
Annales Academir Scientiarum Fennicre

Series A. I. Mathematica
Volumen 5, 1980, 79-95

ON THE BOUNDARY BEHAVIOR OF LOCALLY
K.QUASICOI{FORMAL MAPPINGS IN SPACE

MATTI VUORINEN

1. Introduction

Let 8", n>2, be the z-dimensional unit ball in Ä', let b(08", and let f: B" *G'
be a quasiconformal mapping. Suppose that b€Eu for all e>0, where ,8,:
{x(8": l/(x)l=e}. This condition means that 0 belongs to the cluster set C(f,b)
of f at å. Write ö":cdp dens (d, å), where cap dens refers to the lower (conformal)
capacity density (for definitions, cf. Section 2). The conformal capacity density has

been studied e.g. in [6] and [1]. In [20, 5.5] we proved thatf has angular limit 0

at b if ä,(log(1/e))'-1*- when e*0, i.e. if the numbers ä" do not tend "too"
rapidly to 0. An alternative proof was presented in [21]. As it was shown in [20,
Section 5], this result is a quasiconformal counterpart of a theorem of J. L. Doob

[2, Theorem 4] about bounded analytic functions.
The purpose of the present paper is to prove related theorems for locally K-quasi-

conformal mappings. The main result, proved in Section 3, reads as follows. Let

f: B"*N be locally K-quasiconformal, let b<48", and let D be an open cone

in .Bn with vertex å. Write 5":"up dens (Dn/-'B"(r), O). lf n>Z and C(f, b)c
»fB" and §"'/t'-I)(log(1/e))'-1*- when e*0, then f has angular limit 0 at å.

The proof of this theorem is based on the method used in l2l, 4.121and on an injec-
tivity theorem of Martio, Rickman, and Väisälä [10, 2.3], which yields an upper
bound for the maximal multiplicity of a locally K-quasiconformal mapping of Bn

in a non-tangential domain, provided that the dimension n >3. Instead of a cone

with a flxed angle, like D above, one may consider in the definition of å, cones with
the central angle increasing towards nl2 in a tempered way as e*0. For details

we refer the reader to Theorem 3.1.

In Section 4 we consider the situation of the above result if the condition
C(f, b)c|fBn is removed. Employing now a different method we prove the follow-
ing theorem. Let f: Bn-R' be locally K-quasiconformal, let b<08", and let D
be an open cone in ,B' with vertex å. Suppose lhat EcD and cap dens (E, b)>0.
If n>3 andf(x) tends to 0 when x approaches å through the set.E, then/has angular
limit 0 at b. By an example we show that this result is, in a sense, the best possible.
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Finally, in Section 5, we consider a subclass of quasiregular mappings of .B',
n>-2, characterized by the property that the maximal multiplicity is uniformly
bounded in each hyperbolic ball with a fixed radius (cf. (S.t)). From tbe injectivity
theorem LlO, 2.3) it follows that locally K-quasiconformal mappin gs of 8", n>_3,
have the same property. It is pointed out that the results in Sections 3 and 4 hold
for mappings in this larger class as well. A normality criterion, related to a problem
of W. K. Hayman, is given for functions in the mentioned class.

2. Preliminary results

The notation and terminology will be, in general, as in [20], l2ll, and [8]. For
definitions and basic properties of quasiconformal and quasiregular mappings we
refer the reader to Väisälä's book [19] and to the papers of Martio, Rickman, and
Yäisälä [8], [9], t101. A mapping f: G*R" is locally K-quasiconformal if there
exists a number K€[1, -) such that/is K-quasiconformal in a neighborhood of
each point of G. Here GcR" is a domain. A sense-preserving mapping is locally
K-quasiconformal if and only if it is a K-quasiregular local homeomorphism (cf.

[8, p. l4]).

2.1. Notation. lf x€N, n>2, afld r>0, then B"(x,r):{y<n", lx-yl=r},
s'-t(r, r):08"(x, r), B"(r):Bn(O, 11, s'-1(r):5'-t(0, r), B':8"(7), and
S'tr-l-Str-l(1). For x€R' and r=s>O we write R(x, r, s):B'(x, r)\.B'(x, s)
and R(r, s):R(O, r, s). The standard unit coordinate vectors zta €1e ..., €,.

2.2. Path families and their modulus. A path is a continuous nonconstant
mapping y: /-A, AcR", where ^/ is an interval on the real axis. The point set
yl will be denoted by lyl. Given d F, and G in R', welet /(E, F; G) be the family
of allpaths y: [0, 1]*6 with y(0)(E and y(l)€F (cf. [19, p.2lD. Forthe defini-
tion and basic properties of the (n-)modulus M(l') of a path family l- we refer the
reader to Väisälä's book [19, Section 6]. If u(R" and />r>0 and l- is a path
tamily such that lyl intersects both boundary components of R(u, t, r) for each
y(,1-, then the following estimate holds ([19, 7.5]):

(2.3)

Here o)n-1 is the surface area
viate

M(r) =

of ,S'-1. For Ec.R", x€Rn, and t>r>0 we abbre-

M,(8, r, x) - PI(A(,S'-'(*, t), Bn (x, r) n E; Å,)),

0)n-,(,o, +)'-"

M(E,r, x) - Mzr(E,r, x).
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The lower and upper capacity densities of E at x are defined by (cf. [20] and Martio-
Sarvas Il])

cap dens (E, x) : limrnf M(E, r, x),

capaens (f, x) : lim:*rP M(E,r, x).

