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THE PLANAR SCHONFLIES THEOREM
FOR LIPSCHITZ MAPS

PEKKA TUKIA

Introduction

1. Let X and Y be metric spaces with metrics d and d’. Let f: X—~Y be an
embedding such that for some L=1

M d(x, y)IL = d'(f(x),f(»)) = Ld(x, y)

forall x, y€X. Then we say that fis a Lipschitz embedding, or, if we wish to emphasize
that f satisfies (1) with a particular number L, we say that fis an L-embedding. If f
is a homeomorphism, we say that f is a Lipschitz homeomorphism or, respectively,
an L-homeomorphism, L as in (1). If a map satisfies only the right side inequality of
(1), we say that fis L-Lipschitz.

We denote by I the closed interval [0, 1], by I* the interval [—1, 1] and by I?
the square J*XJ'. The boundary dI2 is denoted by S. The metric of R? is the usual
norm metric.

2. We will show that a Lipschitz embedding of S or I' into R? can always be
extended to a Lipschitz homeomorphism of R

Theorem A (the Schonflies theorem for Lipschitz maps). Every L-embedding
of the circle S into R® can be extended to a L’-homeomorphism of R®, which is
piecewise linear outside S and where L’ depends only on L.

Theorem B. Every L-embedding of I' into R* can be extended to a L’-homeo-
morphism of R?, which is piecewise linear outside I* and where L” depends only on L.

Theorem A should not be confused with the generalized Schéonflies theorem,
which assumes that the image is collared. In contrast to Theorem A (for a counter-
example see [6, 3.10]), the generalized Schénflies theorem is true in many categories
for every n; in particular, it is true in the Lipschitz category (Luukkainen—Viisili
[6, Theorem 7.7)).

Using the generalized Schonflies theorem for Lipschitz maps one could prove
a version of Theorem A by aid of Theorem B as follows: Let f: S—~R? be a Lip-
schitz embedding. Then, by Theorem B, f(S) is Lipschitz collared locally. It follows
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[6, Theorem 7.4] that f(S) has a global Lipschitz collar. Now, using the generalized
Schonflies theorem, we could extend f to /2 to obtain a Lipschitz embedding F of
I? into R2. However, it seems difficult to prove that F is an L’-embedding, where
L’ depends only on L. Therefore we give parallel proofs of Theorems A and B;
we give a detailed proof for Theorem A and then indicate the modifications needed .
for Theorem B.

3. Theorems A and B have the following corollary. Let JC R? be a rectifiable
Jordan curve or arc. Let d be the metric of J for which d(x, y) is the length of the
subarc of J with endpoints x and y (if there are two such arcs we let d(x, y) be the
length of the shorter arc). We say that J is a Lipschitz curve or arc if id: (J,d)—
(J, I ) is a Lipschitz homeomorphism. If id is an L-homeomorphism we say that
J is an L-curve or an L-arc.

Corollary. A subset J or R? is a Lipschitz curve or arc if and only if J is the
image of the circle (1/8)S or the interval (2/2)I', where J. is the length of J, under
a Lipschitz homeomorphism F of R%. In addition, if J is an L-curve or an L-arc, we
may assume that F is a K-homeomorphism, where K depends only on L.

One proves the corollary by constructing a homeomorphism (4/8)S—J or
(A/2)I*~J with arc length as the parameter, and then using Theorems A and B.

4. Our proof is based on Carleson’s method. This method was used in [3] to
construct a quasiconformal extension to the upper half-space of R* of a quasicon-
formal homeomorphism of R3. One can give an abstract definition of Carleson’s
method as follows. A similarity between metric spaces is a homeomorphism under
which distances are multiplied by a constant. Two maps f; and f; are similar if there
are similarities g and / such that f,=gf;h. Let g: X—~Y be a map between metric
spaces. If we make use of a sequence g,: X—7Y, n=0, of maps with lim,__ g,=g
such that there are covers A4,;, i€l,, of X with the property that the number of
similarity classes of the maps g,|4,;, n=0 and i€l,, isfinite, we say that Carleson’s
method is used.

The plan of our proof can be seen from Fig. 1. We consider a sequence S;C /3,
i=1, of square-form circles converging to S (in Fig. 1, S;=(1—-27%)S). Let R
be the ring with boundary S;uU S;,,;. We divide each R; into quadrilaterals and
obtain the left side of Fig. 1. Let f: S—R? be the given L-embedding. We use Car-
leson’s method, made possible by the compactness of the set of L-embeddings
g: I-R® with ||g(0) =1, to construct a sequence f;: S;—~R* of piecewise linear
embeddings such that fi(x;)—~f(x) whenever x;—x, x;€S;. In addition, we assume
that £;(S,) is inside £,(S)) if i>j and all are inside f(S) (cf. the right side of Fig. 1.
Finally, we assume (this is the crux of the matter) that the number of similarity
classes of fi|s, s a side of a quadrilateral in Fig. 1, is finite. Now we have an
embedding fufiufauU...: SUSUS,U...~R2% Next, we extend this embedding to
all sides of the quadrilaterals in Fig. 1, i.e., on the “crossbars” between S; and
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Figure 1

Si+1, to obtain an embedding f” into R%. We take care that the number of similarity
classes of f'(J), J the boundary of a quadrilateral in Fig. 1, is finite. Since the PL
Schonflies theorem is true in the plane, we can extend f” to an embedding f” of I?
in such a way that we again have a finiteness condition for the maps f”|0, Q a
quadrilateral in Fig. 1. It turns out that f” is a Lipschitz embedding extending f.
Finally, we extend f also on the outside of 72, to obtain Theorem A.

5. In my opinion, Carleson’s method is important. There probably are results
that cannot be had otherwise. A drawback of the method is that in actual applica-
tion it turns out to be quite laborious, and our paper is no exception to this. Another
limitation of the method is, at least for the present, that it makes use of PL approxima-
tions that are known to exist only for dimensions n=3.

In addition to Carleson’s paper [3] already mentioned, Carleson’s method has
been used in [14] and [11] to obtain some results in Lipschitz topology, such as the
Lipschitz annulus conjecture and the Lipschitz hauptvermutung for n=3. It fol-
lows also from Theorem 2.4 of Véisild [14] that if a Lipschitz embedding of S into
R? can be extended to a Lipschitz embedding of 12, then there is also an extension
which is PL in int /2 and a Lipschitz embedding.

6. Theorem A was one of the open problems of Luukkainen—Viisili [6, Sec-
tion 9]. In the final chapter we also give a negative answer to a problem of [6, Sec-
tion 9], by showing that there is a LIP arc J, in R® which is locally TOP flat but
not locally LIP flat. We also propose a new conjecture relating to this problem.

In Section 17 we discuss the quasiconformal case. We show that the arc J,
is not even locally quasiconformally flat and formulate some conjectures concerning
quasiconformal flatness.
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7. We recall the notion of flatness which is used in the final chapter. Let ACR"
and let f: A—~R" be an embedding. We say that f is topologically flat if f can be
extended to an embedding of a neighbourhood of 4 in R” into R". (If Ac R* with
k<n, we regard A also as a subset of R") If x€4, fis locally topologically flat at
x provided x has a neighbourhood ¥ in A4 such that f|V is topologically flat. If f
is a Lipschitz embedding, the definitions of Lipschitz flatness and local Lipschitz
flatness are similar. Finally, if JCR" is a (Lipschitz) arc, the meaning of “J is
(Lipschitz) flat” and <J is locally (Lipschitz) flat” is clear.

8. I am indebted to J. Viisild and J. Luukkainen for close reading of the manu-
script, which resulted in many corrections and improvements. It was J. Luukkainen
who insisted that every inaccuracy had to be removed. For instance, he made me
aware of the need for condition (M) in Lemma 3A.

