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EXPLICIT UPPER BOUNDS FOR THE SOLUTIONS
OF SOME DIOPHANTINE EQUATIONS

r. cyöny

1. fntroduction

Let L be an algebraic number field of degree />1 with a ring of integers Zr.
Let F(x):r'(xr,...,x^)qZ"lxr,...,x^f be a decomposable form of degree n >3
in m>2 variables. We may suppose without loss of generality that the coefficient
of xi is not zero (see e.g. 12) and [ 1]). Suppose that in the factorization

F(x) : aoLr(x)...L,(x), o + ao(Zt,

of F the system I of the linear forms Li(x):x1lazix2*...*d-ix*, j:1,...,n,
is connected (i.e. for any distinct i, 7 with l=i, j=n there is a sequence Z,:
Lir, ..., Lr":Li in I such that for eachu with I <u<u-l Lr_, Lr.t, have a linear
combination with non-zero algebraic coefficients which belongsto 9; cf. [3] or
[1]) and that there is no llx(L for which I7(x):0, j:1,...,nD. Let
fi,frr, ..., z" be fixed non-zero algebraic integers in Z and let dbe a positive integer.
Assume that nr, ..., fis are not units. In [l] we obtained as a consequence of our
main result that the diophantine equation

l7(r) - §ni,...tli;"

has only finitely many solutiorcin x(Zi, z1t...t2"(Z with Nrta((*r,...,x-))=d
and 2r,...,2"=-O and that all these solutions can be effectively determined.

In the proof of our theorem in [11] there occurred various constants which
were said to be effectively computable, but which in fact were not explicitly cal-
culated. The purpose of the present paper is to derive appropriate values for these
constants, and thereby to obtain an explicit upper bound for the sizes of the solu-
tions of (1). Our main result generalizes a recent theorem of Kotov and SprindZuk

[7] concerning the Thue-Mahler equation. Further, it generalizes some results of
Györy 16l, U\, Györy and Papp [3], U4l, [15] and Trelina [25] concerning norm
form, discriminant form and index form equations, respectively.

(1)

1) If in particular ftt:Z, then
wise nonproportional linear forms in

every binary form F€Zrlxry\ which has at least three pair-
its factorization satisfies these conditions.
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2. Results

Let L, F(x):F(x1, ...,x^), §,frr,...,2" and d be deflned as above. Denote
by G the splitting fleld of .F(x) over L and let [G: Qf:g, lG:L]:f. Let Rn and
ho (resp. J?, and h) be the regulator and the class number of G (resp. of L). Let r
denote the number of fundamental units in G. Put lNlrc(il|=b arrdz) laoutjl<A
(with arr:l for 7:1, ...,n). Suppose, for convenience, that in (l) (nt):p!',
pr, ..., p" being distinct prime ideals in I with norms N(p,):p{', i:1,...,s. Here
pr,...,p" denote rational primes not exceeding P. With the above notations we

have the following

Theo rem l. Let L, F (xr, ..., x^), §, frr, ..., n" and d be as aboue. Then for euery

solution of the equation (l) in xL, ..., x-€Zr, ZL, ..., z"(Z with Nrlg((xt, ..., x-))=d,
ZL, ..., z">0 there exists a unit e in L such tltqt

(2)

wher e

max ttr; ) ... , lu,*Å, (p{' p{"'")orltn\ = drlt T,

T - exp {nz ChaRf p0 (log P)u Äo log' (Rä hå(Ro*holog P)'r +z

. (Ac+s/,c log P *n log A*logb)),

C: (25(r+sff 3)g)zz'+ra"f +28rr+42, Äå: mu* (Re , e) and Äi: max (Rr., e).

Suppose rl&X1<;=5 l",l=9(=e). From Theorem 1 we can easily deduce the
following theorem.

Theorem 2. Let L, F(xr, ..., x^), 0, frr, ..., n" and d be defined as aboue. Then

all solutions of the equation (l) in xt, ..., x*(Za, Zt, ..., z"(Z with N((rr, ..., x^))=d,
zt, ..., z">0 satisfy

max {itT, ...,ix*i} = r1l,tn(d,ttrf(*bse*'),

p{,,r.. . p{,, " = (dL t t T)tn th L.