If Eis compact, this deflnition is equivalent to the one employed in [11], which is
based on the use of n-capacities of condensers (cf. Ziemer [22]). Some sufficient
conditions for cap dens (.8, ,r)=0 were given in [20, Section 2]. See also Martio
[6, 3.1]. From a result of Wallin itfollows that there are sets.Ewith cap dens (,E, 0)=0
which have Hausdorff dimension zero 120,2.5 (3». For t>s>r>0
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(2.4)

One can ptove (2.4) by making use of a radial quasiconformal mapping which is
identity in B'(r) and maps Ä(s, r) onto -R(r, r) (cf. [11, 2.7]). Using (2.4) we prove
the following lemma.

2.5. Lemma. cap dens (E, 0):lim inf,-o M(EaBo(r), r,O).

Proof. Denote by a and å the left and right hand sides of the equality, respec-
tively. Obviously a>b>O. Hence it suffices to prove a=b and we may assume
that a>0. Choose a'C(A,a) and ro€(0, 1) in such a way that M(E,r,O)>a'
for all r((0,rr). Fix r((0,r0). For all k:2,3,... we getby Q.4)

a (r o a, (r), r, 0) = Mz,(E 
^ 

B (r), r (t - U k), 0)

: M z,(E, r (t - I I k), 0) = drr- " M (n, r 6 - 1 I k), O) = df,- " a"

where do:log (2lQ -llk))llog2. Since dr,*I, this implies M(EnB"1r), r, o)>a'.
Hence b>a'. Letting e'*a yields the desired conclusion.

The next lerrma was proved by Näkki I15] (cf. also Martio, Rickman, and
YäisiiläU0,3.1lD. Itwillbecalledhere,asin[15], thecomparisonprincipleforthe
modulus. Throughout the paper we let c, denote the positive constant in [19, 10.9],

depending only on n.

2,6. Lemma. Let Fr, Fr, and F, be three sets in R" and let f ij:/(F,, Fr; R'),
l=i,i=3. If there exist x€Rt and O=a=b such that Fr, FrcBn(x,a) and Frc
R\.B'(x, b), then

M(f ,r) = M (f ,r),

2.7. Corollary. Let ErcRn with M(Ej, s,0):fr=0, j:1,2, for some s>0
andlet t:3-"min{är, ör,colog2}. Choose ),>l suchthat log).:(tf6ra.n-r)tlG-')
and let F;:EinR(s,sl1),i:1,2. Then M(/(FL, Fz:' R"))>5t16.

M,(8, r, x) 4 M,(E, r,x) = (jH#)'-' M,(8, r, x).

3-nmin {*Vrr), cntos*l
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Proof. From the choice of ,t it follows by (2.3) that

M(8"(sl1), s, o) < r/6,

and hence the proof follows from Lemma2.6 and the estimates

M(Fi, s,0) = öj-tl6 > 35tf 6, i :1,2.

2.8. The hyperbolic metric. The hyperbolic metric q in B" is defined by the ele-

ment of length dp:ldxll(l- lxl'). If a and å are points in B', then O@, b) denotes

the geodesic distance between a and b corresponding to this element of length. For
bCB" and M€(A, -) we let D(b, M) denote the hyperbolic ball {x(8": q(b, x)<M).
Let ru:pi11 {lr-bli ze\D(b, M)}. By integrating we get

(2.e)
(1 - lbl\ tanh M

Tb:
1 + lbltanh M

This implies that B"(b,tanh M(l-lbl))cD(b, M).
In what follows we shall need some properties of normal mappings' We recall

that a mappi ng f: B" * R' is said to be normal if for each sequence (h1") of conformal

self-mappings of .Bo there is a subsequence of (foh;l) conveiging uniformly on

compact subsets of B' (or briefly c-uniformly) towards a limit mapping g: B"'Rn
(cf. [19, p. 68], [20, Section 3]). The cluster set of f at b(08" is the set C(f, b) of
allpoints ä'(Ro forwhichthereexistsasequence(xo)inB'with xo-6 andf(xo)*$"
The next lemma makes use of some ideas of Bagemihl's and Seidel's [], p. 5].

2.10. Lemm a. Let f: B"-R" be a quasiregular mapping, let (bo) be a sequence

in B" with b*-b<08" and f(bo)-,a, and let M<(0, *) and E: v D(b*, M).
Suppose that u€|fB'. ff f is normal or if C(f,b)c\fB", then f(x)*q as x'b
through the set E.

Proof. lt is well known that C(f, å) is a non-empty compact connected set

(cf. [19, 17.1, 17.5 (1»). If C(f,b) consists of one point, there is nothing to prove.