Added after the completion of this paper. Some time ago I found that one can
prove a variant of Theorem A by aid of Riemann’s mapping theorem and the Beur-
ling—Ahlfors extension of a quasisymmetric map. This proof is much shorter. See
«“Extension of quasisymmetric and Lipschitz embeddings of the real line into the
plane”, to appear in these Annals.

Proofs of Theorems A and B

9. Lemma 1 is the variant of Moise’s lemma needed (cf. [3, Lemma p. 44]
and [14, Lemma 2.2]).

Let J=[—1,2], J’=[—2,3] and let I;=[i—1,1] for i€Z. In the following,
families of maps are topologized by means of the topology of uniform convergence.
In Lemma 1 (2) and (c) & is a compact family of embeddings J—R? and in (b) &’
is a compact family of embeddings J’—R2. It is assumed that e¢=>0 is given such
that it satisfies conditions (i)—(iii) below. (U,(z) is the open ball with radius ¢ and
center z.)

() U,(f)nU,(f3))=0 if x=0, y=1 for feFOF".

(ii) Let U;=Up;,=U,cp, U(fX)).  Then, if feFOF', UNimf has
exactly two components C} and C} such that f(I;)ccl Ci,i=1,2. If feF,f'¢F’
and f(x)=f"(x—1) or f(X)=f"(x+1) for x€J, then C'., t=1,2, intersects only '
one of the components C}, and C%,.

(iii) Let feFUF’, and let g: S—R? be a continuous map such that, when C?
and C} are as in (ii),

g({13x1Y) c U,(f(1), g((—1}x 1D c U,(£(0)),
g(I'x{(1) c CF, g(I'x{—1) = C}, where t’,t"€{l,2}.
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Then f(1/2)ég(S) and g turns round f(1/2) t”—t" times (i.e.,
[ (/g @) —f (1/2)) dg (z) = (¢"—1") 2ni,
s

where S has the natural orientation).

Note that in (ii) there may be more than two components but not more than
two of them come close to f(I;), and that (iii) fixes the notation C} and C% for the
components (C} is the “left” side and C%is the “right” side). It is easy to see that
there is g,>0 such that (i)—(iii) is satisfied for 0<e=e¢,. For instance, in (ii) we
can reason as follows. Since embeddings of arcs in R? are flat, it follows easily that
for every fc#UZF’ thereis ¢>0 such that Uy 8{\im f has two such components
C} and C%. But now f has a neighbourhood % in & (or in F’) such that
Uf,,eflz\im f’, f/€%, has also two such components. The result follows by com-
pactness. Similarly, (iii) follows by flatness and by compactness.

In Lemma 1 we need only conditions (i) and (ii). Condition (iii) is needed later
for Theorem B in Lemmas 2B and 3B.

Lemma 1. (a) We can express &F as a union F=FU...0F,, where each
F, is compact, and find PL embeddings g\, ...,g.: LL—~R?% t=1,2, such that if
feFi, 1=1,2,

(@) gy c
lgix)—f(Oll <& for x€l,
gih)nf(J) =0.

(b) There is ¢'=0, ¢’<e, depending only on ¢ and F’, with the following prop-
erties. Assume that we have expressed ' as a union F'=%'0...0%,, of compact
sets and that there are PL embeddings hi, ..., h}: Lol,~R? t=1, 2, such that for
every feF', t=1,2,

(Bo) hi(0), hi(1)€ Y,
[hi(x)—f ()| <& for x€lyul,, and
hi(Lu L) nf(J) = 0.

Then we can express every & as a union &, =%, U...0Z, of compact sets and find
PL embeddings hi, ..., hl, : J~R?, t=1,2, extending h such that for every fcZ;,
t=1, 2,

(B) Ik (x)—f(X)l <& for x€J, and
;N nfJ) = 0.

(c) We can express F as a union F=%"0...0%,,, where each F is compact,
and find PL embeddings g, ..., g A=LX{E1JU{2}XI'~R? such that if feF’,
6] g, DeC} and g(1, —1)eCp,

lg:(x, —fOll <& for (x,y)€A,
g(Anf(J)=0.
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Note. For Theorem A we need only (a) and (b); for Theorem B we need also
(c) which is an analogue of (a) used in the proof of Theorem B to turn around the
endpoints of the image of the interval I'. There is also an analogue for (b) in this
case but we can arrange the proof of Theorem B in such a way that it is not needed.

Proof of (a). Let fc&. Since embeddings of intervals into R? are flat, there
is a homeomorphism F: R?—~R? extending f. Since we can approximate homeo-
morphisms of 2-manifolds by PL homeomorphisms (apply Moise [7, Theorem 3
of Section 6] to F|R™\J with a suitable ¢: R®\J—R,), we can assume that F
is PL outside J. Now there is u#0 such that the maps g\: I;~R? gi(x)=
F(x, (=1)u), t=1,2, satisfy («) with gi=g. Clearly, there is also a neighbourhood
% of fin & such that («) is satisfied for every f’¢cl % with gi—g; and fi~f".
Let A={(%,g" g*: #F open, g' and g PL embeddings I, ~R? such that ()
is satisfied for every fecl # with gl—g’}. We have shown that if fc4, there is
(%, g*, g9)€A such that fc%. Therefore (a) is true by compactness.

Proof of (b). By compactness of #’ we can find §=>0, é=e¢, such thatif x, yeJ’
and fe&F’, then || f(x)—f(»)|=2¢ implies f([x, y])c UE/2( f(x)). Repeating this
argument, we can find ¢=>0, 4¢’<¢g, such that if x,y€J’ and fe&%’, then
| f(x)—f(»)|=2¢" implies f([x, y])c U5/4( f(x)). Clearly, ¢’ depends only on & and
F’, and we show that (b) is true with this &".

First we note that if feF’, C=C}, 1=1,2, x¢I, and y, zeU,(f(x))nC,
y#z, we can join y and z by a PL arc in U,(f(x))nC. To see this, let yz be the
line segment joining y and z. Then yzc U, (f(x)), and if yznf(J')=0, there is
nothing more to be proved. Otherwise, let )", z’€yz be the points such that yy’n
SUN={y"} and zz’'nf(J")={z’}. Then |} —z’|<2¢, implying that the dia-
meter of the subarc of f(J”) with endpoints y” and z’ is less than &2. Now, as in
the proof of (a), let F be an extension of f to a homeomorphism of R? onto R? such
that Fis PL outside J’. Since y and z are on the same side of f(J’) (i.e. in C), it is
easy to see, using the map F, that there is a PL arc J,,CCnU{ f(x)) joining y and z.
The arc J,, consists of a subsegment of yy’, of a subsegment of zz” and of a PL
arc close to a subarc of f(J").

Wefix now i=k’,#=1, 2, and choose f€ % . Then A(0)€C=Cj}. Let F: R*~R?
be an extension of f to a homeomorphism of R? as above. Then, for some u#0,
the map g;: I; ~R?, gi(x)=F(x, u), defines a PL embedding I, ~R®\ f(J’) such
that | g(x) —f(0) <&, grI)hi(lul)=0, and that gi(I,)cC. The definition of
¢ implies also that we can assume that if | f(x)—gk(»)I=2¢ x, y€l, then
g5([x, YD U, 5(f(x)). (To see this, note that actually there is & =2 such that
geZ’ and [g(x)—g(Ml=e, imply g(lx, DU, ,x(g(x)).)

