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1. Let
embedding

(1)

PEKKA TUKIA

Introduction

X and I be metric spaces with metrics d and d' . Let f: X * Y be an
such that for some L> |

d(x, y)lL = d'(f (*),f (y)) < Ld(x, y)

for all x, y€X. Thenwe say that/is a Lipschitz embedding, or, if we wish to emphasize
that/satisfles (l) with a particular number Z, we say that/is an L-embedding.If f
is a homeomorphism, we say that f is a Lipschitz homeomorphism or, respectively,
an L-homeomorphism, Z as in (1). If a map satisfies only the right side inequality of
(l), we say that/is L-Lipschitz.

We denote by lthe closed interval [0, 1], by 11 the interval [-1, l) andby 12

the square IIY.F. The boundary 012 is denoted by 
^S. The metric of R2 is the usual

norm metric.

2. We will show that a Lipschitz embedding of S or 11 into Ä2 can always be
extended to a Lipschitz homeomorphism of Å2.

Theorem A (the Schönflies theorem for Lipschitz maps). Euery L-embedding
of the circle S into R2 can be extended to a L'-homeomorphism of R', which ls
piecewise linear outside S and where L' depends only on L.

Theorem B. Euery L-embedding of Ir into R2 can be extended to a L"-homeo-
morphism of R', which is piecewise linear outside IL andwhere L" dependsonlyonL.

Theorem A should not be confused with the generalized Schönfiies theorem,
which assumes that the image is collared. In contrast to Theorem A (for a counter-
example see [6, 3.10]), the generalized Schönflies theorem is true in many categories
for every n; in particular, it is true in the Lipschitz category (Luukkainen-Väisälä
[6, Theorem 7.7]).

Using the generalized Schönflies theorem for Lipschitz maps one could prove
a version of Theorem A by aid of Theorem B as follows: Let f: ,S*.Rz be a Lip-
schitz embedding. Then, by Theorem B, 

"f(S) 
is Lipschitz collared locally. It follows
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[6, Theorem 7.4]thatf(S) has a global Lipschitz collar. Now, using the generalized

Schönflies theorem, we could extend f to 12 to obtain a Lipschitz embedding ,F of
12 into rRz. However, it seems difficult to prove that F is an Z'-embedding, where

I'depends only on Z. Therefore we give parallel proofs of TheoremsA and B;
we give a detailed proof for Theorem A and then indicate the modifications needed

for Theorem B.

3. TheoremsA and B have the following corollary. Let JcRz be a rectifiable

Jordan curve or arc. Let d be the metric of "I for which d(x,7) is the length of the

subarc of ,I with endpoints x and y (if there are two such arcs we let d(x, y) be the

length of the shorter arc). We say that Jis a Lipschitz curue or arcif id: (J,d)-
(/, ll ll) is a Lipschitz homeomorphism. If id is an Z-homeomorphism we say that

"I is an L-curue or an L-arc.

Corollary. A subset J or Rz is a Lipschitz curue or arc if and only if J is the

image of the circle (,t/8)S or the interual ()'12)It, where )"is the length of J,under
a Lipscltitz homeomorphism F of R2. In qddition, if I is an L-curue or an L-arc, we

may ossume that F is a K-homeomorphism, where K depends only on L.

One proves the corollary by constructing a homeomorphism (,1/8)S*"f or

Ol2)Ir*J with arc length as the parameter, and then using TheoremsA and B.

4. Our proof is based on Carleson's method. This method was used in [3] to
construct a quasiconformal extendion to the upper half-space of Ra of a quasicon-

formal homeomorphism of Ä3. One can give an abstract deflnition of Carleson's

method as follows. A similarity between metric spaces is a homeomorphism under

which distances are multiplied by a constant. Two maps fi and f, are similar if there

are similarities g and å such that fr:gfrh. Let g: X*Y be a map between metric

spaces. If we make use of a sequence E,; X-Y, n>0, of maps with lim,*- gr:g
such that there are covers Ani, i(In, of X with the property that the number of
similarity classes of the maps S,lA,i, n>O and i(1,, is finite, we say that Carleson's

method is used.

The plan of our proof can be seen from Fig. l. We consider a sequence ,S;c12,

i >1, of square-form circles converging to ,S (in Fig. l, S,:(1-2-'),S). Let ,R,

be the ring with boundary ,S;r..r,S;*r. We divide each Å, into quadrilaterals and

obtain the left side of Fig. 1. Let f: ,S*R2 be the given Z-embedding. We use Car-

leson's method, made possible by the compactness of the set of Z-embeddings

g: I*Rz with llg(0)ll=1, to construct a sequence fi: 5,*112 of piecewise linear

embeddings such that fr(xt)*f(x) whenever xi*x, xi(S;. In addition, we assume

thatfi§) is insidel(,S) if i=i andallareinside/(,S) (cf. the right side of Fig. l).
Finally, we assume (this is the crux of the matter) that the number of similarity
classes of fjs, s a side of a quadrilateral in Fig. l, is finite. Now we have an

embedding fvfrvfrv...: Su§ru,Sru...*i?2. Next, we extend this embedding to

all sides of the quadrilaterals in Fig. 1, i.e., on the "crossbars" between ^§; 
and
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f

--.>

Figure 1

S;a1, to obtain an embeddingf into R2. We take care that the number of similarity
classes of f'(J),,Ithe boundary of a quadrilateral in Fig. l, is finite. Since the pL
Schönflies theorem is true in the plane, we can extendf'to an embeddingf" of I2
in such a way that we again have a flniteness condition for the maps f"le, e a
quadrilateral in Fig. l. It turns out that f" is a Lipschitz embedding extendingl
Finally, we extend/also on the outside of 12, to obtain TheoremA.

5. In my opinion, Carleson's method is important. There probably are results
that cannot be had otherwise. A drawback of the method is that in actual applica-
tion it turns out to be quite laborious, and our paper is no exception to this. Another
limitation of the method is, at least for the present, that it makes use of PL approxima-
tions that are known to exist only for dimensions n <3.

In addition to Carleson's paper [3] already mentioned, Carleson's method has
been used in [a] and [l] to obtain some results in Lipschitz topology, such as the
Lipschitz annulus conjecturö and the Lipschitz hauptvermutung for n<3. lt fol-
lows also from Theorem2.4 of Yäisälä [14] that if a Lipschitz embedding of s into
R2 can be extended to a Lipschitz embedding of 12, then there is also an extension
which is PL in int 12 and a Lipschitz embedding.

6. Theorem A was one of the open problems of Luukkainen-Väisälä [6, Sec-
tion 9]. In the final chapter we also give a negative answer to a problem of [6, Sec-
tion 91, by showing that there is a LIP arc ,I, in RB which is locally TOp flat but
not locally LIP flat. we also propose a new conjecture relating to this problem.

In Section 17 we discuss the quasiconformal case. We show that the arc ,Io

is not even locally quasiconformally flat and formulate some conjectures concerning
quasiconformal flatness.
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7. We recall the notion of flatness which is used in the final chapter. Let Ac R"

and let f: A*R" be an embedding. We say thatf is topologicallyflat if f can be

extended to an embedding of a neighbourhood of Ain N into Ä'. (If lcÅt with
k-n, we regard I also as a subset of Å'.) lf x(A, f is locally topologicallyflat at

x provided x has a neighbourhood Vin,4 such that flZ is topologically flat.lf f
is a Lipschitz embedding, the definitions of Lipschitz fiatness and local Lipschitz

flatness are sirnilar. Finally, if JcR' is a (Lipschitz) arc, the meaning of "./ is

(Lipschitz) flat" and ""I is locally (Lipschitz) flat" is clear.

8. I am indebted to J. Väisälä and J. Luukkainen for close reading of the manu-

script, which resulted in many corrections and improvements. It was J. Luukkainen
who insisted that every inaccuracy had to be removed. For instance, he made me

aware of the need for condition (M) in Lemma 3A.

