fe., ®_, R,
the function assigned to it by Theorem 1.1. With the function B given in (1.2)
we get

(1.3) (w—w)"1B(z)F*
=QRiy)H(I-FY(@)'—FQY((I-FY(2) "} {(F(o) Fr—1)
=—{0' @ +iyI-F(2) F*(Q'(2)—iyl)}'(I-F(z) F*).

Define D'(z):=(C_,) " (F(z) F*); then a little calculation gives

(1.9 Q' (+D'(2) =(I-FQ F){Q () +iyI-F(2) F*(Q'(z)—iyl)}.

Furthermore, one can verify that I'_(Z2)*=F*('*)71I'(zZ)*. Put this and (1.3)—
(1.4) together to get

w=W)I ()BT -(2)* = Qiy) [ (B F* (I~ (2)*
=—TI(2)(QE)+D(2) I (@),
where D(z):=I'tD’(z)I.
Denote by 2.(6) the set of all functions z—D(z) such that D(z), z€C,,
is a maximal dissipative linear relation in & and the mapping z—C_, (D(2)) is
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holomorphic in C,. By using the results of [5] one can show that D€Z,(®). As
the calculations above are invertible we can write the following result, which extends
[1], Theorem 5.1 and [3], Theorem 3.2.

Corollary 1.2. Let T be a closed symmetric linear relation in a Pontrjagin
space § with D(T)>H_ and n (T)=n_(T)=0. Let R be a generalized resolvent
of T in the original space. The formula

R(2) = R(2)-T()(Q(2)+D(2)) ' T (@D)*

gives a bijective correspondence between the set of all regular generalized resolvents
R of T and the set 2,(6).

2. Resolvent matrices

In this section we suppose that T is a closed symmetric linear relation in a
Pontrjagin space $ with D(T)>H_ and n, (T)=n_(T)=0. Furthermore, let
w be a fixed complex number with Im w=c.

Let us take two closed subspaces £, of $ with dim £, =n (7). If P,
are (not necessarily orthogonal) projectors of $ onto £,, then the adjoints PI
are also projectors and 2;;:9@(17;) are closed subspaces. The set of all oper-
ator matrices
Wa Wiz]

w=|
Wor W

with W€ B(R,, 8F), Wi, BN, L), Wy B®R,,, ;) and WyncBRg, L) is
denoted by %,(N,,, N,; LF,L,). For W in this set we can define in a natural
way the inverse W l€%,(8%,L2,; N,,N.), if it exists, and the adjoint
WHeB,(L_, 25 N, N,):

Wi Wai ]

4 .
= [W Wi

Furthermore, we denote by M, the “Md&bius transformation” induced by #~
My (F) i= (Wi F+Wyo) Way F+Wop) ™}

for FeB(M,, N,). For the basic properties of M, see [2].
If R is a regular generalized resolvent of 7, then the function z—Q(z):=
P R(z)l,, with values in Z(,,82%) is called a (P, P_)resolvent of T.
These resolvents are best studied by means of the so-called (P, , P_)-resolvent
matrices. To define the latter, we denote by o(2,,L_) the set of all z¢C, for
which
R(T —zD+L2, =R(T-zDH+L_=9.
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A matrix function ¥ is called a (P, , P_)-resolvent matrix for T if it has the
following properties:

1) # is defined for a.a. z€o(2,,L_), has values in %,(%N,, N ; 25, L,)
and is meromorphic; .

2) W(z)TLeB (R, 8,5 N, N,) exists for a.a. z€0(84, L);

3) M, (F) is an operator for all contractive operators Fe¢Z (9N, N,) and
for a.a. z€o(8,,8.);

4) the formula

Q(2) = My, (F(2) for a.a. z€g(2,,2.)

gives a bijective mapping between the set of all (P, , P_)-resolvents & of 7 and
the set of all Fex, (M, N,).
_ The existence of a (P, , P_)-resolvent matrix is settled by the following result,
which generalizes [2], Satz 5.2.

Theorem 2.1. Let T be a closed symmetric linear relation in a Pontrjagin
space § with D(T)DH_ and n (T)=n_(T)=0. Let L, be closed subspaces
of  such that dim &, =n_(T) and o(L.,L_)#0. If P, are projectors onto
L, then T has a (P, , P_)-resolvent matrix.

Proof. Choose the R in Theorem 1.1 to be lower canonical. Then with some
manipulation one can put (1.1) in the form

Q(z) = P* ﬁ(Z)IQ,L = MW(z)(F(Z))’
where the components of the desired (P, , P_)-resolvent matrix ¥ are given by
Wi (2) == —PIR()Z(2)7'Y (2)+(w—W) T PIT . (2)lg,,
Wia(2) = P R(2)Z(2) " —(w—W) ' PII,(2) F(2),
Wa(2) :=—=Z(2)7'Y(2),
Wae(2) = Z(2)™*

@.1)

with
Z(z) = (I-Y(@)F@)-@) e, -

For details see [2] and [4], where the operator case is considered.
We proceed to characterize all the (P, , P_)-resolvent matrices. For this define

I O
s=[} O Jemer, s, 00

and denote by P(z), z€0(2,, 2_), the projector onto £, along R(T—zI). This

P has a representation
P(2) = (I-(2)*]e,) -,

which implies that P and Q,
0(z) :== P* R(z)(I-P(2)),

are meromorphic in ¢(£,, L2_); see [2].
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The same lines of reasoning as in the operator case show that the (P,, P_)-
resolvent matrix #~ with components (2.1) satisfies the equation

2.2) wW—wH (IO =z, ) F for a.a. z€9(Q,,8_),
where the matrix function & is given by

Xu1(z,0) = PHQ(D) =00 Y)|e. ~(z=D2@DOO) e,
X12(z, ) == =PI P et —(z—DQ @ P(D¥|ex,
X5(2,0) =—P@De_+ (=) P@DQ2D*s_,

Xo2(2, ) = (2= P(DPD)*|ez-
Note that (2.2) can be written in the form

@ @0+ = 0| 2D L. —P©O*e]
PE)

n [Pi QO -0@).. —P* P(C)*Ig:]
P(2)|e_ o ’
Reasoning further as in [2] (see also [4]) we derive the following characterizations of
the (P, , P_)-resolvent matrices.

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled and let
W 08, 2)~B,(M,, N_; 8, R,) be meromorphic. Then the following facts
are equivalent:

@) W is a (P4, P_)-resolvent matrix of T;

(ii) there exists a matrix UEB,N,, N N, M) such that UFUT=F
and W (@)=W()U for a.a. z€o(2,,L.);

(iii) W(2) € By (8F, 2, N, N_) exists and W satisfies the equation (2.2)
for a.a. z€o(R,.,8).
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