We consider the points g%(0) and 4(0). They are both in U, (f(0))nC. There-
fore there is a PL arc J, in Uy f(0))nC joining g%(0) and #:(0). Then J, has a
subarc Jg such that Jingi(h)={gi(x)} and Jinhi(l)={h(»)}, x€I, and y€I,.
Therefore there is a PL arc J;; consisting of a subarc J; of J;, of an arc J, close to
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g4([0, x]) and of an arc J; close to {([y, 0]), such that Jingi(l})={g(0)} and
Jynhi(Iy)={h!(0)}. We claim that J;c U,( f(0))nC. Itisclear that J;c U,( f(0))nC.
Since | g4(x)—£(0))<é, g5([0, XD U, 5( £(0)). Therefore if J, is sufficiently close to
g5([0, x]), also J,C U,(f(0))nC, which we now assume. Since |/}(y)—f(0)] <&
and |A;(»)—f(»)l<e'<&, we have | f(0)—f(y)|<2¢ and therefore f([y,0)c
U,s(f(0)), implying that A{([y, 0)< U,(f(0)). Consequently, we can assume that
Js is so close to Ai([y, 0]) that J,cU,(f(0))nC. Since Jy=J,0J,0J;, we have
T U(f0)AC.

In the same manner, since A{(1)¢C, we can find a PL arc J; in U,(f(1))nC
such that J7ng/(I) = {g\(1)} and J} n k(L) = {h;(1)}. By (i), since ||/} (x) —f(x)|| <&'=,
JoWJ{Uhi(lul,)Ugh(l) is a PL arc, and it is easy to see that there is a parametriza-
tion of it as a map A% J—~R? in such a way that 4 extends /] and satisfies () if
we set in it Af;=h’. Itis clear that (f) is also satisfied with the substitutions fi-f"
and hj—~h), when f’ccl%, where % is some neighbourhood of f in %’. This
implies (b) by compactness; see the proof of (a).

Proof of (c) is similar to the proof of (a) and is omitted.

10. In this section we construct, given an L-embedding f: S—R2, PL embed-
dings f,: S—R? n=1, such that the sequence f,(S), n=1, has a subsequence
which consists of concentric PL circles converging towards f(.S) in the bounded
component of R2\ f(S) (cf. Fig. 1).

We denote by K,, A=0, the triangulation of § such that an interval sc S
is a 1-simplex of K;, if and only if s has length 27" and the endpoints of s are of the
form (i/2%, j/2"), i, jeZ.

Lemma 2A. Let f: S—~R? be an L-embedding and let C be the bounded com-
ponent of RX\f(S). Then there are PL embeddings f,: S—~C, n=1, such that

(AD || f,(x)—=f(X)|<27"4L for x€S, and
(A2) I f,(x)—fW=027" for x, y€ES,
where 0=0 depends only on L. In addition we have:

(A3) The similarity classes of the maps f,|sus’, when s and s’ are two adjacent
1-simplexes of K,, n=1, are in a finite set depending only on L.

(A4) The similarity classes of the triangles (possibly degenerated) with vertices f, (),
f. () and f, 1 (u), when u and v are the endpoints of a 1-simplex of K,,, n=1, are in
a finite set depending only on L.

Finally,

_ I @—fO)l _
(A3) V2= e =2

whenever u and v are the endpoints of a 1-simplex of K,, n=1.
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For Theorem B, we need a slightly different version of Lemma 2A. If f’: I'—~R?
is the given embedding, we encircle f”(I') by concentric PL circles. Let

Sy =0(I*X[-27",27"])
and let K, be the triangulation of S, that has 4(2"+1) I-simplexes of length 2.

Lemma 2B. Let f’: I'—-R? be an L-embedding. Then there are & =0, depend-
ing only on L, and PL embeddings f,: S,—~R*\f'(IY), n=1, such that, if xcI*,
each f,, turns round f’(x) once in the positive direction, and that

(B 1fa Ges M =f" (O < 27"/AL for (x, y)ES,, and
(B2) IfaG)=f' W = 627", x€8;, yeI™

Also (A3) and (A4) remain true if we substitute in them f,—f, and K,~K,.
These are referred to as (B3) and (B4). Finally,

_ 1)~/
(BS) V2= 7 D f G, D

whenever (u, t) and (v, t) are the endpoints of a 1-simplex of K,, n=1.

=2

Proof. We prove Lemma 2A and after it make some remarks concerning the
proof of Lemma 2B, which is essentially similar.

In order to apply Lemma 1 we must take care of the corners of the square-form
circle S; for this we make the following observation. Let r: [—1, 3]-S be defined
by x—(x, —1) if |x|=1, x—>(1,x—2) if [x—2|=1. Then r is a }/2-embedding,
and, consequently, if g: S—~R? is an L,-embedding, gr is a Y2L,-embedding. Let
the family & in Lemma 1 (a) be the family of }2L-embeddings g: J=[—1, 2]~ R?
such that |[g(0)|=1, and let the family & in Lemma 1 (b) be the family of V2L-
embeddings g’: J'=[—2, 3]>R? such that ||g’(0)|=1. They are compact families.
There is a number &>0, ¢=1/4L, that satisfies conditions (i)—(iii) of Section 9
with respect to this &# and &#’. Let ¢'>0, ¢’=¢/2L2, be the number obtained in
Lemma 1 (b) with this ¢ and & . Then ¢ and ¢’ are functions of L only. We require
e=1/4L primarily for the following reason. If g: R—R? is a }/2L-embedding and
g1 R—R? is an e-approximation of g (not necessarily an embedding), then for any
x, YER, |x—y|=1, we have g'(x)=g’(y).

Next we define J2L-embeddings f,: J—~R? and fi: J'~R? for every l-sim-
plex s of K,, n=1. For every such s, let s,, 5,, s3=s, s, and s; be the five 1-sim-
plexes of K, such that s;,, is adjacent to s5; and that the sequence (s, Sp, S, Sy, S5)
is coherently oriented with respect to S. Let p,: J'—S be defined by the require-
ments that p([i—1,i] is affine and that p ([i—1,i])=s;;,. We choose a point
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a6 R? with coordinates (i/2",j/2"), i, j€Z, such that | f(ps(O))—asllél /2". Let
gs: R®—~R? bethe map x—2"(x—a,). Then we define f;: J—~R? and f,: J'~R® by

) fS=gqsofop,,
fs=fI1J

Then each f; and f] is a V2L-embedding. Also || £,(0)| =] £/ (0)|=1. It follows
that {f;: s€K,, n=1}cF and {f;: s€K,, n=1}cF . Since e=1/4L, ¢;'(U,)n
S(S\(s,Us3Us,))=0 for s€K,, n=1. Therefore c;szc;; ,t=1,2, and q;l(C}S)CC
or ¢;7*(C})cC for all scK,, n=1. We can assume qs‘l(C}s)zq—l(C};)CC.

We define f, in two stages. We divide the set of 1-simplexes of K, into two dis-
joint sets K, and K, in such a way that if sand s” are both in X, orin K, then sns’=0
if ss’. We can, for instance, set that the simplex with endpoints (1, 1) and
(1—27"1) isin K. This defines K, and K, uniquely. We define f, first in UK
and then in UK.

First we express & as a union & =%,0...0%, and find the maps g/, ..., g,
t=1,2, as in Lemma 1 (a), where we have substituted &—¢’. Now we can define

) fuls = gstoglopstls when seK;,

where i=i(s) is chosen in such a way that f,€¢#;. Since ¢ I(C}S)C C, we have
fu(s)cC for all s€K,.

To extend f, to UK, we must find the families &', ..., #/ and maps A, ..., A,
of Lemma 1 (b). If 7, j=k and a, b€Z2, we let F,;,, be the subset of #’ for which
8€Z; w if and only if

e themapgS: J> R%, x—g(x+1)—a, isin &, and

themap g;: J > R, x—g(x—1)—b, isin Z;.