Otherwise C(f,b) is a non-degenerate continuum. If C(f,b)c|fB", it follows

that cap (R'\/B')=0 in the terminology of [9], and hence/is normal by 19,3.171.
Hence/is quasiregular and normal, and it follows from ll7, p. 497lthat the condi-

tion in l2O, 6.31is satisfied. The proof follows from [20, 6.3].

The assumption uQ|fB' in the above lemma can be replaced by the require-

ment that f-,(a) be finite (cf. [, p. 5], [20, 6.a[. By considering the behavior of
the function f: 82*82,f(z):exp ((z+l)lQ- 1)), near z:l we see that this assump-

tion cannot be dropped. The next example shows that corresponding functions
exist when the dimensiotl n:3.

2.11. Example. We shall slightly modify the example constructed by Martio
and Srebro in ll2, 4.11. Let c: Å1*T be the locally K-quasiconformal auto-

morphic mapping constructed in ll2, 4.11, and let h: .83*Rt+ be the Möbius
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transformation h(x):2(v*e1)lx-lerlf -'-er. Here T is an open solid torus and
the mapping f:g oh: BB *T has a continuous extension l: B\{er, -er}*Iwith
l(å.83\{er, -er})c07. By the construction of g,/maps the segment {e1t: - 1</< 1}

onto a closed curve .§c7. Fix a, fi€9, a*P. By the construction of/there are

increasing sequences (rJ, (lo) in (0, l) with rk<tr,<s,,*, for all k such that lim so: l,
f(s1,er):a, f(toer):fi, k:1,2,... and such that p(soer,t1"e1)<M for all k and
some M((0, -). Thus the conclusion of Lemma2.l0 does not hold for this func-
tionf. Hence the assumption a(0f8" cannot be dropped.

Let f: B"-R' beamapping, y€R", and DcR'. Thenwedenoteby N(y,f,D)
the number of the points in f-t(y)aD. The maximal multiplicily of/in D is

NU, D): sup {tr[(.r, f, D): yQR'\.

The next lemma follows from [0, 2.3].

2.12. Lemma. Let n>3 and K>1. Then there is a constant {t(n, K)<(O,l)
such that if f: B"*R" is a locally K-quasiconformal mapping, thenf is injectiue in
A'(y1n,X)). Moreouer, for euery r((0, 1) there is q number c(n,K,r)611, -;
depending only on n, K, and r, and a number b(n) depending only on n such that
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N(f , B"(r)) < c(r, K, r) = (
b (n)

)'t@,1()(I-r)

Proof. The first part of the lemma was proved by Martio, Rickman, and Väisälä
[0,2.3]. From the first part it follows thatf is injective in Br:B'(x,{t(n,K)t),
x€-Bn, when O<t<l-lxl and one may define c(n,K,r) to be the smallest num-
ber of the balls Bl needed to cover B'(r). The estimate for c(n, K, r) follows from
known properties of coverings by families of balls (cf.$4, Lemma 3l and 14, p. 197,
Lemma 3.21).

Note that Lemma 2.12 is false for n:2 (cf . [10, 2.11]).

2.13. Remark. One can improve the upper bound for c(n,K,r) by maki;rg
use of ideas presented in [7, 5.27). In this way one obtains an estimate of the type
c@,K,r)=A(l-r)t-nlog(2l\-r)), where ,4>0 depends only on n and K, but
we shall not need such an estimate here.

Using Lemma 2.12 we shall now prove an upper bound for the maximal multi-
plicity of a locally K-quasiconformal mapping in a non-tangential domain of a
particular shape. For bCilB" and, Ae(A, np) we let K(b, E) denote the cone

{z€R": (blb-z)=-lb-zlcosE}. Here (xly) is the inner product Zi=rxi!..

2.14. Lemma. If n>3, K>1, and E((0, nl2), then there are constants
a(n, K)=0 and d(n, K, e)=0, depending only on the numbers indicated, with the

following properties. Let f: B"-R" be a locally K-quasiconformal mapping,be|B",
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let t6(0,cosg), and let Al(t):616,E)nR(b,t,tl)') for ).=1. Then for Ä>2
the following estimates hold:

where
N(f , Äy,(t)) =- fl(n, K, E)los 7,

d(n, K, E) = s(n, K) cos-'n E.

Proof. Fix b<08", E€.(0,n12), and t€(0,cosg). We first consider the case

L:2. By elementary geometry Äg1t1cB"1x, r), where

[.:(,-å*)'

lr:;(etan2 
(p*tfp.

Then N(/ Äg(t))=N(f,8"(x,r)) and by Lemma2.t2

N(f , B"(x,r)) = c(n, K, uq),

ue : rllb-x1 : (sin, E+019) cos2 E)r/2.

Let us now consider the case )'>2. Fix )">2. Define

m : min{keIf: 2-k t = tll) > 2.

Thus 2-'=lf ).<2-*+r=2--tz and hence m=log),llogl/2. Using the eslimate
obtained in the case ),:2 we get

n(f, Ä*tt\= ä N(f, ÄEQ-i*'r)) = c(n, K,ur)log)'llosy'1.j:r
These estimates hold for ).:2 as well. Hence for all )">2 we may choose

d(n, K, E):c(n, K, ur)llol y'2. since I -ur>(419) cosz E, the desired estimate with

a (n, K) : (9 b (fl a{ @, K))' llosfr.

follows from Lemma 2.12.

