Annales Academiz Scientiarum Fennica
Series A. I. Mathematica
Volumen 5, 1980, 3—12

EXPLICIT UPPER BOUNDS FOR THE SOLUTIONS
OF SOME DIOPHANTINE EQUATIONS

K. GYORY

1. Introduction

Let L be an algebraic number field of degree /=1 with a ring of integers Z;.
Let F(X)=F(xy, ..., Xp€Z[xy, ..., X,,] be a decomposable form of degree n=3
in m=2 variables. We may suppose without loss of generality that the coefficient
of x} is not zero (see e.g. [2] and [11]). Suppose that in the factorization

F(x) = agL,(x)...L,(x), 03 acZ,,

of F the system & of the linear forms L;(X)=x;+0y;Xo+...+y;X,, =1, ..., 1,
is connected (i.e. for any distinct 7, j with 1=i, j=n there is a sequence L;,=
L ..., L =L; in & such that for each u with 1=u=v—1 L, , L;  have a linear
combination with non-zero algebraic coefficients which belongs to #; cf. [13] or
[11]) and that there is no 0#x€L™ for which L;(x)=0, j=1,..,n". Let
p, s, ..., g be fixed non-zero algebraic integers in L and let d be a positive integer.
Assume that =, -+, @; are not units. In [11] we obtained as a consequence of our
main result that the diophantine equation

(N F(x) = pni...n%

has only finitely many solutions in X€Z7, z,, ..., 2,6 Z with N, ,((xy, ..., X,))=d
and z, ...,z,=0 and that all these solutions can be effectively determined.

In the proof of our theorem in [11] there occurred various constants which
were said to be effectively computable, but which in fact were not explicitly cal-
culated. The purpose of the present paper is to derive appropriate values for these
constants, and thereby to obtain an explicit upper bound for the sizes of the solu-
tions of (1). Our main result generalizes a recent theorem of Kotov and SprindZzuk
[17] concerning the Thue—Mahler equation. Further, it generalizes some results of
Gydry [6], [7], GySry and Papp [13], [14], [15] and Trelina [25] concerning norm
form, discriminant form and index form equations, respectively.

P If in particular m=2, then every binary form FCZ.[x, y] which has at least three pair-
wise nonproportional linear forms in its factorization satisfies these conditions.
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2. Results

Let L, F(X)=F(xy, ..., Xy), B, Ty, ..., ®y, and d be defined as above. Denote
by G the splitting field of F(x) over L and let [G:Q]=g, [G:L]=f Let R; and
hg (resp. Ry and /;) be the regulator and the class number of G (resp. of L). Let r
denote the number of fundamental units in G. Put |N, o(f)|=b and? [gya, =4
(with oy;=1 for j=1,...,n). Suppose, for convenience, that in (1) (m)=p/z,
Pi» --» Py being distinct prime ideals in L with norms N(p;)=p/i, i=1, ..., s. Here
Pi1, ---» s denote rational primes not exceeding P. With the above notations we

have the following

Theorem 1. Let L, F(xy, ..., X,), B> 71, ..., Ty and d be as above. Then for every
solution of the equation (1) in Xy, ..., X,€Z, 21, ..., Z,EZ with Np;o((xy, ..., X)) =d,
Zyy ..y 2,=0 there exists a unit ¢ in L such that

) max {{exy], ..., [ex,], (pI171... plozs)in/in} = dV'T,
where
T = exp {n?Ch, R} P*(log P)’ R log® (R¢ hg) (Rg+ hg log P/ +2.
«(Rg+shglog P+nlog A+log b)},
C=(25(r+sf+3)g)2r+iss/+2orf+42 RE =max (Rg,e) and Rf=max (R, e).

Suppose max; ;- Ft:]ég)( =¢). From Theorem 1 we can easily deduce the
following theorem.

Theorem 2. Let L, F(xy, ..., X,), B, Ty ..., Ty and d be defined as above. Then
all solutions of the equation (1) in Xy, ..., Xy€Z1, 7y, ..., 2, Z with N((xy, ..., X)) =d,
Zyy ooy 2o =0 satisfy
©) s (., ol = (a6 =27),

p{lzln' psfszS = (dI/’T)l"/hL,

Theorem 2 can be regarded as a p-adic analogue of our Theorem 1 in [13].