Note that only a finite number of the families %, 0. The non-empty families
Fi;ap We label as &', ..., %/, where to each quadruple (i,j, a, b)#=(i’,j’, a’, b")
correspond distinct indices even if 7, = ;4. It is easy to see that F'=F"u...
UZ,, and that each &, is compact. The maps h’: I,ul,—~R? r=k’, we define by
setting, if /=%, 4,

hi(x) = gi(x—1)+a, x€I,, and
hi(x) = gj(x+1)+b, x€l,.

We show that /i, r=K, t€ {1, 2}, are PL embeddings I,ul,—~R? that satisfy
the conditions (f,) of Lemma 1 (b). Clearly, every 4. is PL and it is an embedding
since At|I;, i=0,2, is an embedding, since every g€ %  is a J2L-embedding, and
since ¢’=g=1/4L. The last two conditions of (8,) follow from the fact the embeddings
g} satisfy similar conditions (cf. («) of Lemma 1 (a)) and that maps f'€F’ are
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J2L-embeddings. We show that #'(0), A (1)€ C, for all ge#/. We consider only
h(0) and fix g€%’. We show that there is an arc J, in U,(g(0)) joining g(0) and
ht(0) with Jyng(J')={g(0)}. Let s be the line segment joining /4.(0) and g(0).
Let s’Cs be the subsegment with one endpoint 41(0) and such that s'ng(J)=
{g(x)}, x€J’. Then |x—0]<V2Le since |g(x)—g(0)]|<e’. This implies that
g([x, 0)C U,;2,(g(0))cU,(g(0)) since 2L2¢’=e. Therefore the required arc J,
exists. Since J\{g(0)}cU,(g(0))\g(W"), we have J,\{g(0)}cC’, where t'=1
or t’=2. We also must have J\{g(0)}CC,+b, where g'=g; if F'=F .
Since /#;(0)€C,+b, t’=t. This proves that A4 (0)€C;. Therefore we can express
each #’ as a union %'=%v...u%, and find PL embeddings 4;, as in Lemma 1

r

(b). Note that the constructions in this and the preceding paragraph depend only
on L.

Now we are ready to define f, in UK. Let s€K, and let s’ and s"€K] be
the 1-simplexes adjacent to s, s” coming after s. Then by (2), if x€J,

fo(x) = gyofopy(x) = 2" (f(p,(x + 1)) —ay)
= qsofops(x+ 1) _2n(as’ _as)
= (f)d &),

where a=2"(a, —a,)€ Z2. In the same manner one has f,,=(f;), , where b=2"(a,, — ay).
Let i=i(s’) and j=i(s”) be the numbers used in (3) to define f,|s" and f,|s".
Then f/€Z;;,=%, for some r=k’. Now, we have by (3), if x€I,,

gi(x) = ggofyopy(x) = ¢sof,op(x+1)—a, and
8j(x) = gsofyops(x—1)—b.
Substituting this into the equation for A}, we have
(5) by = g0 fuopl v ;.
We choose now some r” such that f,€%, and define, if s€K],
(6) fuls = g5 tohyopsts.
Equations (3) and (6) define a PL map f,: S—~C. We show that it has the desired
properties.

We first show that f,, satisfies (A1). We have ||AL.(x)—f,(x)| <e=1/4L<1 for
x€[—1,2], s€K], when r and r’ are as in (6). Therefore

@) [fa(x)—f)| <27"/4L for x€S,
and we have (Al). To show (A2), let

¢ = inf{|hi;(x)—gW): x, y€J, g€ Fj,i=kK,j=n;, t=1,2}>0
which depends only on L. Then, if x, y€sus’ for some adjacent s, s’€K,,

1) —f Wl = o/2".
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If this is not true for x, y€S, then |[x—y||=27", and thus

£, =f W = 1£ G —=f DI =1 () —f ()
= 2-"/[—2-"/AL = (3/4L)2""
by (7), and (A2) is true if d=min (3/4L, ¢), which depends only on L.
We then show that £, is an embedding. If x, y€.S, x>y, are in the same simplex
of K, or in adjacent simplexes of K,, it is clear by the definition of £, that £, (x) #f, (»).
If this is not the case, |x—y|=2"", and we have

152G =L DI = 1FG) =W =11 £ ) —f N = [ £ ) = W)
=2""L-27""%[—27""%[ = (,
by (7). Therefore f, is an embedding.

It follows directly from the definition of the maps f, that the similarity classes
of maps of the form (A3) are in a finite set depending only on L. For representatives
of the similarity classes we can choose maps of the form hi;|[0, 2] and Af|[—1, 1]
if sns’ is not a corner of S.

We then consider (A4). If s€K,, n=1, is a 1-simplex, let g, be as in (2). The
endpoints of s we denote by u, and v,. The definition of £, in (3) and (6) implies
that there is a finite set X< R* depending only on L such that g¢,(f,(u,))€X and
4,(f,(v))EX for all s€K,, n=1. Letthen s’€K,.,,s’Cs, bea l-simplex. Consider
the triple

(qs(fn(us))9 QS(.fn(vs))’ qs(fn+1(us'))) = (qs(fn(us))’ qs(fn (vs))’ qs© qs_'lo qs (fn+1(us')))'

We have ¢ cq;"(x)=x/2—2"(a,—a,). Since 2"(a,—a,)€Z%2 and 12" (a,—a,)l =
L+2, the maps g oq;' vary in a finite set depending only on L. Since also
qy( fo+1(uy))€X, this implies that triples of the above form are in a finite set depend-
ing only on L, proving (A4).

Finally, (A5) follows by (7).

The proof of Lemma 2B is similar. Let L, be the triangulation of I*
whose 1-simplexes are I,,=[—27",27"] and I,=[i27" (i+1)27"], —2"=i=-2,
1=i=2"—1. Let L,={I,: i==2", —2"42,..., =2,1,3,...,2"—~1} and let /=
{0 i=—=2"+1, =2"+3,...,-3,0,2,4,...,2"=2}. Then L,UL’ is the set of
I-simplexes of L,, and if s, s’€L, are adjacent, then one of them is in L;, the other
in L. As above, we first define f in (VL)X {£2 " u{£1}X[—27",27"] and
then in the remaining points. Let # ={g: g is a 4L-embedding J—~R? with
g0)=1} and #’'={g: g is a 4L-embedding J’—~R? with | g(0)||=1}. Choose
e=g(L)=1/16L that satisfies conditions (i)—(iii) of Section 9 with this & and
F’; ¢=¢/16L2 of Lemma 1 (b) is defined with this ¢ and &#’. Now we can define
Sl(OLNU, _n0I, n )X {£27"} using Lemma 1 (a) and f;|(, _nl, 5o )X
{i2"‘}u{:i:’1}><[—2"‘, 27" wusing Lemma 1 (c), like f,JUK, above. Then we
extend this to (UL;)X{+27"} asin the proof of Lemma 2A. This is done in such
a way that f; (x, 27") is on the “left” side and f;(x, —27") on the “right” side of
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f/a) for x€[—1+4+27" 1-27". (If x is near the endpoints of I', these relations
are not defined.) There are only two points to take care of. The interval I,,=
[—27" 27"] has twice the length of the other intervals Z,; and f,/|(7, _on U1, on_5) X
{£27"} cannot be defined exactly as above since there is only one 1-simplex to
the left of 7, _,.,, (resp. to the right of I, ,._,). Therefore we must perform some
compression and decompression first for 7,, and then for 7, _,.,, and I, ,._,. (That
is why & and &’ are families of 4L-embeddings.)

We show that the maps £, turn round points of f“(I') once in the positive direc-
tion; other conditions of Lemma 2B are proved like the similar conditions of Lemma
2A. Tt suffices to show that £ turns round f’(0) once in the positive direction, i.e.