Added after the completion of this paper. Some time ago I found that one can

prove a variant of Theorem A by aid of Riemann's mapping theorem and the Beur-

ling-Ahlfors extension of a quasisymmetric map. This proof is much shorter. See

"Extension of quasisymmetric and Lipschitz embeddings of the real line into the
plane", to appear in these Annals.

Proofs of Theorems A and B

9. Lemma I is the variant of Moise's lemma needed (cf. [3, Lemma p. 441

and [14, Lemma2.2]).

Let J:l-1,2), J':l-2,3f andlet lr:fi-l, ll for i(2. In the following,
families of maps are topologizedby means of the topology of uniform convergence.

In Lemma 1 (a) and (c) 3 is a compact family of embeddings "I*lRz and in (b) g'
is a compact family of embeddings J'-R2. It is assumed that e>0 is given such

that it satisfies conditions (i)-(iii) below. (U"(r) it the open ball with radius e and

center z.)

(i) u"(f(x))au"(f0)):0 if x<0, y>t for f(frvF'.

(ii) Let (Ir:(Jy,":l)*r,,U"(f(x)). Then, if f€.gvg', UN-"f has

exactly two components Clrand C] such that f(Ir)cclCl, i:1,2. If f<g,f'<g'
and f(x)--f'(x-l) or f(x):f'(x1-l) for x(J, then C'r, t:1,2, intersects only

one of the components Clr, and C27,.

(iii) Let f€gvg', and let g: ^S*lR2 be q continuous map such that, when Cl

and C2, are as in (i1),

s((lix 1) C u,(ftt)), g(t- l)x /') c u,(/(0)),
g(I'Xtl)) c Cj', g(I'X{-1}). C}", where t',t"({1,2}.
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Then f(l l2)+g(,S) and g turns round f(l 12) t " - t' times (i.e.,

- (t" - t') 2ni,

where S has the natural orientation).

Note that in (ii) there may be more than two components but not more than
two of them come close to f(Ir), and that (iii) fixes the notation Cl, and C2, for the
components (C) is the "left" side and C2, is the "right" side). It is easy to see that
there is eo=0 such that (i)-(iii) is satisfied for 0=e<eo. For instance, in (ii) we

can reason as follows. Since embeddings of arcs in rRz are flat, it follows easily that
for every f(gvg' thereis sr=0 such that U,,,r\m/ has two such components

Cl and C|. But now / has a neighbourhood 0ll in fi (or in fi') such that
Uy,,"rp\im,f',f'(41, has also two such components' The result follows by com-

pactness. Similarly, (iii) follows by flatness and by compactness.

In Lemma I we need only conditions (i) and (ii). Condition (iii) is needed later
for Theorem B in Lemmas 28 and 3B.

Lemma 1. (a) We cqn express F as a union 9:4v...v90, where each

9i is compact, and find PL embeddings Sl, -..,gto: Ir*112, t:1,2, such that if
fc%i, t:1,2,
(a) gigr) c Cj,

llgi(x)-/(x)ll -e for x€L,
gi?)af(J) : g'

(b) There is e'>0, e' =e, depending only on e and fr', with the following prop-
erties. Assume that we haue expressed 9' as a union fr':4'v...v%oi, of compact

sets and that there arePL embeddings h!,...,h1,: Iovlr*p?, t:1,2, such that for
euery f(fi', t:1,2,

ffn) hi(o), hi!)€ci,
llhi@)-f(x)ll = e' fo, x(Iov Iz, and

htQov Ir) nf (J') : fi.

Then we can express euery 9r' as a union 4' :%iv...vTri. of compact sets and find
PL embeddings htil, ...,h!rn.: J*Rz, t:1,2, extending ht, such that for eoery f€Fir,
t:l,2,

llh',i(x)-/(x)ll < e for xQJ, ond
lfil(J) ^f 

(J') - A.

can express g os a union g-%r,"u... u1': , where each 1" is compoct,

embeddings gt, ...> g1,,: A-fzX {t l}tt2}X It*Rz such that tf fe 1",
si!,l)e C; ond sll, - l)€Cr',

llg,(x, y)-f (x)ll = e fo, (*, y)(.A,

s{A) ^f 
(J) : fi.

I ttt@ @)-f (ttz))) ds k)

(p)

(c) We

and find PL

(v)
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Note. For TheoremA we need only (a) and (b); for TheoremB we need also
(c) which is an analogue of (a) used in the proof of Theorem B to turn around the
endpoints of the image of the interval 11. There is also an analogue for (b) in this
case but we can arrange the proof of Theorem B in such a way that it is not needed.

Proof of (a). Let f€.9. Since embeddings of intervals into ,R2 are flat, there
is a homeomorphism F: Rz-Rz extendingl Since we can approximate homeo-
morphisms of 2-manifolds by PL homeomorphisms (apply Moise [7, Theorem 3
of Section 6l to f'lÄ,\,r with a suitable e: Å\,I*Å+), we can assume that F
is PL outside "I. Now there is u*0 such that the maps g!: Ir*Rz, St@):
F(*, (-l)'u), t:1, 2, satisfy (a) with s't:s'y. Clearly, there is also a neighbourhood
0?l otf in fr such that (a) is satisfied for every f'EclQt with gtfg:, and f-f'.
Let A:{(4t,g',gz): a?tcF open, g1 and gz PL embeddings å*R2 such that (a)
is satisfied for every fea qt with gf*g';. We have shown that if feg, there is
(%,Br,g2)(l such that f(07/. Therefore (a) is true by compactness.

Proof of (b). Bycompactnessof 3' wecanfind E=0,e<e, suchthatif x,y€J'
and f€F', then llf@)-f1)ll<2e implies "f(lx,y))cu"t2(f@)). Repeating this
argument, we can find e'>0, 4{=E, such that if x,yeJ' and f(g', then

llf@)-fO)ll<2e' implies f(lx,y1)cUr1a(f(x)). Clearly, e'depends only on e and
3', and we show that (b) is true with this e'.

First we note that if f<g', C:CI, t:1,2, x(1, and y,z?U",(f(x))oC,
y*2, we can join y and z by a PL arcin Uu(f(x))nc. To see this, let yz bethe
line segment joining y and z. Then yzcU",(f(x)), and if yzaf(J'):fi. there is
nothing more to be proved. Otherwise, let y', z'(yz be the points such that yy'n
f(J'):{y'} and zz'nf(J'):{z'}. Then lly'-z'll<2e', implying that the dia-
meter of the subarc of f(J') with endpoints y' and z' is less than El2. Now, as in
the proof of (a), let ,F be an extension of f to a homeomorphism of -R2 onto R2 such
that F is PL outside,I'. Since y and z are on the same side of/(/') (i.e. in C), it is
easy to see, using the map F, that there is a PL arc Jy,cC^UE(f@)) joining y and, z.
The arc ,I* consists of a subsegment of !!', of a subsegment of zz' and of a PL
arc close to a subarc of f(J').

Wefix now i=k',t:1,2, andchoose f€q'.Then åJ(0)€C:C\. LetF: Rz-Rz
be an extension of/to a homeomorphism of .R2 as above. Then, for some u*0,
the map gj: Ir*112, St7@):F(x,z), defines a PL embedding lr*fi2\/("r') such
that llgtf(x)-f(x)ll=e', S'r!)nh'{hvlr):0, and that S'fg)cc. The definition of
e implies also that we can assume that if llf(x)-gtf(y)ll=28, x,y€\, then
d1(lx,l1)cu,p(f@)). (To see this, note that actually there is er>2E such that
s€F' ard Ils(x)-sO)ll =e, imply s(lx, y1)cu",r(t@)).)

We consider the points Si(0) and ht(O). They are both in %,(/(O))nC. There-
fore there is a PL arc Jo in Ur(f(O))nc joining rl(0) and åi(0). Then "Io has a
subarc,rj such tl\at 4agl!rl:{gi(x)} and \nht(I):{h',(y)\, x(1, and yQIo.

