Annales Academiz Scientiarum Fennice
Series A. I. Mathematica
Volumen 5, 1980, 17—25

ON THE CONSTRUCTION OF THE IRREDUCIBLE
REPRESENTATIONS OF THE HYPERALGEBRA
OF A UNIVERSAL CHEVALLEY GROUP

HENRY NIEMI

1. Introduction. Let K be an algebraically closed field of characteristic p=3.
Let g be a finite dimensional complex semisimple Lie algebra and G the universal
Chevalley group of type g over K. If U, denotes Kostant’s Z-form of the universal
enveloping algebra of g, then the infinite dimensional associative K-algebra Uy =
U,®,K is known as the hyperalgebra of G ([2], [6]).

Each finite dimensional irreducible rational G-module is known to admit the
structure of a Ug-module and vice versa ([2], [5]). Moreover, for each positive integer
r the algebra Uy contains a finite dimensional subalgebra u, in such a way that finite
dimensional irreducible u,-modules correspond one-to-one to finite dimensional
irreducible G,-modules over K, where G, is the group of points in G rational over
the finite field of p" elements.

In [10] it was observed that the algebras Uy and u, all admit a s.c. good trian-
gular decomposition. Using this we show how to explicitly construct the finite
dimensional irreducible Ug- and u,-modules starting from certain one-dimensional
representations of a suitable subalgebra. This provides a new direct way of realizing
and classifying all irreducible Ug- and u,-modules, without relying on the classical
highest weight theory of G-modules as in [6]. Moreover, the finite dimensional
irreducible Ug-modules are shown to have a certain tensor product decomposition
(Proposition 6). When interpreted as a result of G-modules this provides a new proof
for the celebrated Steinberg’s tensor product theorem.

2. Algebras with good triangular decomposition. Let A4 te an associative algebra
with 1 over a field K. Let B be a subalgebra of 4 (1€ B) and assume B=H®R,
a vector space direct sum, where H is a subalgebra of 4 (1¢H) and R a two-sided
ideal of B. Let us assume furthermore that R acts nilpotently on every irreducible
finite dimensional left A-module. As in [10], we say that 4 admits a triangular decom-
position over B if there exists a left B-, right H-module homomorphism y: 4—~B
such that y[p=15. In this case 4=H® RdKer (7).

If M is an arbitrary left 4-module let M*®={mec M ker (}))m=0}. Then
M*® s a left H-module. Supposing A admits a triangular decomposition over
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Band M*® .20 for every finite dimensional left 4-module M =0, then A4 is said
to admit a good triangular decomposition over B.

Suppose now that 4 admits a triangular decomposition over B via y. Then any
left H-module W becomes a left B-module by way of

(h+r)v=hv for every hecH, reR, veEW.

Furthermore, P(W)=Homy (4, W) is viewed as a left A-module in the usual
fashion: (a-f)(a’)=f(a’ a) for every a, a’€ A, f¢ P(W). Finally the map w: W—P(W),
given by o ()(@)=y(a)v, vE W, a€ A, is an injective left H-module map. We denote
by W' =Aw(W) the left A-submodule of P(W) generated by w(W).

Remark. If dim A=, the module W’ may sometimes be infinite dimen-
sional even though dim W<e<. In the sequel all modules and representations are
automatically assumed to be finite dimensional. ‘

An argument, similar to those in [10] and [13], yields the following result.

Proposition 1. Assume A admits a good triangular decomposition over B via
y and that ker (y) ker (y)Sker (y). Then the following are true:

() Wy=uyW, if and only if W= ,W,.

(ii)y (W D=w(W)=z W for each left H-module W.

(iii) If W is an irreducible left H-module and dim W’'<eo, then W’ is an irre-
ducible left A-module.

(iv) If M is an irreducible left A-module, then M*D is an irreducible left
H-module and M= ,(M*™Y.

Let Irr (4) (resp. Irr (H)) denote the set of isomorphism classes of irreducible
left A-modules (resp. H-modules). Proposition 1 established a bijective correspond-
ence between the sets Irr (4) and {[W]€lrr (H)|dim W’ <<} where [W] denotes
the class of H-modules isomorphic to W. If dim A<-<o this latter set is of course
equal to Irr (H).

