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oN TWO-DTMENSTONAL QUASTCONFORMAL GROUPS

PEKKA TUKIA

A quasiconformal group is a group G of homeomorphisms of some open set
u in tt,e n-ball s' such that each element of G is K-quasiconformal for some fixed
K> l. If we wish to specify K and o, we say that G is a K-quasiconformal group acting
in U (or of U).

One can obtain quasiconformal groups as follows. Let VcS" be open and
let G be a group of conformal homeomorphisms of v. (rf n>3 and, zis connected,
G is a group of Möbius transformations.) Let f: v*u be quasiconformal. Then
fcf-'is a quasiconformal group. It bas been proposed by F. Gehring that all
quasiconformal groups are of this form. we offer here a proof of this conjecture
for quasiconformal groups acting in open subsets of the Riemann sphere.

Kuusalo [3, Theorem 3 p. 2l) has proved the following theorem, which is
related to ours. Let ^s be a quasiconformal 2-manifold. Then ,S has a conformal
structure which is compatible with the quasiconformal structure of ^S. Quasicon-
formal groups have been considered also in Gehring-Palka l2l. The theory of
quasiconformal mappings we need can be found in Lehto-Virtanen [4].

I wish to thank Kari Hag who read the manuscript and made many valuable
remarks. In particular, she informed me of Maskit's work [5, 6], and the corollary
was suggested by her.

Theorem. Let G be a K-quasiconformal group acting in an open subset (Jc52.
Then there is a K-quasiconformal homeomorphism h: (J*VcSz such that hGh-r
is a group of conformal self-maps of v and that h is the restriction of a K-quasicon-
formal homeomorphism f of sz whose complex dilatation pr. uanishes a.e. outside (J.

A consequence of the above theorem is that if the fundamental group of a plane
domain U is non-cyclic and G is a quasiconformal group af U, G is discrete, i.e.
there are no sequences l6\{id}, i=0, such that lim,*_l:i6. This follows
since the group of conformal self-maps of a plane domain with non-cyclic funda-
mental group is discrete. This is in turn a consequence of the theory of Fuchsian
groups, since in this case the universal cover of u is the open unit disk and the
limit set of the cover translation group contains more than two points.

If Yc,Sz is open and connected, there is a conformal homeomorphism
g: V*V'cSz such that gag-L is a Möbius transformation of v'whenever a is
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a conformal self-map of v, cf . Maskit [5, 6]; if z is simply connected, this follows by

Riemann's mapping theorem. Therefore we have the following

Corollary. Let G and U be as in the aboue theorem and assume that U is con-

nected. Then there is a K-quasiconformal homeomorphism h': U*U'cSz such that

h'Gh'-r is a group of Möbius transformations of U'.

Note that in general we cannot extend h' to a quasiconformal homeomorphism

of ,S2.

Proof of the theorem. We find the conditions for p guaranteeing that if a quasi-

conformal map/of 
^S2 

has the complex dilatation p, then f is a solution of our prob-

lem. Clearly, we must set

pl^s'\u - 0.

of f"g"(f-'lf(U)) for g€G is equivalent to the validity of

ltr@) : ltts(x)

when g€.G is fixed. Computing Fyu in terms of h and ps we

Pr(x) : ltu(x) * Fr(g (r)) e-ziargs'(x)

| * ps(x) lrr(g (r)) e-ziarss2(x)

a.e. in U. If we can flnd a measurable function p : Sz * C with llpll - 
< (K- ly(/<+ I )

that satisfies (l) and (3) for U-q a.e. in Uif g(G is given, then any homeomor-

phic solution f of the equation

(4) Fr: lt a.e' in 
^S2

of our problem.
in the form

pr@) : Tn@)Qrr(g(r))) : p.rs(r),

r n@) @) - -ps(x) *-e-\i u'e s'@) z 
- ? 