Therefore there is a PL arc "If, consisting of a subarc f, of fi, of an arc ,I, close to
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sl(0, xD and of an arc,I, close to hl1(ll,0l), such that J'{ngtrgr):{gi(o)} and
J'{aht(I):{ri(0)}. We claim that J'{cU"(f(o))ac. It is clear that JrcU"(f(o))aC.
Since llgi(x)-/(0))=e, si([0, xDc U"p(fQ)). Therefore if "r, is sufficiently close to

sl([0, x]), also trcU"(f(0))nC, which we now assume. Since llhi0)-f(0)ll<a
and llhij)-f0)ll=e'=E, we have llf(0)-f(y)ll=28, and thereforc f(ly,0l)c
U"p(f@)), implying that hifiy, oDc u"(/(o)). Consequently, we can assume that
,I, is so close to h',(1y,0)) that Jucfd(/(O))nC. Since Jt:JrvJrw./r, we have

J'{cu"(f(o))ac.
In the same manner, since htt\)<C, we can find a PL arc J'i in U"(f(l))nc

such that J'{ a gj(l,) : { dy[)} and J'i 
^ 

httg ) : {hi!} By (i), since ll hi@) - f (x)ll = e' 
= 

e,

J'{vJ'ivhi1nvlr)vgtr(Ir) is a PL arc, and it is easy to see that there is a parametriza-
tion of it as a map ht: J-Rz in such a way that ålextends hiand satisfies (B) if
we set init ntr:n1. It is clear that ($ is also satisfied with the substitutions /*/'
and htr*ht, when /'€cl 4l , wherc olt issome neighbourhood of f in fi'. Thrs
implies (b) by compactness; see the proof of (a).

Proof of (c) is similar to the proof of (a) and is omitted.

10. In this section we construct, given an Z-embedding f: S*rRz, PL embed-

dings f,: S*Rz, n>-1, such that the sequence"4,(^S), n>1, has a subsequence

which consists of concentric PL circles converging towards /(S) in the bounded
component of R'z\/(S) (cf. Fig. l).

We denote by Ko, h>0, the triangulation of S such that an interval sc,S
is a l-simplex of K, if and only if s has length 2-h and the endpoints of s are of the
form (il2h, jl2\, i, j<2.

Lemma 24. Let f: S-Rz be an L-embedding and let C be the bounded com-

ponent o/ rR'z\/(S). Then there are PL embeddings fn: StC, n>1, such that

(Al) ll f"@)-f@)ll-.2-"14L for x(5, and

(Az) ll f,(x) -f(l)ll= åz-' for x, y( S,

where ö=0 depends only on L. In sddition we haoe:

(A3) The similarity classes of the maps fnlsvs', when s and s' are two adjacent
l-simplexes of Kn, n=1, are in afinite set depending only on L.

(44) The similarity classes of the triangles (possibly degenerated) with uertices f,(u),
f,(a) and f,*r(u), when u and u are the endpoints of a l-simplex of Kn, nZl, are in

a fi.nite set depending only on L.

Finally,

llf@)-f(u)ll(As) tl2 =

wheneuer u and u ore the endpoints

<)

llf 
"@) -f ,(u)ll

of a I-simplex of Kn, n>1.

55
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For Theorem B, we need a slightly different version of Lemma 2A. lf f' : Ir * R2

is the given embedding, we encirclelf'Q) by concentric PL circles. Let

,Si: å(ItX[-2-",2-n11

and let K-, be the triangulation of Sj that has 4(2*l) l-simplexes of length 2-,.

Lemma 28. Let f': Ir*ft2 beanL-embedding.Thenthereare ö'=0, depend-
ing only on L, and PL embeddings f : .Sj-,R,\f'(Ir), n3l, such that, if x(IL,
each fi turns round f'(x) once in the positiue direction, and that

(B1)

(82)

Also
These ore

(B5)

llfi,@, y)-f' (x)ll < 2-nl4L for (x, y)€,S;, and

llfl@)-f'$)ll > ö'2-,, x€S;,y€Ir.

(43) and (A4) remoin true if we substitute in them f"*fl and Kn*fr,.
referred to as (B3) ond (84). Finally,

llf (u) -f (u)ll
tl2 =

<.)

llfl@, t)-f;(u, t)ll

whmeuer (u, t) and Qs, t) are the endpoints of a l-simplex of Rn, n=1.

Proof. We prove Lemma2A and after it make some remarks concerning the
proof of Lemma 28, which is essentially similar.

In order to apply Lemma 1 we must take care of the corners of the square-form
circle §; for this we make the following observation. Let r: l-1,31*,S be defined
by x*(x, -l) if lxl=l, x+(1, x-2) it lx-21=1. Then r is a l2-embedding,
and, consequently, if g: ,S*,R2 is an Zr-embedding, gr is a 1D,Lr-embedding. Let
the family ? inLemma I (a) be the family of 1/lt-embeddings g: J:l-1,2f*112
such that lls(0)ll= 1, and let the family 9' in Lemma I (b) be the family ot l/2t-
embeddings g': J':l-2,3]*Ä2 such that llS'(0)ll=1. They are compact families.
There is a number e>0, r= ll4L, that satisfles conditions (i)-(iifl of Section 9
with respect to this I and 9'. Let e'>0, e'=el2Lz, be the number obtained in
Lemma 1 (b) with this e and fi'. Then e and e' are functions of Z only. We require
e=ll4L primarily for the following reason. If g: RrRz is a 1/2t-embedding and
g': R*Rz is an e-approximation of g (not necessarily an embedding), then for any
x, y€R, lx-yl=|, we have g'(x)+s'(y).

Next we define {1L-embeddings f": J*R2 and, f!: J'-Rz for every l-sim-
plex s of Kn, n>1. For every such s, let sr, §2, §s:s, so and su be the five l-sim-
plexes of § such that s,*, is adjacent to s; and that the sequence (sr, sr, rr,,sn, su)

is coherently oriented with respect to ,S. Let p": J'* S be deflned by the require-
ments that p"lli-l,il is affine and that p,(li-l, il):s;..2. We choose a point
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a"€Å2 with coordinates (il2', jl2'), i, j€2, such that ll"f(p"(0))-a"ll=l12'. Let
q"; R?*Rz bethemap x-2n(x-a"). Thenwedefine f,: J*Rz and f! : J'*R2 by

(2) f!:Q,ofop,,
f , : f :lJ.

Then each f"and f! is a 1/2L-embedding. Also ll,{(0)ll:ll,((0)ll=1. It follows
that {f": s(K,, n>l}c9 and {f!: s(K,, n>l}cF'. Since e<lf4L, q;l(U1")a
.f(S\(srusrusn)):g for s€Kn, n >1. Therefore Cj-,:Cjr, t:1,2, ard q,r(C],)cC
or q;L(Cj")cC for all s(Kn, n>1. We can assume s;aQi,):q-1(Cj)cc.

We definefr in two stages. We divide the set of l-simplexes of K, into two dis-
joint sets Ki andKl in such a way that if s and s' are both in Ki or in Ki, then.r^§' : 0

if sls'. We can, for instance, set that the simplex with endpoints (1, l) and
(l-2-",1) is in fj. This defines Ki and K/ uniquely. We define f,first in vK',
and then in vK{.

First we express fr as attnion 9:firv...v%o and find themaps g'r,...,gL,
t:1,2, as in Lemma 1(a), where we have substituted e*e'. Now we can define

(3)

(4)

f*lt-q;'oglop"-lls when s€K;,

where i -i (s) is chosen in such a way that -f,€,F,. Since q;'(C\")CC,
f"(s) c C for all s€K; .

To extend fn to v K: we must find the families gL' , ..., g;, and maps

of Lemma 1 (b). If i, j=k and o,b€.22, we let \iou be the subset of g'
gQfliou if and only if

we have

htl, ..., h'k,

for which

the map gl : J * R2, x t+ S@+ 1) - a, is in 1, and
themap g;: J * R2, xr-+ S@-1) -b, is in gj.

Note that only a firtite number of the families 4ial0. The non-empty families

%iot we label as 4',...,Fo|, where to each quadruple (i,i,a,b)+(i',i',a',b')
correspond distinct indices even if 9i iot: fii. yo,r. . It is easy to see that fr' : frt'w . . .

v%i, and that each fii is compact. The maps h',i lovlrtftz, r=k', we define by
setting, if 9!:9iio6,

ht(x): gl@-l)-la, x(Iz, and
hi@): gt@+t)+b, x(Io.

