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QUASISYMMETRIC EMBEDDINGS OF METRIC SPACES

P. TUKIA and J. VÄISÄLÄ

L. Introduction

l.l. The theory of quasiconformal maps deals with embeddings I G*Rn,
G open in the euclidean space .P. The main motivation for the present paper was

the desire to extend the notion of quasiconformality to a more general setting, for
example, for embeddings /: G-R', G open in Re, p<.n. More generally, we con-
sider embeddings I X*Y where X and Y are metric spaces. Using the Polish
notation la - bl for the distance between a and b in any metric space, we are interested
in what happens to the ratio

la-xl
u - lb_xl

for three points a, b, x in X with b*x. We say that/is quasisymmetric, abbreviated

QS, if there is a homeomorphism 4: [0, -)*[0, -) such that

(1.2)

(1.3)

lf @)-f (x) I

ffi=rr(e)
' or all such triples a, b, x. We also say that / is 4-quasisymmetric if (l .2) is satisfied

with a given function 4. Otherwise stated, an embedding f: X- I is 4-QS if and
only if la-xl=tlb-xl implies lf@)-f(x)l=aQ)lf(b)-f(x)l for all a,b,x(X
and l>0. If/is a-QS with 4(l):1, we say that/is a similarity. Thus/is a similarity
if and only if there is Z>0 such that lf@)-fQ)l:Llx-yl for all x, y(X.

A curious fact is that for a large class of spaces X, including all connected spaces,

every QS embedding f: X*I is 4-QS with 4 of the form ry(r):Cmax(t",tttn1
(Corollary 3,12).

The term "quasisymmetric" has been used in the theory of quasiconformal
maps [LV, II.7.1] for increasing embeddings f: /*Rt, where / cRl is an interval,
such that for some constant fI,

lf @)-f (x)l = H lf (b)-f (x)l

whenever la-xl=lb-xl. The concept was introduced by Beurling and Ahlfors

[BA], the term by Kelingos [Ks]. For general metric spaces, we shall call an embedding
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f weakly quasisymmetric or weakly Il-quasisymmetric if it satisfies (1.3). Every

4-QS embedding is weakly ,F/-QS with H:rt!).The converse is not true, except
for some important special cases, for example, if X:Rp, Y:R". A notion between
quasisymmetry and weak quasisymmetry is considered in Theorem 3.10. The weakly

QS embeddings in euclidean spaces have been considered by H. Renggli [Rer], [Rer],
who called them mappings of bounded triangular dilatation.

In the general case, quasisymmetry seems to be a more natural concept than
weak quasisymmetry. For example, the metric spaces and the QS embeddings form
a category, but the composition of two weakly QS embeddings need not be weakly QS.

An embedding f: N-R' is quasiconformal if and only if it is QS. If G is
open in Å', a QS embedding f: GtRn is quasiconformal, but the converse is not
true. For example, a Möbius transformation of a ball onto a half space is not QS.
In fact, a QS image of a bounded space is always bounded. However, the concepts

"locally quasisymmetric" and "locally quasiconformal" are equivalent for em-

beddings and immersions /: G*Rn, G open in Ro.

In this paper we consider mainly the properties of quasisymmetry which are

independent of any euclidean structure. In particular, we study relations between
quasisymmetry and weak quasisymmetry. Section 3 deals with equicontinuity and
limits of QS maps. We also prove that a QS embedding of a bounded connected

space satisfies a Hölder condition. Finally, in Section 4, we give a characteriza-
tion of QS arcs. The euclidean case will be considered in a later paper [VäJ.

We wish to thank J. Luukkainen for careful reading of our manuscript and for
several valuable suggestions. The results 2.24 and 2.25 are due to him. Originally,
we only had a weaker form of 2.25.

1.4. Notation All spaces in this paper are metric and usually denoted by X
or L The distance between two points a, b is written as la-bl. We let d(A, B)
denote the distance between two sets A, B, and d(A) the diameter of a set A. The
open ball {x: lx-xol<r} is written as B(xo, r) and the closed ball {x: lx-xol=r}
as .B"(xo, r). N is used for the set of positive integers.

2. Basic concepts

2.1. Preliminary remarks. In the definition of quasisymmetry, we assumed for
the sake of convenience that ry: [0, -)*[0, -) is a homeomorphism. However,
an embedding f: X*I is QS as soon as it satisfles the condition (1.2) with any
function 4 which is bounded on bounded sets and has the limit zero at the origin.
Indeed, we can then easily find a homeomorphism zJ.: [0, -)-[0, -) such that
?t(t)=qJt) for all r=0.

Choosing a:b in (1.2) we see that ry1)=t whenever cardX>2. For con-
venience, we shall assume that 4 (1) > I also in the trivial case card X< l. Similarly,
we shall assume that H>l in (1.3).
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Changing the roles of a and b in (1.2) we see that an 4-QS embedding satisfies

the double inequality

,r(e-')-, =m=?tk)
for all a,b,x€X with b+x and la-xlllb-xl-q.