2.15. Remark. We shall now show by investigating the mapping/of Example
2.ll that the upper bound of Lemma 2.14 is of the correct order of magnitude for
this mapping. By the construction of the automorphic mapping f: B3-T there

exist a€T and a sequence (u1,)in (0, 1) with limuo:l such that f(uoer):a for
all k:1,2,... and a number M((0, -) such that q(uper,ur*rer)-M for all
k:1,2,.... Fix cp((0,n12). After relabeling if necessary we may assume that
l - ar<cos E and l - ur-L 12. F or ).>2 let A!: K(er, E)aR(er, l - ur, (l - ur)/ 1).

Define

p - min {u. r, M(k+l) > Q (nrur, rr(r-+)))
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Then N("f, ÄD=N(a,f, Ä\)-p. Since for 0= u-w<l

Q(etn,€tw): ir.ri*.H,
we get the estimates

-+))n(n'ur, nr(, =+los(r-+) = +bsl
for ),>2, where we have used the fact L-ur-.112. Hence if 1>2 is large enough,
then p>1, and hence M(p+l)=2Mp, which together with the above estimates
yields

N("f, Än= frrcst.
We have thus shown that the dependence on 2 in the upper bound of LemmaZ.l4
is the best possible when g is fixed.

For 0€(0, nl2) let C(O):{x€.R': (xle,)=lxlcos 0}. lf AcRn wewrite l*:
{x(Å': ,,=0}. In the next lemma we construct a quasiconformal mapping /: ,R3-Rg
such that/maps the truncated cone C(O)nÅ(l,s) onto Bs for gsven 0((0,n12)
and s((0, l) and such that we get an appropriate upper bound for K(/). The
numerical value of this upper bound is probably not the best possible.

2.16. Lemma. Let n:3,1n((O,nl2), and s€(0, l). Then there exists a con-

stailt Q(3,0o,s)>l and a Q(3,0r,s)-quasiconformal mapping I R8*Rs which
maps C(0)niR(l,s) onto 83. Moreouer, Q(3,0o,s)=Q(3,0o,r) when 0o((0,n12)
and 0<s=r<1, and Q(3,00,s)>Q(3,0,s) when 0-0o=0=nl2 and s((0, 1).

Proof. The proof makes use of some ideas of Gehring and Väisälä [3] (cf.

Lemma 8.2 in [3] and the proof of Lemma 3.4 in Martio-Srebro [13]).
Let (lR, E,0) be the spherical coordinates in ,R3, where g€[0,2n) is measured

from the direction of e, to the direction of erand 0(l0,nl is measured from the
direction of e, (cf. [9, 16.4]). Let f1: R8*RB be the mapping defined by fi(-):-
and

(n,

(^,

fr,r^'

l^,^,

Q,0) :

Q,0):

r,*u), if 0= 0=00,

*,ffi*ffi),ir ,,oso=TE.

Thenf, is quasiconformal and maps C(00) onto .R3* and C(06)nÄ (1, s) onto Å (1, s) *.
It follows from [19, 16.4, 35.1] that

(ä-1)'(2. L7) K(fr) = sin-'00.



Marrr VuonrNEN

Let fr: R3*RB be the Möbius transformation defined by fr(-er):*,fr(*)- *e1,

and

Ir(x):2lI -L-"r, 
if x€R\{-e1}.

lx*e1lo

T'henf, maps .R(1, s)* onto {x€Åi: x1>0\E, where .8:.83((1+s')er71t -sz),2s1
(1-r')) and frBs(s):8. Let 7 be the tangent plane of B which contains the xr-axis
and passes through thepoint er+(2slG-s2))er(08. Denote by a" the acute angle

between T and er. Then ds:&rc-tan((1 -s2)l2s). Let (r,g,xz) k the cylindrical
coordinates in Å3 with the xr-axis as the symmetry axis, where E is measured frour
the direction of er. Let fr: R3*R3 be a quasiconformal folding deflned by

fr(*)-- änd

Q, xz) : (r, Q, xz),

e,xz):(r,#++T,*,)
e, xz):(r,+E++, *,)

Thenf, maps {rcÄ'*: xr>0\B onto ni\1f and it follows from [19, 16.3,

35.11 that

(2.r8) K(Iu):'"*{(;)', (f*,)'}, d":ärötanJ=t.

Let fq: Rs*Ra be the Möbius transformation defined by fn(a): *,
a:((1+s)/(l -s))rr, fa(*):a, and

fn(x) : "' ffi+o, it x(Rs\{a}; 
" 

: a-j,y'
Then fn maps .B onto {x(-R3: xr=0} in such a way that .B* is mapped onto

{x€,R3*: x1>0}. Let (r, cp, xr) be the same cylindrical coordinate system as above

and define /5: Rs*Rs by fu(-):- äild

(ru?,

1,,,
I

lrut,,

if 0= E<l-o,,
7t, 7CrI 2-n"5e- 2,
TCif i=q<2r.

