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ON THE BOUNDARY BEHAVIOR OF LOCALLY
K-QUASICONFORMAL MAPPINGS IN SPACE

MATTI VUORINEN

1. Introduction

Let B, n=2, be the n-dimensional unit ball in R", let b€dB", and let f: B"~G’
be a quasiconformal mapping. Suppose that b¢E, for all ¢=0, where E,=
{x€B": | f(x)|<e}. This condition means that O belongs to the cluster set C(f, b)
of fat b. Write d,=cap dens (E,, b), where cap dens refers to the lower (conformal)
capacity density (for definitions, cf. Section 2). The conformal capacity density has
been studied e.g. in [6] and [11]. In [20, 5.5] we proved that f has angular limit 0
at b if d,(log (1/e))* "'~ when ¢—0, i.e. if the numbers 6, do not tend “too”
rapidly to 0. An alternative proof was presented in [21]. As it was shown in [20,
Section 5], this result is a quasiconformal counterpart of a theorem of J. L. Doob
[2, Theorem 4] about bounded analytic functions.

The purpose of the present paper is to prove related theorems for locally K-quasi-
conformal mappings. The main result, proved in Section 3, reads as follows. Let
f: B"=~R" be locally K-quasiconformal, let b€0B", and let D be an open cone
in B" with vertex b. Write §,=cap dens (Dn f~'B"(¢), b). If n=3 and C(f,b)C
JfB" and §,"@V(log (1/e))" "'~ when e—0, then f has angular limit O at b.
The proof of this theorem is based on the method used in [21, 4.12] and on an injec-
tivity theorem of Martio, Rickman, and Véisild [10, 2.3], which yields an upper
bound for the maximal multiplicity of a locally K-quasiconformal mapping of B"
in a non-tangential domain, provided that the dimension n=3. Instead of a cone
with a fixed angle, like D above, one may consider in the definition of §, cones with
the central angle increasing towards =#/2 in a tempered way as ¢—0. For details
we refer the reader to Theorem 3.1.

In Section 4 we consider the situation of the above result if the condition
C(f, b)cdfB" is removed. Employing now a different method we prove the follow-
ing theorem. Let f: B"—~R" be locally K-quasiconformal, let b€dB", and let D
be an open cone in B" with vertex b. Suppose that ECD and cap dens (E, b)=0.
If n=3 and f(x) tends to 0 when x approaches b through the set E, then f has angular
limit O at 5. By an example we show that this result is, in a sense, the best possible.
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Finally, in Section 5, we consider a subclass of quasiregular mappings of B”",
n=2, characterized by the property that the maximal multiplicity is uniformly
bounded in each hyperbolic ball with a fixed radius (cf. (5.1)). From the injectivity
theorem [10, 2.3] it follows that locally K-quasiconformal mappings of B", n=3,
have the same property. It is pointed out that the results in Sections 3 and 4 hold
for mappings in this larger class as well. A normality criterion, related to a problem
of W. K. Hayman, is given for functions in the mentioned class.

2. Preliminary results

The notation and terminology will be, in general, as in [20], [21], and [8]. For
definitions and basic properties of quasiconformal and quasiregular mappings we
refer the reader to Véisild’s book [19] and to the papers of Martio, Rickman, and
Viisdla [8], [9], [10]. A mapping f: G—R" is locally K-quasiconformal if there
exists a number K¢[1, ) such that f is K-quasiconformal in a neighborhood of
each point of G. Here GCR" is a domain. A sense-preserving mapping is locally
K-quasiconformal if and only if it is a K-quasiregular local homeomorphism (cf.
[8, p. 14]).

2.1. Notation. If x€R", n=2, and r=>0, then B"(x,r)={yeR": |x—y|<r},
S"Y(x, r)=0B"(x,r), B"(r)=B"(0,r), S"'(r)=S""'(0,r), B"'=B"(l), and
S§"'=8""1(1). For x€R" and r>s5s=0 we write R(x,r, s)=B"(x, )\B"(x, 5)
and R(r,s)=R(0, r,s). The standard unit coordinate vectors are e, ..., e,.

2.2. Path families and their modulus. A path is a continuous nonconstant
mapping y: 4—-A4, ACR", where 4 is an interval on the real axis. The point set
y4 will be denoted by |y|. Given E, F, and G in R", we let 4(E, F; G) be the family
of all paths y: [0, I]-G with y(0)€E and y(1)€F (cf. [19, p. 21]). For the defini-
tion and basic properties of the (n-)modulus M(I") of a path family I' we refer the
reader to Viisild’s book [19, Section 6]. If ucR" and ¢t>r=0 and I is a path
family such that |y| intersects both boundary components of R(u, t, r) for each
y€I', then the following estimate holds ([19, 7.5]):

2.3) M(T) = w,,_l[log 7’]1_".

Here w,_, is the surface area of S"~*. For ECR", x€R", and t=r=0 we abbre-
viate

M,(E, r,x) = M(A(S"*(x, 1), B"(x, r)n E; R")),

M(E, v, x) = M,,(E, 1, X).
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The lower and upper capacity densities of E at x are defined by (cf. [20] and Martio—

Sarvas [11])
cap dens (E, x) = lim ionf M(E, 1, x),

capdens (E, x) = lim sup M(E, r, x).