Our theorems have several consequences. In this paper we restrict ourselves to
some applications concerning diophantine equations. Further applications will be
given in a separate paper.

We shall state the consequences of Theorem 2 only, but from Theorem 1 one
can deduce similar corollaries.

Let L,B, ny,...,n; and d be as above and let f(x, y)€Z,[x,y] be a binary
form of degree n=3. There is an extensive literature on the Thue—Mabhler equation

@ f(x, y) = prit...ms

» Jy| denotes the maximum absolute value of the conjugates of an algebraic number 7.
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and its applications; we refer the reader to the papers of Coates [3], [4], [5], Sprindzuk
[22], [23], [24], Kotov [16] and Kotov and Sprindzuk [17] and thence to the literature
mentioned there. The best known upper bounds for the solutions of (4) are due to
Kotov and SprindZuk [17]. Their bounds are especially good in terms of s. How-
ever, in [17] it is assumed that n=5 and the constants corresponding to our con-
stant C are not explicitly calculated in terms of / and ».

Corollary 1. Let f(x,y)€Z,[x,y] be a binary form of degree n=3 with
splitting field G over L. Suppose that f(1,0)20 and that f(x, 1) has at least three
distinct zeros. Then all solutions of the equation (4) in x,y€Z,, zy, ...,2,6Z with
N((x, »)=d, z,, ..., 2,=0 satisfy
) ma (7, 7} = TGy G s )

p{lzl.np{szs = (dl/lT*)l"/hL,
where®
T* = exp {n®Ch, R} P (log P)® R log® (RE hg) -

«(Rg+hglog P)/ +2(Rg+shg log P+nlog (2]f ) +log b)}
with the C defined above.

In terms of Ry, /g and P our upper bound in (5) is better than that of Kotov
and Sprindzuk [17].

Let K be an extension of degree n=3 of L and let G be the smallest normal
extension of L containing K. Let ayNg,(X;+0aXs+... +0,X,)E€ZL[xq, ..., X,] be
a norm form in m=2 variables such that K=L(ay, -, a,), [L(x):L]l=n=3,
i=2,...,m, and n,...n,=n. Consider the norm form equation

(6) ao Ny (6 + 0 Xo+ ... 0t X,,) = Brft... e

with the B, 7y, ..., 7, introduced above. Put max (ao|, [doty, ..., [@oon]) =A4. When
s=0, thatis, when no 7, ..., n, are specified, Papp and I [13], [15] obtained explicit
bounds for the sizes of the solutions of (6). Those bounds depend on 4,  and certain
parameters of L and K. As a consequence of Theorem 2 we obtain the following
p-adic generalization of these results.

Corollary 2. Under the above assumptions all solutions of the equation (6) in

Xty oos Xu€Zp, 2y, oy 2, Z with N((xy, ..., X)) =d, 21, ..., 2,=0 satisfy (3).

Our bound established here depends on G instead of K. In the case L=Q
our Corollary 2 makes effective, for a wide class of norm forms, a recent theorem
of Schlickewei [21] on norm form equations.

® As usual, m denotes the maximum absolute value of the conjugates of the coefficients
of the polynomial f.
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Let L, K,G,pB, n;,...,t; be as above. Let oy, ...,a, be m=2 algebraic
integers in K such that K=L(oy, ..., ®,). Suppose that 1, oy, ..., a, are linearly
independent over L and that max;—;—, E[EA. Generalizing my results obtained
in the case L=@Q, s=0 ([6], [7]), in [14] Papp and I established upper bounds for
the solutions of the discriminant form equation

@) Discrgy, (o %, + ...+, X,,) = Brit... w5

Corollary 3. Under the above assumptions all solutions of the equation (7) in
X1y oo Xp€Zp, 24,y ooy 26 Z with N((xy, ..., X,))=d, zy, ..., 2,=0 satisfy (3) with
n replaced by n®.