-77o= Q<Tt
/,

7r 3rc

2=E< 2,
3n

i=q-2n.

e, xz)- 
[r, $++, *,), if

e, xz) : (T, e, xz), if

e, xz) : (r, 2E, xr), if

Thenfi maps fi({x€R3*: xr=0\B):{.rc€it3a: xr>0} onto Ä} and/, is 22-quasi-

conformal (cf. [9, 16.3, 35.1]). The mappine f.:frofEofrofrofr: R3*RB is quasi-

conformal with fs(C(l.)nÄ(l, r)):ÅX and the assertion follows from this in view
of (2.17) and (2.18).

(r,?,
I

1r,?,
I

[Åt,,
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2.19. Lemma. Let n>3 and |o((O,nl2). Then there exists a constant

Q@,0)>l depending only on n and 0o such that if 1>2 and 0€l0n,nl2), there

exists a Q(n,o)-quasiconformal mapping f: R"*R" with f(C(o)oR(l, ll\):3'.

Proof. Since the constant QG,o, s) of Lemma 2.16 is increasing as a func-

tion of s and decreasing as a function of 0 we may choose QQ,0r):Q(3,0o,112).
The proof of the general case n>3 can be carried out by generalization of Lernma

2.16 to the n-dimensional case.

2.20. Remark. Martio and srebro have studied in [13] the problem of mapping

strictly star shaped domains of R' onto B' by means of bilipschitzian quasiconformal

mappings of Å'. Note that the domains h 2.19 need not be star shaped.

The next lemma is one variant of a symmetry principle for the modulus (cf.

Gehring-Väisälä [3, Lemma 3.3] and also [20, 4.3]).

2.21. Lemma. Let D be a domain in R", n>2, and suppose that there exists

a quasiconformal mapping f: Rn*R" with fD:g'^. If E and F are two s'ubsets of
D, then

M(/(E, F; D)) = M(/(8, F; R"))l2K(f)''

Proof. By quasiconformality and 120, 4-31we obtain

M (/ (E, r; Ä')) = M (Å (f E, f F ; R'»,K(/) =- M (Å (f E, f F ; f D)) zK(I)

= M(/(8, F; D))2K(f)K(f-'): M(/(8, F; D))zK(f)'z.

Hereafter we shall use Lemma 2.21 when D is a truncated cone as in
Lemma2.l9.

3. The main result

In [20, 5.5, 5.6] we proved theorems about quasiconformal mappings of Bn, n>-2,

which are analogous to a theorem of J. L. Doob [2, Theorem 4] regarding angular

limits of bounded analytic functions. Using the results of Section 2, we shall now

prove a related theorem fot locally K'quasiconformal mappings of 8", n>-3. As

will be pointed out in Section 5, the same proof works in the case of somewhat more

general mappings as well.

3.1. Theorem. Let f: B"*R" be locally K-quasiconformal, let bC»B", and let

C(f,b)c|f*". For e>0 let rp"((O,n12), E":K(b,E")nf-rBn(e), and ä":
cap dens (E", b). Moreouer, let E" be decreasing and ör increasing. If n>3 and

lim;;;rp cos2' rp u$nl 
@ - r)

then f has angular limit 0 at b.

(r"*+)'-' : -o,
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Proof. Sttppose that this is not the case. Then there is Eo((O, nl2) and a
sequence (åo) in K(b,Eo)nB" with bo*6, f(b)*f+o. Fix rr((0, t) such that
/eR\a'1Zro;. Since åo€K(b,Eo) and bot$ there is an integer /<, such that
l-lbel=1b1,-ål (cos tp)12 for k=kr. Since C(/ b)c|fB" there is by Lemma 2.10
an integer ko=k, such that "fD(b*,1)cÄ'\B'(ro) for k=ko. If I is a proper
subset of .Bn and r=0, we abbreyiate A(r):B"(b,r)aA. Let E:K(b,rpo)n
(Uo=1, D(bk,l)). Bv Q.9) B"(bo, (tanh 1)(1 -lbfi)cD(b,., 1) for att k and by
[20, 1.10] or [9, 10.12] we get the estimate

M (E (lb k- bD, lb o- bl b) = c (n, eo) : cnlog (l + (tanh I cos E ) I 2)

for k>ko. From Lemma2.5 it follows that for e((0, ro) there is an integer k,=ko
such that Q,:lb*"-bl=min {cos Eo, cosE"\ and M(E,(s), Q",b)>ö"12, where
ä":cap dens (,8", å). Write

(3.2) t": 3-'min {ö"12, c(n, go), cnlog 2} > 0
for e((0, r) and let ),">2 be defined by ,1,:s131 {2,i"}, where ,["=1 satisfies

(3.3) logi": (t"f6ao-r)t/(r-"t.