We show that ht,, r=k', t<{1,2}, are PL embeddings lovlr*pz that satisfy
the conditions (/o) of Lemma I (b). Clearly, every hi is PL and it is an embedding

since htlI,, i:0,2, is an embedding, since every g(f is a 1/1t-embedding, and
since e'=e<114L. Thelasttwoconditionsof(po)followfromthefacttheembeddings
gf satisfy similar conditions (cf. («) of Lemma 1 (a)) and that maps f'(3' are
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fZL-embeddings. We show that hi9),hi\)(Cto for all S€fri. We consider only
hi@) and fix g€4'. We show that there is an arc ,ro in Q(s(O)) joining g(0) and

åi(0) with Joag(J'):{g(O)}. Let s be the line segment joining åi(0) and g(0).

Let s'cs be the subsegment with one endpoint åi(0) and such that s'ng(J'):
{g(x)}, x(J'. Then lx-Ol=1/1Le' since llg(.x)-g(0)ll<e'. This implies that
g([x,0])c%",",(s(O))cU,(s(o)) since 2L2e'<e. Therefore the required arc Jo

exists. Since ,ro\{g(O)}cr4(g(o))\s(r'), we have .ro\{g(O)}ccto, where r':l
or t':2. We also must have ,I.\{g(0)}cC'n,+b, where g':gu if 4':4i,0.
Since ål(0)e Cr+b, r':/. This proves that hip){t. Therefore we can express

each fl'as a union 4':4iu...vTj. and, find PL embeddings hlrasin Lemma 1

(b). Note that the constructions in this and the preceding paragraph depend only
on L.

Now we are ready to define f, in vKi. Let s€Ki and let s' and s"QK', be

the l-simplexes adjacent to §, r' coming after s. Then by Q), if xQJ,

fo@): q",ofop",(x): 2(f (p"(x+ l))-ay)
: q 

"of 
o p 

"(x 
* l) - 2" (a,, - a 

"):u)l@),
where a:2(a",-a")€22.In the same manner one hasl(,:(fl)|, where b:2n(a,,- a").

Let i:i(s') and j:ib') be the numbers used in (3) to define f,ls' and fols".
Then f!(\jat:4t for some r=ft'. Now, we have by (3), if xQIr,

Substituting this

(5)

We choose now

gl(x) : Qs,ofno ps,(x) - Q,ofnop,(x* l) - a, and

g)(x) : Q,of,op,(x- 1) -b.
into the equati on for hl, we have

h! : Q"of ,op,llov Ir.

some r' such that f: eqi, and deflne, if s€K:,

(6) ,f,ls: q;Loh!,,op;tls.

Equations (3) and (6) define a PL map f,: S*C. We show that it has the desired
properties.

We first show thatf, satisfles (Al). We have llh!r(x)-f!@)ll<.t=lf4L<l for
x(l-1,21, s€Klj, when r and r'are as in (6). Therefore

llf "&) -f (x)ll = ,-" l4L for x€,S,

and we have (41). To show (42), let

e : inf {llhl.(x) - g0)ll : x, y( J, c(fij, i = k', j =- ni, t : l, 2} > o

which depends only on Z. Then, if x,y(sus' for some adjacent s,s'€K,,

(7)

llf"@) -f (v)l[ = Qlz"
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If this is not true for x, y(^S, then llx-y|l>2-', and thus

ll f 
"@) -f (Dll = l1 f @) * f (y) 

| I - Il "f, 
(x) -/(x) | I

= 2-" 1 L _2-" 
f 4L : (3 I 4L)2-"

by (7), and (A2) is true if ä:min (314L, q), which depends only on Z.
We then show thatf is an embedding. If x, y€5, x*y, are in the same simplex

of K, or in adjacent simplexes of Kn,it is clear by the definition of f,that f"(x)*f"(y).
If this is not the case, llx-yll=2-n, and we have

ll f 
"@) - f "(y)ll = ll f @) - f (y) 

| I - | I "f, 
(x) -/(x) I I - ll I "(y) - f 0)lt,

= 2-"f L-2-n-2f L-z-n-rlL = 0,

by (7).Thereforef, is an embedding.
It follows directly from the definition of the maps f, that the similarity classes

of maps of the form (A3) are in a flnite set depending only on -L. For representatives
of the similarity classes we can choose maps of the form httill},2) and hij[-l,l)
if sns' is not a corner of ,S.

We then consider (A4). If s(Kn,n>1, is a l-simplex,let q" be as in (2). The
endpoints of s we denote by a" and o". The definition of f,in (3) and (6) implies
that there is a finite set XcR2 depending only on Z such that q"(f,(u"))eX and
q"(f"(o"))<X forall s(Kn,n>1. Letthen s'6K,*1,,s'c,§, bea l-simplex. Consider
the triple

(q"U,(u")), q"U,(u")), q"(L*{u"))): (q"(L@")), q"(f,(u)), q"oqJloq,,(fo*r(ay))).

we have q"c qjl (x):xl2-2 (a"-ao). since 2" (a"-as)(2212 and ll2'(a"-a,,)ll=
L*2, the maps q"oq;l vary in a finite set depending only on L. Since also
qt(f,*r(u,,)) (X, this implies that triples of the above form are in a finite set depend-
ing only on Z, provinC (A4).

Finally, (A5) follows bV (7).

The proof of Lemma 28 is similar. Let Ln be the triangulation of 11

whose l-simplexes are l,o:l-2-o,2-1 and 1,,:li2-', (i+l)2-1, -2<i= -2,l=i<2-1. Let Li:{I,r: i:-2n, -2"+2,..., -2, 1,3,...,2-l) and let lii:
{Inr: i: -2+1, -2+3,..., -3,0,2,4,...,2-2}. Then L'"vLi is the set of
l-simplexes of Ln, and if s, s'(L, are adjacent, then one of them is in L!,, the other
in Li. As above, we first define fi in (vL!,)X{+2-')v{!.1\xl-2-,,2-"1 and
then in the remaining points. Let fr:{g: g is a 4l-embedding ,I*Ä2 with
llg(0)ll= t) and .7' : {g: g is a  L-embedding J'*Rz with llg(0)ll= l}. Choose
e:e(L)=lll6L that satisfles conditions (i)-(iiD of Section 9 with this g and
9'; e'<ell6L2 of Lemma I (b) is defined with this e and fi'. Now we can define

f l(uzi\(I, ,-r vln,r -r))X {+2-'} using Lemma 1 (a) and, fil(l,,_r vln,r-_)X
{t2-'}u{tl}v.|-2-",2-1 using Lemmal(c), like f,lvKi above. Then we
extend this to (vL:)x{t2-"} as in the proof of Lemma 2A. This is done in such
a way thatfi@,2-) is on the "left" side and,fi@, -2-,) on the..right" side of

59
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f'(It) for x€[-1+2*",1-2-1. (If x is near the endpoints of 11, these relations
are not defined.) There are only two points to take care of. The interval 1,0:
l-2-n,2-'l has twice the length of the other intervals 1,, and,fjl(l,,_, *rvlo,r _r)X
{+2-"\ cannot be defined exactly as above since there is only one l-simplex to
the left of lo,_r.*1(resp. to the right of lo,r^-2). Therefore we must perform some

compression and decompression first for I,o and then for fn,_z-rrand 1,,r"*r. (That
iswhy,F and 9'are families of 4l-embeddings.)

We show that the maps fi turn round points of f '(It) once in the positive direc-
tion; other conditions of Lemma 2B are proved like the similar conditions of Lemma
2A. It suffices to show that fi turns round /'(0) once in the positive direction, i.e.