Theorem 2 can be regarded as a p-adic analogue of our Theorem I in [13].
Our theorems have several consequences. In this paper we restrict ourselves to

some applications concerning diophantine equations. Further applications will be

given in a separate paper.

We shall state the consequences of Theorem 2 only, but from Theorem 1 one

can deduce similar corollaries.
Let L, §,nr,..., z" and d be as above and let f(x,y)€Zrlx,y] be a binary

form of degree n>3. There is an extensive literature on the Thue-Mahler equation

(3)

f (x, y) : frni' . ..rTX"(4)

2) 
Wl denotes the maximum absolute value of the conjugates of an algebraic number 7.
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and its applications; we refer the reader to the papers of Coates [3], [4], [5], SprindZuk

1221,123), [24], Kotov [6] and Kotov and SprindZuk [7] and thence to the literature
mentioned there. The best known upper bounds for the solutions of (4) are due to
Kotov and SprindZuk [7]. Their bounds are especially good in terms of s. How-
ever, in [7] it is assumed that n>5 and the constants corresponding to our con-
stant C are not explicitly calculated in terms of I and n.

Corollary l. Let f(x,y)(Zr.[x,y1 be a binary form of degree n>3 with
spliltingfield G ouer L. Suppose that f(1,0)ZO and that f(x,l) has at least three

distinct zeros. Then all solutions of the equation (4) in x,y€Zr, 2t,...,2"(Z with
N((x,y))=d, Zt, ...,2">O satisfy

max {Fl, lrl} = Wl'tn (drtt r*)'(å ''* u*'),

p{r,r... p{"zs s (dtfi T*)rntor,

.T1 * _t - exp {n2 ChrRffl (1og P)u Äo logt (Aä ho) -

. (Ro * h*log P)'r +2(Ao * sholog P + nlog QW)+ log b))

with the C defined aboue.

In terms of Ro, hnar,.d P our upper boundin (5) is better than that of Kotov
and SprindZuk [17].

Let K be an exten.sion of degree n>3 of L and let G be the smallest normal
extension of I containing K. Let aoN*,r(x1*a2x2*...*a^x^)(Zrlxr, ..., x*] be

a norm form in m>2 variables such that K:Llaz,...,d-), lL(ar):L):nr>3,
i:2,.,,,m, all,d" nr...n*:n. Consider the norm form equation

(s)

where s)

(6) ao lt{xtr(x, -f dzxz+ .. . t c*x*) - §n1'... Tt?"

with the §, nr, ..., z" introduced above. Put max (lanl, laoarl, ...,lana^l)<A. When
s:0, that is, when no rq) ..., ns are specified, Papp and I [13], [5] obtained explicit
bounds for the sizes of the solutions of (6). Those bounds depend on A, B and certain
parameters of Z and K. As a consequence of Theorem 2 we obtain the following
p-adic generalization of these results.

Corollary 2. Under the aboue assumptions all solutions of the equation (6) in
xt, ..., x^QZy., Zt, ..., z"(Z with N((rr, ..., x*))=d, zL, ..., z"=0 satisfy (3).

Our bound established here depends on G instead of K. In the case L:Q.
our Corollary 2 makes effective, for a wide class of norm forms, a recent theorem
of Schlickewei l2ll on norm form equations.

t) As usual, lfl denotes the maximum absolute value of the conjugates of the coefficients
of the polynomial I
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Let L, K,G,0,frt, ...,fr" be as above. Let dt, ...,d* be m>2 algebraic
integers in K such that K:L(a12..., a.). Suppose that l, dt,...,d,m are linearly

independent oyer L and that rräX1<;<a lorl=,q. Generalizing my results obtained
in the case L:Q., s:0 ([6], [7]), in [14] Papp and I established upper bounds for
the solutions of the discriminant form equation

(7) Discr" tL(arxr*...+ c*x*) - §nI'...7T2s"

Corollary 3. Under the aboue assumptions all solutions of the equation (7) in
xt,...,x-(Zr, 21,...,2"(Z with N((xr, ...,x^))=d, 2t,...,2">0 satisfy (3) with
n replaced by n'.