* 6--'

- -l + pn@) e-ziarsoz@) z - b *az

with a:gz(x), b:g,(x). Thus, whenever defined (i.e. a.e. in U for fixed g), Tn@)

is a conformal self-map of the open unit disk D and is an isometry in the hyper-

bolic metric.
Consider the sets M*:{1tn(x): s€G}, x€U. By (5) we have

ru@)(M o1) : {rn@)(uu,(s(r)))' s' €G}
: {pn,n(x): g'(G}: {1tn,@): g'€G\
:M*

for almost all x(U and every g€G if G is countable. Let us assume that there is

a map X*P(X)(D that assigns a point to every non-empty subset XcD which

is bounded in the hyperbolic metric in such a way that P(s(X):g(P(x) for



On two-dimensional quasiconformal groups 75

every isometry g of D. Then, for countable G, the map p(x): P(M*) satisfies (3)
(with trrr:p) a.e. in U for all gQG.

Now we construct such a map P. Let XcD be bounded, X*0. Then there
is a unique closed hyperbolic disk D(x, r) with center x and radius r>0 with the
properties

(i) D(x, r)=X, and
(ii) if D(y, r')=X, ylx, then r'>r.

To see the existence of D(x, r) we can reason as follows. In any case there is a smallest
r>0 such that if y'>r, therei" y(O with D(/, r'))X. Next it is easy to see

that there is at least one x(D such that D(x, r)= X. Assume that there is another
point y(D with D(y, r)=X. Let w be one of the two points of |D(x, r)a\D(f r)
and let z be the orthogonal projection (in hyperbolic geometry) of rl onto the hyper-
bolic line through x and y. Consider the hyperbolic triangle with vertices x, z and w.

It has a right angle at z and therefore it is geometrically evident that d(x,w):
r>d(z,w). This follows also from the relation coshr:cosh d(x,z)coshd(z,w)
(cf. e.g. Coxeter []). But then, if r':d(z,w), r'-r and D(z,r')=D(x,r)a
D(y,r)>X. This proves the uniqueness of x. Therefore, if we let P(X) be the
center of the smallest closed hyperbolic disk containing X, we have a well-defined
map P. Clearly, P(s6)):s@(X) for any isometry g of D.It has also the follow-
ing property.

(A) If XcD(y, s), X+0, then P(X)(D(y, s).

To see the validity of (§, note first that r=s if r is the radius of the smallest disk
containing X. Then, it d(1, P (X))> s, we can reason as above and flnd D (2, r') > X
with r'=r. Therefore d(y, P(X))=s.

Now we assume for a momentthat G is countable, G:{go, gr, ...}. We define
a map trr by setting

Pl^§\U: 0, and

tt(x): P(M) if x(U,
which defines p a.e. in ,S2. Since M"cD(O,r), where r:d(O,(K-l)1(X+1)), for
almost all x(U, llpll-=(/(-1y(K+1) by (A). We have already observed that
p satisfies (3) (with pr:pt) a.e. in U for all C(G. It is also measurable. To see

this, let
p,(x):P({pn,@): i=n\)

if x(U and n>0. Then pn is a.e. defined and it is certainly measurable. Since

p(x):lim,**p,(x) a.e. in t/, also p is measurable. Therefore, if G is countable,
there is a map f satisfying the conditions of the theorem.

If G is not countable, there is always a countable subgroup G'cG which is
dense in the topology of uniform convergence in compact sets. This follows from
the separability of the set of all continuous maps U * Sz in this topology (they

can be approximated by PL maps). Then if/satisfies the conditions of the theorem
with respect to G', it satisfies them also with respect to G.
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Remarks. An earlier version of this note proved the preceding theorem under

the assumptions that G was discrete and that the limit set of G had zero measure.