2ni,

where Si has the natural orientation. Let S1:Al'z"o:01-2-",2-12, S::0([2-', 1]X

l-2-",2-"1), S;:a(-1, -2-")xl-2-",2-"1).We extend fl to ,SluS,+uS; by
the requirement that fl{+2-"\Xl-2-",2-'l is affine. Since f is an l-embedding,
(B1) implies f'(O){fi$ivS}uS,-). Therefore the above integral can be written
in the form

where Sl, ^S,- and ,S,+ have the natural orientation. But, using again (Bl) and the
factthatf is an Z-embedding, we can deform filsl and f:ls; to constant mappings
in Ä'z\{/'(0)}. Therefore in the above sum the last two integrals vanish and we have

But now (iii) of Section 9 implies that the right side integral equals 2ni. To see this,
transform f'lln,-rvl,ovl,, and f,lSl as in (2) to get g1: J-Rz and 92: ,S*,Rz,
like the maps/and g of condition (iii) in Section 9. Then the construction offl and
(iii) of Section 9 guarantee that the right side integral equals 2ni, proving our claim.

ll. In the preceding section we showed that, given an Z-embedding f: ,S*Ä2,
there are PL embeddings f,:,S*R2, i=1, such that l(S)cC, where C is the

bounded component of ,R'z\/(^S). In this section we show that there is m:m(L)=O
such that f-(S),fr*(S),... is a sequence of concentric PL circles converging to

/(S) (cf. the right side of Fig. l) and that there are crossbars which divide the right
side of Fig. I into a countable family of PL disks. We take care that the number
of similarity classes of these PL disks is finite. The construction is illustrated by
Fig. l. Note that we have deleted some crossbars for clarity and that, in view of
(Al), the PL circlesl.(S) are closer to/(S) than shown in Fig. l.

Let mQN be a number, depending only on Z, such that 2-^ <ä, where ä is
as in (A2), and that the following holds:

I trl(f;(,)-f ' (o))) 
'tfl@) -

S;

[ - {+ [+ {,s; §fl sJ s;

I trtu;k)-f'(0))) dfie) - I trt(f;(,)-f'(0))) dfle).
s; sl
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{M) Let g be an L-embedding S*l?2 and let g' and g" be embeddings S-R2
,such that

lle'(x)-s(x)ll = 2-* and lls"@)-e@)ll = z--
for x(,s. {/ g'(S)ng"(S):0, then either g'(s),r inside g"(S) or uice uersa (i.e.
g'(§) is in the bounded component o/ Ä2\g"(§) or uice oersa).

To see the existence of m:m(L) satisfying (M) fix the l-embedding g and a
point x inside g(S). Then there is er=O such that if g': ,S*lR2 is an embedding
with ll g-S'll =-es, x is inside g'(S), too. Now the existence of z follows from
this and from the compactness of the set of Z-embeddings å : .S*Å2 with h(1, l):0.

Letf;, i>1, be the maps constructed in Lemma 2A and consider the sequence

f^(S),fr^(S), ... of PL circles, which are inside/(S). Let i=i. By (Al) and (A2),

fi-(S)afr-(S):9. These imply that we can even connect fi-(S) to /(S) by a
line segment not touching f,^(S). This and (M) imply that f,*(S) is inside fi^6).
Therefore in the sequence f^(S),fr.(,S), ... every circle is inside the next one and
all are inside/(,S).

Now we define

6t

(8)

and let

(e)

(10)

A - ,y, 
(r -2-""),s

gt: A * Rz be deflned by

gr((l-2-'*)r) :f,*(x), x€,s, i> 1.

Then g, is a PL embedding. Let, if a(,S and n>1, s,(a) be the line segment with
endpoints (l -2-"*)a and (1 -2-{n+t)u)a and let

(11)

Then G divides int 12 into a countable number of quadrilaterals. We denote these
by Qo, Qr, ... and assume that Qo is the square with boundary (l -2--),S and that
the quadrilaterals contained in a ring with boundary (l-2'i*),Sv(1-2-('+1)m)S
are successively in the sequence Q,,Qr,.... For every Q, we choose a homeo-
morphism qi: Iz*Q. that is simplicial in a triangulation of 12 with the (four)
vertices (+1, +l). Notice that we can express 4, in the form

qlx) : pr(1,x), x€12, I = 0,

where 1.,:diamQ, and pr; ),rlz*9.,i>0, is a PL K-homeomorphism for some
K> I not depending on Z nor on f, Thus, although the set of the similarity classes

of the quadrilaterals Q; is not flnite, the distortion from square-form cannot be
arbitrary.

Lemma 34. Let m:m(L)(N satisfu (M) and assume 2-*=ö, where ö is
as in (42), let A be defined by (8) and let gr: A-Rz be the embedding defined in
(9), where the maps fn are as in Lemma 2A. Then, if G is as in (lO), g, con be extended
to a PL embedding 92: G-Rz in such a way that the sirnilarity classes of the maps
g2o(q,l,S), i>0, are in afinite set depending only on L.
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In Lemma 3B we let yyr':m'(L)€lf be a
ä' is as in (82), and that:

(M') Conditions (i)-(iii) of Section 9 are

an L-embedding, ll S(0)ll = 1) and g': {g : g:

number such that 2-*' 4ö', where

true when t,-2-*', gF - {St g: J---Rz

J'*R2 on L-embedding, ll s(0)ll = l).

(x,y)€S{*,,i=1.

and t - * I, si,@) be the line seg-

(tt * 2-@+L)m'1a, t2-(n*t)*'). Let

Let fi: si:å(ltx[-2-i,2-11*112, i=1, be the maps constructed in Lemma
28. Let Co:fi*(Si*,) and let i<j. ,By (Bl) and (B2), CiaC,:$. Since we can
join C, andf'(Ir) by a line segment not touching Ciand since/'(Il) is inside both
Ci and Ci, wa must have that C1 is inside C,. Therefore in the sequence

f*,(S^,),f;^,(S;^,),... every circle is inside the preceding one and/'(/1) is inside
all of them.

Let Sf :å11 - | - 2-", | +2-"lXL- 2-", 2-'f), n > 1. Define

(8') O' : yrtr^,
Let gi: A'-Rz be the map

gi (( | + 2-'^') x, r) : f {^,(x, y),

Then gi is a PL embedding. Let, if a(IL, n>l
ment with endpoints ((t + 2-nm') a, t2-"*') and

(g')

(10')

(11',)

G' : A' v(r{rl @): a(_IL 
^2f2"*', t - *I, n= 1}).

Then G' divides I-l-2-*', 1+2-*jxl-2-m', )-n'l\11 into a countable number
of quadrilaterals, denoted Q;, Qi, ... . As above, we can find PL homeomorphisms
qi: 12*21 and pi: (diam Q)I'-Qi such that

q{ (x) - p;((diam Q) *), x€.12 and i = 0,

that qi is simplicial in a triangulation of 12 with vertices (tl, tl) and that pi,
i =0, is a K'-homeomorphism, where K' does not depend on L nor on f '.

Lemma 3B.. Let m':m'(L) satisfy (M') and assume 2-^'=ö', where ö'is
as in (82),let A' be defined by (8') qnd let g'r: A'*Rz be the embedding defined in
(9'), where the maps fi are as in Lemma 2B.. Then if G' is as in (lO'), gi can be extended
to aPL embedding gi: G'-Rz in such away that the similarity classes of the maps

Si"@ils), i>0, are in a finite set depending only on L.