It is difficult to compare the estimates of our Corollaries 3 and 4 with those
obtained in [1a] because the bounds derived in [14] depend on certain parameters

of Z and K, but not on G. Further, in [1a] the constants corresponding the C defined
above are not explicitly given a) in terms of / and n. Corollaries 3 and 4 give better
bounds in å than those obtained in [4]. Since in [4] we derived our estimates in
a more direct way (from my results [8], [9] concerning algebraic integers of given

discriminant), the estimates of [14] are much better in terms of l.
Let again L,K,G,§,frr,..., z, be defined as above. Consider an order @ of

the field extension KIL (i.e. a subring of Z* containing Z, that has the full dimen-
sion n as a Zr-module) and suppose that 0 has a relative integral basis of the form
l, dt, ..., o(r-1 over I. (Such an integral basis exists for a number of orders of KIL;
see e.g. [J, U8] and [14]). It is easy to see (cf. [laD that

Discr*r"(arx1*... * a,-1Jr,-r) : [Ind"7, («rx. * ...1cl,n-rxn-)|'D*ru(|, dr, ...,dn-t),

where the decomposable form lnd*,1(arx1i ...lan-.-xn-r)(Zrlxr, ..., xn-tf is

called the index form of the basis 1,d',..., a,-, of 0 over I. Denote by D*,r(O)
the principal ideal generatedby D*,r(1, dL, ..., o,-r) and suppose maxr=,=n-, la,.l =
=1.

Consider the index form equation

(8) Ind*,,(ot xr+ .. . * dn-txn-J - frni'... rTzs"

In the case L:Q, s:0 the author [6], [7] obtained an effectively computable bound
for the solutions x.-,...,x,-, of (8). Later Trelina [25] generalized this result of
the author to arbitrary s>1. Independently of Trelina, Papp and I [4] established
an upper bound for the solutions x.,...,x^(ZL, Z!,...,2">0 in the general case

when s> 1 and I is an arbitrary but flxed number field. In [25] and [4] the constants
corresponding to our constant C are effectively computable but are not explicitly
calculated in terms of I and n.

4' In the special case s-0 our constants in [14] and [13] are explicitly computed.
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Corollary 4. All solutions of the equation (8) in xr, ..., x,-1€Zy, zr, ..., z"(Z
with N((xt, ..., x,-r))=d, z!, ..., z"=0 satisfy

max {EJ, ... , lr,lJ} = lD*tr(1, ar, ..., c,_) pz1ttn(flttt7**1

p{rrr...p{, Zs s (dttr T**1rrtrrr,

(e)
,(;;bge*') 

,

where
T** : exp {n6 ChaRlP, (log P)5 Än log3 (Å[ /rn) .

. (Rc + /,c log P)"/ + 2 (Ä e * sh olog P -t- nB log A *log (b, N (D K t L@»)|

v,ith the C defined aboue.

In the special case L:Q (9) is better in terms of b, P and s than the bound
obtained by Trelina [25]. On the other hand, her bound is better in Athan (9) (because

she followed a similar argument to that applied earlier in [6]; see also [14]). In [25]
the bound depends on the maximal prime factor and the number of distinct prime
factors of D*,n(O), but not on D*,n(0). We could easily get a similar result forthe
equation (8) by taking the prime ideal factorization of D*,r(l,dt,...,dn-r) in

Q6) and applying our Corollary 3.

It is evident that our Corollaries 3 and 4 have applications to algebraic integers
with given discriminant and given index, respectively. However, in case of alge-

braic numbers the more direct deductions used in [8] and [9] yield better estimates.

3. Proofs

To prove our theorems we need some lemmas. We keep the notations of Sec-

tion2. We suppose that there are rrreal and2r, complex conjugate fields to G and
that they are chosen in the usual manner: if 0 is in G then 0(') is real for l<i<r,
and 0(i+rr-0iT fo. rr*l<i<rr*12.

