ON THE CONSTRUCTION OF THE IRREDUCIBLE REPRESENTATIONS OF THE HYPERALGEBRA OF A UNIVERSAL CHEVALLEY GROUP

HENRY NIEMI

1. Introduction. Let K be an algebraically closed field of characteristic p>3. Let g be a finite dimensional complex semisimple Lie algebra and G the universal Chevalley group of type g over K. If U_Z denotes Kostant's Z-form of the universal enveloping algebra of g, then the infinite dimensional associative K-algebra $U_K = U_Z \otimes_Z K$ is known as the hyperalgebra of G ([2], [6]).

Each finite dimensional irreducible rational G-module is known to admit the structure of a U_K -module and vice versa ([2], [5]). Moreover, for each positive integer r the algebra U_K contains a finite dimensional subalgebra u_r in such a way that finite dimensional irreducible u_r -modules correspond one-to-one to finite dimensional irreducible G_r -modules over K, where G_r is the group of points in G rational over the finite field of p^r elements.

In [10] it was observed that the algebras U_K and u_r all admit a s.c. good triangular decomposition. Using this we show how to explicitly construct the finite dimensional irreducible U_K - and u_r -modules starting from certain one-dimensional representations of a suitable subalgebra. This provides a new direct way of realizing and classifying all irreducible U_K - and u_r -modules, without relying on the classical highest weight theory of G-modules as in [6]. Moreover, the finite dimensional irreducible U_K -modules are shown to have a certain tensor product decomposition (Proposition 6). When interpreted as a result of G-modules this provides a new proof for the celebrated Steinberg's tensor product theorem.

2. Algebras with good triangular decomposition. Let A be an associative algebra with 1 over a field K. Let B be a subalgebra of A $(1 \in B)$ and assume $B = H \oplus R$, a vector space direct sum, where H is a subalgebra of A $(1 \in H)$ and R a two-sided ideal of B. Let us assume furthermore that R acts nilpotently on every irreducible finite dimensional left A-module. As in [10], we say that A admits a *triangular decomposition* over B if there exists a left B-, right H-module homomorphism $\gamma: A \rightarrow B$ such that $\gamma|_B = 1_B$. In this case $A = H \oplus R \oplus \ker(\gamma)$.

If *M* is an arbitrary left *A*-module let $M^{\ker(\gamma)} = \{m \in M | \ker(\gamma)m=0\}$. Then $M^{\ker(\gamma)}$ is a left *H*-module. Supposing *A* admits a triangular decomposition over

B and $M^{\text{ker}(\gamma)} \neq 0$ for every finite dimensional left *A*-module $M \neq 0$, then *A* is said to admit a *good triangular decomposition* over *B*.

Suppose now that A admits a triangular decomposition over B via γ . Then any left H-module W becomes a left B-module by way of

(h+r)v = hv for every $h \in H$, $r \in R$, $v \in W$.

Furthermore, $P(W) = \operatorname{Hom}_B(A, W)$ is viewed as a left A-module in the usual fashion: $(a \cdot f)(a') = f(a'a)$ for every $a, a' \in A, f \in P(W)$. Finally the map $\omega \colon W \to P(W)$, given by $\omega(v)(a) = \gamma(a)v, v \in W, a \in A$, is an injective left H-module map. We denote by $W' = A\omega(W)$ the left A-submodule of P(W) generated by $\omega(W)$.

Remark. If dim $A = \infty$, the module W' may sometimes be infinite dimensional even though dim $W < \infty$. In the sequel all modules and representations are automatically assumed to be finite dimensional.

An argument, similar to those in [10] and [13], yields the following result.

Proposition 1. Assume A admits a good triangular decomposition over B via γ and that ker (γ) ker $(\gamma) \subseteq$ ker (γ) . Then the following are true:

(i) $W_1 \cong_H W_2$ if and only if $W'_1 \cong_A W'_2$.

(ii) $(W')^{\ker(\gamma)} = \omega(W) \cong_H W$ for each left H-module W.

(iii) If W is an irreducible left H-module and dim $W' < \infty$, then W' is an irreducible left A-module.

(iv) If M is an irreducible left A-module, then $M^{\ker(\gamma)}$ is an irreducible left H-module and $M \cong (M^{\ker(\gamma)})'$.

Let Irr (A) (resp. Irr (H)) denote the set of isomorphism classes of irreducible left A-modules (resp. H-modules). Proposition 1 established a bijective correspondence between the sets Irr (A) and $\{[W] \in Irr(H) | \dim W' < \infty\}$ where [W] denotes the class of H-modules isomorphic to W. If dim $A < \infty$ this latter set is of course equal to Irr (H).