Unable to find a solution of (3) with F: Fy for general G, I had to make these

assumptions on which one can find a measurable fundamental set § for G, and set

plS:0, determining ,u completely. After it was written, F. W. Gehring called my
attention to the paper [7] by Sullivan. This paper contains a sketch of the proof
of the above theorem. Sullivan's proof differs from ours in the definition of p; we

have deflned p(x):P(M*) whereas Sullivan sets p(x):B(M,), where B(X) is the

barycenter of the convex hull of X, both in hyperbolic geometry. Since Sullivan
gives only the barest outline of the proof and since he makes also some

unnecessary assumptions (e.g. G was assumed to be discrete), the publication of
this little note is perhaps justified.

The use of the map P seems also to have some slight advantages over the use

of the map B. No doubt one can take barycenters also in hyperbolic geometry,

but to prove the existence of B(X) is non-trivial, whereas this proof is very simple

for P(X). Secondly, X*P(X) is continuous but X-.B(X) is not. That is, if
e>0 is given, there is ä :ä (e)=0 such that if X, Y c D are non-empty and bounded

and if
a(x,Y): suP {d(x, Y), d(X, Y): x(X, !(Y} = ö,

then d(P (X), P ( f) = e ; cf. (8) below. To see the discontinuity of 3, 1s1 1: {0, l}
and A,: {0, 1, 1 *iln}cC, z>0. Then if we take the barycenter of the convex hull
in the euclidean geometry of C, we have B(A):ll2 but limn*- B(A,):213.

Appendix l. It is easy to derive an estimate for d(P(X), P(f) in terms of
Q(X, Y), and since we will need it in a future paper, we do it here. A consequence

of this estimate is that if the family {pn: seG\ is equicontinuous, trrrl[/ is continu-
ous. Let X,YcD be non-empty and bounded. Let d:Q(X,Y), x:P(X),
y:P(Y), and let D(x,r)=X and D(y,r'):I be the smallest disks containing
X and Y, respectively. Then D(x,r*d)=Y, implying r'<r*d. Similarly,
D(y, r'ld)=X, and therefore D(y, r*2d):X. We consider the disks D(x, r)=X
and D(y, r*2d)=X. If 2d<d(x, y)<2r*2d, \D(x, r)n|D(y, r+2d)+0. We

assumenowthat d(x,y)=2d. Since D(x, r*d)= f, bV(A) y(D(x,r-ld), imply-
ing d(x,y)<r+d. Therefore there is a point w(|D(x,r)a|D(y,r+2d). Con-
sider the hyperbolic triangle f with vertices x, y and w. Let z be the orthogonal
projection (in hyperbolic geometry) of w onto the hyperbolic line through x and y.lf
z(7, z * x, then r " : d(2, w) <r, and D (2, r ") = D (x, r)nD (y, r *2d):X, contra-

dicting the definition of r. Therefore z(7\{x}, i.e., E>nf2 when E is the angle

of T at x. Now, keep r and rl2d fixed and decrease E from n to nl2. Then d(x, y)
increases from2d to a value d'withcosh(r12d):cosh rcoshd'. This is geometri-

cally evident and follows also from the relation cosh (rl2d):cosh r cosh d(x, y) -
sinh r sinh d(x,y) cos E; cf. []. It follows

(6) cosh d(x, y) = cosh (r *2d)lcosh r.
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This is also valid if d(x, y)=2d, which case we have excluded from the above

discussion.
We have cosh (r * 2d) f cosh r : ezd (l -y s-z{' + za), 

I ( + e- 21 
= r'd. Thus, substitut-

ing back into (6) d:Q(X,Y), x:P(X) and y:P(Y), we get

(7) d(P(X),f(f))= arcosh eze6'Y) :Log(eza6'v)+(eae$'Y)-l)uz)

<.2p(X,Y)+loeZ.

lf p(X, Y) is small, we get a Hölder-type inequality. Let c:e2a6'Y)-1. Then

log (eze{x'tt + (e4eG,D l)Uz) : 1ot (t + c + 1Zc 
.yc2)U2) : 1eg (l 1- c' t' 1s' 

tz * (2 a c1t tz11 <
tttz(cu2 +(2*c)1/2). If q(X, Y)=R, c==2ezR q(X, I). We have then by (7)

(8) d(P(X), P(r» = C(R)q(X,Y)LI2 if p(X,Y) = R,

where C(R) :2eR ((Re'R)uz+ (l +lRe2Å)u2).