Proof. We consider first Lemma 3A. Let R, be the component of

Rr\(r. (S) u,(,*rr* (,S))

with boundary f"-(S)vfr,+r1.(§). Then Å,n/(S):0.
If x(S, let r,(x) be the line segment joining .f,*(x) and frn*rr*(x). By (Al)

r,(x)c U"(f(*)), where e :2-"*14L. Thus

r,(x) trn}) - 0 if x, y€S and llx-yll > z-nm
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Therefore the line segments r,(a), a€Sn2-nm22, form a disjoint family for fixed r.
Let ri@) be a subsegment of r,(a) such that int r'*(a)c.R,, ri@)nf" (S): {f,-(x,")}
and ri@)nfro+ry.(S): {fa*r,»*(y,)}, where xno and !n.€5. Now we can find a
PL arc ri@) joinng f,*(a) and fo*rt*(a) such that intri{a)cR,. This can be
constructed from a subsegment of ri@) and from PL arcs close to the arcs fn^(xnoa)
and fro*rr*1y,oa), where xnsa and ynoa are certain subarcs of § with endpoints

{x,o,q} and {yno, a}. Since llf,*(x,,)-f(a)ll<2-"^14L, llf@")-f(a)ll<2-"^l4L*
llf" (x,")-f(x,,)ll<.2-'ml2L by (A1). Therefore llx,,-all=2-"-f2, since / is an
Z-embedding. Hence xnoais a line segment and, if b(Sa2-"*22, bla, we have

llx-åll>2-"^f2 for every x(xooa, implying that

llf"-(x)-f(b)ll = ll/(x)-/(b)ll-llf"*(x)-/(x)ll = r-"^f2L*r-"nf 4L - r-nmf 4r .

Therefore f, (x,oa)nr'n(b):0 and, similarly, f6*s^(In,a)ari(b):9, and, since
xroar\xrub:yroanynub:fi, we can assume that, for every ndl, the family

{ri@): a(S^2-nmzz} is a disjoint family of PL arcs.

Now we can extend gL to a PL embedding gzi G-Rz in such a way that
sz(s,(a)):ri(a) for a€Sn2-n^22. It follows from (A4) that the similarity classes of
the quadrilaterals with vertices {f"-(u), f,-(u), f<n+u-(u), f6*ry*(u)}, n > 1, where
u and u are the endpoints of a l-simplex of J(,., are in a f,nite set depending only
on Z. Using this and (A3) we can easily see that we can choose the arcs r'i@) and the
extension of g, to the segments s,(a) in such a way that the similarity classes of the
maps g2o(q,ls) are in a finite set depending only on Z.

Now we turn to the proof of Lemma 38. For n> I let s,p:lk2-"^' , (k + l)2-"-'1,

-2n^'<k=2n*'. Let Uo*:u {U2-^ ,-^,1+r(f'(*)): x€s4}\m/'. Then in view of
(M') and (ii) of Section 9, Un*.t -2"m'<.k<2n*' -1, has exactly two components
Cloand Cjo such that f'(s,o)cclC!*, t:1,2. Let the notation Cloand C2*be as

in (iii) of Section 9,i.e. Clo is on the "left" side of f'. Let Jn:l-l+2-"*', | -2-"*'1
and let

Uo:v{Ur-"^,-^,,na(f'(x)): xe ,r,\im f' : v{(1,*: -2n*' <. k - 2^'-l\.
Let Ct:v{Clo: -2^'<k<2o^'-l}, t:1,2. Then by (ii) of Section 9, Cf, and
Cl are the two components of U, such that f'(J,)cclCl, t:1,2. By (Bl)
f:*,(0, t2-"*')€cl-rvcl-, if n=l (we can join fi^,@, t2-"^') by a path s to
f'(J,-r) with int sc U,-r). Therefore either fl*,(J,-rK{t2-"^'})cCl_, or

f,i^,U,-rx{t2-"^'})ccl-1, t:t1. we show that

(12) fl^,U"-rX{2-" 'l) c Cl_, and fl-,Q,-rX{-2-"-'\) c Ci_r.

Let S,^,:2(lO,2-<"-r»-'rXl-2-n ',2-"^'l) and extend f:^,to So-,vSi-, by
the requirement that the maps 7i^,1{x)Xl-2-nm',2-nm'1, r€ {0, z-(n-t)m'}, are affine.
Then f'(2-{"'1)^'|z)qimf;n, and one sees exactly as in the last paragraph of Sec-

tion l0 that both f:*,ls:^, and, fi*,1S,-, turn around f'72-t"-rt^' ,2) tr[' times,
N'€.2, when ^Si., and S,., both have the natural orientation. But for f;^,ls:*,
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we know by assumption that N':1. Now we can apply (iii) of Section 9 (after

blowing up the mapsf 'll-2-(n-7)m' ,z-o-r)m' .21andfi*,lS-., in such a way that they

become maps ,I*Rz and S*R2) and get the result that fi-,@,2-"*')€Cl-r,rc
Cl-, and -f,i^,(*, -2-"*')€C3-r.ocCl-1, where x:2-1n-r)m'f2. This implies (12).

Lel a€.Jnt and let rt(a), t:Ll, be the line segment with endpoints

fl-,@,r2-nn{1 and.fri*rr^,(a,t2-@+t)*'r. By (B1) r}(a)cur-"^,p"(f'(a)) and by

(12) fi^,@,2-"-')(Cl_t Therefore there is a maximal half-open or closed sub-

interval t!(a)cCl,-, of rnl(a) such that one endpoint of r)(a) isfi*,@,2-" '), the

other endpoint lies on f'(11) or is fri*rr^,(a,2-("+1)*'1. Since /'(11) is inside

få*t^,(Si,*rl-,), which is insidef,,,(Si^,), we can find in both cases a subsegment

ri'{aicc}-, 
.of 

r}(a) such that intrl'@)a(fl^,(s',^,)uf(,*rr*,(sä*rr.,)):0,, that
one endpoin tlies on fi*,lSj.,) and the other on fri*r1*,(Si,+r)-,). One defines ri-'@)c
C,2-, similarly.

Now one defines the PL arcs ri' (a), t: I l, for a(2-"^' ZaJ,-, exactly as the

arcs ri@) earlier if n=1. We must define ri'(a) also if n:l and a(2-^'Zalt
or if n=l and a(2-"*'Za(ItV,,-r). lf n:1, by (B3) and (B4) the similarity
classes of the maps gilS[,vs';^, are in a finite set depending only on Lwhenf'
varies in the set of l-embeddings 11*Å2. Therefore since the PL annulus theorem

is true for n:2, and since fj andfi*are oriented similarly, we can choose separately

for each similarity class the arcs ri'(a).The situation is similar if a E)-nn'/a(ItV,-J.
For instance,let a>0. We can assume that the similarity classes of the PL Jordan

curves

ri'(l -2*<"-r)^'1y1 
y"-L (l -2-(n-L)u')

v f:*, (1 - 2- \n - r)m', llX {+ 2- "*' } u {t } X t - 2 nm', 2- nm' 
f)

v .f 
, 

<n * »*, (ll - 2- @-r)n" 1l x { t 2- @ +l)m',\ u { l} x [ - 2 - (r*r)m' 
; 2-o +»mf)

areina finite set depending only on Z when /varies. Therefore the same reasoning

applies as in the case n:1.
As in the proof of Lemma 3A we conclude, by aid of (B3) and (B4), that we

can choose the arcs ri'@) and the extension S:i in such a way that the similarity
classes of the maps slo(qils) are in a finite set depending only on Z.

12. After the preceding lemmata the proof of Theorems A and B is not difficult.

Let C be the bounded component of R'z\f(S). We first construct an embedding

F': Iz*cl C extending f and after that extend F' to R2 as required in Theorem A.

Let gr: G-R2 be the embedding constructed in Lemma 3A. Let hi: S*Rz, i<M,
be PL embeddings, depending only on I, such that every gro(g;l,S),7>0, is

similar to some å;. Since the PL Schönflies theorem is true for n:2, each h,

can be extended to a PL embedding Hi: I2*R2. We set now

F'IQ, - Aio Hnro Qi 
r, i = 0, and

f"l,s - f .

(1 3)
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In (13) Aiis a similarity of R2 and ni<M; these are determined in such a way that
F'extends gr. Actually in (13) we should write ,B,oq|l instead of qrt, where -8,

is a similarity I2 -12. But we can redefine 4; in such a way that Bi:id.
Clearly, .F'is a bijection lz-clC. We will show:

lo. For euery i>0, F'lQ, is an Lr-embedding,where Lr=L depends only on L.
20. F' is Lr-Lipschitz.
30. F'-L is Lr-Lipschitz.