3. The algebras U_K and u_r . Let \mathfrak{h} be a maximal torus in the semisimple Lie algebra \mathfrak{g} , and Φ the root system of \mathfrak{g} with respect to \mathfrak{h} . Let $\Delta = \{\alpha_1, ..., \alpha_l\}$ denote a basis of Φ and $\Phi^+ = \{\alpha_1, ..., \alpha_m\}$, $\Phi^- = -\Phi^+$, the sets of positive (resp. negative) roots with respect to Δ . We fix a Chevalley basis $\{x_{\alpha}, \alpha \in \Phi; h_i = h_{\alpha_i} (i = 1, ..., l)\}$ for \mathfrak{g} and let U_Z denote Kostant's Z-form of $U(\mathfrak{g})$, i.e. the subring generated by all $x_{\alpha}^t/t!$, $\alpha \in \Phi$, $t \in \mathbb{Z}^+$.

From now on let K be an algebraically closed field of characteristic p>3. Set $X_{\alpha,n} = x_{\alpha}^{n}/n! \otimes 1 \ (\alpha \in \Phi, n \in \mathbb{Z}^{+})$ and

$$H_{i,b} = \begin{pmatrix} h_i \\ b \end{pmatrix} \otimes 1 \quad (i = 1, \dots, l, b \in \mathbf{Z}^+).$$

The products

(1)
$$\left\{\prod_{i=1}^{m} X_{-\alpha_{i},a_{i}}\prod_{i=1}^{l} H_{i,b_{i}}\prod_{i=1}^{m} X_{\alpha_{i},c_{i}}\middle|a_{i},b_{i},c_{i}\in\mathbb{Z}^{+}\right\}$$

are known to form a K-basis for the K-algebra $U_K = U_Z \otimes_Z K$, which is called the hyperalgebra.

If S is any subset of U_K let $\langle S \rangle$ denote the subalgebra of U_K generated by S. For any $r \in N$ let $u_r = \langle \{X_{\alpha,t} | \alpha \in \Phi, 0 \leq t < p'\} \rangle$. It was shown in [6] that the products

(2)
$$\left\{\prod_{i=1}^{m} X_{-\alpha_{i},a_{i}}\prod_{i=1}^{l} H_{i,b_{i}}\prod_{i=1}^{m} X_{\alpha_{i},c_{i}} \middle| 0 \leq a_{i}, b_{i}, c_{i} < p^{r}\right\}$$

form a K-basis for u_r . Moreover $X_{\alpha, i}^p = 0$ and $H_{i, b}^p = H_{i, b}$ whenever $\alpha \in \Phi$, $t \in N$, i=1, ..., l and $b \in \mathbb{Z}^+$. The following subalgebras are also needed

(3)

$$h_{r} = \langle \{H_{i,b} | 1 \leq i \leq l, 0 \leq b < p^{r} \} \rangle,$$

$$x_{r} = \langle \{X_{\alpha,c} | \alpha \in \Phi^{+}, 0 < c < p^{r} \} \rangle,$$

$$y_{r} = \langle \{X_{-\alpha,a} | \alpha \in \Phi^{+}, 0 < a < p^{r} \} \rangle,$$

$$b_{r} = \langle h_{r} \cup y_{r} \rangle.$$

Lemma 1. The algebras h_r , x_r and y_r are already generated as algebras by the sets $\{1, H_{i,p^j} | 1 \le i \le l, 0 \le j \le r-1\}$, $\{X_{\alpha,p^j} | \alpha \in \Delta, 0 \le j \le r-1\}$ and $\{X_{-\alpha,p^j} | \alpha \in \Delta, 0 \le j \le r-1\}$ respectively.

Proof. For h_r this follows directly from the proof of Proposition 2.1 in [6]. In case of x_r let $\alpha \in \Phi^+$ and $0 < c < p^r$. Using induction with respect to c, it can easily be shown that $X_{\alpha,c} \in \langle \{X_{\alpha,p^j} | 0 \le j \le r-1\} \rangle$. Since p > 3 the proof of Proposition (7I) in [8] implies that $X_{\alpha,p^j} \in \langle \{X_{\alpha,p^j} | \alpha \in \Delta, 0 \le j \le r-1\} \rangle$ for all $\alpha \in \Phi^+$, $0 \le j \le r-1$. This proves the assertion about x_r , and y_r can be handled analogously.

