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ON THE LENGTH OF ASYMPTOTIC PATHS
OF ENTIRE FUNCTIONS OF ORDER ZERO

SAKARI TOPPILA

Suppose that f'is an entire function of finite order and that P is a locally rec-
tifiable path on which f(z)—><c. Let I(r) be the length of P in [z]<r. We shall
consider the following question of Erd8s (Hayman [1, Problem 2.41]): If f has
zero order, or more generally finite order, can a path P be found for which [/(r)=0(r)
(r—<)? Such a path P exists if

(A) log M (r, f) = O((log )?).

In fact, Hayman [2] has proved that if f satisfies (A) we may choose a ray through
the origin for P. We shall show that (A) is the best possible growth condition under
which there exists a path P satisfying /(r)=0(r).

Theorem. Given any increasing function ¢ (r) such that @(r)—e as r—oo,
here exists an entire function f such that

M log M(r, f) = O(e(r)(logr)?),

and if P is any locally rectifiable curve on which f(z)—~< then

2 lim sup I(Tr) =oo

Proof. Let I, be the path

_ argz}
2| = exp{ 4nn J°

O=argz<-<-, and let f, be an entire function such that f,(z)-~0 on I',. We set
g.(2)=z""f,(2), where m is chosen such that g,(0)=0 (if f,(0)=0 then m=0) and

_ 2,(0,2)
W@ =0

where ¢,=0 is chosen such that |4,(z)|]<1/8 on the path

. . arg z
Tut |2 = eXp{ o }
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O=arg z=4nn. Since A, is an entire function we see by means of the Taylor-series
that there exists a polynomial P, such that P,(0)=1 and |P,(z)|<1/4 ony,. Let

P(2) = H(l—a]

k=1
We get the desired function writing

f(Z) = ]_]1 (Pn(z/rn))s”9
where r,=e, s;=1, r,,;>r}, and for n=2,

(0 o) =81 3 sihs

and

(if)

logr
=2 n
logr ; Skl = t,

We denote b,=min {la, ,|: k=1,2,...,1,}. Assume that b,Vr,=2. Then we get
for |z|=Vr,

=

Vi, 2
s,,t,,lo (1— n] =S fn'—'——_.
& rnbn bn l/r,,

_ 2(logr,)® -0

bV

as r,—oo. Therefore we may assume that r,—~oo as n—eoo so rapidly that

|log | P, (z/r,)*

It follows from (ii) that

llog |P, (z/r,)|| =

<2

(iii) 12< k:lz I(Pk(z/rk))xk
on lzl_s_]/;':;.

Let Vr,=|z|=Vrn+:. Then it follows from (iii) that

log|f(2)| = kgnl' log [(Pk(z/rk))sk[ +log k=‘{Z1 (Py o = k=2"1' sit, log |z|+1og 2.

If Vr,=r=Vr,,, we see now from (ii) that

log M(r, f) = 25,1, log r = 41, (;21 5 rk] (log r) log r.
Since r,=r? we get -
log M(r, f) = 81, ( S s tk) (log r)?
and it follows from (i) that -
@iv) log M(r,f) = ¢(r)(logr)?
if Vr =r=Vr,,,. Therefore f satisfies the condition (1).
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We denote by f, the path

_ arg z
2l =1 exp{ 4nn }’

O=argz=4nn. Let z€f,. Then

n—1
log|f(9)] = k;; sitilog |z]+s,log (1/4),

and because |z|=er,, we see from (ii) that

n—1
log |f(z)| =2 [ 2> sktk] logr,—s, = 0.
k=1
This implies that
) lf(a)=1
on f3,.
Let P be any rectifiable path on which f(z) ~<e. It follows from (v) that P does

not intersect the path f, if n is large enough. Therefore /(er,)=2nnr, for all large
values of n and we get

lim supl—(:—)- = oo

r—oo

The theorem is proved.

Remark. After this paper had been written, I was told that the same result
was proved by A. A. Goldberg and A. E. Eremenko: On the asymptotic paths of
entire functions of finite order (in Russian). Mat. Sb. 109 (151) No 4, 1979,
555—581.
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