These imply that F'is an Zr-embedding.
To prove 10 we write (13) in the form

F'(x) : A{H,,(^;t p, '(x)), xeQi,

where (cf. (11), Section ll) ),,:6ivy19. and. pi:7,1,*Q. is a PL K-homco-
morphism and Kdoes not depend on anything. Now, consider the maps tii )iI?-R2,
i >0, deflned by

ri(x) : AlH,,Q,t tx)), x().r12,

which are sirrtrilar to the maps Hi, i=M. It suffices to show that the maps r,, i >0,
are Zo-embeddings, where Io depends only on Z. By (A5) we can find two different
corner points x,y(Qia(l-2-")§ for some n -1, such that

t12 = llr,(p;t(x))-r;(nt,ryl)ll/llr(r -2-")-, x)-.f((r _z-,1-, r)ll = 2

since r;(p; '(x):f(l -2-\-'x) and r,(p;1(i):f"(1t-z-")-,y). Now, there is
an absolute constant c>l such that llc=(t-2-')-'llx-ylllllptr(.,/-)-p;r(y)ll=c.
Since/is an Z-embedding, it follows that

t I 2cL < 
I 1,, (p;' (r) -,, (pr. 0))l |/ lln;, (i - n;, U)ll = 2r r.

Since the set of maps Hi, i=M, depends only on Z, this implies that we can find
such Zo. This proves 10.

Since int 12 is convex, it follows from 10 that F'lint 12 is Lr-Lipschitz. This
fact and (41) imply that F' is continuous also on the boundary s of 12. It follows
that F'is Zr-Lipschitz. That is, we have 20.

To prove 3o, we choose two points x, y(F'(12), x*y. Let s be the line segment
joi;ing x and y.If scF(int12), we have by lo

(14) llF' -'(x) - F' -'(y)ll = Lrllx- yll

since we can divide s into subintervals whose endpoints lie in some set F'(e),
i>0. Notice that (14) is also valid if x or y(F'(s) but the interior points of s are
in .F'(int I2). lf s$.F'(int I2), let s, be the subinterval of s such that x€s, and
that s,nF(,S) is an endpoint x'of s,(:xif x(.E'(,S)). Define similarty s, and. y'.
Then (14) is true for the pairs (x, x'), (y,y') and also for (x',y') since F'lS{ is
an l-embedding. This implies 3o.
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We then extend F' to R2. We can assume that F' is orientation preserving.

Replacing/by the map x+f(x)-F'(0) we can assume that f"(0):0. Let rbea
PL reflection ot cl(/2Ltlzr.112z)-112) onto itself such that rl,S:id, r(/lrrs):
(lLtr)-'S. Then r is an Zr-embedding, L2:L2(L). Consider the LrL-embedding
rof: S*R?. Let C'be the bounded component of iR'zV(,f(S)). Then we apply
the above construction and find an Zr-embedding F": I\*clC' extending rol
where I, depends only on Z. It is also orientation preserving. Since r(/(S))c
cl (y'Zzr1'\({1h1-'t'.1, (llt)-'t'.cl c'. Therefore there is a number k:k(L)
such that F'((l-2-\1'z):{0, .F "(0)}. Now, by the construction of .F", the simi-
larityclassesofthemaps F"l(l-2-t'-r)l2areinafinitesetdependingonlyonZ,when
/ varies in the set of Z-embeddings ^S*Å2. Therefore there is a number c: c(L)=O
and a PL map G: Rz*Rz such that GoF"lclz:id,GlR'z\F"(t-Z-e-1;f1:i6
and that GoF" is an In-embedding, where Zn depends only on Z. Theferore, if
we replace F" by GoF" and L, by Zn we can assume F"lclz:id.

Let r' be an extension of r to a PL reflection of cl (c-t I2\c1') (we assume

that c<Ul/rL). Then r'is an lu-embedding, where Zu depends only on I. We

define .E: R2*Å2 by

F(x) -
if x€ 12,

or'(x) if x(_c-U2\1r2,
x€,R2\ c-t I2;

this is a homeomorphism extending I Obviously, every one of the maps .F 112,

Flc-l/zyz and ,FlJR'z\-lIz is an lu-embedding, where Zu:1,' depends only

on Z. But then this is true also for fl concluding the proof of Theorem A.

The proof of Theorem B is similar to the above proof. Replacing Lemma 3A by

Lemma 38, (Al) by (Bl) and (A5) by (85) we get an embedding

Fi:l-l-2-*" l+2-*'lxl-2-n" 2-n1: A*, * R2.

The biggest difference is that, if Qi is a quadrilateral with two sides of the from

{L(t +Z-"^'))X|-Z-"-' ,2-'*'1, we cannot conclude directly by (85) that F'ilQ"
is an Li(L)-embedding. However, Qi is adjacent to a quadrilateral Qli, of which we

can show as above that F':lQ'i is an Li(L)-embedding. Now we can use this fact
in place of (B5) to conclude that FilQi is an Llr(L)-embedding. Now, ifl' varies

in the set of Z-embeddings 11*R2, the similarity classes of the maps F'il\A^, vary
in a finite set depending only on Z. Therefore we can extend F'i to a homeomorphism
F" of Rz in such a way that ,F"'lcl (R2\l *,) is a PL Lipschitz embedding and that
the similarity classes of the maps F"lcl (Å\ -,) are in a finite set depending only

on Z. Choose Qi with Qin\A*,*0. Then F"lQi is a max (ti&), Li@\-em'
bedding, implying that F"lcl (A\l-,) is an Lir(L)-embedding. It follows that F"
is an Li@)-embedding. Otherwise we omit the proof of Theorem B.

I p'@)

li"i;
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As a final remark we note that the above proof shows that there is a triangula-
tion K of Å2\§ depending only on I, such that the extension .F' of / constructed

above has the property that ,FlÄ'z\^S is simplicial with respect to K. A similar

remark can be made on Theorem B.

Counter-examples and conjectures

13. We consider now the situation in lQ3, where we can think of generaliza-

tions of Theorems A and B both to embeddings of arcs and spheres. Since there

are Lipschitz embeddings of arcs and spheres in RB that are not topologically flat
(see Luukkainen-Väisälä [6, 3.10]), direct generalizations of TheoremsA and B
cannot be true. However, one could conjecture that if such an embedding is top-
ologically flat, then it must be also Lipschitz flat (cf. Problem 4 of {6,9.11). We show

that this conjecture is not true for Lipschitz embeddings of arcs or spheres into R3.

Finally, we modify this conjecture in such a way that it is reasonable to expect that
this conjecture (in rRa) could be proved like the results of this paper, by aid of known
result of three-dimensional PL topology.

14. Our construction of a Lipschitz arc which is topologically flat but not
locally Lipschitz flat is based on the Fox-Artin arc. Fig. 2 (ignore the three auxilirry
broken lines) consists of two Fox-Artin arcs that are joined in the bad poi;rt in
such a way that the second arc traces backwards, from the bad point to the end,

the movements of the first arc from the beginning to the bad point. We denote

this arc by -I. Then ,I is not locally topologically flat at the bad point. We can assume

that there is a Lipschitz homeomorphism f: IL*J. Next, we form the arcs Jn,

n>0, from "Iby replacing a neighbourhood (in.D of the bad point by a line seg-

ment. These line segments are the broken lines of Fig. 2. There are homeomorphisms

fn: Ir*Jn such that 1-f as n--, trLdthatf andf,, n>0, are Z-homeomor-
phisms for some L>1. ln addiiion, each J, is topologically flat.

Using the arcs Jn we form the arc "Io of Fig. 3. We take a line segment, remove
from it subsegments converging to an interior point X, and in place of the removed
line segments insert arcs similar to the arcs Jn, n>1. We can do this i;r such a
way that we obtain a Lipschitz arc, parametrized by a Lipschitz embedding
g: 11*Å3 such that for each z>0 there are similari-iesgi and gi of Rs withl:
giogo(gillr). The arc "ro is topologically flat. To see this, cover the inserted arcs

by disjoint 3-balls Br, i= 1, and map the portion of ,Io inside .B; onto a li;re seg-

ment by a homeomorphism of B, that flxes åB;. These maps, extended by the iJentity
outside the balls .8,, define together a homeomorphism of RB which maps "Io onto a
line segment.