Lemma 2. Let $\alpha \in \Phi$, $i \in \{1, ..., l\}$, $a, c, k, s \in \mathbb{Z}^+$ and $r \in \mathbb{N}$. Let $\beta \in \Phi$ be such that $\alpha \neq -\beta$ and $\alpha + \beta \notin \Phi$. Then the following commutation rules hold:

(4)
$$X_{\alpha,c}X_{-\alpha,a} = \sum_{k=0}^{\min(a,c)} X_{-\alpha,a-k} \left\{ \binom{h_{\alpha}-a-c+2k}{k} \otimes 1 \right\} X_{\alpha,c-k},$$

(5)
$$H_{i,a}X_{\alpha,c} = X_{\alpha,c}\left\{ \begin{pmatrix} h_i + c\alpha(h_i) \\ a \end{pmatrix} \otimes 1 \right\},$$

(6)
$$X_{\alpha,c}H_{i,a} = \left\{ \begin{pmatrix} h_i - c\alpha(h_i) \\ a \end{pmatrix} \otimes 1 \right\} X_{\alpha,c}$$

(7)
$$X_{\alpha, k} X_{\beta, s} = X_{\beta, s} X_{\alpha, k}$$

(8)
$$X\mathbf{x}_r = \mathbf{x}_r X, \ Y\mathbf{y}_r = \mathbf{y}_r Y, \quad where \quad X = \bigcup_{r=1}^{\infty} \mathbf{x}_r, \ Y = \bigcup_{r=1}^{\infty} \mathbf{y}_r.$$

Proof. The identities (4)—(6) are well known ([4]). Because of our assumptions, $[x_{\alpha}, x_{\beta}] = 0$ and from this (7) follows immediately. To prove the commutation rule $X\mathbf{x}_{\mathbf{r}} = \mathbf{x}_{\mathbf{r}} X$ we first prove $X\mathbf{x}_{\mathbf{r}} \subseteq \mathbf{x}_{\mathbf{r}} X$. It suffices to show that $X_{\alpha,k} X_{\beta,s} \in \mathbf{x}_{\mathbf{r}} X$ for all $\alpha, \beta \in \Phi^+$, $k \in \mathbb{N}$ and $0 < s < p^r$. If $\alpha + \beta \notin \Phi$ then by (7) $X_{\alpha,k} X_{\beta,s} = X_{\beta,s} X_{\alpha,k} \in \mathbf{x}_{\mathbf{r}} X$. We suppose now that $\alpha + \beta \in \Phi$. Let $U_K[[t, u]]$ be the ring of formal power series over

 U_K , where t and u are independent variables. Let $x_{\gamma}(t) = \sum_{n \ge 0} t^n X_{\gamma,n} \in U_K[[t, u]]$, where $\gamma \in \Phi$. Then there are integers c_{ij} such that

$$x_{\alpha}(t)x_{\beta}(u) = \prod_{i,j \ge 1} x_{i\alpha+j\beta}(c_{ij}t^{i}u^{j})x_{\beta}(u)x_{\alpha}(t)$$

([11], p. 22). Comparing the coefficients of the term $t^k u^s$ in the above equation we see that $X_{\alpha,k}X_{\beta,s} \in x_r X$. The inclusion $x_r X \subseteq X x_r$ can be proved analogously. The commutation rule $Y y_r = y_r Y$ is handled similarly.

Set $r_r = y_r h_r$. Lemma 2 implies $y_r h_r = h_r y_r$, whence r_r is a two-sided ideal of b_r . It is not difficult to see that the algebras x_r , y_r and r_r are all nilpotent. Write

$$u_r = b_r \oplus b_r x_r = h_r \oplus r_r \oplus b_r x_r$$

and let γ_r : $u_r \rightarrow b_r$ be the projection onto the first factor. The algebra u_r now admits a good triangular decomposition over b_r with respect to γ_r (cf. [10]). Moreover, ker (γ_r) ker $(\gamma_r) \subseteq$ ker (γ_r) .

Similarly, if we set $H = \bigcup_{r=1}^{\infty} h_r$, $B = \bigcup_{r=1}^{\infty} b_r$ and $R = \bigcup_{r=1}^{\infty} r_r$ then R = YH = HY and

$$U_{\kappa} = B \oplus BX = H \oplus R \oplus BX.$$

The hyperalgebra U_K now admits a good triangular decomposition over B with respect to the projection $\gamma: U_K \rightarrow B$ and ker (γ) ker $(\gamma) \subseteq$ ker (γ) .

4. The irreducible representations of U_K and u_r . We have seen above that the hyperalgebra U_K and each of its finite dimensional subalgebras u_r satisfy the hypotheses in Proposition 1. Hence the irreducible U_K - and u_r -modules can all be obtained from irreducible *H*- and h_r -modules respectively using the lifting process of §2. The question now arises: which irreducible *H*-modules yield finite dimensional U_K -modules?

The algebras H and h_r are commutative. The set $m_r = \{\prod_{i=1}^{l} H_{i,b_i} | 0 \le b_i < p^r\}$ is a K-basis for h_r and $M = \bigcup_{r=1}^{\infty} m_r$ a K-basis for H. Since $H_{i,b}^p = H_{i,b}$ for all i and b the same argument as in [7], p. 193, shows that all H- and h_r -modules are completely reducible. Irreducible representations of H and h_r are naturally one-dimensional, let $\varphi: H \to K, \varphi_r: h_r \to K$ be any such. Finally, let $W(\varphi) = Kw_{\varphi}$ and $W(\varphi_r) = Kw_{\varphi_r}$ denote the one-dimensional modules corresponding to these algebra homomorphisms.