[ @ —F @) dfy () = 2ni,

s,
where S/ has the natural orientation. Let S0=0IZ=0[—27", 27", S;=0([27", 1]X
[—27% 27", S;=0(—1, —27"]X[—27",27"]). We extend f, to SPuSiuUS, by
the requirement that f;|{+27"}x[—27",27"] is affine. Since f” is an L-embedding,
(B1) implies f(0)4f, (S2uS;US;). Therefore the above integral can be written

in the form
[=] ]
Sﬂ Sn S: S’l

where S°, S, and S; have the natural orientation. But, using again (B1) and the
fact that /" is an L-embedding, we can deform f| S, and f,|S, to constant mappings
in R\{f"(0)}. Therefore in the above sum the last two integrals vanish and we have

[ @~F O dfi@ = [ (L@ ~F D) df; (2.

0
s, s?

n

But now (iii) of Section 9 implies that the right side integral equals 27i. To see this,
transform f'|I, _,ul,,ul,, and f,|Sy asin (2) to get g J—~R? and g,: S—R?,
like the maps f and g of condition (iii) in Section 9. Then the construction of f; and
(iii) of Section 9 guarantee that the right side integral equals 2xi, proving our claim.

11. In the preceding section we showed that, given an L-embedding f: S—R?,
there are PL embeddings f;: S—R? i=1, such that f(S)cC, where C is the
bounded component of R2\ f(S). In this section we show that there is m=m(L)=0
such that f£,,(S), fo,,(S), ... is a sequence of concentric PL circles converging to
£(S) (cf. the right side of Fig. 1) and that there are crossbars which divide the right
side of Fig. 1 into a countable family of PL disks. We take care that the number
of similarity classes of these PL disks is finite. The construction is illustrated by
Fig. 1. Note that we have deleted some crossbars for clarity and that, in view of
(A1), the PL circles f;,(S) are closer to f(S) than shown in Fig. 1.

Let méN be a number, depending only on L, such that 27™ <4, where J is
as in (A2), and that the following holds:
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(M) Let g be an L-embedding S—~R? and let g" and g” be embeddings S— R?
such that

lg')—g)ll =27" and [g"(x)—g(x)| =27"

SJor x€S. If g (S)ng”(S)=0, then either g'(S) is inside g"(S) or vice versa (i.e.
g'(S) is in the bounded component of R*\g"(S) or vice versa).

To see the existence of m=m(L) satisfying (M) fix the L-embedding g and a
point x inside g(§). Then there is ¢,>0 such that if g’: S—~R? is an embedding
with [|lg—g’| =e,, x is inside g’(S), too. Now the existence of m follows from
this and from the compactness of the set of L-embeddings /: S—R? with A(1, 1)=0.

Let f;, i=1, be the maps constructed in Lemma 2A and consider the sequence
Ju(8), fom (S), ... of PL circles, which are inside f(S). Let i<j. By (Al) and (A2),
Sim(S) " (S)=0. These imply that we can even connect f;,,(S) to f(S) by a
line segment not touching f;,(S). This and (M) imply that f£,,(S) is inside f;,(S).
Therefore in the sequence f,,(S), fom(S), ... every circle is inside the next one and
all are inside f(S).

Now we define

@®) A= U(A-2""msS
i=1l
and let g,: 4—R? be defined by
® &((1=27"x) = fiu(x), x€S, i=1

Then g, is a PL embedding. Let, if a¢S and n=1, s,(a) be the line segment with
endpoints (1—2""")g and (1—2"®+Y™)g and let

(10) G=Au(u{s,(a): acSnZ¥2"™ n = 1}).

Then G divides int /2 into a countable number of quadrilaterals. We denote these
by Qy, Q;, ... and assume that Q, is the square with boundary (1—27")S and that
the quadrilaterals contained in a ring with boundary (1—27"™)Su(l —2-¢+Um)g
are successively in the sequence Q,, Q;,.... For every Q; we choose a homeo-
morphism ¢;: I?—~(Q; that is simplicial in a triangulation of /2 with the (four)
vertices (£1, =1). Notice that we can express g; in the form

) g:(x) = p;(4;x), x€I?, i=0,

where A;=diam Q; and p;: 2,/12~Q,, i=0, is a PL K-homeomorphism for some
K=1 not depending on L nor on f. Thus, although the set of the similarity classes
of the quadrilaterals Q; is not finite, the distortion from square-form cannot be
arbitrary.

Lemma 3A. Let m=m(L)EN satisfy (M) and assume 2~™=§, where § is
as in (A2), let A be defined by (8) and let g,: A—~R? be the embedding defined in
(9), where the maps f, are as in Lemma 2A. Then, if G is as in (10), g, can be extended
to a PL embedding g,: G—R? in such a way that the similarity classes of the maps
8:0(q;]S), i=0, are in a finite set depending only on L.
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In Lemma 3B we let m’=m’(L)éN be a number such that 2™ =§’, where
6’ is as in (B2), and that:

(M") Conditions (i)—(iii) of Section 9 are true when ¢=2"", F={g: g: J>R®
an L-embedding, ||g(0)| =1} and F'={g: g: J'~R® an L-embedding, | g(0)|=1}.

Let f/: S;=0(I*X[—27,27])~R? i=1, be the maps constructed in Lemma
2B. Let Cy=f;,(Sy,) and let i<j. By (Bl) and (B2), C;,nC;=0. Since we can
join C; and f’(I*) by a line segment not touching C; and since f’(1?) is inside both
C; and C;, we must have that C; is inside C;. Therefore in the sequence
S/ (Suir)s fory(Sam)s ... €very circle is inside the preceding one and f7(I') is inside
all of them.

Let S;=0(—1-27",1427"X[-27"27"), n=1. Define

@®) A= U S
i=1l
Let g;: A"—~R? be the map
(9/) g]/.((l +2—im')x, J’) =fi;n’(x9 y)s (X, y)ESi:n’a i= 1

Then g; is a PL embedding. Let, if a</%, n=1 and r==1, s!(a) be the line seg-
ment with endpoints ((14+27"")a, 127™") and ((1+2-C+D)q (2-@+D") et

(107 G = A u(ulsi(a): acI'nZ2™, t=+1,n=1)).

Then G’ divides [—1—27", 142"™]x[—27", 2™ \J* into a countable number
of quadrilaterals, denoted Qj, Q7, ... . As above, we can find PL homeomorphisms
g;: I*~Q; and p: (diam Q))1*—~Q; such that

(11) g/ (x) = pi((diam Q))x), x€I? and i=0,

that ¢ is simplicial in a triangulation of /* with vertices (+1, 1) and that p;,
i=0, is a K’-homeomorphism, where K’ does not depend on L nor on f”.

Lemma 3B. Let m’'=m’(L) satisfy (M) and assume 27" =8, where & is
as in (B2), let A" be defined by (8°) and let g;: A’—~R?® be the embedding defined in
(97), where the maps f,, are as in Lemma 2B. Then if G’ is as in (10), g; can be extended
to a PL embedding g,: G'—~R® in such a way that the similarity classes of the maps
g,0(q/1S), i=0, are in a finite set depending only on L.