But "Io cannot be locally Lipschitz flat at X. Suppose it were. Then let U be a
neighbourhood of Xin RB and let F: U.r(O)*U be a Lipschitz homeomorphism
with r((-,1,l)):(lals, where l.>0. Using this r' and the si:nilari:ies g', and,



68 Pr,rra, Turlq.

Figure 2

Figure 3

S'; *" can defi.ne Lipschitz embeddings .(,: cl {Zr(0)*Ä3 with F,(It):f,Qt):
giogogi(IL) if B,ctl. We can assume that there is L'=l such that each F,
is an Z'-embedding. Therefore {F,: BocU} is a normal family, and there is a
subsequence FnG), Fn(z),... such that there is a uniform limit lim,*- Fo(i):F'.
But we must have F'(IL):f(IL):"I, since F,<»(I'):.f,tLy(11). This implies that J
is locally Lipschitz flat at all interior points. This is impossible since ,I is not even

locally topologically flat at the bad point of Fig.2.
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A succinct description of the situation is that ..Io contains an infinitesimal Fox-
Artin arc at X which is inlisible in a low-power TOP microscope but becomes

visible in a high-resolution LIP microscope.

15. We can apply the same principle to construct a Lipschitz embedding of
the sphere 52 into .RB which is topologically flat but not locally Lipschitz flat. First
we take a Fox-Artin arc (i.e. the first half of the arc in Fig. 2) and fatten it in such

a way that we obtain a tube converging to the bad point. In this manner we get a
Lipschitz embedding /: Sznn1-aa which is not locally topologically flat at
(0,0, l). Again, by cutting the tube a little before the bad point and by pasting a

disk in place of it, we obtain a sequence fi: ^S2nR'+*.R9, n=0, of embeddings
such that eachf, is topologically flat and that tim"*-f"--f. In addition, we may
assume that/and thef's are l-embeddings for some I> L Now, we consider the

sphere S2c,R3. We remove from ,Sz a disjoint family Ei, i>1, of disks converging
towards a point X. In place of the disks d we attach deformed disks similar to
j(S'zn,R|). We can do this in such a way that we obtain a Lipschitz embeddirrg

of ,S2 into R3 which is topologically flat but not locally Lipschitz flat at the point X.
Details are as above.

16. These counter-examples show that topological flatness does not imply Lip-
schitz flatness. We now propose an additional condition and conjecture that this
condition would guarantee Lipschitz flatness.

Let f: I":11X...X11 *R' be an Z-embedding. Let x(int I" and let r>0
satisfy U,(x)cI'- Define f,,: Ur(O)*Å' by

f,,(y) : f (x)+(f (x+ry)-f (x)Yr

for y(tl(O). Then eachf,* is an Z-embedding.

Let Ucintl' be open and let
gr(U):{f,*: x(U and U,(x)cU}

be the set of Lipschitz germs of f in U. Now we can state the following

Conjecture l. The mapf is locally Lipschitzflat qt x€intIn if and only if
x has a neighbourhood U in irfi Io such that cl 4@) contains only topologically

flat germs.

In this conjecture closure is taken in the topology of uniform convergence of
maps U,(O)*R'. Then each element of cl9y(U) is an l-embedding, but the

corstruction of the counter-examples in the preceding sections was based on the

fact that elements of cl 9r(U) need not be topologically flat even if elements of
9r@) arc.lf f is locally Lipschitz flatat x, then x has such a neighbourhood t/.
Note that if n:l and m:2, the assumptions of the conjecture are always sat-

isfied, since there are only topologically flat embeddings of arcs into R2.

Naturally, we can also formulate this conjecture for boundary points x(01".
Now 9y (U) contains also maps Ur(0)nR! *R- and, if x is a corner point, other
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kinds of maps, too. With this modification, it is expected that the above conjecture

is true also for boundary points. Since often local flatness implies global flatness

(cf. Gauld-Väisälä [4]), the global form of the conjecture is that every point has

such a neighbourhood U.

If n:l or n:2 and m:3, it seems likely that the conjecture can be proved
like the results of this paper, only with much more labour.

17. The quasiconformal case. We constructed in Sections 14 and 15 an arc and

a sphere in l?3 that are topologically flat but not locally Lipschitz flat. Moreover,
they are not even locally quasiconformally flat. This can be shown by a normal
family argument as in Section 14. Note that, if the map F: Ur(0)*-iqB of Sec-

tion 14 were quasiconformal, then the maps d can be assumed for large n to be

oftheform F,:F',lcl I/t(O), wherethemaps Fi areK-quasiconformalembeddings

%(0)*Ät for some K>1. Since F'"(It):f"(It):Jn, we have Fi({-l, l}): {a, b},

where a andb are the endpoints of "I. By [13, 19.4 (l)] (set ar:-) and 113,20.5)

{Fi: B,cU} is a normal family. Therefore there are a subsequenc" Fk.,, Firt, ...
and a map F': Ur(0)tÄ3 such that Fir.r*f' uniformly on compact subsets.

Since {a,å}cim F', F' cannot be a constant. Then by [13, 2l.l and 37.4] F'
must be a quasiconformal homeomorphism. This would imply again that the arc "I
of Fig. 2 is locally quasiconformally flat at all points, which is impossible.

Conjecture I in the preceding section can be formulated also in the context

of quasiconformal mappings. Let f: R"*R" be an embedding and let

/{r:lafB: a a similarity of Å', B a similarity of Ä',
,xffr(O) : 0, and ufB(1,0,..., 0) : (1, 0, ..., 0))

be the set of quasiconformal germs of f. Now we make

Conj ectu re 2. There is a quasiconformal homeomorphism F of R* with FIR':f
if and only ,f cl trr is compact and contains only topologically flat germs.

The closure is in the set of all embeddings R" -R^ in the topology of uniform
convergence on compact sets. If/is of this form it is easy to see that the conditions
of Conjecture 2 are satisfied. Also, it is possible to give a local form of the conjecture,

as in the preceding section.

Note that one can characterize quasisymmetric and quasiconformal self-maps

of R", n>1, by aid of compact families of mappings as we have done above; cf.

Beurling-Ahlfors [2, Chapter 2] and Gehring [5, Section 32].

One can also define that an embedding f: R"*R" is quasisymmetric if there

is ä=l such that if x,y,z(Rn,llx-zll=lly-zll,thenllf(x)-f(z)ll=Hllf(y)-f(z)ll.
These mappings have compactness properties similar to the corresponding proper-
ties of quasiconformal mappings; cf . U2} One can show ([2]) that an embedding

f: R" *R- is quasisymmetric if and only if the family of quasiconformal germs of/
is contained in a compact family of embeddings.
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We could have adapted the above proof with minor modifications to the quasi-

conformal case, i.e., we could have given the necessary and sufficient conditions
for the existence of a quasiconformal homeomorphism of -R2 extending a given

embedding of the arc 11 or the sphere ,S into Ä2. This could have been done, for
instance, by aid of the notion of a quasisymmetric embedding given above. How-
ever, in view of the results of Ahlfors [1], Rickman [9, 10] and Reed [8], this is unnec-

essary.

In the quasiconformal case we can also give an

Let G* be the family of non-empty closed subsets

is the spherical metric of R*,

Q(X,Y): sup {d,(*,Y), d,(X,Y): x€X, Y€.Y}.

Then q is a metric in G* and we topologize 6* by means of this metric. For CeG*
let 9":{a(C): a a similarity of .R' and {0, l\ca(C)}c?^. Now we can for-
mulate

Conjecture 3. Let CcP be a subset such that Cu{-} is homeomorphic

to the n-sphere Sn, n=m. Then C:f(R") for some quasiconformal homeomorphism

f of R if and only if cl fr" is compact and euery element of cl fr" is of the form g(R')

for some homeomorphism g of R*.

It is easy to see that if C:f(R'), /a quasiconformal homeomorphism of Å',
fr" has the properties mentioned in the above conjecture.
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