It is difficult to compare the estimates of our Corollaries 3 and 4 with those
obtained in [14] because the bounds derived in [14] depend on certain parameters
of L and K, but not on G. Further, in [14] the constants corresponding the C defined
above are not explicitly given® in terms of / and n. Corollaries 3 and 4 give better
bounds in b than those obtained in [14]. Since in [14] we derived our estimates in
a more direct way (from my results [8], [9] concerning algebraic integers of given
discriminant), the estimates of [14] are much better in terms of A.

Let again L, K, G, B, 7y, ...,y be defined as above. Consider an order @ of
the field extension K/L (i.e. a subring of Zy containing Z; that has the full dimen-
sion n as a Z;-module) and suppose that @ has a relative integral basis of the form
1, o, ..., %,y over L. (Such an integral basis exists for a number of orders of K/L;
see e.g. [1], [18] and [14]). It is easy to see (cf. [14]) that

DiSCTK/L(“1x1+ et 0y 1 Xy ) = [IndK/L(%xl“‘ +°‘n-1xn—1)]2DK/L(1, Opyees Uyo1),s

where the decomposable form Indg,p (% x;+...+o,_1x,_)€Z.[xy, ..., X,_1] s
called the index form of the basis 1, oy, ..., «,_; of 0 over L. Denote by Dy, (0)
the principal ideal generated by Dy, (1, oy, ..., %,—;) and suppose max;;=,_1 [oc_i|§
=A.

Consider the index form equation

(8) IndK/L (dlxl—l‘...‘l—“n_lxn_l) = B?‘Cf‘...n’fs.

In the case L=Q, s=0 the author [6], [7] obtained an effectively computable bound
for the solutions x, ..., x,_; of (8). Later Trelina [25] generalized this result of
the author to arbitrary s=1. Independently of Trelina, Papp and I [14] established
an upper bound for the solutions xy, ..., x,€Z;, z;, ..., z,=0 in the general case
when s=1 and L is an arbitrary but fixed number field. In [25] and [14] the constants
corresponding to our constant C are effectively computable but are not explicitly
calculated in terms of / and n.

Y 1In the special case s=0 our constants in [14] and [13] are explicitly computed.
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Corollary 4. All solutions of the equation (8) in Xy, ..., Xy_1€Z;, Z1, ..., Z,EZ
with N((xy, ..., X,-))=d, zy, ..., z,=0 satisfy

@ max{Pxls s Puoal} = Dege(l 0, s O‘n—1)ﬁ2|1/"(d1/’T**)I(Eloggﬂ],
p{lﬂu~p£ﬂ’ = (dl/lT**)l”/hL,
where
T** = exp {n®Ch, R} P? (log P)’ R; log® (R& ) -

*(Rg+hg log P/ +*(R;+shg log P4n®log A +log (b*N(Dy,.(0)))}
with the C defined above.

In the special case L=Q (9) is better in terms of b, P and s than the bound
obtained by Trelina [25]. On the other hand, her bound is better in A than (9) (because
she followed a similar argument to that applied earlier in [6]; see also [14]). In [25]
the bound depends on the maximal prime factor and the number of distinct prime
factors of Dy 4 (0), but not on D ,(0). We could easily get a similar result for the
equation (8) by taking the prime ideal factorization of Dy, (1, &y, ..., %,_1) in
(26) and applying our Corollary 3.

It is evident that our Corollaries 3 and 4 have applications to algebraic integers
with given discriminant and given index, respectively. However, in case of alge-
braic numbers the more direct deductions used in [8] and [9] yield better estimates.

3. Proofs

To prove our theorems we need some lemmas. We keep the notations of Sec-
tion 2. We suppose that there are r, real and 2r, complex conjugate fields to G and
that they are chosen in the usual manner: if 0 is in G then 69 is real for 1=i=r,
and 0¢t2=00 for ri+1=i=r +r,.

Lemma 1. Let a be a non-zero element in G with |Ng,o()|=M and let v be
a positive integer. There exists a unit ¢ in G such that

iy

2 RG’ i=1, ...,g,

(10 |log | M =1/ (ae®) V|| =

where c¢f=(6rg?/log g)" or c¢f=1 according as r=1 or r=0.