If E is compact, this definition is equivalent to the one employed in [11], which is
based on the use of n-capacities of condensers (cf. Ziemer [22]). Some sufficient
conditions for cap dens (E, x)=0 were given in [20, Section 2]. See also Martio
[6, 3.1]. From a result of Wallin it follows that there are sets E with cap dens (E, 0)>0
which have Hausdorff dimension zero [20, 2.5 (3)]. For t=>s=>r=>0

_ _ (log(t/r) ]"_1

(24) Mt(Ea r, x) = Ms(Ea r, X) = [W Mt(E’ r, x)'

One can prove (2.4) by making use of a radial quasiconformal mapping which is
identity in B"(r) and maps R(s, r) onto R(¢, r) (cf. [11, 2.7]). Using (2.4) we prove
the following lemma.

2.5. Lemma. cap dens (E, 0)=lim inf,, M(EnB"(r), r, 0).

Proof. Denote by a and b the left and right hand sides of the equality, respec-
tively. Obviously a=b=0. Hence it suffices to prove a=b and we may assume
that a=0. Choose a’€(0,a) and ry€(0,1) in such a way that M(E, r,0)=a
for all r€(0, ry). Fix re(0, ry). For all k=2,3,... we get by (2.4)

M(EnB"(r),r,0) = M, (EnB"(r), r(1—1/k), 0)
= M,,(E, r(1—1/k),0) = di="M(E, r(1—1/k), 0) = d}~"a’,

where d,=log (2/(1—1/k))/log 2. Since d,~1, this implies M(EnB"(r), r,0)=d'.
Hence b=d’. Letting a’—a yields the desired conclusion.

The next lemma was proved by Nakki [15] (cf. also Martio, Rickman, and
Viisdld [10, 3.11]). It will be called here, as in [15], the comparison principle for the
modulus. Throughout the paper we let ¢, denote the positive constant in [19, 10.9],
depending only on #.

2.6. Lemma. Let Fy, F,, and F; be three sets in R" and let I';;=A(F,, F;; R"),
1=i, j=3. If there exist x¢R" and O<a<b such that F,, F;,CB"(x,a) and F,C
R™\B"(x, b), then

M = 37 min { M, MT), ¢, log 2},

2.7. Corollary. Let E;CR" with M(E;, s,0)=0;>0, j=1,2, for some s=0
and let t=3""min {0y, 8,, ¢, log 2}. Choose A>1 such that log .=(t/6w,_,)" @™
and let F;=E;nR(s, s/A), j=1,2. Then M(A(F,, F,; R")=51/6.
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Proof. From the choice of 1 it follows by (2.3) that
M(B"(s/2), s, 0) = t/6,
and hence the proof follows from Lemma 2.6 and the estimates
M(F;,s,0)=0;—1/6 =3"5t/6, j=1,2.

2.8. The hyperbolic metric. The hyperbolic metric ¢ in B" is defined by the ele-
ment of length dg=|dx|/(1—|x|?). If a and b are points in B", then ¢(a, b) denotes
the geodesic distance between a and b corresponding to this element of length. For
be B" and M€(0, =) we let D(b, M) denote the hyperbolic ball {x€B": ¢(b, x)<M}.
Let r,=min {|z—b|: z€dD(b, M)}. By integrating we get

_ (1—=|bP)tanh M
(2:9) " T T |b[tanh M °

This implies that B"(b, tanh M (1—|b|))D (b, M).

In what follows we shall need some properties of normal mappings. We recall
that a mapping f: B"—~R" is said to be normal if for each sequence (%) of conformal
self-mappings of B" there is a subsequence of (foh; ") converging uniformly on
compact subsets of B" (or briefly c-uniformly) towards a limit mapping g: B"->R"
(cf. [19, p. 68], [20, Section 3]). The cluster set of f at bEOB" is the set C(f, b) of
all points »’¢ R™ for which there exists a sequence (x;) in B" with x,—~b and f(x;)~b’.
The next lemma makes use of some ideas of Bagemihl’s and Seidel’s [1, p. 5].

2.10. Lemma. Let f: B"—~R" be a quasiregular mapping, let (b,) be a sequence
in B" with b,—~bcoB" and f(b)—a, and let ME(0, ) and E= D (b, M).
Suppose that a€dfB". If f is normal or if C(f,b)cdfB", then f(x)—~a as x-—b
through the set E.

Proof. It is well known that C(f, b) is a non-empty compact connected set
(cf. [19, 17.1, 17.5 ()]). If C(f, b) consists of one point, there is nothing to prove.
Otherwise C(f, b) is a non-degenerate continuum. If C(f, b)cdfB", it follows
that cap (R"™\fB")=0 in the terminology of [9], and hence fis normal by [9, 3.17].
Hence f'is quasiregular and normal, and it follows from [17, p. 497] that the condi-
tion in [20, 6.3] is satisfied. The proof follows from [20, 6.3].