Lemma l. Let a be a non-zero element in G with llforp(a)l :M and let o be

a positiue integer. There exists a unit e in G such that

(10) llog lM -tto (ue')(il ll = +Åo, i : I, ... , s,

where cl:(6rg2llogg)' or cl:l according as r>l or r:0.
Proof. This is Lemma 3 in [0].
Let $r,..., S, be distinct prime ideals in G lying above rational primes not

exceeding P, and let pr, ..., p, ba algebraic integers in G such that (1u,):$1",
i:|,...,t. Let fri:x,1t!,;...1t!'i, where Q+x,eZ" with lNo,n(x)l=N, and let
utj, ...,urt be non-negative rational integers, j:1,2,3. Suppose lr, Ar, ),, are

non-zero algebraic integers in G satisfying maxj W-l=n.
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Lemma 2. If
(11) LPt+ )'z1z+ lsfr, : 0
then

(r2) fr.: oöi,

where o:4ltir...ti, with some unit q(G and non-negatiue rational integers at, ..., at
and ör€Zn such that

(13) rgfåläl = exp{ctPn(logP)3Änlog3(Ä[/ro)(Rc+hclogP)'+2.

. (Rc + thclog Pt log (H N)\,

where c[ : (25 (r I t * 3) g)zot +Lst + ztt + 40.

Proof. This is a special case of our Lemma 6 in [12]. The proof of this lemma is
based on some explicit estimates of van der Poorten [19] and van der Poorten and
Loxton [20].

Proof of Theorem 1. We follow the proof of our theorem established in [11].
It will be assumed that the reader is familiar with the contents of [11], and only a
minimal amount of the discussion of that paper will be repeated here.

Writing ai,:asaii, we have air€Zo for each i and j. We shall prove our
theorem for the equation

(14) .f(x) : a[-LF(x) : il 4e) : a\-r frni,...n""",
J:L

where Zj(x) : ai, x1* ... I al^ix^.
Let xr, ..., x*1 21, ..., Z" be any solution of (1a) with xt, ..., x^CZ1-,

N((xr, ...,x-))=d ar.d 2r,...,2">0. Put

(15) fri : aiixll ...-la!^ix^, j : l, ...,n.

Let pr, ..., $, be all distinct prime ideals in G lying above p., ..., p". From (14)
we get

(16) 1Br;:!I;Sr"r...!F,''r, i:1,...,/t,
where the 2f, are integral ideals in G such that !I....W"1@6-'fr) and the (Jo, are
non-negative rational integers. The definitions and notations given in [1 1] remain
unchanged, except that we now have k):Ql1$i,r...FI,r,
(17) lNcrcU)l= Ab-r)sbrptshc
and, by Lemma 1,

(18) lpol = ,tPo", lXil = c{l-rbrts Pthc

for k:1, ..., t and i:1, ...,n, where cf :exp {(cirl2)Ro}. L Il] we may choose
cs:2Az and we may apply Lemma 2 to (17) of [11]. Then we get

(19) fio: o6r, o : esplr...lt?',
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where e, is a unit in G, ar,...,ar(Z with ao>O and ör€Zo with

(20) DJ = "rp {2gc[Ps (log P)sRn logs (Ä[h.)( RG+hctogp),+2.

'(Rc+thclog P*nlog A*logb)\ : Tr, q : l, 2, 3,

in place of (27) of [1].
Continuing the argument of [11], a suitable choice for cru is nglho log 2. Further,

in view of the above estimates (18), (20) and of (32) of [11] we obtain (34) of [lt],
that is,

(2r) Fl = ti -ii./'t lE,thl< exp {c,, s log p tog Tr\ : r,
k:r

with crr:clrnf7Re.
In place of (35) of Il] we get now from (14)

(22) (a6-,Dpi,...p3': (f,...§,) :((Spf.... pl,)"q...r,\,

where uo:zoår. Formula (21) implies

ord* (tr ,1) = ngtogr,

for each prime ideal of G lying above po. Similarly,

orde (afi-18) = (n-l)glog A-tf loeb.

The argument of [11] applies if we replace in (36) and (37) of [l t]
min (u o e o - ord* ([I 

] =rt i), r:oeo) by

-i, 
(

[oo 
eu * ord.p (aff - I g) - ord .(,i!,r,), uo, r).

Then we have (38) and (39) of [1] with crn:Lrng and cn6:2crr. Let now p!'n,...
prrr"-(zrfr...n!"):(x), where xeZr, and choose ( as in [11]. Then (39) of [ll]
implies that a suitable value for c.ois cnofg:)ftrfgro.