If $\lambda_1, ..., \lambda_l$ are the fundamental dominant weights, $P = Z\lambda_1 \oplus ... \oplus Z\lambda_l$ the set of all weights, then the weights in $P_{pr} = \{\sum_{i=1}^l m_i \lambda_i | 0 \le m_i < p^r\}$ are called restricted and those in $P^+ = \bigcup_{r=1}^{\infty} P_{pr}$ dominant. Each $\lambda \in P$ gives rise to an algebra homomorphism

$$\varphi_{\lambda} \colon H \to K, \ \varphi_{\lambda}(H_{i,b}) = \begin{pmatrix} \lambda(h_i) \\ b \end{pmatrix} \text{ for all } i = 1, \dots, l, \ b \in \mathbb{Z}^+$$

and one knows that $\varphi_{\lambda} \neq \varphi_{\mu}$ whenever $\lambda \neq \mu$. For each $\lambda \in P_{p^{r}}$ let $\varphi_{\lambda} | \mathbf{h}_{r} = \varphi_{r,\lambda}$, a one-dimensional representation of \mathbf{h}_{r} . Let us also use the following shorter nota-

tions $W(r, \lambda) = W(\varphi_{r,\lambda}) = Kw_{r,\lambda}$ and $V(r, \lambda) = W(r, \lambda)'$ whenever $\lambda \in P_{pr}$. It was shown in [6] that the representations $\varphi_{r,\lambda}$ are pairwise non-equivalent and constitute all algebra homomorphisms $h_r \to K$. These observations together with Proposition 1 prove

Proposition 2. If $\lambda, \mu \in P_{p^r}, \lambda \neq \mu$, then the irreducible u_r -modules $V(r, \lambda)$ and $V(r, \mu)$ are mutually non-isomorphic. In fact Irr $(u_r) = \{[V(r, \lambda)] | \lambda \in P_{p^r}\}$.

According to Proposition 1 Irr $(U_K) = \{[W(\varphi)'] | \dim W(\varphi)' < \infty\}$. We shall show next that $\{\varphi | \dim W(\varphi)' < \infty\} = \{\varphi_{\lambda} | \lambda \in P^+\}$, and thus that Irr $(U_K) = \{[W(\lambda)'] | \lambda \in P^+\}$, where $W(\lambda) = W(\varphi_{\lambda}) = Kw_{\lambda}$. The equality Irr $(U_K) = \bigcup_{r=1}^{\infty} Irr(u_r)$ then also follows.

Lemma 3. $\{\varphi | \dim W(\varphi)' < \infty\} \subseteq \{\varphi_{\lambda} | \lambda \in P^+\}.$

Proof. Assuming dim $W(\varphi)' < \infty$ we first establish the existence of a $b \in N$ such that $\varphi(H_{i,a})=0$ whenever a > b, i=1, ..., l. Suppose this were not the case. There would then exist an index $i \in \{1, ..., l\}$ and an infinite sequence of integers $b_1 < b_2 < ...$ such that $\varphi(H_{i,b_j}) \neq 0$ for all $j \in N$. Let $\omega: W(\varphi) \rightarrow P(W(\varphi))$ be as in § 2. Using the commutation rule (4) one shows readily that the elements $X_{-\alpha_i, b_j} \omega(w_{\varphi}) \in W(\varphi)', j \in N$, are all linearly independent. This, however, contradicts the assumption dim $W(\varphi)' < \infty$.

We have now seen that $\varphi(M \setminus m_r) = 0$ for some $r \in N$. On the other hand φ induces a representation for the subalgebra h_r so that $\varphi|h_r = \varphi_{\lambda}|h_r$ for some $\lambda \in P_{p^r}$. Then $\varphi_{\lambda}(M \setminus m_r) = 0$ and $\varphi|_{m_r} = \varphi_{\lambda}|_{m_r}$ hence $\varphi = \varphi_{\lambda}$ since they agree on the basis M.

Lemma 4. If $i \in \{1, ..., l\}$ and $\lambda \in P^+$ then $X_{-\alpha_{i,a}}\omega(w_{\lambda})=0$ for all $a > \lambda(h_i)$.

Proof. According to Proposition 1 $(W(\lambda)')^{\ker(\gamma)} = \omega(W(\lambda)) = \omega(Kw_{\lambda}) = K\omega(w_{\lambda})$. Now $K\omega(w_{\lambda}) \cap Y\omega(w_{\lambda}) = 0$ since $\omega(w_{\lambda})(1) = \gamma(1)w_{\lambda} = w_{\lambda}$ and $(y\omega(w_{\lambda}))(1) = \gamma(y)w_{\lambda} = yw_{\lambda} = 0$ for all $y \in Y$. Because $X_{-\alpha_{i},a}\omega(w_{\lambda}) \in Y\omega(w_{\lambda})$ it suffices to prove that $X_{-\alpha_{i},a}\omega(w_{\lambda}) \in (W(\lambda)')^{\ker(\gamma)}$ whenever $a > \lambda(h_{i})$. Furthermore, since ker $(\gamma) = BX$ and $X = \langle \{X_{\alpha_{j},c} | j = 1, ..., l, c \in N\} \rangle$ (Lemma 1), it suffices to prove that $X_{\alpha_{j},c}X_{-\alpha_{i},a}\omega(w_{\lambda}) = 0$ for all $j \in \{1, ..., l\}$, $c \in N$, $a > \lambda(h_{i})$. Using the commutation rules of Lemma 2 this follows by induction on a.

Proposition 3. $\{\varphi | \dim W(\varphi)' < \infty\} = \{\varphi_{\lambda} | \lambda \in P^+\}.$

Proof. It suffices to show dim $W(\lambda)' < \infty$ for all $\lambda \in P^+$ (Lemma 3). To this end fix $\lambda \in P^+ = \bigcup_{s=1}^{\infty} P_{p^s}$ and assume $\lambda \in P_{p^r}$. If we can establish

(9)
$$W(\lambda)' = \boldsymbol{u}_r \,\omega(W(\lambda)) = \boldsymbol{u}_r \,\omega(w_\lambda)$$

we are done. The proof of this can be reduced to showing that $M = u_r \omega(w_\lambda)$ is a U_K -submodule of $W(\lambda)'$ and this follows if $XM \subseteq M$ and $YM \subseteq M$.

Now $M = K\omega(w_{\lambda}) \oplus y_r \omega(w_{\lambda})$. First of all $X\omega(w_{\lambda}) = 0$. Using Lemmas 1 and 2 one sees easily that $Xy_r \subseteq u_r + u_r X$. Hence

$$XM = Xy_r \omega(w_\lambda) \subseteq u_r \omega(w_\lambda) = M$$

Since $Y = \langle \{X_{-\alpha_i, a} | i=1, ..., l, a \in N\} \rangle$ (Lemma 1) Lemma 4 says that $Y\omega(w_\lambda) \subseteq y_r \omega(w_\lambda) + Y y_r \omega(w_\lambda)$. The algebra y_r is nilpotent and $Y y_r = y_r Y$ by Lemma 2, hence $Y\omega(w_\lambda) \subseteq y_r \omega(w_\lambda)$. This implies

$$YM = Y(K\omega(w_{\lambda}) + y_{r}\omega(w_{\lambda})) \subseteq y_{r}\omega(w_{\lambda}) = M.$$

Now *M* is a finite dimensional U_K -submodule of $W(\lambda)'$ and U_K admits a good triangular decomposition over *B* via γ . Therefore $M^{\ker(\gamma)} \neq 0$. According to Proposition 1

$$0 \neq M^{\ker(\gamma)} \subseteq (W(\lambda)')^{\ker(\gamma)} = \omega(W(\lambda)) = K\omega(w_{\lambda}).$$

Thus $M^{\ker(\gamma)} = K\omega(w_{\lambda})$ and it follows that $W(\lambda)' = U_K \omega(w_{\lambda}) = U_K M^{\ker(\gamma)} \subseteq M$. This means $W(\lambda)' = M = u_r \omega(w_{\lambda})$ and the proof is complete.

Proposition 4. If $\lambda, \mu \in P^+, \lambda \neq \mu$, then the irreducible U_K -modules $W(\lambda)'$ and $W(\mu)'$ are mutually non-isomorphic. In fact Irr $(U_K) = \{[W(\lambda)'] | \lambda \in P^+\}$.

Proof. This is an immediate consequence of Propositions 1 and 3.

For $\lambda \in P^+$ let $v_{\lambda} = \omega(w_{\lambda})$ and $V(\lambda) = W(\lambda)' = Kv_{\lambda} \oplus Yv_{\lambda}$. The vectors

(10)
$$X_{-\alpha_1,\alpha_1}...X_{-\alpha_m,\alpha_m}v_{\lambda} \quad (a_i \in \mathbf{Z}^+, i = 1, \ldots, m)$$

span the vector space $V(\lambda)$. Because of (5) we get

(11)
$$hX_{-\alpha_1,a_1}\dots X_{-\alpha_m,a_m}v_{\lambda} = \varphi_{\mu}(h)X_{-\alpha_1,a_1}\dots X_{-\alpha_m,a_m}v_{\lambda},$$

 $\mu = \lambda - \sum_{j=1}^{m} a_j \alpha_j$, for all $a_i \in \mathbb{Z}^+$ (i=1, ..., m), $h \in H$. This implies that $V(\lambda)$ has a weight space decomposition

$$V(\lambda) = \bigoplus \sum_{\mu \in P(\lambda)} V(\lambda)_{\mu}$$

where $V(\lambda)_{\mu} = \{v \in V(\lambda) | hv = \varphi_{\mu}(h)v$ for all $h \in H\}$ and $P(\lambda) = \{\mu \in P | V(\lambda)_{\mu} \neq 0\}$ is the set of weights of $V(\lambda)$ with respect to H. Formula (11) means that $P(\lambda) \subseteq \{\lambda - \sum_{j=1}^{m} a_{j} \alpha_{j} | a_{j} \in \mathbb{Z}^{+}\}$. If W is any H-submodule of $V(\lambda)$ then (cf. [8], p. 4)

(12)
$$W = \bigoplus \sum_{\mu \in P(\lambda)} \left(V(\lambda)_{\mu} \cap W \right).$$

Lemma 5. If $\lambda \in P_{p^r}$, $\alpha \in \Delta$ and $\lambda - i\alpha \in P(\lambda)$ then $i \leq p^r - 1$.

Proof. Among the weight vectors (10) only $X_{-\alpha,i}v_{\lambda}$ is of weight $\lambda - i\alpha$. Hence Lemma 5 follows from Lemma 4.

Proposition 5. Considered as u_r -modules $V(\lambda)$ and $V(r, \lambda)$, $\lambda \in P_{p^r}$, are isomorphic.

Proof. We have seen above in (9) that $V(\lambda) = u_r v_\lambda$. Therefore it suffices to prove $V(\lambda)^{\ker(\gamma_r)} = K v_\lambda$. Write $N = V(\lambda)^{\ker(\gamma_r)}$. Because of $x_r H \subseteq H x_r$ and (12), $N = \bigoplus \sum_{\mu \in P(\lambda)} (V(\lambda)_{\mu} \cap N)$. Using the fact that $X = \langle \{X_{\alpha_i}, c | i = 1, ..., l, c \in N \} \rangle$,

Lemma 5 and the commutation rule $Xx_r = x_r X$ we can see, as in [1], pp. 43 and 44, that $V(\lambda)_{\mu} \cap N = 0$ for all $\mu \neq \lambda$. Hence $N = V(\lambda)_{\lambda} = Kv_{\lambda}$.

Corollary. (i) $\operatorname{Irr}(\boldsymbol{u}_1) \subset \operatorname{Irr}(\boldsymbol{u}_2) \subset \dots$

(ii)
$$\operatorname{Irr}(U_K) = \bigcup_{r=1}^{\infty} \operatorname{Irr}(u_r).$$

Finally, we show how the irreducible U_K -module $V(\lambda)$ can be constructed as a tensor product of modules of the form $V(p^k\mu)$, $k \in \mathbb{Z}^+$, $\mu \in P_p$.

Lemma 6. Let $r \in N$ and $\lambda \in P_p$. Then $y_r V(p^r \lambda) = 0$ and $x_r V(p^r \lambda) = 0$.

Proof. Let $v_r = v_{p^r\lambda}$ in which case $V(p^r\lambda) = Kv_r \oplus Yv_r$. Since $y_r Y = Yy_r$ and y_r is generated by elements of the form $X_{-\alpha_{i,a}a}$, $1 \le i \le l$, $0 < a < p^r$, the assertion $y_r V(p^r\lambda) = 0$ follows if $X_{-\alpha_{i,a}}v_r = 0$ for this *i*, *a*. But using induction on *a*, it can easily be proved that

$$X_{eta, c}X_{-lpha_i, a}v_r = 0$$
 for all $eta\in A, c\in N, i\in\{1, \ldots, l\}, 0 < a < p^r.$

Then $X_{-\alpha_i,a}v_r \in V(p^r\lambda)^{\ker(\gamma)} \cap Yv_r = 0$, which proves the first claim.

According to (9) we may write $V(p^r\lambda) = Kv_r \oplus y_{r+1}v_r$. Since the elements $X_{-\alpha_i, p^j}$, $1 \le i \le l$, $0 \le j \le r$, generate y_{r+1} it is now clear that vectors

(13)
$$v_r, X_{-\beta_1, p^r} \dots X_{-\beta_s, p^r} v_r, \quad s \in \mathbb{N}, \beta_i \in \mathcal{A},$$

span $V(p^r \lambda)$. Hence

$$\mathbf{x}_r V(p^r \lambda) \subseteq \mathbf{u}_{r+1} \mathbf{x}_r v_r + \mathbf{u}_{r+1} \mathbf{y}_r \mathbf{u}_{r+1} v_r = 0,$$

because $x_r v_r = 0$ and $y_r V(p^r \lambda) = 0$.

Now U_K has a natural Hopf algebra structure arising from the Hopf algebra ttructure of the universal enveloping algebra $U(\mathfrak{g})$. Let Δ denote the diagonalizasion map and set $\Delta_1 = \Delta$, $\Delta_n = (\Delta \otimes I^{n-1}) \Delta_{n-1}$, $n \ge 2$. This is determined explicitly by

$$\Delta_{n-1}(X_{\alpha,a}) = \sum_{a_1+\ldots+a_n=a} X_{\alpha,a_1} \otimes \ldots \otimes X_{\alpha,a_n}$$
$$\Delta_{n-1}(H_{i,b}) = \sum_{b_1+\ldots+b_n=b} H_{i,b_1} \otimes \ldots \otimes H_{i,b_n}$$

for all $n \ge 2$, $\alpha \in \Phi$, $1 \le i \le l$, $a, b \in \mathbb{Z}^+$. If V_1, \ldots, V_n are left U_K -modules then so is $V_1 \otimes \ldots \otimes V_n$, the action being given by Δ_{n-1} .

Proposition 6. Write $\lambda \in P^+$ in the form $\lambda = \lambda_0 + p\lambda_1 + \ldots + p^k\lambda_k$ where $\lambda_i \in P_p$. Then

$$V(\lambda) \cong_{U_{\mathbf{K}}} V(\lambda_0) \otimes V(p\lambda_1) \otimes \ldots \otimes V(p^k \lambda_k).$$

Proof. Let $M = V(\lambda_0) \otimes ... \otimes V(p^k \lambda_k)$ and $v_i = v_{p^i \lambda_i}$, i = 0, ..., k. The assertion follows if we can show

 $M^{\ker(\gamma_{k+1})} = K(v_0 \otimes \dots \otimes v_k),$ $M = \mathbf{u}_{k+1}(v_0 \otimes \dots \otimes v_k)$ $K(v_0 \otimes \dots \otimes v_k) \cong_{h_{k+1}} K v_{\lambda}.$

and

Let $m = \sum_{i=1}^{n} w_i \otimes x_i \in M^{\ker(\gamma_{k+1})}$ where each $w_i \in V(\lambda_0)$ and $x_i \in V(p\lambda_1) \otimes ... \otimes V(p^k \lambda_k)$. We may assume that the vectors $x_1, ..., x_n$ are linearly independent. If $\alpha \in \Phi^+$ Lemma 6 implies

$$0 = X_{\alpha,1}m = \sum_{i=1}^n X_{\alpha,1}w_i \otimes x_i.$$

The linear independence of the vectors x_i then forces $X_{\alpha,1}w_i=0$ for all i=1, ..., n. Thus each $w_i \in V(\lambda_0)^{\ker(\gamma_1)} = Kv_0$ and we get

$$M^{\ker(\gamma_{k+1})} \subseteq Kv_0 \otimes (V(p\lambda_1) \otimes \ldots \otimes V(p^k\lambda_k))^{\ker(\gamma_{k+1})}.$$

Replacing $X_{\alpha,1}$ by $X_{\alpha,n}$ in the above argument gives

$$(V(p\lambda_1)\otimes\ldots\otimes V(p^k\lambda_k))^{\ker(\gamma_{k+1})}\subseteq Kv_1\otimes (V(p^2\lambda_2)\otimes\ldots\otimes V(p^k\lambda_k))^{\ker(\gamma_{k+1})}.$$

Continuing this process leads to $M^{\ker(\gamma_{k+1})} = K(v_0 \otimes ... \otimes v_k)$.

Let

$$N_{j} = \{1, X_{-\beta_{1}, p^{j}} \dots X_{-\beta_{s}, p^{j}} | s \in \mathbb{N}, \beta_{i} \in \mathcal{A}, i = 1, \dots, s\}$$

where j=0, ..., k. The set $\{x_0v_0 \otimes ... \otimes x_kv_k | x_j \in N_j, j=0, ..., k\}$ is seen to span M as a vector space (cf. (13)). But Lemmas 4 and 6 imply $(x_0 ... x_k)(v_0 \otimes ... \otimes v_k) = x_0v_0 \otimes ... \otimes x_kv_k$, hence $M = u_{k+1}(v_0 \otimes ... \otimes v_k)$.

Finally, it can easily be confirmed that

$$H_{i,b}(v_0 \otimes \ldots \otimes v_k) = \varphi_{\lambda}(H_{i,b})(v_0 \otimes \ldots \otimes v_k) \quad \text{for all} \quad 1 \leq i \leq l, \ b \in \mathbf{Z}^+.$$

Therefore $K(v_0 \otimes ... \otimes v_k) \cong_{h_{i+1}} K v_{\lambda}$ and the proof is complete.