3. The algebras Ug and u,. Let ) be a maximal torus in the semisimple Lie
algebra g, and @ the root system of g with respect to . Let 4={a, ..., %} denote
a basis of ® and ¢+ ={ay, ..., ), P"=—>&*, the sets of positive (resp. negative)
roots with respect to 4. We fix a Chevalley basis {x,, ac ®; h,=h, (i=1,...,D}
for g and let U, denote Kostant’s Z-form of U(g), i.e. the subring ge'nerated by all
xijtl, a€d, teZt.

From now on let K be an algebraically closed field of characteristic p=>3. Set
X, n=xyn!'®1 (€ ®, n€Z*) and

Hi,b=(’ff)®1 (=1 ..,1beZ").
The products

(1) {% e

! m
Hi,bi HXai,L‘i ai, bi’ C,~€Z+}
i i=1

i=1
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are known to form a K-basis for the K-algebra Uyx=U,® ,K, which is called the
hyperalgebra.

If S is any subset of Uy let (S) denote the subalgebra of Uy generated by S.
For any reN let u,=({X, |e€ @, 0=r<p"}). It was shown in [6] that the products

m ] m
@ Ul v 1T [ X 0= 0= )
i=1 i=1 i=1

form a K-basis for u,. Moreover X? =0 and H},=H,, whenever a€®, t€N,
i=1,...,1 and beZ*. The following subalgebras are also needed

h":<{Hi,b[1 =i=,0=b< p"}>,

3) x, = ({Xy,o|2€P*, 0 < c < p}),
Ve =({X_04a€0*, 0<a<p},
b= (h,Ly,).

Lemma 1. The algebras h,, x, and y, are already generated as algebras by the sets
{I, H, ,1=i=1,0=j=r—1}, {X, la€4,0=j=r—1} and {X_, ,;|ac4, 0=j=r—1}
respectively.

Proof. For h, this follows directly from the proof of Proposition 2.1 in [6].
In case of x, let ac®* and O<c<p" Using induction with respect to ¢, it can
easily be shown that X, €{{X, ,0=j=r—1}). Since p=>3 the proof of Proposi-
tion (7I) in [8] implies that X, ,,€({X, ,la€4, 0=j=r—1}) for all acd+, 0=/=
r—1. This proves the assertion about x,, and y, can be handled analogously.

Lemma 2. Let ac®, ic{l,....1}, a,c,k,s€¢Z* and réN. Let BEd be such
that o —f and a+f¢ D. Then the following commutation rules hold:

min (a, ¢) —a—
(4) Xa,cX—a,a = 2 X—a,a-—k {[h“ “ kc+2k]®l}Xa,c—k,
k=0
) touXeo= %, (") 0,
(6) Xa,cHi,a = {(hi_caa(hi))®]}Xa,c>
(7) Xa,kXﬂ,s = Xﬁ,sXa,k
®) Xx,=x,X, Yy, =y7Y, where X=Ux,Y=U y,.
. r=1 r=1

Proof. The identities (4)—(6) are well known ([4]). Because of our assump-
tions, [x,, x5]=0 and from this (7) follows immeciately. To prove the commuta-
tion rule Xx,=x, X we first prove Xx,Cx, X. It suffices to show that X, X, 5, 5<%, X
for all a, e P+, k€ N and O<s<p". If a+ ¢ @ then by (7) X1 Xp, s =Xp s X, k€, X.
We suppose now that a+p€®. Let Ug[[t, u]] be the riag of formal power series over
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Uy, where ¢ and u are independent variables. Let x,(1)= 2=, "X, € Ugllt, ul],
where y€ ®@. Then there are integers ¢;; such that

X, (1) x5(u) = H xiaz+j/3(cijtiuj)xﬁ(u)xoc(t)

([11], p. 22). Comparing the coefficients of the term t*y° in the above equation we
see that X, X, €x,X. The inclusion x, XS Xx, can be proved analogously. The
commutation rule Yy,=y,Y is handled similarly.

Set r,=y,h,. Lemma 2 implies yh.=h,y,, whence r, is a two-sided ideal of
b,. It is not difficult to see that the algebras x,, y, and r, are all nilpotent. Write

u, = b,®b,x, = hOr.db,x,

and let y,: u,—b, be the projection onto the first factor. The algebra u, now admits
a good triangular decomposition over b, with respect to 7, (cf. [10]). Moreover,
ker (y,) ker (y,) S ker (p,).
Similarly, if we set H=J._, h,, B=\J._, b, and R={J;_, r, then R=YH=
=HY and
Uy = B&BX = HO RO BX.

The hyperalgebra Uy now admits a good triangular decomposition over B with
respect to the projection y: Ux—~B and ker (y) ker (y)Sker (7).

4. The irreducible representations of Uy and u,. We have seen above that the
hyperalgebra Uy and each of its finite dimensional subalgebras u, satisfy the hypoth-
eses in Proposition 1. Hence the irreducible Ug- and u,-modules can all be obtained
from irreducible H- and h,-modules respectively using the lifting process of §2.
The question now arises: which irreducible H-modules yield finite dimensional
Uy -modules?

The algebras H and h, are commutative. The set m,={[];_, H,,|0=b,<p"}
is a K-basis for h, and M=\J;_, m, a K-basis for H. Since H{,’b———H,.:b for all i
and b the same argument as in [7], p. 193, shows that all H- and h,-modules are
completely reducible. Irreducible representations of H and h, are naturally one-
dimensional, let ¢: H~K, ¢,: h,~K be any such. Finally, let W(p)=Kw, and
W(p,)=Kw, denote the one-dimensional modules corresponding to these algebra
homomorphisms.

If A,..., % are the fundamental dominant weights, P=Z2,®...®Z}, the
set of all weights, then the weights in P,.={3]_, m|0=m;<p’} are called
restricted and those in PT={J;7, P, dominant. Each €P gives rise to an algebra
homomorphism

¢, H> K, ¢,(H;,) = [/l(l?")] forall i=1,..,1 beZ*

and one knows that ¢;=¢, whenever Azu. For each 1€P, let Q:lh=0, ;,
a one-dimensional representation of A,. Let us also use the following shorter nota-
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tions W(r, )=W(e, ,)=Kw, , and V(r, .)=W(r, )’ whenever AcP,. It was
shown in [6] that the representations ¢, , are pairwise non-equivalent and con-
stitute all algebra homomorphisms #,—~K. These observations together with Proposi-
tion 1 prove

Proposition 2. If 2, u€P,., 2#u, then the irreducible u,-modules V(r, )
and V(r, p) are mutually non-isomorphic. In fact Irr (u,)={[V (r, DL€ P .}.

According to Proposition 1 Irr (Ug)={[W(p)’]|dim W (p)' < =}. We shall show
next that {p|dim W () <<}={p,| € PT}, and thus that Irr (Uy)={[W(2)]|A€P*},
where W(2)=W(p,;)=Kw,. The equality Irr (Ux)=J,~, Irr (u,) then also follows.

Lemma 3. {p|dim W(¢p) <<}C {p,]A€PT}.

Proof. Assuming dim W(p) <o we first establish the existence of a bEN
such that ¢(H; ,)=0 whenever a=b, i=1, ...,/. Suppose this were not the case.
There would then exist an index i€{l,...,/} and an infinite sequence of integers
by<b,<... such that ¢(H,,)=0 for all jEN. Let w: W(p)—~P(W(p)) be as
in §2. Using the commutation rule (4) one shows readily that the elements
X_, yow)EW(p), jEN, are all linearly independent. This, however, contradicts
the éséumption dim W (p) < .

We have now seen that ¢ (M\ym,)=0 for some réN. On the other hand ¢
induces a representation for the subalgebra k, so that ¢|h,=¢;|h, for some A€P,, .
Then ¢,(M~\m,)=0 and ¢|, =¢,|, hence ¢=¢, since they agree on the
basis M.

Lemma 4. If i€{l, ..., I} and Z€P* then X_, ,w(w;)=0 for all a=A(h).

Proof. According to Proposition 1 (W(2) )" P =w(W(2)=w(Kw,)=Kw(w,).
Now KoWw)nYo(w,)=0 since ww,)(D=y(Dw,=w, and (yow,)))=
y(»)w;=yw,;=0 for all ycY. Because X_, ,o(w,)€Yw(w,) it suffices to prove
that X_, ,o(w,)e(W(2) )< whenever a=2(h;). Furthermore, since Ker (y)=
BX and X=X, Jj=1,..,1, ccN}) (Lemma 1), it suffices to prove that
Xaj,cX_ai’aco(wl):d for all je{l,...,1}, céN, a=Ai(h). Using the commutation

rules of Lemma 2 this follows by induction on a.
Proposition 3. {p|dim W(p) <o}={p,|A€P*}.

Proof. Tt suffices to show dim W(1)' << for all 1éP* (Lemma 3). To this
end fix A€PT=J;_, P, and assume A€P,. If we can establish

© WY = u,0(WR) = u,o(w,)

we are done. The proof of this can be reduced to showing that M=u,w(w,) is a
Ug-submodule of W(4)" and this follows if XMEM and YME M,
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Now M=KoWw,)®y,o(w,). First of all Xw(w;)=0. Using Lemmas 1 and
2 one sees easily that Xy, Su,+u,X. Hence

XM = Xy, 0(w;) € n,0(w;) = M.

Since Y=({X_, Ji=1,....1, acN}) (Lemma 1) Lemma 4 says that Yo(w,)S
y,ow,)+ Yy.o (v;zl). The algebra y, is nilpotent and Yy,=y,Y by Lemma 2, hence
Yo(w,)S y,w(w,). This implies
YM = Y(KUJ(WA)‘I'yrw(WA)) S yow,) =M.

Now M is a finite dimensional Ug-submodule of W(1) and Uy admits a good
triangular decomposition over B via y. Therefore M*®:20. According to Proposi-
tion 1

0 Mk S (WQA))erD = oW (D) = Ko(w)).
Thus M* P =Kwo(w,;) and it follows that W(1) = Ugw(w,;)=Ux M**® C M. This
means W(LY=M=u,o(w;) and the proof is complete.

Proposition 4. If A, u€P*, As£p, then the irreducible Ug-modules W (1) and
W (1) are mutually non-isomorphic. In fact Irr (Ug)={[W(A)']IA¢P*}.

Proof. This is an immediate consequence of Propositions 1 and 3.
For AcP* let v,=w(w,) and V(A)=W () =Kv,® Yv,. The vectors

(10) X oy Xena Vs (@E€EZY,i=1,...,m)

span the vector space V(1). Because of (5) we get

(1 1) hX—ocl,al X—am,amv/l = (p,u(h)X—oq,al X—am,amvl9

p=7-3"_, a;o;, for all a,€Z* (i=1,...,m), h¢H. This implies that V() has

a weight space decomposition
Viy=e 2 VA,
p€P(2)

where V(1),={veV(Dhv=¢,(h)v for all hc¢H} and P(A)={ucP|V(1),#0} is
the set of weights of V(1) with respect to H. Formula (11) means that P(A)&
{1—2;.';1 ajocj[aJ-EZ+}. If W is any H-submodule of V(1) then (cf. [8], p. 4)
(12) w=a 3 (V(@),nWw).
3z
Lemma 5. If A€P,., acd and A—incP(%) then i=p"—1.

Proof. Among the weight vectors (10) only X_, ;v, is of weight A—ix. Hence
Lemma 5 follows from Lemma 4.

Proposition 5. Considered as u,-modules V(1) and V(r,1), AEP,, are
isomorphic.

Proof. We have seen above in (9) that V(1)=u,v,. Therefore it suffices to
prove V(AT 0)=Kp,. Write N=V(A)* ("), Because of x,HSHx, and (12),
N=®Z3, ps (V(@unN). Using the fact that X=({X, [i=1,..,], cEN}),
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Lemma 5 and the commutation rule Xx,=x,X we can see, as in [1], pp. 43 and
44, that ¥V (1),nN=0 for all u=A. Hence N=V(1);=Kv;.

Corollary. (i) Irr (u) CIrr (uy) ...
i) Trr (U= U Trr (u,).

Finally, we show how the irreducible Ug-module V(1) can be constructed as
a tensor product of modules of the form V(p*p), k€Z*, ueP,.

Lemma 6. Let réN and AcP,. Then y,V(p"2)=0 and x,V(p"2)=0.

Proof. Let v,=v,, in which case V(p".)=Kv, @ Yv,. Since y, Y=Yy, and
¥, is generated by elements of the form X_, ,, 1=i=/, O0<a<p', the assertion
v, V(p"A)=0 follows if X__ v,=0 for this i,l a. But using induction on a, it can
easily be proved that

XpcX_y,ov,=0 forall ped,ceN,ic{l,...,I}, O<a<yp.

Then X_, ,v,€V(p )" PnYv,=0, which proves the first claim.
According to (9) we may write V(p"A)=Kv,®y,.,v,. Since the elements
1=i=l 0=j=r, generate y,., it is now clear that vectors

X_4, 70, SEN,BiEA,

—a;,a

X—ai’ p.is

(13) v, X
span V(p"2). Hence

—B1Lp

er(pr’l) g ur+1xrvr+ur+1yrur+lvr = 0)

because x,v,=0 and y,V(p"1)=0.