Proof. We consider first Lemma 3A. Let R, be the component of

Rz\(f;nn(S) Uﬁn+1)m (S))

with boundary f,,,(8)Uf(+1)m(S). Then R,Nf(S)=0.
If x€S, let r,(x) be the line segment joining f,,(x) and f, 1), (x). By (Al)
r.(x)C U,( f(x)), where ¢=2"""/4L. Thus

rx)nr,(») =0 if x,yeS and |x—y|=2-"m
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Therefore the line segments r,(a), a€ SN27""Z2, form a disjoint family for fixed #.
Let r,(a) be a subsegment of r,(a) such that int r, (@) R,, 1 (@) fy (S) ={ frm (Xna)}
and 7@+ 1ym(S)={Sfn+1ym(Vna)}, Where x,, and y,,£S. Now we can find a
PL arc r,(a) joining f,,(a) and f,4+1ym(a) such that intr,(@)cR,. This can be
constructed from a subsegment of r, (@) and from PL arcs close to the arcs f,, (x,,a)
and fi,1ym(Vne@), where x,,a and y,,a are certain subarcs of S with endpoints
{Xnas @) a0 {Ppgo @Y. SinCE || fom () ~F@] <27"4AL, || (o) —f(@)] <27""/4L +
| frm Xua) —f(Xud| <27""/2L by (Al). Therefore |x,,—al<2"""/2, since f is an
L-embedding. Hence x,,a is a line segment and, if b€ SN2""Z2 bza, we have
|x—>bl|=27""/2 for every x€x,,a, implying that

1fam () =f (D) = [f ) —=f (D) =1 fum () —f (Ol = 27""/2L—27"™/4L = 2""/4L.

Therefore f,,(x,,@)nr,(b)=0 and, similarly, fi,+1ym(Vne@)Nr,(b)=0, and, since
Xpa@N X0 =y,,a0y,,b=0, we can assume that, for every n=1, the family
{ri(@): ac SN27"Z?} is a disjoint family of PL arcs.

Now we can extend g, to a PL embedding g,: G—~R? in such a way that
g:(s,(@)=r(a) for ac Sn2~"™Z2. It follows from (A4) that the similarity classes of
the quadrilaterals with vertices {f,,(14), fum(©)s fin+1)m @) fn+1ym()}, n=1, where
u and v are the endpoints of a 1-simplex of K,,,, are in a finite set depending only
on L. Using this and (A3) we can easily see that we can choose the arcs r/(a) and the
extension of g; to the segments s, (@) in such a way that the similarity classes of the
maps g,o(q;|S) are in a finite set depending only on L.

Now we turn to the proof of Lemma 3B. For n=1 let s,,=[k2™"", (k+1)27",
=2 =k<2". Let Uy=U {Up-mmomyy (f(¥)): x€s,)\imf". Then in view of
(M’) and (ii) of Section 9, U,,, —2""<k<2""—1, has exactly two components
Cy, and C2, such that f’(s,)ccl Cfy, t=1, 2. Let the notation C%, and C% be as
in (iii) of Section 9,i.e. C%, is on the “left” side of f”. Let J,=[—1+2""",1—-2"""]
and let

U, = O{Uz-mme-myr (f7 (x)): x€ JNIMSf" = O{U,,: —2 < k< 2" —1}.

Let Ci=u{C}: —2" <k<2""—1}, t=1,2. Then by (ii) of Section 9, C! and
C? are the two components of U, such that f'(J))cclCl t=1,2. By (Bl)
S0, £27")e CE_ UC2_| if n>1 (we can join f, (0, £27") by a path s to
f'(J,-) with intscU,_;). Therefore either f, (J,_,X{£27™HcC , or
STy X {£27"™ N C2_,, t==+1. We show that

(12) fr:m’(Jn—lx{z_nm,}) cCy, and fn’m'(‘]n—lx{_z_nm,}) o OLIP

Let S,,,=0([0, 2=~ Dm ] [—27"" 2-"]) and extend f,, to S, uUS,, by
the requirement that the maps £, |{x}X[—27"", 27"™], xc {0, 2~ @~D"} " are affine.
Then f’2~@=Y"/2)¢im f,,, and one sees exactly as in the last paragraph of Sec-
tion 10 that both f, IS, and f,,|S,, turn around f’(2=®~Y"/2) N’ times,

N’eZ, when S, and S,, both have the natural orientation. But for f |S. .
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we know by assumption that N’=1. Now we can apply (iii) of Section 9 (after
blowing up the maps f7|[—2~ @D, 2=@=D"" . 2] and £, .|S,,, in such a way that they
become maps J—~R? and S—R?) and get the result that f,,(x,27")eC)_, (C
C*_,and f,(x, —27")eC?_, ycC2_,, where x=2"C"V"/2. This implies (12).

Let a€J,_, and let ri(a), t==1, be the line segment with endpoints
S @, 127" and £ @, 122700 By (B1) (@) Up-mmyjr(f'(@)) and by
(12) f! (a,27")e€C:_,. Therefore there is a maximal half-open or closed sub-
interval Fi(a@)cCl_, of rl(a) such that one endpoint of FX(a) is f,,(a, 27™"), the
other endpoint lies on f/(IY) or is fi, (@ 27"+P™). Since f'(I') is inside
Sonitym (Stusym)» Which is inside f,(S,), we can find in both cases a subsegment
r@)c Cl_, of Fi(a) such that int 7, (@O (fo (Smw) U ors1m(Seus 1)) =0,  that
one endpoint lies on f;,,,(S,,) and the other on fi;, 1, (S(, 4 1),r)- One defines ri N a)c
C?_, similarly.

Now one defines the PL arcs r (a), t=+1, for ac 27" ZAJ,_, exactly as the
arcs r/(a) earlier if n>1. We must define r,"(a) also if n=1 and a€27™" ZnI*
or if n=1 and a€2™"™ Zn(I*\J,_,). If n=1, by (B3) and (B4) the similarity
classes of the maps g{|S/,USs,, are in a finite set depending only on L when f”
varies in the set of L-embeddings I'—R?. Therefore since the PL annulus theorem
is true for n=2, and since f,, and f,, are oriented similarly, we can choose separately
for each similarity class the arcs r; (a). The situation is similar if a€ 27" ZA(INT,p—1)-
For instance, let a=0. We can assume that the similarity classes of the PL Jordan
curves

=27y o (=270
Of (1 =270 ] {227 O {1}X[—27"", 27"])
O F e ([T = 270797, ] {27050 (1) X [ 27050, 270

arein a finite set depending only on L when f varies. Therefore the same reasoning
applies as in the case n=1.

As in the proof of Lemma 3A we conclude, by aid of (B3) and (B4), that we
can choose the arcs r.°(a) and the extension g, in such a way that the similarity
classes of the maps g;o(g;|S) are in a finite set depending only on L.

12. After the preceding lemmata the proof of Theorems A and B is not difficult.

Let C be the bounded component of R®\ f(S). We first construct an embedding
F’: I*—~cl C extending f and after that extend F’ to R?® as required in Theorem A.
Let g,: G—R? be the embedding constructed in Lemma 3A. Let 4;: S—R? i=M,
be PL embeddings, depending only on L, such that every g,o(g;S), j=0, is
similar to some A;. Since the PL Schénflies theorem is true for n=2, each #
can be extended to a PL embedding H;: I?—~R% We set now

(13) F'|Q;=A;0oH,0q;', i=0, and
F'|S=f.
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In (13) 4;is a similarity of R? and n;=M; these are determined in such a way that
F’ extends g,. Actually in (13) we should write B;og; ! instead of g;!, where B;
is a similarity /2-72. But we can redefine ¢; in such a way that B,=id.

Clearly, F’ is a bijection I?—cl C. We will show:

1°. For every i=0, F'|Q; is an L,-embedding, where L,=L depends only on L.
2°. F’is L,-Lipschitz.
3°. F’~lis L,-Lipschitz.