5. Irreducible representations of the universal Chevalley group. Let $G = \langle x_{\alpha}(t) | \alpha \in \Phi, t \in K \rangle$ be the universal Chevalley group of type g over the field K ([4], p. 161). Let $K_{pr} \subset K$ ($r \in N$) be a finite field of order p^r and $G_r = \langle x_{\alpha}(t) | \alpha \in \Phi, t \in K_{pr} \rangle$ the corresponding finite subgroup of G. The irreducible rational G-modules are known to correspond one-to-one to irreducible U_K -modules and similarly for irreducible G_r - and u_r -modules. Thus

$$\operatorname{Irr} (G) = \operatorname{Irr} (U_K) = \{ [V(\lambda)] | \lambda \in P^+ \},$$

$$\operatorname{Irr} (G_r) = \operatorname{Irr} (u_r) = \{ [V(\lambda)] | \lambda \in P_{r^r} \}$$

and the groups G, G_r act on the modules $V(\lambda) = W(\lambda)'$ according to the rule

(14)
$$x_{\alpha}(t)v = \sum_{n \ge 0} t^n X_{\alpha,n}v \quad \text{for all} \quad \alpha \in \Phi, \ t \in K, \ v \in V(\lambda).$$

This shows how the irreducible rational G-modules and irreducible G_r -modules over K can all be obtained starting from one-dimensional H-modules (resp. h_r -modules) lifting them up to U_K -modules (resp. u_r -modules) as in § 2 and then transforming them into G-modules (resp. G_r -modules) using (14).

Let $\lambda \in P_p$ and $k \in \mathbb{Z}^+$. Then $V(p^k \lambda) \cong_G V(\lambda)^{(p^k)}$ where $V(\lambda)^{(p^k)} = V(\lambda)$ with G-action given by $x_{\alpha}(t)v = x_{\alpha}(t^{p^k})v$, $\alpha \in \Phi$, $t \in K$, $v \in V(\lambda)$ ([11], p. 217). If the tensor product of U_k -modules in Proposition 6 is viewed as a G-module it becomes an ordinary tensor product of G-modules $V(\lambda_0), ..., V(p^k \lambda_k)$. Hence as a corollary to Proposition 6 one obtains a new proof of Steinberg's tensor product theorem:

Proposition 7. Let $\lambda = \lambda_0 + p\lambda_1 + \ldots + p^k \lambda_k$ where $\lambda_i \in P_p$. Then $V(\lambda) \cong_G V(\lambda_0) \otimes V(\lambda_1)^{(p)} \otimes \ldots \otimes V(\lambda_k)^{(p^k)}$.

References

- BOREL, A.: Properties and linear representations of Chevalley groups. Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer-Verlag, Berlin—Heidelberg—New York, 1970.
- [2] CLINE, E., B. PARSHALL, and L. SCOTT: Cohomology, hyperalgebras and representations. To appear.
- [3] CURTIS, C. W., and I. REINER: Representation theory of finite groups and associative algebras. -Interscience Publishers, New York—London, 1962.
- [4] HUMPHREYS, J. E.: Introduction to Lie algebras and representation theory. Springer-Verlag, New York—Heidelberg—Berlin, 1972.
- [5] HUMPHREYS, J. E.: Ordinary and modular representations of Chevalley groups. Lecture Notes in Mathematics 528, Springer-Verlag, Berlin—Heidelberg—New York, 1976.
- [6] HUMPHREYS, J. E.: On the hyperalgebra of a semisimple algebraic group. Contributions to Algebra, A collection of papers dedicated to Ellis Kolchin, edited by H. Bass, P. J. Cassidy, and J. Kovacic, Academic Press, New York—San Francisco—London, 1977, 203—210.
- [7] JACOBSON, N.: Lie algebras. Interscience Publishers, New York-London, 1962.
- [8] JANTZEN, J. C.: Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen. - Bonn. Math. Schr. 67, 1973, 1—124.
- [9] NEUVONEN, T.: A criterion for complete reducibility of restricted Lie modules. Arch. Math. (Basel) 28, 1977, 149—156.
- [10] NEUVONEN, T.: A complete reducibility criterion with an application to representations of semisimple groups. - J. Algebra (to appear).
- [11] STEINBERG, R.: Lectures on Chevalley groups. Yale University, 1967.
- [12] SWEEDLER, M. E.: Hopf algebras. W. A. Benjamin, Inc., New York, 1969.
- [13] WALLACH, N.: Induced representations of Lie algebras and a theorem of Borel—Weil. Trans. Amer. Math. Soc. 136, 1969, 181—187.
- [14] WALLACH, N.: Induced representations of Lie algebras II. Proc. Amer. Math. Soc. 21, 1969, 161-166.

University of Turku Department of Mathematics SF-20500 Turku 50 Finland

Received 7 May 1979