The assumption «€0dfB" in the above lemma can be replaced by the require-
ment that f~1(x) be finite (cf. [1, p. 5], [20, 6.4]). By considering the behavior of
the function f: B2- B2, f(z)=exp ((z+1)/(z—1)), near z=1 we see that this assump-
tion cannot be dropped. The next example shows that corresponding functions
exist when the dimension n=3.

2.11. Example. We shall slightly modify the example constructed by Martio
and Srebro in [12, 4.1]. Let g: R®> —T be the locally K-quasiconformal auto-
morphic mapping constructed in [12, 4.1], and let A: B®*~R®% be the Md&bius
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transformation /(x)=2(x+e;)|x+e | ~2—e,. Here T is an open solid torus and
the mapping f=goh: B*~T has a continuous extension f: B*\{e;, —e;}—T with
F(0B¥{e;, —e;))COT. By the construction of g, f maps the segment {e;#: —1<¢<1}
onto a closed curve ScT. Fix a, €S, af. By the construction of f there are
increasing sequences (.s), (#,) in (0, 1) with s,<#,<s;,, for all k such that lim s,=1,
f(sge)=ua, f(tye))=P, k=1,2,... and such that o(s.e;, t,e;)<M for all k and
some M¢€(0, ). Thus the conclusion of Lemma 2.10 does not hold for this func-
tion f. Hence the assumption a€dfB" cannot be dropped.

Let f: B"~R" be amapping, y€¢R", and DcR". Then we denote by N(y, f, D)
the number of the points in f~*(y)nD. The maximal multiplicity of fin D is

N(f, D) =sup{N(y,f, D): yeR"}.

The next lemma follows from [10, 2.3].

2.12. Lemma. Let n=3 and K=1. Then there is a constant y(n, K)€(0, 1)
such that if f: B"—~R" is a locally K-quasiconformal mapping, then f is injective in
B'(Y(n, K)). Moreover, for every rc(0,1) there is a number c(n, K, r)€[l, )
depending only on n, K, and r, and a number b(n) depending only on n such that

b(n) ]
¥, K)(1—r)) "

Proof. The first part of the lemma was proved by Martio, Rickman, and Viisila
[10, 2.3]. From the first part it follows that f is injective in BL=B"(x, ¢ (n, K)t),
x€B", when O<t=1—|x| and one may define c(n, K, r) to be the smallest num-
ber of the balls B, needed to cover B"(r). The estimate for c(n, K, r) follows from
known properties of coverings by families of balls (cf. [14, Lemma 3] and [4, p. 197,
Lemma 3.2]).

N(f,B"(n)=c(n, K, r) = [

Note that Lemma 2.12 is false for n=2 (cf. [10, 2.11]).

2.13. Remark. One can improve the upper bound for c¢(n, K, r) by makiag
use of ideas presented in [7, 5.27]. In this way one obtains an estimate of the type
cn, K, r)=A(1—r)""log (2/(1—r)), where 4>0 depends only on n and K, but
we shall not need such an estimate here.

Using Lemma 2.12 we shall now prove an upper bound for the maximal multi-
plicity of a locally K-quasiconformal mapping in a non-tangential domzin of a
particular shape. For bcdB" and ¢€(0,7/2) we let K(b, ) denote the cone
{z€R": (blb—2z)=|b—z| cos ¢}. Here (x|y) is the inner product 37 x,y,.

2.14. Lemma. If n=3, K=1, and ¢@€(0,n/2), then there are constants
a(n, K)=0 and d(n, K, ¢)=0, depending only on the numbers indicated, with the
following properties. Let f: B"—=R" be a locally K-quasiconformal mapping, b€ dB",
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let t€(0,cos @), and let A%(t)=K(b, 9)nR(b, t,t/X) for A=1. Then for iz=2
the following estimates hold:

N(f, A5(1)) = d(n, K, @) log 2,
where
d(n, K, ) = a(n, K) cos~ 2.

Proof. Fix bcOB", ¢€(0, nf2), and €(0, cos ¢). We first consider the case
4=2. By elementary geometry A¢(:)c B"(x, r), where

3t
x= [1_ 4cos<p]b

r= Zt (9tan2 @+ 1)'2

Then N(f, A2(t))=N(f, B"(x,r)) and by Lemma 2.12
N(f, B"(x, 1)) = c(n, K, v,),
v, = r/|b—x| = (sin® @ +(1/9) cos? p)'/2.
Let us now consider the case A=>2. Fix A=2. Define
m =min {ke N: 271 = ¢/} = 2.

Thus 27"=1/A=2""*1=2""2 and hence m=log A/log J2. Using the estimate
obtained in the case 1=2 we get

N(f, A5(0) = ;'"1 N(f, A52=7+11)) = c(n, K, v,) log Aflog J2.

These estimates hold for A=2 as well. Hence for all A=2 we may choose
dn, K, p)=c(n, K, v,)/log V2. Since 1—v,=(4/9) cos® @, the desired estimate with

a(n, K) = (9b(n)/4y (n, K)Y'/log V2
follows from Lemma 2.12.