Lemma I together with (3a) and (41) of [11] imply that an appropriate choice
for cn is 2ncn Rflg, and it follows immediately that suitable values for cn, and
crn occurring in (a3) and (45) of [ll] are given by (312)cn2 and 2cn , respectively.

To estimate lvl and lfl *" can use Had"amard's inequality. Since m<nf, itis
easily seen that appropriate choices for cnu and cnu are (nf){lzA"f and (nf)flzAnf-l ,

respectively. Consequently, crz c&rr be taken as (cnu)elf d:(nf)elz1,o4. In view of
Lemma I cn, can obviously be taken as

(cn)ttt exp {(cirl2)Rr\ - (nf)nt"A'stt dTtt exp {(c{rl2)R"y.

Finally, in (52) of [1] a suitable choice for conis cnrcuuc\;L, which is less than

(nf)zno 1z'o 4tr' 
"*p 

{ 
tt t n,}.'l z ttLl'
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So, by (52) of [1] we have

(23) -r4ax ffi= c$Ts: c4eexp {SnfghaRfslogPlogfr}L=i=n

: cns exp {8rci (fgn)z hrÅ}s2 (log P)z log Tr\

: dttt exp {l6r(sfn)zgz clc[hrRlP, (log P)5,Ro log3 (ÅUro) .

.(Rc+hclog P;"r+z (Åc+shc log P*nlog A+logb)).

Since 16r(.f)2gBclc[=(25(r+y'+3)g)22r+7s§r+2rsf+4', (23)providesthe desired upper

bound for maxl=;=, ffi.
Finally, it follows from (44), (45) and (50) of [1i] that

(p{' "' .. . p{"')r h, = I 
N o rc@6-' §ni' . . . nZ')l : I N o rc(fr ,. . . fr )l

: lNorcQt)l':N"rc(*,... (,)l 
= ci{T{g,

and this completes the proof of Theorem 1.

Proof of Theorem2. Let x,,...,x-, z!,...,2" be an arbitrary but fixed solu-

tion of (1) with the given properties. By Theorem I there exists a unit e for which
(2) holds. Further, from (1) we get

(24) F(exr, ..., ex^) : e'Ftrl'...n'"'.

But it follows from (2) that

W=FA .:*t = A'-'l§l i Wl', = A'-ll1l(d't'71ff'o'o : rn,
i:L

where 7 denotes the expression occurring in (2). On the other hand, by (14) we have

lafi-LE(exr, ..., ex*)l = 
(mAdrltT1 = (nfAdt/tT)' : Tu.

Thus we obtain from Q4)
nls.

Ir1 : 
-lr-Y = Tn.Tl-', = lpl@f)"('-L)Ant-r(dutTltto'e*"{r-') ,

whence

(25) lu1 = lplu',(nfit-rAt(dutT)#bee+Q-L).

Finally Q) and (25) imply (3).

Proof of Corollary l. In what follows it will again be supposed that the reader
is familiar with the proofs of the corollaries occurring in [11]. By assumption there

are at least three pairwise nonproportional linear factors in the factorization

f (x, y) : ao(x*ury)...(x*a"y).

So, in order to apply our Theorem 2 it suffices to give an upper bound for
max ([i, 1o§r1, ...,W,1). But it is known that 1"rq1=1oS+Vi=zn; hence (5)

follows from (3).
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Proof of Corollary2. The argument of the proof of Corollary4 of [11] shows

that the equation (6) satisfies all the conditions of our Theorem 2. This proves the

required assertion.

Proof of Corollary 3. As is known, there exists d,:o.r*arar* ...+a*a^ with

DK,L@)70, ar(Zr, lql=nn, i:2,...,m. Let xr:xl, xi:aix;+xl, i:2,...,m.
Then (7) gives Discr" p(axi* urx'r+ .. . + a^x'-): §ni,. . .z';. By applying Theorem

2 to this equation our statement follows (cf. [11]).

Proof of Corollary 4. Every solution of (8) satisfles

(26) Discr*7, (arx1* ... I a,-rxo-r) : D*tr(1, d., ..., ao-r) P2nl"'...n!'"'

Now Corollary 3 applies and (9) follows immediately.
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