Note that P(X) exists and that (6), (7), (8) and (A) are valid also if X and Y
are non-empty bounded subsets of the n-dimensional hyperbolic space.

Appendix 2. (Added December 1979.) lt is possible to give a sharper estimate

for the dilatation of the map f of the preceding Theorem. ln fact,

f is K'-quasiconformal where K' : (/K+llK+fK-U/k)l/, < min (Ktt{,, YzK).

This is an immediate consequence of the following lemma. Note that always

0:pi6(z)(M, and that d(0,(K-l)/(K+l)):logK when the hyperbolic metric
of D is given by 2ldzll$-lzl2) in which the formulae of hyperbolic trigonometry
are valid.

Lemma. Let XcD(O, r), r>0, and assume that 0(X. Then the center of the

smallest hyperbolic disk containing X satisfies

d(0, P(X)) = §(t): ar cosh (cosh r)t/2.

We haDe the following relations for the function B: rl2<BQ)=rl/2 if r>-0,

BQ)=rl2*los {1 and lim,*- (B@-rlz):toe/1.
Proof. Let D(*, O) be the smallest hyperbolic disk containing X. We can assume

that x€R, x>0. It also suffices to consider the case d(0, x)=rl2; by (A) always

x(D(O,r). Then

(9) rl2<d(O,x)= p=1',

since O€D(x, q) and in any case q<r. Thus åD(x, q)nåD(O, r) consists of two
points; let z be one of them. Let w be the orthogonal projection (in hyperbolic
geometry) of z onto ÄnD (:1hs hyperbolic line joining 0 and x). We consider the

following three cases

(oc) w<0; (p) 0<w<x; (y) w>-x.
Let T be the hyperbolic triangle with vertices 0, x and z. ln case (a) the angle of I

at 0>n12. Therefore ll, eq. 12.941cosh g:sssh d(x, z)>cosh d(0, x) cosh d(0, z):
cosh d(0, x) cosh r. This implies q=r which is impossible bV (9). Thus (a) is impos-
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sible. Case (B) cannot occur either, since now D(w, d(w, z))>O(O,r)aD(x, d=X.
This is impossible since the triangle with vertices x, z and w has a right angle at w
and thus d(w, z)<d(x, z): Q.

Thus, if d(0, x)>r12, (y) is the only possibility. Now the angle of T at x>nf2.
This, together with (9), implies cosh r:cosh d(0, z)>cosh d(0, x) cosh d(x, z):
cosh d(0, x) cosh g>coshz d(0, x). Thus d(0, x)=ar cosh (cosh r)u2, proving the
inequality for d(0, P(X)):419, *1.

We then examine the properties of B(r). Differentiating fr(r), we get

§,(,) - -'hl!L Jt* <Up, tl{r)
l/2cosbr | 4(d*e-') \\'r-' 't t - t

if r>0, proving the first inequalities for B. We get the next, since

fr (r) : toe1/@ + e-) 12 + t\d + rl tz - t)
: loe(/ d + 

"-" 
+ 

"r 
tz 

"-rtz) -loC f2

=. log (d tz * e-r tz a 4 tz _ s-, 121 _lo1 12 : r 12 alog 11.

Finally, the above expression for BQ) gives immediately lim,* * (§(r)-rl2):loe/2.
We remark that the function B is best possible in the above lemma. In fact,

let 7 be the triangle with vertices 0, x and y where x, y(0D(0,r) and 7 has equal
angles at x and y. Choose these angles in such a way that if t is the orthogonal projec-
tion of 0 onto the opposite side, we have d(t,O):d(t,x):d(t,y). Then d(0,t):
d(0, P(T)): P(r).
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