2.15. Remark. We shall now show by investigating the mapping f of Example
2.11 that the upper bound of Lemma 2.14 is of the correct order of magnitude for
this mapping. By the construction of the automorphic mapping f: B3—~T there
exist a€T and a sequence (x,) in (0, 1) with lim #,=1 such that f(u,e;)=a for
all k=1,2,... and a number M¢€(0, <) such that g(u.e;, 4, 11e)<M for all
k=1,2,.... Fix ¢€(0,n/2). After relabeling if necessary we may assume that
1—u;<cos ¢ and 1—u;<1/2. For A=2 let A9=K(e;, )N R(ey, 1 —uy, (1—u;)/2).
Define

p= min{kEN: Mk+1) = Q(elul, e (1— lzul)]}.



On the boundary behavior of locally K-quasiconformal mappings in space 85

Then N(f, AY)=N(a,f, AS)=p. Since for 0=v<w<lI

1 I+w 1—v
o(erv, ey w) = jlogl—_;'m,

we get the estimates

l—u 1 1 1
g(elul,e1 [1— 7 1)] = 710g(/1——?—,-] = Zlogl

for 1=2, where we have used the fact 1—u;<1/2. Hence if A=2 is large enough,
then p=1, and hence M(p+1)=2Mp, which together with the above estimates
yields

N(f, A9 = 5~ log A.

We have thus shown that the dependence on 2 in the upper bound of Lemma 2.14
is the best possible when ¢ is fixed.

For 0€(0, 7/2) let C(0)={x€R": (x|e,)>]|x| cos 8}. If ACR" we write 4,=
{x€R": x,>0}. Inthe nextlemma we construct a quasiconformal mapping f: R®*~R®
such that f maps the truncated cone C(0)nR(l,s) onto B2 for given 0€(0, x/2)
and s€(0,1) and such that we get an appropriate upper bound for K(f). The
numerical value of this upper bound is probably not the best possible.

2.16. Lemma. Let n=3, 0,60, n/2), and s€(0,1). Then there exists a con-
stant Q(3,0,,5)=1 and a Q(3, 0,, s)-quasiconformal mapping f: R®*~R® which
maps C(0,)nR(1,s) onto B3. Moreover, Q(3,0,,s)=0Q(3, 0,, r) when 0,¢(0, n/2)
and O<s=r<1, and Q@3,0,,5)=03,0,s) when 0<0,=0<n/2 and s€(0,1).

Proof. The proof makes use of some ideas of Gehring and Véisdld [3] (cf.
Lemma 8.2 in [3] and the proof of Lemma 3.4 in Martio—Srebro [13]).

Let (R, ¢, ) be the spherical coordinates in R3, where ¢€[0, 2n) is measured
from the direction of e; to the direction of e, and 6€[0, ] is measured from the
direction of e (cf. [19, 16.4]). Let f;: R*->R® be the mapping defined by f; (o) =0
and

fl(-R’(p’G)___ R9q)si0 if 0§0<90,
20, )’

_ 70 (n—20,) . o
lfl(Ra (P, 9)—[R,(P, 2(7‘5—00)+ 2(7’5—00)], lf 00:0:7!.

Then f; is quasiconformal and maps C(6,) onto R and C(6,)nR(1, s) onto R(1, s),.
It follows from [19, 16.4, 35.1] that

2.17) K(f) = [010—1)2sin-200.
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Let f;: R®*—~R® be the Mobius transformation defined by f,(—ey)=-co, f,(c0)=—e¢y,
and

fo(x) = 2%_—:7?2—%, if x€RN{—e}.
Then f, maps R(1, s), onto {x€R®: x;=0\B, where B=B3((1+5%)e,/(1—s2), 2s/
(1—s?)) and f, B3(s)=B. Let T be the tangent plane of B which contains the x,-axis
and passes through the point e, +(2s/(1—s?)e,€0B. Denote by a the acute angle
between T and e;. Then o =arc tan ((1—s2)/2s). Let (r, @, x,) be the cylindrical
coordinates in R® with the x,-axis as the symmetry axis, where ¢ is measured from
the direction of e,. Let f;: R®>R® be a quasiconformal folding defined by

fy(=)=o and

. T
f3(r9 @, x2)=(r, @, x2)3 if Oé(p < 7—0(”
n+20, T 20,—7 " T P
f(r, (P,xz):[", 7 +—2— 3 ,X2], if ?—as§q)<-2—,
2 2 .
lf3("a @, Xg) = (Vs?QD-I-?n-, xz], if %é ¢ < 2m.

Then f; maps {x€R’: x;=0]\B onto R’\B and it follows from [19, 16.3,
35.1] that

3 (= 2
(2.18) K(fy) = max{(i] , ( + 1] }; o = arc tan

20,
Let f,: R3-R® be the Mobius transformation defined by f;(a)=-s,
a=(14+5)/(1=9)e;, fi()=a, and

x—a . 3 L oa_ 4
+a, if x€RN{a}; ¢ = GoDE

Then f, maps B onto {x€R3: x;>0} in such a way that B, is mapped onto
{x€R%: x;=0}. Let (r, ¢, x,) be the same cylindrical coordinate system as above
and define f;: RB—~R3 by f;(<)=c and

1—s?

fux) = ¢ |

x—al?