These imply that F’ is an L,-embedding.
To prove 1° we write (13) in the form

F'(x) = A,(H,,(i7 ' pit (%)), x€Q;,

where (cf. (11), Section 11) A;=diam Q; and p;: 2,I*~Q; is a PL K-homco-
morphism and K does not depend on anything. Now, consider the maps r;: 1,12~ R?,
i=0, defined by

ri(x) = 4,(H,,(0;7'x)), x€A1?

which are sinlilar to the maps H;, i=M. It suffices to show that the maps r;, i=0,
are L,-embeddings, where L, depends only on L. By (A5) we can find two different
corner points x, y€Q;n(1—-2""S, for some n=1, such that

1/2 = [|r(p* (0) —ri(p* O)|| [ || /(1 =272 x) =f((1 =277 1y)|| = 2

since r(p; (x))=£(1—2""7"x) and r,(p;*(»)=f((1-2"")"1y). Now, there is
an absolute constant ¢=1 such that 1/c=(1—-27")""|x—y|/lp; (xX)—p7 (W)l =c.
Since fis an L-embedding, it follows that

1/2¢L = [|ri(pi ) —ri(p* O] [P ) —pi ()] = 2¢L.

Since the set of maps H;, i=M, depends only on L, this implies that we can find
such L,. This proves 1°.

Since int /% is convex, it follows from 1° that F’|int I2 is L,-Lipschitz. This
fact and (A1) imply that F’ is continuous also on the boundary S of I2. It follows
that F’ is L,-Lipschitz. That is, we have 2°.

To prove 3°, we choose two points x, y€ F'(I?), x>y. Let s be the line segment
joising x and y. If sc F(int I2), we have by 1°

(14) IE =)= F 1) = Lyllx -yl

since we can divide s into subintervals whose endpoints lie in some set F’(Q,),
i=0. Notice that (14) is also valid if x or y€ F’(S) but the interior points of s are
in F'(int I?). If sd F'(int I?), let s, be the subinterval of s such that x¢s, and
that s, F(S) is an endpoint x” of s,(=x if x€ F'(S)). Define similarly s, and y".
Then (14) is true for the pairs (x, x"), (», ») and also for (x’,)’) since F'|S=f is
an L-embedding. This implies 3°.
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We then extend F’ to R2. We can assume that F’ is orientation preserving.
Replacing f by the map x—f(x)— F’(0) we can assume that F’(0)=0. Let r be a
PL reflection of cl (Y2L, 15\ (V2L,)~*I%) onto itself such that r|S=id, r(J2L,S)=
(1/_2L1)‘1 S. Then r is an L,-embedding, L,=L,(L). Consider the L,L-embedding
rof: S—~R% Let C’ be the bounded component of R®\r(f(S)). Then we apply
the above construction and find an L,-embedding F”: I?—cl C’ extending rof, '
where L, depends only on L. It is also orientation preserving. Since r(f(S))c
cl (V2L I2\(V2L,) 1 1?), (V2L,)*I*ccl C'. Therefore there is a number k=Fk(L)
such that F”((1—27%1?)5{0, F"(0)}. Now, by the construction of F”, the simi-
larity classes of the maps F”|(1 —27%~1)I? arein a finite set depending only on L, when
f varies in the set of L-embeddings S— R% Therefore there is a number c=c(L)>0
and a PL map G: R*—R? such that GoF”|c[*=id, G|R*\ F"((1-27%")I*)=id
and that GoF” is an L,-embedding, where L, depends only on L. Theferore, if
we replace F” by GoF” and L, by L, we can assume F”|c[?=id.

Let r* be an extension of r to a PL reflection of cl (c711*\¢/?) (we assume

that cél/VﬁLl). Then #’ is an L;-embedding, where L; depends only on L. We
define F: R*~R? by

F'(x) if xel?
F(x)=1roF"or (x) if x€c I2\UI?
x if x€R™c %

this is a homeomorphism extending f. Obviously, every one of the maps F|I%
Fle71I2\J? and F|R®\c¢7'I* is an Ls-embedding, where Lg=L’ depends only
on L. But then this is true also for F, concluding the proof of Theorem A.

The proof of Theorem B is similar to the above proof. Replacing Lemma 3A by
Lemma 3B, (A1) by (Bl) and (AS5) by (B5) we get an embedding

Foi[—1-2"", 142-"]X[-2"",2""] = 4,, - R

The biggest difference is that, if Q] is a quadrilateral with two sides of the from
{£(Q+27")x[—27"",27"], we cannot conclude directly by (B5) that FJ|Q’
is an L;(L)-embedding. However, Q; is adjacent to a quadrilateral Q}, of which we
can show as above that F;|Q} is an L{(L)-embedding. Now we can use this fact
in place of (B5) to conclude that Fy|Q; is an Lj(L)-embedding. Now, if f” varies
in the set of L-embeddings I*—~R?, the similarity classes of the maps F;|04,, vary
in a finite set depending only on L. Therefore we can extend F; to a homeomorphism
F” of R?in such a way that F”|cl (R®™\4,,) is a PL Lipschitz embedding and that
the similarity classes of the maps F”[cl (R*\4,,) are in a finite set depending only
on L. Choose Q] with Q;nd4,,0. Then F”|Q; is a max(L{(L), Ly(L))-em-
bedding, implying that F”|cl (R®\4,,) is an L;(L)-embedding. It follows that F”
is an Lj(L)-embedding. Otherwise we omit the proof of Theorem B.
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As a final remark we note that the above proof shows that there is a triangula-
tion K of R\ S, depending only on L, such that the extension F of f constructed
above has the property that F|R®™\S is simplicial with respect to K. A similar
remark can be made on Theorem B.

Counter-examples and conjectures

13. We consider now the situation in R®, where we can think of generaliza-
tions of Theorems A and B both to embeddings of arcs and spheres. Since there
are Lipschitz embeddings of arcs and spheres in R® that are not topologically flat
(see Luukkainen—Viisdld [6, 3.10]), direct generalizations of Theorems A and B
cannot be true. However, one could conjecture that if such an embedding is top-
ologically flat, then it must be also Lipschitz flat (cf. Problem 4 of [6, 9.1]). We show
that this conjecture is not true for Lipschitz embeddings of arcs or spheres into R®.
Finally, we modify this conjecture in such a way that it is reasonable to expect that
this conjecture (in R®) could be proved like the results of this paper, by aid of known
result of three-dimensional PL topology.

14. Our construction of a Lipschitz arc which is topologically flat but not
locally Lipschitz flat is based on the Fox—Artin arc. Fig. 2 (ignore the three auxi'izary
broken lines) consists of two Fox—Artin arcs that are joined in the bad poiat in
such a way that the second arc traces backwards, from the bad point to the end,
the movements of the first arc from the beginning to the bad point. We denote
this arc by J. Then J is not locally topologically flat at the bad point. We can assume
that there is a Lipschitz homeomorphism f: I'—~J. Next, we form the arcs J,,
n=0, from J by replacing a neighbourhood (in J) of the bad point by a line seg-
ment. These line segments are the broken lines of Fig. 2. There are homeomorphisms
fu: I'—J, such that f,—~f as n—o, and that f and f,, n=0, are L-homeomor-
phisms for some L=1. In addiiion, each J, is topologically flat.

Using the arcs J, we form the arc J; of Fig. 3. We take a line segment, remove
from it subsegments converging to an interior point X, and in place of the removed
line segments insert arcs similar to the arcs J,, n=1. We can do this i1 such a
way that we obtain a Lipschitz arc, parametrized by a Lipschitz embedding
g: I'—>R® such that for each n>0 there are similari.ies g, and g, of R® with f,=
g.ogo(g,lI"). The arc J, is topologically flat. To see this, cover the inserted arcs
by disjoint 3-balls B;, i=1, and map the portion of J, inside B; onto a lize seg-
ment by a homeomorphism of B; that fixes dB;. These maps, extended by the identity
outside the balls B;, define together a homeomorphism of R* which maps J, onto a
line segment.