Let Fe:Ee(S")\B'(å, q"f )""), F:E(q,)\B'(å, q"f ).,), and F":/(F,,(; R,), when
e((0, ro). It follows from Corollary 2.7 that M(F")>5t"16. For e((0, ro) let D":
K(b, q!)nR(b, Q", Q,ll"), where gI:max {Eo, E"}, and let f ":/(F, F"; D").
Observe that F, F"cD". Since ,1,,>2 we get then by Lemmas 2.19 and,2,2l

M(f ) > t"l3Q(n, q!)" =- t"l3Q(n, E;2
for e((0, ro). By (2.3) we obtain

MUT,) =

for e((0, ro). From the modulus inequality [8, 3.2] it follows that

M(r) = KN(f, D")MUr).

Since q"=min {cos g0, cos E} and 1,=2 we get by Lemma 2.14 and by the above
inequalities

t,l3Q(n, E)z = Kd(n, K,(3.4)

orn-, (,o, ?)'-'

E»los 7,@n--, 
[,o* ?)'-'

-'n E[log 7,@n-, [,o,?)'-'= Ka(n, K) cos

tbr e€(0, ro). Since E" is decreasing, the limit lim,*o+ g":0 exists. Below we
shall assume that 0:nl2: the slightly easier case 0=nl2 can be dealt with by
means of a similar reasoning. Then there exists rr((0, r) such that E,((Eo,nl2)
for e((0, rr) and so eI:e"for e((0, rr). Since äu is increasing, the limit lim"*o* ä.:d
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exists. Suppose that d>0.
e€(0, rr). Then (3.4) yields

in such a way that ä,8 d.l2 for

€C,

Choose rr((0, rr)

cos2'e, 
[tog +)'-'

for e((0, rr), where C1€(0, -) is independent of e in view of (3.2) and (3.3). Letting
e*0* yields a contradiction. Hence d:0, i.e. ä,*0 when e*0* and by (3.2)
and (3.3) there is a number rs€(0, r) such that to>3-n-7 ä" and Lu:l"for e€(0, rr).
Then (3.2) and (3.4) yield

/ t \'-1
coszn E"5otb-', llog;J 3 C,

for e((0,rr), where C2€(0, -) does not depend on e. Letting e*0+ yields a
contradiction.

3.5. Corollary. Let f: B"-N be locally K-quasiconformal, let b€08", let
qn((O,n12), and let C(f,b)c.|fAn. For e>0 let E,:K(b,«p)af-LB'(e) and
ä":cap dens (E,, b). If n>3 and

( ,1)'-':_lims^upä3rt'-t,llog 
u ) ,

then f has angular limit 0 at b.

3.6. Corollary. Let f: B"tN be locally K-quasiconformal, let bE\B", let
Eo(.(0,n12), and let C(f,b)c|fB". Suppose that there is a set EcK(b,Eo)nB"
such that lim*-u,,rrf(x):0. If n>3 and cap dens (8, b1:5=.9, thenf has angular
limit 0 at b.

Proof. The proof follows from Corollary 3.5 since here ä">ä>0. lbr all e>0.

4. Further results

In this section we shall study the situation of Theorem 3.1 if the assumption
C(f,b)c|fBn is dropped. Now one cannot use Lemma 2.10, on which a central
part of the proof of Theorem 3.1 was based, and we shall employ here a different
method. For this purpose we shall prove the following lemma, where an appropriate
upper bound for the absolute value of a quasiregular mapping is found. More
speciflcally, we consider a quasiregular mapping f: B"-R', wishing to find an
upper bound for l/(x)l when x belongs to a ball B'(r), r((0,1), containing a
sufficiently large portion of the set where l/l is small. This method enables us to
prove that Corollary 3.6 holds without the assumption C(f,b)c\fB".
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4.1. Lemma. Let f: Bn-Ro be quasiregular, let E,:f-tB"(e) for e€(0, l)'
let r((O,l), andlet 0>l with 0r<1. If öi:M(E", r,0)>0 and Ne':N(f,8"{0r)),
then for x(B"(r)

l/(x) I = e exp (cöil Not)1 to' -n\,

where c is a positiue constant depending only on n, Ko(f), and 0.

Proof. Fix x€B"(r). If lf(x)l=e, there is nothing to prove and we may

&ssume lf(x)l>e. Let B: [0, -;*.p' be the path BQ):f(x)(l+t), t(10, -), and

let y: [0, c)*8" be a maximal lifting of B, starting at x- Then y(t)*03" when

t-c a1d,in particular,lylnln'@r)10 (cf .UO,3.12,3.lll). Let f :/(E",lyl; B"(0r)).

If we write Fr:E"aB"(r), Fr:lylnB"(0r), Fr:S'-t(20r), artd f ,,:Å(Fr, F,; R")

l<i, j<3, we get by the comparison principle of Lemma 2.6 andby Lemma2.2l

M(f) = 2-13-" min {M(i-r.), M(lru), c,log2\.

Since FrnS'-L(er)*A+FrnS'-1(r) it follows from [20, 1.10] or [19, 10'12] that

M(frr)>-cnlog(2-0-t). Let A:(og2llog201'-r. By Q.$ we obtain

M(D =- 3-'-1min {c,1og (2-e-\, A6i\ > a6',

where a:A.3-"-7 min {t, c, (log (2-l-a))l(o,-r(log 2)1-')} and the upper bound

(2,3) for ä! has been used. Since /lylcR'\,B(l/(r)l) we obtain by (2.3)

/ 
" 

_,/(4_l_)'-,M(ff) = ro,-, [1oo e )

The modulus inequality in [8, 3.2] yields

M(D = Ko(f)Nu M(ff).