. T
(f5(r’ ?, X2)=(T, 2(P> xz), if 0= §D<_2—5
3n o T 3n
!fﬁ(",@axz):(ra';ﬂ‘*‘T,xz], if 7§¢<_2_’
.. 3m
|50 0. %) = (. 0, 30, it S=¢=<2m

Then f; maps fy({x€R%: x;=0\B)={xc R : x;=0} onto R’ and f; is 2°-quasi-
conformal (cf. [19, 16.3, 35.1]). The mapping fe=/;0f,ofsofs0fi: R®*—~R3 is quasi-
conformal with fz(C(6p)nR(1, s))=R% and the assertion follows from this in view
of (2.17) and (2.18).
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2.19. Lemma. Let n=3 and 04,6(0,7/2). Then there exists a constant
0, 0,)=1 depending only on n and 0, such that if 2=2 and 0€[0,, n/2), there
exists a Q(n, 0y)-quasiconformal mapping f: R"~R" with f(C(6)nR(1,1/2))=B".

Proof. Since the constant Q(3, 0, s) of Lemma 2.16 is increasing as a func-
tion of s and decreasing as a function of 6 we may choose Q(3, 0,)=0(3, 0, 1/2).
The proof of the general case n=3 can be carried out by generalization of Lemma
2.16 to the n-dimensional case.

2.20. Remark. Martio and Srebro have studied in [13] the problem of mapping
strictly star shaped domains of R” onto B" by means of bi-lipschitzian quasiconformal
mappings of R". Note that the domains in 2.19 need not be star shaped.

The next lemma is one variant of a symmetry principle for the modulus (cf.
Gehring—Viisild [3, Lemma 3.3] and also [20, 4.3]).

2.21. Lemma. Let D be a domain in R", n=2, and suppose that there exists
a quasiconformal mapping f: R"—~R" with fD=B". If E and F are two subsets of
D, then
M(A(E, F; D)) = M(A(E, F; R")2K(f).

Proof. By quasiconformality and [20, 4.3] we obtain
M(A(E, F; R") = M(A(fE, fF; R")K(f) = M(A(fE, fF; fD))2K(f)
= M(A(E, F; D))2K(f)K(f‘1) = M(A(E, F; D))2K(f)2.
Hereafter we shall use Lemma 2.21 when D is a truncated cone as in
Lemma 2.19.

3. The main result

In[20, 5.5, 5.6] we proved theorems about quasiconformal mappings of B", n =2,
which are analogous to a theorem of J. L. Doob [2, Theorem 4] regarding angular
limits of bounded analytic functions. Using the results of Section 2, we shall now
prove a related theorem for locally K-quasiconformal mappings of B", n=3. As
will be pointed out in Section 5, the same proof works in the case of somewhat more
general mappings as well.

3.1. Theorem. Let f: B"—~R" be locally K-quasiconformal, let b€OB", and let
C(f,b)cOfB". For =0 let ¢€(0,n/2), E,=K(b,p)nf*B"(), and &=
cap dens (E,, b). Moreover, let @, be decreasing and d, increasing. If n=3 and

. 1 n—1
lim sup cos® @, 6 (=1 [log ?) = oo,

then f has angular limit O at b.
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Proof. Suppose that this is not the case. Then there is ¢,€(0, 7/2) and a
sequence (by) in K(b, pg)nB" with b,—~b, f(b,)~>B0. Fix r,€(0,1) such that
BER™B"(2ry). Since b cK(b, p;) and b,—b there is an integer k; such that
1 —|by|>1b,—b| (cos ¢y)/2 for k=k,. Since C(f, b)cdfB" there is by Lemma 2.10
an integer ko=k, such that fD(b,, 1)CR™\B"(r,) for k=k,. If A is a proper
subset of B" and r>0, we abbreviate A(r)=B"(b,r)nA. Let E=K(b, p5)n
(Ukzik, Db, 1)). By (2.9) B"(by, (tanh 1)(1—|b))) =D (b, 1) for all k and by
[20, 1.10] or [19, 10.12] we get the estimate

M(E(|by—b)), |by—Db|, b) = c(n, ¢y) = ¢, log (1+(tanh 1 cos ©0)/2)

for k=k,. From Lemma 2.5 it follows that for &€(0, r,) there is an integer k,=k,
such that g,=|b, —b|=min {cos ¢y, cos ¢,} and M(E,(g,), 0,, b)=5,/2, where
d,=cap dens (E,, b). Write

3.2) t, = 37"min {6,/2, c(n, @), c,log2} >0
for £€(0,ry) and let A,=2 be defined by A,=max {2, 1,}, where 1,>1 satisfies
(3.3) log Z, = (1,/6w, )"/ ~".