Proof. This is Lemma 3 in [10].

Let *B;, ..., B, be distinct prime ideals in G lying above rational primes not
exceeding P, and let py, ..., u, be algebraic integers in G such that (u)=%Pls,
i=1,..,t Let Bj=s;u...ufs, where Czx,€Z; with [Ng,o(%)|=N, and let
uij, ---» 4; be non-negative rational integers, j=1,2,3. Suppose 1, 1, A5 are
non-zero algebraic integers in G satisfying max; |_/1j—]§H.
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Lemma 2. If
1D lPit22fat 23y =0
then
(12) Bj = 9,

where o=nui*...pl with some unit W€ G and non-negative rational integers ay, ..., a,
and 6;€Zg such that

(13) max |d;| = exp {c; P? (log P)’Rg; log® (RG hg)(Rg+ hg log P)'*2.

1=j=3
“(Rg+thglog P+log (HN)},
where ¢§= (25 (r+1+ 3)g)20r+13t+2rt+40.

Proof. This is a special case of our Lemma 6 in [12]. The proof of this lemma is
based on some explicit estimates of van der Poorten [19] and van der Poorten and
Loxton [20].

Proof of Theorem 1. We follow the proof of our theorem established in [11].
It will be assumed that the reader is familiar with the contents of [11], and only a
minimal amount of the discussion of that paper will be repeated here.

Writing of;=a,;;, we have o;¢Z; for each i and j. We shall prove our
theorem for the equation

(14) f(x) =a§7 F(x) = ]]lL}(X)=aS‘1ﬁﬂi‘---ﬂ§‘,
j=
where Lj(X)=o;x;+... 40, X,.
Let xq,...,%,, Z,..,Z, be any solution of (14) with xq,...,x,€Z;,

N((xy, ..., x,))=d and z, ..., z,=0. Put
(15) By =X+ 4an Xy, j=1,...,n

Let B,, ..., P, be all distinct prime ideals in G lying above p,, ..., p,. From (14)
we get

(16) (B) =W P .. Blv, j=1,..,n,
where the 2; are integral ideals in G such that 2,...2,[(a;™' ) and the U,; are

non-negative rational integers. The definitions and notations given in [11] remain
unchanged, except that we now have (x;)=2; P... P,

a7 INeo(x))| = A=9bS ptota
and, by Lemma 1,
(18) ] = ciPs, yj] = ctA™1b7/9 Ptha

for k=1,...,t and j=1, ..., n, where cj=exp {(c]r/2)Rs}. In[11] we may choose
c,=2A% and we may apply Lemma 2 to (17) of [11]. Then we get

(19) ﬂq = 0'5‘1, o= 83/1‘111"'#;“9
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where ¢; is a unit in G, ay, ..., ,€¢Z with ¢,=0 and 6,€Z; with

3, = exp {2g 3 P? (log P)* R log® (RG hg) (Rg + hg log PY +2.
‘(Rg+thglogP+nlogd+logh)}=T,, q=1,2,3,
in place of (27) of [11].
Continuing the argument of [11], a suitable choice for ¢y is ng/h; log 2. Further,

in view of the above estimates (18), (20) and of (32) of [11] we obtain (34) of [11],
that is,

(20)

— L
(21) 1Tj| = k]—I ,ﬂklbk |§Dj/¢'j[ = exp {0375 log Plog Tl} =T,
with ¢y, =c)rnfgRg.
In place of (35) of [11] we get now from (14)
(22) (ag ppit...pes = By B) = (Spdr... )1y .. 1,),

where v,=z.h,. Formula (21) implies

ordq;[]]rj) = nglogT,
j=1
for each prime ideal of G lying above p,. Similarly,
ordg (af~ ') = (n—1)glog A+flogb.

The argument of [11] applies if we replace in (36) and (37) of [11]
min (v, e, —ord,, (II-17)) veer) by

min [vkek+ord<n(a3“1ﬂ3)—ordq3([[ rj), vkek].
j=1

Then we have (38) and (39) of [11] with cso=h, ng and c;=2cs. Let now phor
pis=(njr...n¥%)=(x), where »€Z,, and choose ¢ as in [11]. Then (39) of [11]
implies that a suitable value for ¢,y is ¢y fg=2h, fg2n.