The asserted inequality follows from the above estimates with the constant

c:al(K"(f)o,-J=0.
4.2. Theorem. Let f: B"*R" be locally K'quasiconformal, let b<48",

eo€(0, nl2), andlet EcK(b,Eo)aBn be aset with cap dens(E,å):ä=0. If n>3
and the limit lim*-6,,e ,f(x):O exists, then f has angular limit o at b'

Proof. Fix E((Es, nl2). Let e € (0, 1). Choose l"€ (0, cos E) such that

EnB"(b,t")cE"--f-1,8'(e) and M(E,,s,b)--2613 for all §€(0,1"]. Let ).>3 be

such that (cf. (2.3))
M(B'(b, s/,1), s, b) = ö13

for all s>0 and let B"(x", r) be the smallest ball containing Al(s):1716, r1nl
R(b, s, s/.1) when s€(0, r"l. Then

1.,: (r

1,,: å

-'s,*#)'
(tt 1 | I D, tanz E +(1 - L I 7)z)rrz
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If we use the notation Fr: E"oÄ\(s), 4: S'-l(x" , lx"- bl)aB" (b, s), Fs:
S"-l(b,2s), and l,j:Å(F,, Fr; R"), l=i,i=3, we get by the comparison prin-
ciple of Lemma 2.6, in view of the choice of )" and (2.3),

Mp,-6y(E"aÄ7(s), r", x) = *t1rrr1

> 3-'min {M(f ,r), M(f ,u), cnlog2\ > 3-'min {ö13, c*log2\ > aö

for all s((0, r"l; here a:3-"-1min {l,c*(log2)'la*-r} and the upper bound (2.3)
for ä has been used as in the proof of Lemma 4.1. We have also used here the lower
bound M(frr)>c,log2, which follows from [20, 1.10] or [9, 10.12] because
,S'-'(å, u)nF2*0 for z((0,s). Since ).>3 it follows that 2r">lx"-bl=r" and
hence we get in view of Q.a)

M(E,^Äi,b), r", x") = (log (lx"-bllr")ltog2)"-1aö : d,

for all s((0, r,]; here, as in what follows, di, j:1,2,..., denotes a positive con-
stant depending only on some of the numbersn, K, E, and ä. Let 0:(lx" -bl*r")12r":
dr>1. Since n>3 it follows from Lemma 2J2 that 1F0%:N(f,8,(*",0r")):4r.
If we now apply Lemma 4.1 to the mapping flB"(x",lx"-bl), we get for ueBo(x", r)
the estimate

for alr s((0, r"l. since 
lf(u)l = edn

K(b, E)aB'(b, t") c",[J,., B'(Jr", r,)

and since e€(0, l) was arbitrary, the proof follows now from the definition of an
angular limit.

4.3. Corollary. Let f: B"*R" be locally K-quasiconformal and let b€08".
If n>3 and the radial limit limr*rf(tb):O exists, then f has angular limit O at b.

Proof. By [19, 10.12] the conditions in Theorem 4.2 are satisfied by ö:cnlog2.
The next example shows that the condition on the set .E in Theorem 4.2 is

in a sense the best possible.

4.4. Example s. (l) The locally K-quasiconformal mapping in Example 2.ll
shows that the conditions cap dens (-E, å)>0 and lim,-t,"e a,f(x):0 cannot be
replaced by the requirement that there exist a sequence (åo) in K(b, <pr)aB" with
b1,*b, f(bp)*0, and lim sup q(b1,,b1,*r)=.*. Note that the situation is different
for a quasiconformal mapping g: BntG', n>2, since then the inclusion C(g, b)c
0fB':0G' in Lemma2.10 holds (cf. [20, 6.5,6.7]).

(2) Theorem 4.2 and Corollary 4.3 failto hold for the dimensiotTn:2. A counter-
exampleisprovided bytheanalyticfunction /z: B2*R2\{0},h(z):sap (-(1 -r)-n),
z(Bz, which is a local homeomorphism and has a radial limit 0 at z:1. On the
other hand the function å does not have any angular limit at 1, since h(z)-* y17s11

9l
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z*1 through the line y:-x+1. An essential feature of this function h is that,
in view of Lemma 4.7 and Corollary 5.5, it does not satisfy condition (5.1) below.

(3) From the example given in 120, 6.61 it follows that the condition

cap dens (E,b)>O in Theorem 4.2 cannot be replaced by cap dens- (8, ä)>0.
According to Example 4.4 (l) the set .E in Theorem 4.2 cannot be replaced,

in general, by a sequence with the property in a.a (1). Following an idea of Bagemihl

and Seidel [, Lemma 1] we shall now show that E can be replaced by a sufficiently
dense sequence of the same type, provided that the mapping in question is normal.
The next lemma completes the result inl2o,6.3] and Lemma 2.10 above, both proved

under the assumption a(0f8", which is not needed here.

4.5. Lemma. Supposethat f: B"*N isnormal, b€08", and(bo)isa sequence

in B' with b**b and f(bo)-a. If (r) is a sequence of positiue numbers withlim ro:Q,
then f(x)*a as x approaches b through the set E: vD(b*,r*).

Proof. Sttppose that this is not the case. Then there is a sequence (a) in E
with ao*b, f(ao)*B*a. After relabeling, if necessary, we may assume that
p(a1,,b1,)=r1,,k:1,2,.... Let hp: B"*8" beaconformalself-mappingof B'with
ho(b):O. Choose a subsequence of (f o\r'), denoted again by (foh;t), con-

verging c-uniformly towards g: B"-R". Sirce f(b):f(å;l(0))*4, 8(0):ot. On
the other hand hp@)*O and f(a):f(h;t(ho@)))*B*4, which contradicts the

continuity of g at 0. The proof is complete.

4.6. Theorem. Let f: Bo*N be a locally K-quasiconformal mapping omitting
one finite point, let beAB", E€(O,nl2), and let (b) be a sequence in B"nK(b,E)
with bo*S and f(bo)*q. If n>3 and limg(b1,,b1,a1):0, then f has angular

limit u at b.

Proof. From 110,2.91 and [19, 20.41 it follows that f is normal, and hence by
Lemma a.5 f(x) tends to a as x approaches å through a curve Cc.K(b, E)aB"
terminating at b and consisting of the geodesics of the hyperbolic metric, joining

bkto bk+r, for each k:1,2,... . The proof now follows from Theorem4.2.

The next result follows from the proof of [7, 5.8].

4.7. Lemma. Let f: B'*N be anormal quasiregular mapping hauing a radial

limit a at b<08". Then f has angular limit a at b.

4.8. Remark. Lemma 4.7 was pointed out to the author by Prof. O. Martio.
From 4.7 and [0, 2.10] we get an alternative proof for Corollary4.3 under the

additional assumption R"\f B'#0.
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5. Concluding remarks

As was pointed out in Example 4.4 (2), Theorem 4.2 fails to hold when the

dimension n:2. In this final section we shall show how Theorems 4.2 and 3.1

can be generalized to cover the case n:2 as well and how the condition on the

mapping can be weakened. As a byproduct we obtain a normality criterion for
quasiregular mappings, which is related to a problem of W. K. Hayman concerning

m eromorphic functions.
Let f: Bn*Rn, fi>2, be a quasiregular

there exist numbers p€U, -) and /€(0, ..)
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(5.1)

mapping with the following property:
such that

N(f , D(x, t)) = p for all x€B'

the spherical metric. Letting Ä * * yields the desired con-

the reader is referred to [10, 2.101.

Then one can easily prove for/estimates of the same type as those in Lemmas2.l2

and 2.14, where only locally K-quasiconforrnal mappings of 8", n>3, were con-

sidered. This observation, together with the fact that Lemma2.19 holds fot n:2
as well, is all that is needed to carry over the proofs of Theorems 3.1 and 4.2to the

case of quasiregular mappings satisfying (5.1). Thus we have

5.2. The ore m. Theorems 3.1 qnd 4.2 hold for a quasiregular mapping f: Bn * Rn,

n>2, with property (5.1).

Condition (5.1) has also some interest in the theory of normal functions. In

[6, Problem 3.5] W. K. Hayman asked whether there exists a non-normal mero-

morphic function f: Bz*Rz with property (5.1). This question was answered in

the affirmative by Lappan [5], who constructed a non-normal analytic function

satisfying (5'1) for some l>0 and for p:1. From the next result, based on a

theorem of Rickman [18], it follows that such a function cannot omit any point

in .R2.

5.3. Theorem. A quasiregular mapping f: B'*rR'\{d}, n>-2, d(R", with

property (5.1) ,s normal.

Proof. Let (h) be a sequence of conformal self-mappings of B'. By Ascoli's

theorem [9, Chapter 19] it will be enough to show that (f,), fi:fohi, is equi-

continuous at 0. Fix s=0 with ,B'(s)cD(0, l). Then by (5.1) ,nf(f,, ,a'1s;) <p and

K,(f):Kr(/) in the notation of [18]. By [18, 4.41therc are constants Cr>O and

Cr>0 depending only on Kr(f), n, and d such that

q(f iB"(sl7)) = Cr(t^p (Crpn*'(1og 
^)'-')- 

1)

for all 7= 1, where q is
clusion.

For the next result
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5.4. Corollary. Alocally K-quasiconformalmapping f Bn*Äo\{0) is normal
if n>3-

Proof. Condition (5.1) is satisfied by [10, 2.3].

The following corollary seems also to be well-known.

5.5. Corollary. An analytic function /: ,B2*R2\{0} with property (5.1) rs

normal.

5.6. Remarks. (1) For the remark that Theorem 5.3 is related to Hayman's
problem, the author wishes to thank Prof. P. Lappan.

(2) Some results in [1a] concerning locally K-quasiconformal mappings of -B',

nz3, canbe generalized in the spirit of this section.
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