Let F,=E,(¢.)\B"(b, ¢,/%,), F=E(0)\B"(b, ¢,/7,), and I,=A(F, F,; R"), when
e€(0, ry). It follows from Corollary 2.7 that M ([,)=5t,/6. For £€(0, r,) let D,=
Kb, ) R(b, @, 0./4,), where ¢F=max {¢,, ¢,}, and let I',=A(F,F,; D).
Observe that F, F,cD,. Since A,=2 we get then by Lemmas 2.19 and 2.21

M(Fs) = ts/?’Q(n’ (P:)z = te/3Q(n9 §00)2
for &€(0, ry). By (2.3) we obtain

M(T) = o,_, [1og fg‘l]l_n

for £€(0, ry). From the modulus inequality [8, 3.2] it follows that
M(I,) = KN(f, D) M(fT,).

Since @,<min {cos ¢,, cos ¢} and A,=2 we get by Lemma 2.14 and by the above
inequalities

1-n
G4 W30, 007 = Kd(n, K, 9% log /0,4 (1082

1—n
= Ka(n, K) cos™* ¢* log 2,0, _, [log rs—“)

tor &€(0, ry). Since ¢, is decreasing, the limit lim,.,, @,=0 exists. Below we
shall assume that 6=mn/2: the slightly easier case 6<m/2 can be dealt with by
means of a similar reasoning. Then there exists r,€(0, ) such that ¢,£(¢,, 7/2)
for e€(0, r,) and so ¢} =, for £€(0, r,). Since 6, is increasing, the limit lim,_, ., o,=d
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exists. Suppose that d=0. Choose r,€(0,r;) in such a way that 6,=d/2 for
¢€(0, r,). Then (3.4) yields

n—1
cos* @, (log —;—] =C

for £€(0, ry), where C;€(0, <) is independent of ¢ in view of (3.2) and (3.3). Letting
e—~0-+ yields a contradiction. Hence d=0, i.e. §,~0 when ¢->0+ and by (3.2)
and (3.3) there is a number ry€(0, ;) such that #,=3"""1§, and 1,=24, for ¢€(0, r).
Then (3.2) and (3.4) yield

n—1
cos ¢, 6%/ -1 [log %] =G,

for &€(0,r;), where C,€(0, =) does not depend on &. Letting e—~0+ yields a
contradiction.

3.5. Corollary. Let f: B"~R" be locally K-quasiconformal, let bcOB", let
©0€(0, 7/2), and let C(f,b)cOfB". For ¢>=0 let E,=K(b, p))nf~1B"(e) and
d,=cap dens (E,, b). If n=3 and

1 n—1
1 n/(n—1) _ — oo
i sypote=2 (g 7 =

then f has angular limit O at b.

3.6. Corollary. Let f: B"—~R" be locally K-quasiconformal, let bcdB", let
©0€(0, m/2), and let C(f, b)cOfB". Suppose that there is a set EcK(b, p,)nB"
such that lim ¢ f(x)=0. If n=3 and cap dens (E, b)=0=>0, then f has angular
limit 0 at b.

Proof. The proof follows from Corollary 3.5 since here §,=5=0. for all ¢=0.

4. Further results

In this section we shall study the situation of Theorem 3.1 if the assumption
C(f, b)cofB" is dropped. Now one cannot use Lemma 2.10, on which a central
part of the proof of Theorem 3.1 was based, and we shall employ here a different
method. For this purpose we shall prove the following lemma, where an appropriate
upper bound for the absolute value of a quasiregular mapping is found. More
specifically, we consider a quasiregular mapping f: B"—~R", wishing to find an
upper bound for |f(x)] when x belongs to a ball B"(r), r€(0,1), containing a
sufficiently large portion of the set where |f| is small. This method enables us to
prove that Corollary 3.6 holds without the assumption C(f, b)) fB".
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4.1. Lemma. Let f: B"—>R" be quasiregular, let E,=f"1B"(e) for £€(0, 1),
let r€(0, 1), andlet 0=1 with Or<1. If 8"=M(E,, r,0)>0 and N*=N(f, B"(6r)),
then for x€B"(r)

()| = o exp (¢S N0,
where ¢ is a positive constant depending only on n, K,(f), and 0.

Proof. Fix x€B"(r). If |f(x)|=e, there is nothing to prove and we may
assume | f(x)|=e. Let B: [0, <)>R" be the path B(t)=f(x)(1+1), t€[0, =), and
let y: [0, c)—~B" be a maximal lifting of f, starting at x. Then y(7) —~0B" when
t— ¢ and, in particular, |y|nOB"(0r) =0 (cf. [10, 3.12, 3.11]). Let I'=A(E,, |y]; B"(0r)).
If we write F,=E,nB"(r), F,=|y|nB"(0r), F;=S""'(20r), and I';;=A(F;, F;; R")
1=i,j=3, we get by the comparison principle of Lemma 2.6 and by Lemma 2.21

M(I) = 2723 " min {M(I'5), M(I'ys), ¢, log 2}.
Since F,nS" Y (0r)#0= F,nS" *(r) it follows from [20, 1.10] or [19, 10.12] that
M(T'y)=c,log (2—071). Let A=(log 2/log 20)*~1. By (2.4) we obtain

M) = 3 "'min{c,log 2—07"), 455} = ady,

where a=A-37""min {1, ¢, (log 2—07)/(w,-1(log 2)'=")} and the upper bound
(2.3) for &7 has been used. Since f [yl R'™NB"(] f(x)]) we obtain by (2.3)

M(fT) = w,—, (log m;)—i]l_n.
The modulus inequality in [8, 3.2] yields
M(I') = Ko(f) N M(fI).
The asserted inequality follows from the above estimates with the constant
c=a/(Ko(f)w,-1)=0.

42. Theorem. Let f: B"~R" be locally K-quasiconformal, let bEOB",
©,€(0, 71/2), and let EC K(b, p)nB" be a set with cap dens (E, b)=6=0. If n=3
and the limit 1im,_, . f(x)=0 exists, then f has angular limit O at b.

Proof. Fix ¢@€(py, m/2). Let &€(0,1). Choose 1£,£(0,cos¢) such that
EnB"(b, t)CE,=f1B") and M(E,,s, b)=26/3 for all s5¢(0,7]. Let 2A=3 be
such that (cf. (2.3))

M(B"(b, s/2), s, b) = /3
for all s=0 and let B"(x,, r) be the smallest ball containing A%(s)=K(b, p)n
R(b, s, s/2) when s€(0,¢]. Then

X, = [1 —S————(zl;:/(j)] b

ry = % ((1+1/2)%tan? @ +(1—1/2)%)V2.
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If we use the notation F,=E,nA%(s), Fy=S""t(x,, |x,—b)nB"(b,s), Fy=
S"1(b, 2s), and I'y=A4(F, F;; R"), 1=i,j=3, we get by the comparison prin-
ciple of Lemma 2.6, in view of the choice of 1 and (2.3),

M|xs—b|(Ean(}p~(s)$ Fs» xs) = M(Flz)
= 3 "min {M(I'y3), M(I'ys), ¢, log2} = 37" min {§/3, ¢, log 2} = aé

for all s€(0, £,]; here a=3"""'min {1, ¢,(log 2)"/w,_,} and the upper bound (2.3)
for 0 has been used as in the proof of Lemma 4.1. We have also used here the lower
bound M (I'y3)=c,log2, which follows from [20, 1.10] or [19, 10.12] because
S" b, u)nF,=0 for u€(0,s). Since A=3 it follows that 2r;=>|x,—b|>r, and
hence we get in view of (2.4)

M(E,0 A3(s), 7, x,) = (log (Ix,—b|/ry)/log 2)'~*a5 = d,

for all s€(0, z]; here, as in what follows, d;, j=1,2, ..., denotes a positive con-
stant depending only on some of the numbers n, K, ¢, and 8. Let 0 =(|x,—b|+r,)/2r,=
d,>1. Since n=3 it follows from Lemma 2.12 that N”s=N(f, B"(x;, 0r,))=d;.
If we now apply Lemma 4.1 to the mapping f|B"(x,, |x,—b|), we get for uc€ B"(x,, r,)
the estimate

If ()] = ed,
for all s€(0, ¢,]. Since

K(b, p)nB*(b, 1) U  B"(x,, 1y
s€(0,2.]
and since ¢€(0, 1) was arbitrary, the proof follows now from the definition of an
angular limit.

4.3. Corollary. Let f: B"~R" be locally K-quasiconformal and let bcOB".
If n=3 and the radial limit lim,., f(tb)=0 exists, then f has angular limit 0 at b.

Proof. By [19, 10.12] the conditions in Theorem 4.2 are satisfied by d=c, log 2.
The next example shows that the condition on the set E in Theorem 4.2 is
in a sense the best possible.

4.4, Examples. (1) The locally K-quasiconformal mapping in Example 2.11
shows that the conditions cap dens (E, b)>0 and lim, ., .z f(x)=0 cannot be
replaced by the requirement that there exist a sequence (b,) in K(b, ¢,)nB" with
b,—~b, f(b)—~0, and lim sup o (b, b,.1)<<-. Note that the situation is different
for a quasiconformal mapping g: B"—~G’, n=2, since then the inclusion C(g, b)c
0fB"=0G" in Lemma 2.10 holds (cf. [20, 6.5, 6.7]).

(2) Theorem 4.2 and Corollary 4.3 fail to hold for the dimension n=2. A counter-
example is provided by the analytic function /: B2-~R*\ {0}, h(z)=exp (—(1 —2)7%),
z€B?, which is a local homeomorphism and has a radial limit 0 at z=1. On the
other hand the function / does not have any angular limit at 1, since /(z) o when
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z—1 through the line y=—x+1. An essential feature of this function 4 is that,
in view of Lemma 4.7 and Corollary 5.5, it does not satisfy condition (5.1) below.

(3) From the example given in [20, 6.6] it follows that the condition
cap dens (E, b)=>0 in Theorem 4.2 cannot be replaced by cap dens (E, b)=0.

According to Example 4.4 (1) the set E in Theorem 4.2 cannot be replaced,
in general, by a sequence with the property in 4.4 (1). Following an idea of Bagemihl
and Seidel [1, Lemma 1] we shall now show that E can be replaced by a sufficiently
dense sequence of the same type, provided that the mapping in question is normal.
The next lemma completes the result in [20, 6.3] and Lemma 2.10 above, both proved
under the assumption a€dfB”, which is not needed here.

4.5. Lemma. Suppose that f: B"—~R" is normal, bc0OB", and (b,) is a sequence
in B" with b,—~b and f(b,)—o. If (r,) is a sequence of positive numbers with lim r, =0,
then f(x)—o as x approaches b through the set E= U D(b,, r}).

Proof. Suppose that this is not the case. Then there is a sequence (g;) in E
with a,—b, f(a)~f=a. After relabeling, if necessary, we may assume that
o(a,, b)<ry, k=1,2,.... Let h: B"—~B" be a conformal self-mapping of B" with
hi(b,)=0. Choose a subsequence of (foh; '), denoted again by (foh, "), con-
verging c-uniformly towards g: B"~R". Since f(b)=f(h;'(0))~a, g(0)=a. On
the other hand /,(a)—~0 and f(a)=f(h;"(h(a)))—~P=a, which contradicts the
continuity of g at 0. The proof is complete.

4.6. Theorem. Let f: B"—~R" be a locally K-quasiconformal mapping omitting
one finite point, let bcoB", p€(0, /2), and let (b,) be a sequence in B"nK(b, @)
with b,—~b and f(b)—~o. If n=3 and lim o(b;, b,11)=0, then f has angular
limit o at b.

Proof. From [10, 2.9] and [19, 20.4] it follows that f is normal, and hence by
Lemma 4.5 f(x) tends to « as x approaches b through a curve CcK(b, p)nB"
terminating at b and consisting of the geodesics of the hyperbolic metric, joining
by, to by.q, for each k=1,2, .... The proof now follows from Theorem 4.2.

The next result follows from the proof of [7, 5.8].

4.7. Lemma. Let f: B"—>R" be a normal quasiregular mapping having a radial
limit o« at b€OB". Then f has angular limit « at b.

4.8. Remark. Lemma 4.7 was pointed out to the author by Prof. O. Martio.
From 4.7 and [10, 2.10] we get an alternative proof for Corollary 4.3 under the
additional assumption R™ fB"#0.
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5. Concluding remarks

As was pointed out in Example 4.4 (2), Theorem 4.2 fails to hold when the
dimension n=2. In this final section we shall show how Theorems 4.2 and 3.1
can be generalized to cover the case n=2 as well and how the condition on the
mapping can be weakened. As a byproduct we obtain a normality criterion for
quasiregular mappings, which is related to a problem of W. K. Hayman concerning
meromorphic functions.

Let f: B"~R", n=2, be a quasiregular mapping with the following property:
there exist numbers p€[l, =) and ¢€(0, =) such that

(5.1) N(f,D(x,1)) =p for all x€B"

Then one can easily prove for f estimates of the same type as those in Lemmas 2.12
and 2.14, where only locally K-quasiconformal mappings of B", n=3, were con-
sidered. This observation, together with the fact that Lemma 2.19 holds for n=2
as well, is all that is needed to carry over the proofs of Theorems 3.1 and 4.2 to the
case of quasiregular mappings satisfying (5.1). Thus we have

5.2. Theorem. Theorems 3.1 and 4.2 hold for a quasiregular mapping f: B"—~R",
n=2, with property (5.1).

Condition (5.1) has also some interest in the theory of normal functions. In
[16, Problem 3.5] W. K. Hayman asked whether there exists a non-normal mero-
morphic function f: B?—~R? with property (5.1). This question was answered in
the affirmative by Lappan [5], who constructed a non-normal analytic function
satisfying (5.1) for some ¢>0 and for p=1. From the next result, based on a
theorem of Rickman [18], it follows that such a function cannot omit any point
in R2

5.3. Theorem. A quasiregular mapping f: B"—~R™\{d}, n=2, dcR", with
property (5.1) is normal.

Proof. Let (h;) be a sequence of conformal self-mappings of B". By Ascoli’s
theorem [19, Chapter 19] it will be enough to show that (f}), f;=foh;, is equi-
continuous at 0. Fix s>0 with B"(s)cD(0, t). Then by (5.1) N(f;, B"(s))=p and
K (f)=K;(f) in the notation of [18]. By [18, 4.4] there are constants C,=>0 and
C,>0 depending only on K;(f), n, and d such that

q(f;B"(s/2)) = Cy(exp (Cp"**(log H)' ) —1)

for all A=1, where q is the spherical metric. Letting - yields the desired con-
clusion.
For the next result the reader is referred to [10, 2.10].
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5.4. Corollary. A locally K-quasiconformal mapping f: B"—~R™\{0} is normal
if n=3.

Proof. Condition (5.1) is satisfied by [10, 2.3].
The following corollary seems also to be well-known.

5.5. Corollary. An analytic function f: B*—~R*™ {0} with property (5.1) is
normal.

5.6. Remarks. (1) For the remark that Theorem 5.3 is related to Hayman’s
problem, the author wishes to thank Prof. P. Lappan.

(2) Some results in [14] concerning locally K-quasiconformal mappings of B”",
n=3, can be generalized in the spirit of this section.
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