But J, cannot be locally Lipschitz flat at X. Suppose it were. Then let U be a
neighbourhood of X in R3 and let F: U,(0)~U be a Lipschitz homeomorphism
with F((—4,2))=UnJ,, where A>0. Using this F and the similariies g, and
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Figure 2

/@3
k\& B

= B X

Figure 3

g7 we can define Lipschitz embeddings F,: cl U;(0)~R® with F,(IV)=f,(")=
g,ogogi(IY) if B,cU. We can assume that there is L’>1 such that each F,
is an L’-embedding. Therefore {F,: B,cU} is a normal family, and there is a
subsequence F, ), F,), ... such that there is a uniform limit lim,,, F,,=F"
But we must have F'(IY)=f(I")=J, since F,uI")=f,: I"). This implies that J
is locally Lipschitz flat at all interior points. This is impossible since J is not even
locally topologically flat at the bad point of Fig. 2.
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A succinct description of the situation is that J,, contains an infinitesimal Fox—
Artin arc at X which is invisible in a low-power TOP microscope but becomes
visible in a high-resolution LIP microscope.

15. We can apply the same principle to construct a Lipschitz embedding of
the sphere S2 into R3 which is topologically flat but not locally Lipschitz flat. First
we take a Fox—Artin arc (i.e. the first half of the arc in Fig. 2) and fatten it in such
a way that we obtain a tube converging to the bad point. In this manner we get a
Lipschitz embedding f: S2nR% —R® which is not locally topologically flat at
(0, 0, 1). Again, by cutting the tube a little before the bad point and by pasting a
disk in place of it, we obtain a sequence f,: S2NR% ~R? n=0, of embeddings
such that each f, is topologically flat and that lim,_ _ f,=f. In addition, we may
assume that f and the f,’s are L-embeddings for some L=1. Now, we consider the
sphere S2c R3. We remove from S2 a disjoint family E;, i=1, of disks converging
towards a point X. In place of the disks E; we attach deformed disks similar to
fi(S2nR%). We can do this in such a way that we obtain a Lipschitz embedding
of S2into R® which is topologically flat but not locally Lipschitz flat at the point X.
Details are as above.

16. These counter-examples show that topological flatness does not imply Lip-
schitz flatness. We now propose an additional condition and conjecture that this
condition would guarantee Lipschitz flatness.

Let f: I"=I'X...XI'-R™ be an L-embedding. Let x€intI" and let r=0
satisfy U,(x)cI". Define f,.: U;(0)—~R"™ by

Fox () = F)+(f e+ ry) —f(x)/r
for ycU;(0). Then each f,, is an L-embedding.

Let UcintI" be open and let

Z;(U) = {f,x: x€U and U,(x) c U}

be the set of Lipschitz germs of fin U. Now we can state the following

Conjecture 1. The map f is locally Lipschitz flat at xcint I if and only if
x has a neighbourhood U in int I" such that cl %;(U) contains only topologically
fat germs.

In this conjecture closure is taken in the topology of uniform convergence of
maps U;(0)—~R™ Then each element of cl & (U) is an L-embedding, but the
construction of the counter-examples in the preceding sections was based on the
fact that elements of cl Z;(U) need not be topologically flat even if elements of
Z,(U) are. If fis locally Lipschitz flat at x, then x has such a neighbourhood U.
Note that if n=1 and m=2, the assumptions of the conjecture are always sat-
isfied, since there are only topologically flat embeddings of arcs into R2.

Naturally, we can also formulate this conjecture for boundary points x€oI™.
Now % (U) contains also maps U,(0)nR" —~R™ and, if x is a corner point, other
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kinds of maps, too. With this modification, it is expected that the above conjecture
is true also for boundary points. Since often local flatness implies global flatness
(cf. Gauld—Viisild [4]), the global form of the conjecture is that every point has
such a neighbourhood U.

If n=1 or n=2 and m=3, it seems likely that the conjecture can be proved
like the results of this paper, only with much more labour.

17. The quasiconformal case. We constructed in Sections 14 and 15 an arc and
a sphere in R® that are topologically flat but not locally Lipschitz flat. Moreover,
they are not even locally quasiconformally flat. This can be shown by a normal
family argument as in Section 14. Note that, if the map F: U,(0)—~R® of Sec-
tion 14 were quasiconformal, then the maps F, can be assumed for large n to be
of theform F,=F,|cl U,(0), wherethe maps F, are K-quasiconformal embeddings
U,(0)~R3 for some K=1. Since F,(I')=f,(I")=J,, we have F,({—1, 1}))={a, b},
where a and b are the endpoints of J. By [13, 19.4 (1)] (set a;=o) and [13, 20.5]
{F,: B,cU} is a normal family. Therefore there are a subsequence F,q,, Frgy ---
and a map F’: U,(0)~R® such that F,,—~F’ uniformly on compact subsets.
Since {a, b}cim F’, F’ cannot be a constant. Then by [13, 21.1 and 37.4] F’
must be a quasiconformal homeomorphism. This would imply again that the arc J
of Fig. 2 is locally quasiconformally flat at all points, which is impossible.

Conjecture 1 in the preceding section can be formulated also in the context
of quasiconformal mappings. Let f: R*—~R™ be an embedding and let

Ay ={off: o« a similarity of R", B a similarity of R",
aff(0) =0, and aff(1,0,...,0) = (1,0, ..., 0)}

be the set of quasiconformal germs of f. Now we make

Conjecture 2. There is a quasiconformal homeomorphism F of R™ with F|R"=f
if and only if cl A} is compact and contains only topologically flat germs.

The closure is in the set of all embeddings R"—~R™ in the topology of uniform
convergence on compact sets. If fis of this form it is easy to see that the conditions
of Conjecture 2 are satisfied. Also, it is possible to give a local form of the conjecture,
as in the preceding section.

Note that one can characterize quasisymmetric and quasiconformal self-maps
of R", n=1, by aid of compact families of mappings as we have done above; cf.
Beurling—Ahlfors [2, Chapter 2] and Gehring [5, Section 32].

One can also define that an embedding f: R"—~R™ is quasisymmetric if there
is H=1 such that if x, y, z€ R", |x—z||=| y—z||, then | f(X)—f | =H|| f(»)—f(2)].
These mappings have compactness properties similar to the corresponding proper-
ties of quasiconformal mappings; cf. [12]. One can show ([12]) that an embedding
f: R*—~R™ is quasisymmetric if and only if the family of quasiconformal germs of f
is contained in a compact family of embeddings.
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We could have adapted the abcve proof with minor modifications to the quasi-
conformal case, i.c., we could have given the necessary and sufficient conditions
for the existence of a quasiconformal homeomorphism of R? extending a given
embedding of the arc I* or the sphere S into R2. This could have been done, for
instance, by aid of the notion of a quasisymmetric embedding given above. How-
ever, in view of the results of Ahlfors [1], Rickman [9, 10] and Reed [8], this is unnec-
essary.

In the quasiconformal case we can also give an absolute version of Conjecture 1.
Let €™ be the family of non-empty closed subsets of R™. If X, Ye%™ let, when d,
is the spherical metric of R™,

Q(‘Ys Y) = sup {ds(xa Y)a ds(“/, y) xEX, yEY}

Then g is a metric in ™ and we topologize ™ by means of this metric. For C€%™
let F={x(C): a a similarity of R" and {0, 1}ca(C)}c%™ Now we can for-
mulate

Conjecture 3. Let CCR™ be a subset such that Cu{es} is homeomorphic
to the n-sphere S", n=m. Then C=f(R") for some quasiconformal homeomorphism
fof R™ if and only if cl # is compact and every element of cl F is of the form g(R")
for some homeomorphism g of R™.

It is easy to see that if C=f(R"), f a quasiconformal homeomorphism of R",
F¢ has the properties mentioned in the above conjecture.
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