The definition of weak quasisymmetry can also be stated as follows: Letf: X*Y
be an embedding. For x(X and r>0 set

L(x,f, r) : sup {ll9-f@)l: lY-'rl < r},

l(x,f, r) : inf {lf O)-I(x)l: ly-xl > r},

with the usual convention inf @: -. Then/is weakly ä-QS if and only if L(x,f, r)<
Hl(x,f, r) for all x(X and r>0.

The following result is obvious:

2.2. Theorem. If f: X-Y is 4-QS, the inuerse map f-r: fX-X u a'-QS
with q'(t):4-1(r-1)-1 for t>0. If f: X*I is4r-QS and g: Y*Z qz-QS,then

S/,s ,?-QS with 4Q):qr(,fr(r)). A restriction of an 4-QS embedding rs 4-QS. tr
2.3. Examples. If f satisfies a two-sided Lipschitz condition

(2.4) lx-x'llL = lf(x)-f(x')l = Llx-x'l
for all x, x' in X, then/is a-QS with 41t1:t2t. Conversely, let/be 4-QS with
4(t):ut, u>|. Let xo, xr, x, x'be points in Xwith x*xrlxo, and let !0, !t, !, !'
be their images. Then

ly_ y,l - lv-v'l lv-yrl,..- i:, p,-y,l rvo-lrl= *'ffilvrv,1,
which is easily seen to be true also for x:x!. Hence the right-hand side of Q.a)
is true with L:azlyo-!.1/lxo-xrl. Similarly, the left-hand side is true with
L:azlxo-xrlllyr-yrl. However, L cannot be chosen to depend only on a, as is
seen from the maps f: Ro*Rn,f(x):),x, )"=0.

The map /: [0, *)*[0,*),f(x):x2, is 4-QS with ry(r1:12+21. Every quasi-
conformal map f: Åo*Än is QS. This follows, for example, from the proof of
N\,22.37 and from Theorem 2.16 of the present paper. Further relations between
quasisymmetry and quasiconformality will be considered in [Vär].

In the following example, we consider l?2 with the metric induced by the norm
lxl:max (lxrl, lxrl). Let ,q,:{-112,0,112}, A:{-114,0,112}, X:NX,4 and
I:NX.B. Let E: A*B be the unique increasing bijection. Then /:idX E: X*Y
is a homeomorplusm, which is 4-QS with \U):Zt. Let g: Y*Rz be the embedding
defined by g(n, -ll4):Qx, -Uan) and by g(n,a):(n,a) for a:0,112. Then g
is weakly l-QS. However, gf is not weakly QS. On the other hand, (gf)-r: gY*X
is weakly QS. Observe that g is not QS.
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2.5. Theorem. Let f: X*Y beq-QS.Let AcBcX with d(A)>O,d(B)=.*.
Then d(fB)<* and

,tu(ffi)=ffi&=,w;
Proof. Choose points b,,b',inB such thatlbi-b,l>d(B)12 and that lb:-b"ltd(B)

as n *@. tf bcB,lb-brl=2lbi-å,1, whichimpties lf(b)-f(b,)l=4Q)lf(b)-f(br)1.
Hence d ( fB) = 2q 1211 f(b) -f(b)l -. *.

Let aQA and z€N. Then either 2la-b"l=lb:-b"l or 2la-b'"1>lb',-b,1, say

2lu-b,l=lbi-b"1. If x(A, then lf@)-f(a)l<-q(lx-alllb"-al)l f(b,)-f(a)l=
a(zd(d)llbi-b"l)d(fB). Hence d(fA)<a(2d(A)llb;-b"l)d(fB), which yields the
second inequality as n+6.

Since /-1: fX*X is 4'-QS with q'(t):q-L(t-t)-1, the first inequality fol-
lows from the second one. tr

2.6. Corollary. A QS embedding maps euery bounded set onto a bounded

set. tr
2.7. Definitions. A space X is pseudoconuex if there is an increasing function

C: [, -)*[1, -) with the following property: lf a,b(X and 0<r<la-bl, then
there is a finite sequence of points a:ar,o7, ..., d":å such that s<C(l a-bllr)
and lai+t-arl=lar-at-rl =r for i:1,...,s-1. We also say that X is C-pseudo-
convex if this is true with a given function C.

A space X is homogeneously totally bounded, abbreviated HTB, if there is an
increasing function k: lll2, -)*[, -) such that for every d=1f2, every closed

ball B"(x, r) can be covered with sets Ar, ...,,4" such that s<k(a) and d(A)=rla
for all j. We also say that X is k-HTB.

A space X is of bounded turning, abbreviated BT, if there is c>l such that
each pair of distinct points a, b in X canbe joined by an arc A with d(A)=cla-bl.
We also say that X is c-BT.

2.8. Remarks. Every convex set in a normed vector space is l-BT and
C-pseudoconvex with C(a):q11. Every subset of a k-HTB space is k-HTB. Every
subset of R'is k-HTB withk(a):Zo(anLlz+1)'. