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ON THE CONSTRUCTION OF THE IRREDUCIBLE
REPRESENTATIONS OF TI{E HYPERALGEBRA

OF A UNIVERSAL CHEYALLEY GROUP

HENRY NIEMI

1. Introduction. Let K be an algebraically closed field of characteristic p=3.
Let g be a flnite dimensional complex semisimple Lie algebra and G the universal
Chevalley group of type g over K. If Urdenotes Kostant's Z-form of the universal
enveloping algebra of g, then the infinite dimensional associati.ze K-algebra (I*:
az& zK is known as the hyperalgebra of G (121,16l).

Each finite dimensional irreducible rational G-module is known to admit the
structure of a u.-module and vice versa ([2], [5]). Moreover, for each positive integer
r the algebra (/* contains a finite dimensional subalgebra z, in such a way that finite
dimensional irreducible z,-modules correspond one-to-one to finite dimensional
irreducible G,-modules over K, where G. is the group of points in G rational over
the finite field of p'elements.

In [0] it was observed that the algebras LI*andu,alladmit a s.c. good trian-
gular decomposition. Using this we show how to explicitly construct the finite
dimensional irreducible U*- and z,-modules starting from certain one-dimensional
representations of a suitable subalgebra. This provides a new direct way of realizing
and classifying all irreducible U*- and n"-modules, without relying on the classical
highest weight theory of G-modules as in [6]. Moreover, the finite dimensional
irreducible (/*-modules are shown to have a certain tensor product decomposition
(Proposition 6). When interpreted as a result of G-modules this provides a new proof
for the celebrated Steinberg's tensor product theorem.

2. Algebras with good triangular decomposition. Let Abe an associative algebra
with 1 over a field K. Let Bbe a subalgebra of A (l€B) and assume B:H@R,
a vector space direct sum, where fr is a subalgebra of I (l €H) and lR a two-sided
ideal of B. Let us assume furthermore that R acts nilpotently on every irreducible
finite dimensional left l-module. As in [10], we say that A admits a triangular decom-
position over -B if there exists a left .B-, right ä-module homomorphism y: A*B
such that ?la:la. In this case A:H@Åeker (7).

lf M is an arbitrary left l-module let Mk"'{»:1*q141Ler(y)m:0}. Then
Mku(v) is a left r/-module. supposing I admits a triangular decomposition over
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B and Mk",(t) +0 for every finite dimensional left l-module M *0, lhen A is said

to admit a good triangular decomposition over B.

Suppose now that I admits a triangular decomposition over B via y. Then any

left ä-module W becomes a left B-module by way of

(h!r)u: hu for every h(H, r€_R, u(W.

Furthermore, P(W):Homr(A,W) is viewed as a left l-module in the usual

fashion: (a.f)(a'):f(a'a)foreverya,a'QA,f<P(W). Finallythemap a: \V*P(W),
given by a(u)(a):y(a)u, u(W, a€A, is an injective left Il-module map. We denote

by W':Aa(LV) the left,4-submodule of P(W) generated by @(W).

Remark. If dim A:*, the module W' may sometimes be infinite dimen-

sional even though dim W= -. In the sequel all modules and representations are

automatically assumed to be finite dimensional.

An argument, similar to those in [10] and [3], yields the following result.

Propositionl. Assume A admits a good triangular decomposition ooer B uia

y and that ker (y) ker (y)e ker (y). Then the following are true:
(i) Wr= rW, if and only if Wi= awi.
(i1) 7w'fo<r):a(w)=pw for each left H-module w.
(iii) If W is an irreducible left H-module and dim W'< *, then W' is an irre'

ducible left A-module-

(iv) If M is an irreducible teft A-module, then Mke{t) is an irreducible left
H-module and M= e(Mker(I))/.

Let Irr (l) (resp. Irr (ä)) denote the set of isomorphism classes of irreducible

left l-modules (resp. ä-modules). Proposition 1 established a bijective correspond-

ence between the sets kr(A) and {[Wlelrr(ä)ldim W'=*] where lW) denotes

the class of ä-modules isomorphic to W. If dim A= - this latter set is of course

equal to Irr (ä).

3. The algebras U* and u,. Let [1 be a maximal torus in the semisimple Lie
algebrag,and@therootsystemof gwithrespecttoll. Let /:{ar,,...,«,} denote

a basis of @ and (D+ :{at, ..., d*}, O- - -@+, the sets of positive (resp. negative)

roots with respect to /. We flx a Chevalley basis {xo, a€itr; hr:ho. (i:1,..',/)}
for g and let (1, denote Kostant's Z-form of U(g), i.e. the subring generated by all

xt lt!, a(aD, t<Z+.
From now on let Kbe an algebraically closed field of characteristic p>3. Set

X,,n:fl,fn!8| (a(@, n(Z+) and

H,,u: (f;,) * ' 
(i - l, "' , t' b(z*)'

The products

(1) {,qx-o,,,, ,iH,,u, fi x,,,,,!or, bi, ciez.l



are known to form a K-basis for the K-algebra Uy:(128 2K, which is called the
hyperalgebra.

If S is any subset of U. let (,S) denote the subalgebra of (J* generated by ,S.

For any r(N let u":({X,,,la(iD, O<t<p'}). It was shown in [6] that the products

(2) {,tr-*,,, ,i,u,,u, ,t_,*,,,",1, 
< ei, bi, r,- p"}

form a K-basis for u,. Moreover Xl,r:O and H{u:H,., whenever aC@, t€N,
i:1, ...,1 and b(Z+. The following subalgebras are also needed

h, : ({H,,ull < i < l, 0 = b = p'}),

(3) x,:({Xo,"la€@+,0 =s=p'\),
!, : ({x -o,ola(Q+, o = a = p'\),

b,: (h,v Y,)'

Lemma l. The algebras h,, x, and y, are already generated as algebras by the sets

{1, Hi,eill=i<1, a=j<r-l}, {x,,oilu(/, o=j<r-l} and {x_,,rtla(/, o=j<r-l}
respectiuely.

On the construction of the irreducible representations of the hyperalgebra

Proof. The identities (4)-(6) are well known ([4]). Because of our assump-
tions, [xo, xpl:O and from this (7) follows immecliately. To prove the commuta-
tion rule Xx,:x,X we first prove Xx,e x,X. lt suffices to show that X,,oXu.r(x,X
for all u, B€iD+, k(N and O<s=<p'.If a*f ( @ then by (7) X,,oXu,":Xp,"Xo,1,(x,X.
We suppose now that d,+ P(O. Let tl*lft, rzl] be the rirg of formal power series over

Proof. For ft" this follows directly from the proof of Proposition 2.1 in 16l.
In case of x, let a€@+ and O=c<p'. Using induction with respect to c, it can
easily be shown that X.,"C({Xn,ril0<-j<r-1}). Since p=3 the proof of Proposi-
tion (7I) in [8] implies that Xo,r;(({X*,oilaQ/,0=j<r- l}) for all a(il+, O=j=
r-1. This proves the assertion about x,, and y" can be handled analogously.

Lemma 2. Let a(i|, i€{1,..., l}, a,c,k,s(Z+ and r(N. Let fr(.D be such
that d,+ -B and q.+fr|O. Then the following commutation rules hold:

(4) xo,.x-o,o:^ä'n *-,,,-r{('.-a*c+2k)ar} x,,"-r,

(s) H,,oxo,": *,,"{(',*'l@)ut},

(6) x,,"Hi,o: {(''-':,'J)e,}r,,.,
(7) Xn,pXp,": Xp,"Xo,*

(8) Xx,:x,X,Yy,:y,Y, where X:Ö*,,Y:öy,.

t9
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U", where t and u are independent variables. Let xr(t):2,=-otoXr,,(u*llt,u)],
where y€@. Then there are integers c;, such that

x,(t) x 
B @) : 

r,!= r*,, 
*, o @,, t 

i ui) x u 
(u) x *(t)

([1 1], p. 22). Comparing the coefficients of the term tku'in the above equation we

see that x,,7xp,"(x,X. The inclusion x,xe xx, can be proved analogously. The

commutation rule Iy,:y,I is handled similarly.

Set r,:y,h,. Lemma2 implies !,h,:h"!,, whence r, is a two-sided ideal of

4. It is not difficult to see that the algebras x,, y, and r, are all nilpotent. Write

ur: br@brx, : hr@fr@brx,

and let y,: u,-b, be the projection onto the first factor. The algebra ar now admits

a good triangular decomposition over 4 with respect to 7" (cf. [10]). Moreover,

ker (7,) ker (7.) C ker (y,).

Sirnilarly, if we set H:l)7t h,, B:U7, b, and R:Ul, r, then R:YH:
:HY and

U*: B@BX: H@R$)BX.

The hyperalgebra U* now admits a good triangular decomposition over.B with

respect to the projection y: Ux-B and ker (7) ker (7)Sker (7).

4. The irreducible representations of [/* and 2,. We have seen above that the

hyperalgebra O* and each of its finite dimensional subalgebras u, satisfy the hypoth-

eses in Proposition l. Hence the irreducible Uy- and z,-modules can all be obtained

from irreducible I1- and h,-modules respectively using the lifting process of § 2.

The question now arises: which irreducible I/-modules yield finite dimensional

U"-modules?
The algebras -FI and å, are commutative. The set m,:{IIt,:, H,,o,l0=br'p'\

is a K-basis for å, and M:l)7rm, a K-basis for fL since }.{r:H,,u for alli
and ö the same argument as in [7], p. 193, shows that all H- and å,-modules are

completely reducible. Irreducible representations of 11 and h, are naturally one-

dimensional ,let E: H*K, E,: k,-K be any such. Finally,let WQp):Kw* and

ll(E):Kw*,. denote the one-dimensional modules corresponding to these algebra

homomorphisms.
If L, ..., )", are the fundamental dominant weights, P:Z)r@...@Zh the

set of all weights, then the weights in Pr":{Z!=rm).;l}=m,<p'} are called

restricted and those in P+: Lll, Pr, dominant. Each l.€P gives rise to an algebra

homomorphism

et": Ht K, Qs,(Hi,u): l, ...r 1, bQz+

and one knows that E^*Ep whenevet l*p. For each )'€Po, let Qtlh,:Q,,t,
a one-dimensional representation of h,.Let us also use the following shorter nota-

(^'l') ror a, i -
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tions W(r,7):W(E,,):Kw,,^ and V(r,A):W(r,)')' whenever y€Pr". It was

shown in [6] that the representations e7,7 äte pairwise non-equivalent and con-

stitute all algebra homomorphisms å,116. These observations together with Proposi-
tion I prove

Proposition 2. If ),, p(P0., ),*F, then the irreducible u,-modules V(r, )')
and V(r, p) are mutually non-isomorphic. In fact lrr (u,):{lV(r,l)llLQe,}.

According to Proposition I Irr (U*):{lw(d'lldimW(E)'--}. We shall show

next that {qldim W(E)'-*}:{E^p'€P+}, and thus that Irr (t/*): {lW()')'111€P+},
where WQ,):W(Et):Kw1. The equality Irr (U*):l-J[, Irr (2,) then also follows.

Lemma 3. {gldim W(E)'=*}e {E^p,€P+}.

Proof. Assuming dim W(E)'= @ we first establish the existence of a b(N
such that E(H.,,):O whenever a=b, i:1,...,1. Suppose this were not the case.

There would then exist an index i({1,..., /} and an infinite sequence of integers

br-br<.... such that a(Hi,)*O for all /€N. Let a: W(E)*p(W(q)) be as

in § 2. Using the commutation rule (4) one shows readily that the elements

X-n,,ur@(w,p)(W(E)',XN, are all linearly independent. This, however, contradicts
the assumption dim W(E)'-*.

We have now seen that E(M\m"):O for some r(N. On the other hand E
induces a representation for the subalgebra h, so that Elh,:E1lh, for some ,t€Pr".
Then E{M\m,):0 and Ql*.:t?tl*, hence E:E^ since they agree on the

basis M.

Lemma 4. ff i€{1,..., l} and )"(P+ then X-o,.oa(w7):O for all a=-Ä(h;).

Proof. According to Proposition I (W Q,)' )k* 
(') : @ (W Q')) : at (Kw ) : Ka (w t).

Now Ka(w)aYa(rr):O since a(w^)(l):y(l)w^:,,,s, and (74;(wr))1t;:
y(y)wt:ywt":0 for all yql Because X_o.,oot(w7)(Ya(w1) it suffices to prove

that X-,.,oa(r^)e(W(1,)')ker(r) *6.r.v$ q=l(hi). Furthermore, since ker(y):
BX and X:({X,o"li:1,...,/, c(N}) (Lemma l), it suffices to prove that
xo,,"x-o,,o@(rr):0 for all .i<{1,..., /}, c€N, a-=i(h). Using the commutation
rules of Lemma 2 this follows by induction on d.

Proposition 3. {rpldim Wkil' - *}: {E 1l).€P+}.

Proof. lt suffices to show dimWQ')'-.- for all ).QP+ (Lemma3). To this
end flx ,i(P+:Ul, Pr. and assume ).€Pp". If we can establish

(9) W(1)' : u"a(W(l'1): u,r»(w^)

we are done. The proof of this can be reduced to showing that M:u,a(wr) is a
[/*-submodule of W(1)'and this follows if XM=M and YM*M.

2l
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Now M:Ko(w^)Ay,a(wr). First of all Xa(wr):O. Using Lemmasl and

2 one sees easily that Xy,9a,*u,X. Hence

XM: Xy,a(w^) e u,a(w^): M.

Since Y:(8-,.,,1i:1,...,1, aeN\) (Lemmal) Lemma4 says that Ya(w)e
y,a(w7)*Yy,a(w7). The algebra y" is nilpotent and Yy,:y,Y by Lemma 2,hence

Yo (w 
^) 

E y,@ (w 
^). 

This implies
yM : y (Ka(w 

^) 
a y,@(w.r)) g y,a(w 1) : M.

Now M is a finite dimensional U"-submodule of W()")' and U* admits a good

triangular decomposition over B via y. Therefore Mketo) lO. According to Proposi-

tion I
O * tr4ker 

(r) a (W 11,1'1u* 
{tt : @(14/ ())) : K«r(wr).

Thus Mk"'(i:Ka(wt) and it follows that W())':(Jya(w7):(J*14ket{» e M. This

means W()')':1,1:u,a(w1) and the proof is complete.

Proposition 4. If ),, pCP+, )'*p, then tlte irreducible U*-modules W()')' and

W(1t)' are mutually non-isomorphic. In fact Irr (U^): {lW(1)'111(P+\.

Proof. This is an immediate consequence of Propositions I and 3.

For )"QP+ let u^:11171at ) and V(^):WQ")':1ie^6Yu1. The vectors

(10) X-o,,o,...X-o^,o^Dt (ar€Z+,i:1,...,m)
span the vector space Y()'). Because of (5) we get

(11) hX-rr,or...X-o^,o^ot : Ep(h)X-,r,ot...X-n^,o^o).,
p:1-Zi=raia.i, for all ai(Z+ (i:1,...,m), h€H. This implies that VQ,) has

a weight space decomposition
v()'):* 

rår^rn( 
)u

where V(l)r:f:(VQ,)lhu:Ap(h)u for all h(H) and P(1):{pcPlv()')r+0) is

the set of weights of V(),) with respect to ä. Formula (ll) means that P()')e

{1-Zi=ra1u)a,<Z+\. If W is any ä-submodule of V(1) then (cf. [8], p. 4)

(r2) *:* 
uär(VQ),nw).

Lemma 5. If l(Pe., a€l and ),-ia€P(l) then i<p'-|.

Proof. Among the weight vectors (10) only X-o,iut is of weight ).-ia. Hence

Lemma 5 follows from Lemma 4.

Proposition 5. Considered as u,-modules Y()') and V(r, 1), ).QPp", ere

isomorphic.

Proof. We have seen above in (9) that V( ):u,ut. Therefore it suffices to
prove V(11t*o<t"'-*r^. Write N:V()kd(D. Because of x,HeHx, and (12),

N: @åepr 
^r(V1l,1unM1. 

Using the fact that X:({X,,,"1i:1, ..., l, c€N}),
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Lemma 5 and the commutation rule Xx,:x,X we can see, as in [1], pp. 43 and
44,that V(l)uaN:O forall p+Ä. }{ence N:Y()")^:y11^.

Corollary. (i) Irr (ur) clrr (ur) c...

(ii) Irr (U*):i lr(u).

Finally, we show h"* ,h";;"ducible U*-module VQ) canbe constructed as

a tensor product of modules of the form V(po p), k<Z+, F€Po.

Lemma 6. Let r€N and ),€Pr. Then y,V(p')')-g and x,V(p'),):Q.

Proof. Let u,:t)or1in which case V(p')):ps,@Yu,. Since y,Y:Yy, and
y, is generated by elements of the form X_o,o, l=i=I,U-ra=p', the assertion
y,V(p')'):g follows if X-n.,ou,:O for this i, a.But using induction on a,it can
easily be proved that

xp,"X-or,ou,:0 for all B€/, c(N, i€{1, ..., ,}, 0 = a = f .

Then X-o.,ou,(V(p').)k"'(t)nYu,:O, which proves the first claim.
According to (9) we may write V(p'7):A11,@Ir+ror. Since the elements

X-o,,0,, l<i<1,0=i<r, generate y,+1 it is now clear that vectors

U, X-0t,pr... X-0",prU, S€I{, §r€/,
span V(p'),). Hence

xrT (1t' 1) 9 u,*rxrts,*ur+,y Jr+rlt : 0,

because x,u,:O and y,V(p')"):Q.
Now U* has a natural Hopf algebra structure arising from the Hopf algebra

ttructure of the universal enveloping algebra U(g). Let / detote the diagonaliza-
sion map and set o'::,' 

:ar,':@:r)a;4' Tl:.'*;;,::*-*"0 
expricitrv bv

at+... + ai: a

Ån-r(Hi,u): Z H,,ur&...&Hi,il
bL+...+bn:b

for all n>2, a((0, l=i=l, a,b(Z+. If V.,...,V, are left [{1-modules then so

i, l'rO...bVn, the action being given by /,-t.
Proposition 6. Write ),(P+ intheform )":),0*ilr*...*po),o where ).,(Pr.

Then
V (1) =a *V (1o) 8V (il,) @ ... Att 1pk Lo1.

Proof. Let M:V(L,)&...&V(pk),) and l)r:Dri^., i:0,...,k. The assertion
follows if we can show

fuker(y,"*r) - K(uoA.. .}uo),

fuf -ur,+r(uoA...8uu)

K(uoA . . . I uo) -hu *r.K, 
^.

23
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Let m : Zi =t w ig xi( Mk", (rr + r) *6srs each w i(V ().) and xi€.v (ild & ... @ V (pk ).).
We may assume that the vectors xL,...,xn are linearly independent. If q,QiD+

Lemma 6 implies

O: Xo,1m: ) X,,r*,&x,.
i:x

The linear independence of the vectors x; then forces Xo,rwi:O for all i:1, ...,n.
Thus each wi<V(1o)k"'(v):Kt)o and we get

Mker (v k + i e Ku oa (v (plJ o . . . @v (pk ),))t, o u *,>.

Replacing Xo,rby X,,rin the above argument gives

(V (p Ar) A . . . I Y (pk )))r* (rr * rr e Ku rA (V (p, ),r) A . . . A lt lplr ih))ker (rk + 1,.

Continuing this process leads to Mk"r(v**) : K(u.8... 8uo).
Let

trL: {1, X-§,,ot...X-B,.oils€ N, Pi(Å, i: 1, ..., s}

where 7:0, ...,k. The set {xous8...@xoaulxiQNi, j:0,..., k} is seen to span M
as a vector space (cf. (13)). But Lemmas 4 and 6 imply (xo...xo)(us8...8ur):
x0u68... 8x*o*, hence M :uo*r(u08... 8u*).

Finally, it can easily be confirmed that

Ht,u(us&...8,r0) : et(Hi,o)(o08...8o1) for all I -- i = l, b€Z+.

Therefore K(o68...8rrr,)=å.* rKu; and the proof is complete.

5. Irreducible representations of the universal Chevalley group. Let G:
(x"(t)laCiL, t(K> be the universal Chevalley group of type g over the field K ([4], p.

161). Let Ko"cK (r€N) be a finite field of orderp'and G,:(x,(t)la(iD, t(Kr,)
the corresponding finite subgroup of G. The irreducible rational G-modules are

known to correspond one-to-one to irreducible U3-modules and similarly for irre-
ducible G,- and z,-modules. Thus

Irr (G) : Irr (Ur) : {lY( ))V.€P+),

Irr (G,) : Irr (u) : {lVQ')lV.ePe,\

and the groups G, G, act on the modules V()"):W(),)' according to the rule

(14) x,(t)u : 
olot'Xo,ou 

for all a(iD, t(K, aev()").

This shows how the irreducible rational G-modules and irreducible G,-modules
over K can all be obtained starting from one-dimensional ä-modules (resp. å,-mod-
ules) lifting them up to U.-modules (resp. r,-modules) as in § 2 and then transforming
them into G-modules (resp. G"-modules) using (14).

Let L(Pn and k(Z+. Then ttQtkl)=uVQ)b\ where V(1)tnk):V111 *i11,
G-action given by xo(t)u:xn(tok)u, a(O, t€.K, u(V(l) ([11], p. 217).If the tensor
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product of (/*-modules in Proposition 6 is viewed as a G-module it becomes an
ordinary tensor product of G-modules V(1),...,V(po),). Hence as a corollary
to Proposition 6 one obtains a new proof of Steinberg's tensor product theorem:

Propositio n 7. Let )":10*pL* ...*po )o where l,EPo. Then V(),)= oV(l)&
Y (1r)@ 8 . . . @ v (),o1{nut .
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