Lemma 1 together with (34) and (41) of [11] imply that an appropriate choice
for ¢y is 2ncy Rj/g, and it follows immediately that suitable values for c¢,; and
¢44 Occurring in (43) and (45) of [11] are given by (3/2)c,, and 2c,,, respectively.

To estimate |v] and [v] we can use Hadamard’s inequality. Since m=nf, it is
easily seen that appropriate choices for c,; and ¢ are (nf)* 4" and (nf )2 471,
respectively. Consequently, ¢,, can be taken as (cy;)?’d=(nf)"?A4"d. In view of
Lemma 1 ¢, can obviously be taken as

(547)1/1 exp {(c;k r/ 2)RL} = (nf yrolEtqnall gt eXp {(Cr r/ 2)RL}‘

Finally, in (52) of [11] a suitable choice for ¢, is cgc46¢45Y, which is less than

E3
(nf)?9 4% 41" exp {—Clz—r RL} .
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So, by (52) of [11] we have
(23) max |x;| < caTy = cag exp {8nfgh, REslog Plog Ty}

1=i=m
= cyg exp {8rci (fgn)*hy Ry s* (log P)*log T}
= d* exp {167 (sfn)?g®cy cs hy R} P? (log P)® R log® (RG h) «
«(Rg+hglog P/ +2(Rg+shglog P+nlog A+log b)}.
Since 161 (sf)2g3 ¢} s <(25(r+sf+3)g)?2r 13/ +2/T42 " (23) provides the desired upper

bound for max; ;< |x7|-
Finally, it follows from (44), (45) and (50) of [11] that

(pfr=r... ple)/te = |Ngjo(ag= prit... %) = INg o (By-.. )]
= [Ngjo ()" | Ngjo(6y ... &) = i T3,
and this completes the proof of Theorem 1.

Proof of Theorem?2. Let xq, ..., X,, z;, ..., Z, be an arbitrary but fixed solu-
tion of (1) with the given properties. By Theorem 1 there exists a unit ¢ for which
(2) holds. Further, from (1) we get

24 Flexy, ..., ex,,) = &"Bnit...n%.
But it follows from (2) that

nls
—_——— —_ S — —_— —log 2
@ pr ] = AP ] el = A Bl@ TR =,

where T denotes the expression occurring in (2). On the other hand, by (14) we have

laB= F(exy, ..., ex,)| = (MAdYV'TY = (nfAdV'TY = T;.

Thus we obtain from (24)

— ffilog@-&—n([—l)

e = e = Tu T = (Bl nf -0 A= (@ Ty ,

whence

— Zlogp+(-1)

I
29 e = B[ (nf)' 1Al @ T )

Finally (2) and (25) imply (3).

Proof of Corollary 1. In what follows it will again be supposed that the reader
is familiar with the proofs of the corollaries occurring in [11]. By assumption there
are at least three pairwise nonproportional linear factors in the factorization

G p) = ag(x+up)...(x+,).
So, in order to apply our Theorem 2 it suffices to give an upper bound for
max ([ag), [aogts), ---» [@a,])- But it is known that [ag;|<]a,|+[f]=2]f]; hence (5)
follows from (3).
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Proof of Corollary 2. The argument of the proof of Corollary 4 of [11] shows
that the equation (6) satisfies all the conditions of our Theorem 2. This proves the
required assertion.

Proof of Corollary 3. As is known, there exists a=a, +a,a,+ ... +a, o, Wwith

Dy (0)#0, a;cZ,, |a_i|§n4, i=2,...,m. Let x,=x7, x;=a;x;+x], i=2,...,m.
Then (7) gives Discry, (ax;+o,x;+ ... +,x,)=pnit...n%. By applying Theorem

2 to this equation our statement follows (cf. [11]).

Proof of Corollary 4. Every solution of (8) satisfies
(26) Discrgp (g X1+ ... +0,—1X,-1) = Dy (1, 4y, ooy 0y 237 155

Now Corollary 3 applies and (9) follows immediately.
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