Now Uy has a natural Hopf algebra structure arising from the Hopf algebra
ttructure of the universal enveloping algebra U(g). Let 4 denote the diagonaliza-
sion map and set 4,=4, 4,=(A®I1"Y)4,_,, n=2. This is determined explicitly by

An—l(Xa,a) = 2 Xa,a;®"'®Xa,an
ay+...+a,=a

An—l(Hi,b) = 2 Hi,b1®~~-®Hi,b,.
by+...+b,=b

for all n=2, acd, 1=i=l, a,bcZ*. If Vi, ..., V, are left Ug-modules then so
is V1®...QV,, the action being given by 4, _;.

Proposition 6. Write 2¢P* in the form J.=Ay+pi+...+p*%, where 1EP,.
Then
V(2) 20, V(A @V (ph) ® ... QV (P2

Proof. Let M=V (l)®...QV(p*1) and ;=0 , i=0, ..., k. The assertion
follows if we can show
Mrertsd = K(0y® ... Qvy),

M =u11(1,®...80)
and
K,®...Qv) =, Kv,.
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Let m=27_, w;Qx,6 M* O+ where each w;€ V(J,) and x,€V(pA)®...QV(p*L).
We may assume that the vectors xi,...,x, are linearly independent. If acd+
Lemma 6 implies

0=X, ,m= 2> X, w;®x;.
=1

The linear independence of the vectors x; then forces X, ;w;=0 for all i=1, ...,n.
Thus each w;€ V() Y =Kyp, and we get

M*esOed) S Kog®(V (p20)® .. @V (pF Ay)Jer e,
Replacing X, ; by X, , in the above argument gives
V(pA)®...QV (PF Ak Uksv & Kuy @V (p2A) ® ... @V (P Ay ) Jker O,

Continuing this process leads to M*T0x+V=K(0,®...Qvy).
Let
Ny ={1, X_p s X_p J[SEN, B4, i=1,..., s}

where j=0, ..., k. The set {x,0,®...®@x,0,|x;€N;, j=0, ..., k} is seen to span M
as a vector space (cf. (13)). But Lemmas 4 and 6 imply (x,...X)(1,®...®v,)=
XoUo®... QX v, hence M=u 1(0,Q...Quv).

Finally, it can easily be confirmed that

H; ,(04®...00) = ¢, (H; ) (0,®...Qv,) for all 1=i=1 beZ*.
Therefore K(v,&...Quv,) == b1 K2 and the proof is complete.

5. Irreducible representations of the universal Chevalley group. Let G=
(x,(t)|a€ @, tcK) be the universal Chevalley group of type g over the field X ([4], p.
161). Let K,.cK (r€N) be a finite field of order p" and G,=(x,()|x€®, tcK,)
the corresponding finite subgroup of G. The irreducible rational G-modules are
known to correspond one-to-one to irreducible Ug-modules and similarly for irre-
ducible G,- and u,-modules. Thus

Irr (G) = Irr (Uy) = {[V(D]| A€ P*},

Irr (G,) = Trr () = {[V (]I A€ P}
and the groups G, G, act on the modules V(1)=W (1) according to the rule
(14) x,(v= Jt"X, v forall «cd, tcK,veV ().

n=0
This shows how the irreducible rational G-modules and irreducible G,-modules
over K can all be obtained starting from one-dimensional H-modules (resp. h,-mod-
ules) lifting them up to Ug-modules (resp. u,-modules) as in § 2 and then transforming
them into G-modules (resp. G,-modules) using (14).
Let AcP, and k€Z*. Then V(p*N)=qV(A)® where V(A)PO=V (1) with
G-action given by x,(t)v=x,(t")v, a€®, t€K, ve V(1) ([11], p. 217). If the tensor
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product of Ug-modules in Proposition 6 is viewed as a G-module it becomes an
ordinary tensor product of G-modules V(4), ..., ¥(p*4,). Hence as a corollary
to Proposition 6 one obtains a new proof of Steinberg’s tensor product theorem:

Proposition 7. Let A=Ag+piy+...+p* ) where 2, P,. Then V(1) =V () ®
VODPR...Q V().
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