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PICARD SETS OF ENTIRE AND MEROMORPHIC
FUNCTIONS
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1. Introduction

Suppose that ,S is a subset of the complex plane C. We call ,S a Picard set for
entire functions if every transcendental entire function /(z) assumes every complex

value with at most one exception, depending onf(z), infinitely often in C\,S. Simi-
larly ,S is a Picard set for meromorphic functions if every transcendental meromorphic
function assumes every complex value infinitely often, with at most two exceptions,
in C\,S. As we shall see below, Picard sets for meromorphic functions are much
rarer than Picard sets for entire functions. The classical theorem of Picard asserts

that any finite set of points is a Picard set for entire or meromorphic functions.
Many other authors have subsequently investigated Picard sets - we refer to [6]
for details. The starting point of this investigation is the following theorem of Baker
and Liverpool ([1], Theorem 2).

Theorem A. Suppose that q>l is gioen. Then there is a constant X:K(q)
such that, for euery complex sequence {a,} satisfying

(1.1)

and el)ery

(r.2)

the set

(1.3)

I o.*'l
l;l=q>1) n-l'2'3)"')

positiue sequence {e,} satisfying

logl > K0qe la'l)'.
Qn @) 

n= Ho sa!'

,S- U
n:1

D,, where Dn - {z: lz-anl = A,}

is a Picard set for entire functions.

The value given by Baker and I-tiverpool for K is  (q+Dl@-l), and they
show by an example that K-:ll2 is, in general, not sufficient. Here we shall show
that any K>ll2 is sufficient. This result is then more or less best possible with
the critical case K:ll2 left undecided. To be precise we shall show
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Theorem l. Suppose that {a,} is a complex sequence and {q,\ apositiue sequence

satisfying (l.l) and (1.2)for some K>112. Then S, defined by (1.3), is a Picard set

for entire functions.

No such similar result holds
lows, as has been pointed out by
function

F(r)

in general for meromorphic functions. This fol-
Toppila (141, p. l0), from a consideration of the

;( z-an )- jlrl z - a"- ö")

for suitable posi:ive sequences {a,) and {ä,}. We may choose the sequenc" {o"}
to satisfy (1.1) and, given any sequence {q,h0 we may choose the ä,'s so small
that outside the discs Dn:{z: lz-a,l<q,} we have

lF(r)l = K

for some absolute constant K. Thus ,S:UlrD, is not a Picard set for mero-
morphic functions. However, such functions F(z) do not have any Nevanlinna
deficient values. This turns out to play a critical role and our arguments can be

adapted, with some loss of precision, to deal with the case of meromorphic functions
having a deficient value. We prefer to prove Theorem I first, to illustrate the method,
and then discuss the generalizations in Sections 3 and 4.

2. Proof of Theorem 1

In what follows we assume acquaintance with the standard terminology of the

Nevanlinna theory, as given in [3], and we use it without further introduction. Sup-

pose that S, defined by (1.3), is not a Picard set so that there is a transcendental

entire functionf(z) such that for some a,b<C, a*b, all the a-points and å-points
of f(z), apart, perhaps, from a finite number, lie in ,S. We assume, without loss of
generality, that a:0, b:1. An elementary argument involving Schottky's Theorem
(see e.g. fll, p. 232) shows that, if An denotes the annulus {z: la,lqlt}<121=la*lq2ts},
n:1,2,3, ... , then lf(z)l** ?.s z+a> zQA,, uniformly with respect to 0:ar9 z.

Thus/(z) has no finite deficient values and so 0 and I are assumed inflnitely often.

Since the variations of argf(z) and arg (f(r)-l) as we describe the circles lzl:
lqnlq'l', n:1,2,3, ... are equal, we see from the Argument Principle that the num-
ber of zeros and l-points in D, must be the same, for all large n. We denote this
number by v,. There are two cases to consider.

lim;yp rn : Iy' = oo.

1

--K

Case l.
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In this case we have N>l and r,,<N for all large nwith vn:iy' infinitely
often. If k€tr[ and r satisfles qo-'lorl<t=qklatl then the number of a,'s not
exceeding , is at most ft. Hence, as ,*-

n(t,0) = Nk*O(l)

= (r +o1r1l,'-1991.
Logq

A similar estimate is true for n(t,1) and so we deduce that

tr/(r, o) = (r +o1r;)lr lloe 
r)'z 

.t" 2logq,

M(r, r) = (l+o(t)).rr ## (r *-;.

It now follows from Nevanlinna's second fundamental theorem ([3], p. 43), or
indeed, from more elementary considerations, that

T(r,f): O(logr)2 (r *-).
Hence, by a known result on functions of slow growth ([5]),

and so, in particular 
logM(r'f) - N(r' 0) (r *-;'

(1.3) los M(r,f)= (t +o1t;).rr ##(r *-).

We now consider large n with v,:i'r and denote the zeros of f in L, by
(r, ..., (1y. We define

g(z):f(z) rt e-e)-'.

on the circte lz-anl:l we have the J;:", estimate

lg(')l = #='^p{(r *,r'»r$H#A} t, -nJ-'.
Hence, for lz-a^l<l we obtain

I f e)t = (rt,t, - e r) ( r - sJ -, 
"*o {1, 

+ o ( r )) 
- 
i:-fiH}

If we now choose z(D, so that f(z):l we obtain

(t+o1r)*W*r,"r[*) =o
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Since we may assume n sufficiently large so that pn<ll2 we obtain, flnally, on

dividing by NtU,
I , (log la,l),roc; (r+o(r)) fr#,

which contradicts (1.2) with K=112.

Case II. lim*sllp rn: -.

This is the more difficult case since here the growth of f(z) may not be slow and
so the reasoning is somewhat different from that above. We define

(2.1) Pn: maxYk (k < n)

and consider again two sub-cases.

Case lla. liminf& :0.

We pass to a subsequence o of N such that p,:o(vn) (n**, n(o), and we
consider only such values of n. As before, for qk-'larl<t<qklarl, the number
of ar's not exceeding I is at most k. We set r,:qu2lanl and then, for lll<r, we have

n(t,o)={i".l,I?.r}rärrr,;,j!!.=r;,=rn:q,tzta.l

Since k:(l+o(l))logtllogq (t**1 we find, on integrating and making some

obvious estimates that

(2.2) N(r,, o) = (t +o1t;)p ,ffi*r,toe lof a,

= (r + o(r)) {r,W *br^, nl.

But, as we have shown previously, f(r)** uniformlyin 0 as s:v,siq-a. Hence

T(r,,f): N(rn,o)+o(1) (n **).
Hence, by Jensen's formula ([3], Theorem 1.6) we have, for v:lzl<la,l*7,

tog M (r, f) = ##{N(.,, o) +o(l)}

= ffi(r +o1r) {"W * i,^roe ql,

from Q.2). We now argue in the analogous manner to Case I using the above inequal-
ity instead of (1.3). We obtain

,. r"* [#h) .#(r +o1r) {"W ** u^tog a} = s
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which yields, for n€o

rogl = ffi(r +o1r) L:W **^' nI.

Since pnfvn-0 as n *- n(o we see that in this case (1.2) is contradictedfor any

K=0.

Case llb. liminf & = 0.
n*_ ln

Since we are assuming, in any case, that limsup,*- Ir:- we consider in
this case a subsequence o, of N such that pn<'tn @€or). If

fiminf&=l=0 (a>1)
n+@ yn a

then, for all n sufficiently large, rn,.l<o:r), and, for all k(N, rn+k<dkrn. The

number fr is at our disposal, to be chosen later. With rn:quzla,l and Rn:q-'l'lo,*rl
weestimateN(r,0) for ro*o=r<Rn*p noting, asbefore, tbat T(r,f):N(/,0)+O(l)
for such values of r. As in Case IIa we have

n(t,o)= (r+ofr)r,ffi for ltl= la,l-q,.

For larf -Qn<t=r, where rr*o--t=Rn**, we have

n(t,0) = n(la"l-qn, 0)*v,*vr+r* ...*!n+k

= n (ia,l - 0,, O) * ;!1 oo u,.

Hence, fot rr*r<r<Ro*u,

(2.3) N(r,0)= (1+o(t))p,ffi**okv,log(UiU),
for some suitable constant K.

We fix an roin lrn+*, Rn+*l for which (2.3) holds and define s by

lo,lq"=ro<lanlq'+|.
Clearly k<s and so we obtain

N(rg,0)=(l+o(l))p,W+Kexp(s1oga)v,(s*l)logq.

We now reyerse this process. For flxed nQo, we choose ,:[(log logla,l)l(2log a)]

and note that s*- as n +6. We then choose k:k(s) so that k=s and such

that there is an ro satisfying simultaneously

fn+tc5 16 = Åra1,

loolq" = ro= laolq"*'.
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We remark that such a choice of ro is always possible since Ä,*p- r:ern+k for all
n and k. Thus

T (ro' f) : I/(ro' /) +O(1)

= (t-to(1)) t',W*Krv,(1og l',1)

-(l+o(1))1r,W._\L_ru\L))yn 
2logq''

since Nn<dpn for all sufficiently large n, and by our choice of s.

Hence, for r -lzl =la,l + l,

ros M(ro,f)=#r?,,f)

= ti:(r+o(1))t-1§@ .
qt_ 1 \^ t"\-/lrn 2LOgq '

We now proceed precisely as in the previous two cases to obtain

v' rog (*) . #1 r' *o( L)) p'WE o'

for all sufficiently large n in 61. Since §-+oo as n-->@ we obtain

,orna=(t+o(l»;W

But pn=vn for n(or and so we arrive at a contradiction with (1.2) unless K=112.
Thus Theorem 1 is proved in all cases.

3. Meromorphic functions with ä (4, /) > 0

Results similar to Theorem l, but less precise, remain true for meromorphic
functions with a deficient value. We suppose, without loss of generality that
ä(-,/)>0 and discuss some properties of meromorphic functions which are ger-

mane to our context. As before we assume that the sequence {a,} satisfies (1.1) and

that the set 
^S 

is defined by (1.3). We deflne, for 0<ä<1,

M(ö)- {.f (r): f meromorphic in C, ä(-,/) = ä}

and prove the following theorem.
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Theorem 2. Suppose that q and 6 are giuen with Q>1, O<.$=1. Then, if
the sequence {a,\ satisfies (l.l), there exists a constant X:K(q) such that, if

losn! = K6-'be|(log la,l)'z

then S defined by (1.3) is a Picard set for M(6).

The proof again falls into two cases giving different values for the constant

K(q) and a different dependence on ä. The question of how far these results are

from being best possible is discussed in Section 5. To prove Theorem 2 we argue,

as before, by contradiction and suppose that there is a transcendental meromorphic

function f(z)eM(ö) all of whose a,b,c-points apart from finitely many, lie in
S:ULrD,. Here a, b and c are three distinct values in the extended complex

plane. Without loss of generality we may take a:0, å:1, but c is not at our dis-

posal since we have already made the assumption that ö(*,f)>ä. Thus c may

equal -, or may not and we consider these two cases separately.

Case I. c:-,
In this case we have

Theorem 3. Suppose that the sequence {a,\ satisfies (l'l) and that S is defi.ned

by (1.3). Suppose,further, that f(z)eM(ö) and that all the O, l, @ points of f(z),
apart from finitely many, lie in S. Then there ts a K:K(q) such that, if

log 1 = Kö-2 (logla,l)z (n = no),
Qn

then f(z) is rational.

Case IL cl-.
In this case we have

Theorem 4. Suppose that the sequence {a,\ satisfies (l.l) and that S is defined

by (1.3). Suppose, further, that f(z)(M(ö) and that all the 0,1,c-points of f(z),
apart from finitely many, lie in S, where c * *. Then there is a K: K(q) such that, if

33

t"rå > Kö-zlog IOotlo,l)' (n = no)

then f(r) is rational.

Clearly Theorem2 is an immediate
proofs are, in both cases, modifications
complications arise. We consider firstly

Case I. e: a.

consequence of Theorems 3 and 4. The

of the proof of Theorem 1, but various
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Suppose that the transcendental meromorphic function/(z) satisfies the hypoth-
eses of Theorem3. If min, lf?e'u)l were bounded for some r satisfying la,lq"=
r=lanlql-' äs n+@t where e >0 is arbitrary, then it would follow, by the same

application of Schottky's Theorem as in Section2, that maxrlf(rei0)l would be

bounded for those values of r too. But this contradicts the fact that - is a deficient
value of f(z), and so f(reiq) - * uniformly with respect to 6 as r * - in these annuli.
Since/(z) and f(z)-l have the same number of poles in the annuli la,lquz<lzl<
loo*rlqtt' (in fact they are all in the disc D, for all sufficiently large n) an app ica-
tion of the Argument Principle again shows us that f(z) has the same number of
0's and l's in D, for all n=no, say. As before we denote this number by v, and note
that, since - is the only deficient value of f(z), we have vn>l at least for a sequence
of n approaching infinity.

Lel pn, n>1, be the number of poles of f(z) in D,. We define

We see that E must
ciently large r,

E - {n€I{: Yn > 0, pn < (1 - ö12)rn}.

contain infinitely many elements since, otherwise, for all suffi-

N(r, *, f) = (r + o(1))(1 - ö12) N(r, 0, f).
Applying this inequality at the values r:la,lqLlz, n:1,2, ..., where

N(r, 0, f) : T (r, f) + O (1),
we would obtain that

-. ly'(r. -)limsup:7f,-l-,>1-ö12,

which contradicts the fact that the deficiency of f(z) is at least ö.

We assume that 0( Une z Dn and introduce the notation

fi(t,0): number of zeros of f (z) in {lzl < t\ a l)rD,

fr1r,0) : !**0,
The quantities fi(t,-), fi(t,l), frG,-), fr(t,1) are deflned similarly. Then, from
the definition of E,

1{(r, 0) - ft@,0) = (1 -ö:2)-tlN(r, -) - ff(r, -)l
= (t +o1t;)(1-ä)(l -ö12)-LT(r,f) (r *-).

If weapplythisinequalitytovaluesrforwhich T(r,f):7t711',0)+O(1), inpartic-
ular to values r lying in annuli of the above type where f(reie)** as r*- uni-
formly with respect to 0 we obtain

fr(r,O) = tr/(r, 0)-(1+o(1))(1 -ä)(1 -ö12)-rr(r,f)
= ( | - o(1)) ö (z- ä) -' r (r, f).
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Similarly we have
ff1r, t; > (l +o(1))ä (2-ö)-LT(r,f).

In particular, since 2-q-tlz =.q for all q>1, the value ,:12-q-tl211a,l is a
permissible value of r.

However loglf(z)l<T(r,f)+O(l) for some z with lzl:r:(2-q-'t')lanl.
Hence, by Schottky's Theorem there is a constant ,E:A(q) such that

toglf(z)l = AT(r,f) = Aö-L(z-ö),&(r, 0)

for lzl:r:(2-q-'t')lo*1. The same inequality holds, possibly with a different
choice of the constant A on the circle lr-a*l:(l-q-tlz11a,l by applying Schottky's

theorem again and noting that the circles 1zl:(2-q-rt\la,l and lz-a,l:
(l-q-rt\la,l have a point in common.

We remark that the dependence of ,4 on 4 is relatively complicated and we

have no reason to believe that, in the applications which follow, the estimates for
A(q) are best possible. For this reason we concern ourselves, in what follows, only
with the dependence on ä and we will denote by K:K(q) a generic constant, not
necessarily the same ateach occurrence.

As before, for n(E we define pt:max {ve: k=n k(.E}. For fixed z€E we

let 2r,22,...,2,1 (N:v,) and (r, (r,...,(* (M:p,) be the zeros and poles of/(z)
in D, and consider

(3.r) e(z) :f (z) ff e-r"o) rt e-,,)-.
k:t j:L

From the previous discussion it follows that, for lz-a,l:11-q-L|\la,l,

(3.2) log lg(z)t < ä-1(2-ä) Afr@,0)+tog|[,e-erl rt,1r- ri)-'1,

where, as before r:(2-q-rtz)la,l. Since M<.(l-ö12)N, the contribution from the

last term above is negative, provided n is large enough.

We now have to consider the same three cases, Case I, Case IIa and Case IIb
as in Section2, depending on the relative sizes of p,and v,. However in all three

cases we obtain, as before, with r:(2- q-112)la,l,

fr?,0) = K(q)v,(1og lo,)'.

35

Thus, for lr-a,l=(l-q-rtz11anl we have, combining (3.1), (3.2) and (3.3),

(3.3)

(3.s)

(3.4) los lf @l

We can argue as

the l-points of f(z) in
then for lz - anll (1 -

in place of f(z). If @1, @2,..., @N are

same number N:rn of such points

IN M

= rogl [ @-z) ff
I J:l k:L

above with f(r) - l
Dn - there are the
q-'t\lo,l we have

(z - (o)-'l* Kö-1 vn (log lo,l)'

IN M 
I

= log I II @-@) II Q-h)-'l+ Kö-1 v,(log lo,,t)'- lFr " x:t I

loe l/( z) - rl
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At all points on the circle {lz-a,l:21,} either lf(z)l=ll2 or

lfG)-ll = tlZ, whereas lr-ril € 3Q,, lr-r) s 3Q,, lr-&l = 5,.

Nowpickanysuchpointzanduseestimate(3.4)if lf@)l=tlZ or(3.5)if lf(z)-ll>
ll2 to obtain

-log 2 < N log 3 + (N - M) log s, -t K (q)ä -1 v, (log la, l)2.

But N-M:to-pn>ötnf2 since n€E Thus

,,1^r!= v,log 3 f Kä-1v,(log la,l)2.

Hence, if ,E'is not a Picard set,

log 1 = K@) ö-z (Log la,l)z,
Qo

and so Theorem 3 is proved.

Case II. c* -.
The method of proof in this case is the same as in Case I, but various technical

complications arise.

Lemma L Suppose that f(z) safisrtes the hypotheses of Theorent 4. Then, for
any Q with l-Q=q'l',f(rr")*- uniformly with respect to 0 as r+@ through
the set of annuli U|=r{Qla"l=r=Q-'la,*r.l}.

To avoid breaking in to the argument we postpone the proof of Lemma I to
Section 4. Its use in the proof of Theorem 4 replaces the standard applications
of Schottky's Theorem for an annulus which we have made in all the previous
arguments.

We now let v, denote the number of zeros of f(z)in Dnand letp, denote the
number of poles of f(z) in the annulus {Q-tla,l=lzl=Qla,l} for some fixed Q,
l<Q<qtlz. As before we define

g: {n(N: v, = 0, p, = (l-ö12)v,), ö : ö(*,f),

and note that E contains inflnitely many elements. We define fi(t,0) and fr1r, 0; as

before.
Suppose now that k{E and consider the annulus {Q-,lool=lzl=2laol}. The

contribution of a zero or pole in this annulus to N(R,0) or N(R, -) will differ
from log+ @llaoD by at most log Q. Hence if ao and 81, are the contributions to
N(i?,0) and N(R, -) from the zeros and poles in this annulus then, since k(-8,

d,k-vo log Q = (1 - ö12)-'(fr,* pr,log Q).

ar, f (1 - ö 12)-' (§o*2pxlog Q).

Thus
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Hence, summing over all such k(E we obtain, with R:q'l'la,l,
N(R,0)-f(-R,0) = (t +o1t)1t -öl2)-ttN(R, *)+2n(elo,l, -)toeel.

We estimate n(Qla,l, -) by the obvious inequallty

n(Qla),-) los # =')',,f,"' 
,U,q* =ir(R, -)

and obtain

N(Ä, 0)-,&(.R, 0) = (t +o(r)xr -ö12)-1N(R, -){1+2 tosQtog(q,t,lQ)\

= (t 1o(1))(1-ä)(1 -612)-1T(R, -){1+2 togQtos(qu2IQ)}.

The quantity Q is still at our disposal and we now choose

e : min (e,tz, (t + ö I 4)-r qrtz) < qttz

to obtain

But R:lo,lq't' and hence, by Lemmal, lf(R,0):7(rR,/)*O(1) (R*-). We
finally obtain

= (r +o(r))f T(R,f) (R:q1tzla,l).

This estimate is, in fact, valid for R=-r<Q-'lan*rl.
Once again we deflne pn:max {v1,: k=n, k€E} and consider the same three

separate cases as in Section 2, depending on the relative sizes of pn and vn. For all
such n we obtain, as before,

T (r, f) = K(q) ö-t fr(r, 0) = K(q)ä-r v,(l ogla,l)'

for qllzla,l=r=q'lnlonl. We remark that this is exactly the same inequality as (3.3),
the common idea being to obtain an inequality like (3.6) which expresses 7(Å,/)
in terms of ff(,R,0).

We now let (r, ..., (* (M:p,) be the poles of /(z) in the annulus {Q-tla,l<
lzl=Qla,l\ with the above choice of Q and set

h(z):f(z) ff Q-*',.k:r
If we now apply the Poisson-Jensen formula ([3], Theorem 1.1) to h(z), for lzl=.
R:q'l'lanl, and ignore the contribution from the zeros we obtain

tos lh (z)l = m (R, h) + Z* r"tl##|,

37

ff(R, o) = r(R,1 
{r -

ö l4)(1-
)t, +o(1)),



38 J. M. AN»EnsoN and J. CruNlr

where )* denotes that the sum is taken over all poles (1, of f(z) except those in the

annulus {Q-'la,l<lzl=Qla"l}. lf lz-a,l:l then it is easily seen that, for our

choice of 2:6in (eltz,(l*öl+1-tnttzl we have

,lRr-ul )t"elffil = r(a)togf
for each ( considered in Z*.

Hence, fot lz-a,l=|,
roe lh (z)l = K(q) {r,^, ,, * M los la,l* n (R, -) l"c +} .

But n (R, *)=K(q)T(q'tnla,l,f) and so, for lz-aol<|,

to g lh (z)l = K (q) bg | 1r @' t n 
lo,l, f) + p,log la, l)

)< Kä-llosf v,(log la,l)'z(l+o(l)) (n *-;.

The proof now follows in exactly the same manner as before. We define

g(z) : f(z) ff k-h> fr @- r,)-' : h(z) fi P-,i)-',k=t i:r i:r

where zr, ..., zy (N:v,) are the zeros of f(z) in Dn. Since

lN Il"cl!r1z- z)-'l= v,log2 for lz-a,l: l,

we obtain from the preceding estimate that, for lz-anl<|,

loe le(z)l = K(q)6-t logf v,(1og lr,l)'(1 +o(1)).

Hence, for lz-anl=l

toelfh)l= Kö-Llogf v,(log trÅ)'+ åtoglz-z,l- å"tV-Cul.
But,

M
IIrG-h): (z-ao)M *lower powers of (z-a).

Hence for some z, ottlz-anl:qr we have

l-ff,e,-ertl= nr
and so

log l/(z)l = K(q)ö-Llogf v,(log la,l)za(N-M)losq,.



Picard sets of entire and meromorphic functions

and so

We now show that f(z)t- as z+@ through the set l)7-r{r: lzl:qlt2la,l\
though it will be clear from the proof that we could replace this set by A(Q,l).
As before K denotes a generic constant depending on Q, and so on qr, and not nec-

essarily the same at each occurrence. We now select three numbers gr, gz,4s satisfy-
ing the following conditions

39

We now repeat the above argument with f(z)- I instead of f(z). Note that
the poles of f(z) and f(z)- I are the same and hence we obtain, for the same point zo,

tos 
I f (z r) - tl = K(q) ö -' b, +v, 

(log la, l)'z t (N - M) tos p,

since, by the Argument Principle and Lemma l,f(z)has the same number of zeros

and l-points in D,for all large n. As before, since n€E, wehave N-M:ro-pn>
övof2. Bul, either lf(zr)l=ll2 or lfQ)-ll=tlZ or both and so we obtain

övn, I )
7^, n= K(q)ö-r logf v,(log lo,l),(l+o(l)).

This leads to estimate
-t)

los p,- K(q)ö-zlogf (los lc,D'

for all large n. Hence Theorem 4 is proved.

4. Proof of Lemma 1

We define, for l-Q=eLlz, the set A(Q,n)by

I , l= t+Kl+_,Ilf(r)l: r 'tli

tfe)l =,0 : (1 +K l+-,1)-'

A(Q, n): 
,90 {Qlo"l= lrl= Q-' lr,*rl}.

If/(z) satisfies the hypotheses of Theorem 4 then we show first that there is an integer

nsand a constant co>O such that lf(z)l>co in A(Q,n). Since ä(-,/)=0 there

are, for all large r, points on the circle lzl: r where I f(z)l is large. Since f(z) +0, l, c

in A(Q,no) the function F(r):(Uf@)-l)(llc-l)-t is analytic in these annuli
and omits the values 0 and 1. The standard application of Schottky's Theorem
([], p. 232) as before shows that there is a constant K(Q) such that lF(z)l<K in
A(Q,n).For such z
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a\ l<qr=qtlz i:1,2,3,
b) (qr-l) is very small,
c) (qr- l) is very small, but very large compared to (qr-l),
d) 4, is large subject to the conditions et*242<l*q'tn,2qr<qr*|.

We do not specify qr, q, and 4, though it will be clear in what follows how this is
to be done.

Let us pick any point, zo, say, on {lzl:qu2la,l}. The circle {lz-zol:
(qr-l)qrtzla.,l) is cut by the annulus {qr'q't'lo,l=lzl=qrqrt2la,l} into two pieces.

A point z1 is chosen, in a manner to be specified later, lying on that arc,41 of the

circle which lies in the annulus in the counter-clockwise direction along {lzl :qalzb,l\
fromzo. We now consider the arcs of {lz-zl:(qz-l)q't'lo,l} cut offby the same

annulus and choose a point z, on the similar arc. Continuing in this way right round
the narrow annulus we obtain a sequence {ro, ,r, Zz, ..., z,} of points, where d.:d((t)
such that

e) {lzl: qltzla,l} 
= 

Ö {lr- rol = Ol4)(qs-t)qtnla,l\
k:0

f) {ql'q'/'la*l= lzl= qrq't'la,l) 
= 

Ö {lr-rol= 2(qr-l)q'nlo,l\
k:0

e {qrtn la"l = lzl = qyn lo,l).

The condition f) can be fulfilled since g, and q, are related by d).
In what follows, T(r,f, O, N(r,f, () etc. will refer to the Nevanlinna functions

with the origin replaced by the point ( so that, for example,

m(r,f, O- a2n

We suppose that lf(zo\l<cr, where lzol:qllzla,l and r is large and show that
this leads to a contradiction, so that f(z)-* as z:qluzla,l eie*-. From Jensen's

theorem we have

* ((qr- l) q' t' la nl, f , z ) + N ((q" - l) quz la *1, f , z )

j" ,or* lf « i reio)l do.

- log lf (ro)l+*(rrr- t) Q,tzlo,l,i, ,o),

and hence

m((ar-l)q't'la,l,f,z) = log+ l*ro* ct: cz s&v,
Cg

since l/(z)l >co everywhere in the range concerned.
Now the arcA, discussed above has angular measure exceeding B:B(q) say,

so there is some point z, on l, such that

tfk,)t=T,,.
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We now repeat the argument with z, in place of zo, to frnd z, and continue in this

manner. Thus we have constructed a sequence (zs,zr,...,zo) of points such that

lf Q)l = B : B(co, c1, q) k :0,1, ...,d.

Let (r,(r,...,(, be the poles of/(z) lying in the annulus 1n-tqrt2la,l<lzl=
qrq't'la,l) and define

g(z):f(z) t'I Q-h),

so that g(z) is analytic and non-zer" ,, ,n";rrulus. Note that L:L(n). Applying
the Poisson integral representationfor g(z) in the disc {lr-rol=Ql2)(q"-t)q't'lo,l}
we find that, for lz-zol=Ql$@r-l)q't'lo,l,
(4.r)

rog 
I 
g (z) | = 3 

{m l* rr, - t) q' t' lo,l, 1,, o) * * (i rr, - r) q' t'la,l, ti A - e rl,, r)} .

But, since/(z) has no zeros in the discs under consideration,

*(|fr,-t)q't'lo,l,f, ,o) = *(i,n,- t)q't'la,l, 
+, 

,r)+bglf (z*)l

= los. 
å*logB.

Hence, from (4.1),

rr I
log 

I 
g (z) | = 3 

[log* po, + log B * L log (2qrq' t' lo,DJ : K (q) L log la,l,

for lz-zol<O[)@r-l)q't'la,l. Thus, from e) above, we obtain

(4.2) log lg(z)l = K(q)Llosla,l (lzl: quzla,l)

and therefore, with r:q'l'lanl,
lL\

m(r,f)= m(r, g)*mlr,il Q-h)-').

We obtain from (4.2) and a straightforward application of Jensen's theorem that

m(r,f) = K(q)Llogla,l (r : qrtzlr,D.

In particular, since ä(-,/)>0 we obtain

T(r,I) < Kö-rLlogr (r : q'/'la,l),

and since we are assuming thatf(z) is transcendental we conclude lhsl L:L(n)*-
as n+@. It is from this that our contradiction follows. From f) it follows that
there is some /ro, O=ko<a, such that the disc {lz-zool<2(qr-l)q'l'la,l} con-
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tains at least Lla poles of f(z). By
we obtain, with A- 2(qu- 1) Qsta@Å,

m(R, f, roo)+If(l?, f, zr,

an

o):

application of Jensen's theorem

*(^,i, ,o,) *,o* lf ko)1.

as before

Hence

where Ar:

lw-

Since such a

we see that

f +-ros B _ 
WL-tosB,/,t(

there must be some point w satisfying

for which loslfr;l = Y L-log,B.

ular lie in the annulus {q't'la,l=lzl=g-tte@,*rl]1

co = l,f(ar)l = Bexp (-'trJ 4,
which is a contradiction if n and hence Z is large enough. Thus the hypothesis

lf(z)l=c, is untenable for large z and so lf(z)l** as z+@ (lzl:qu2la,l) as

required.

*(^,+,,r,)= L

2(qu- l) Qltzla,l. Thus

zol : 2(qu- 1) qut'lanl

point 14l must, in partic

5. Concluding remarks

We do not discuss Theorem I further since the matter is somewhat complicated
and the results depend on the particular choice of the multiplicities involved. The
difficulties evidently arise in our choice of the subsequences (o) in Case II and,
though our sequences are universal in the sense that they work in all cases, we do
not wish to imply (and do not believe) that they are optimal for every possible choice
of zeros of f(z).

The original version of this paper contained an example which we claimed
showed that K(q, ä) of Theorem2 behaved like O(ä-1) as ä*0*. However, we
are indebted to Sakari Toppila who has pointed out to us that our argument is
incorrect and that, for the functions we considered, K(q,ä) is independent of ä.
In addition Professor Toppila claims that, by using some of our above arguments
in conjunction with a lemma of his, he can show that K(q, ö) is independent of ä

in general. Moreover he has now dealt with the critical case of K:112 in Theorem I
by showing that K:ll2 is not permissible in that theorem.
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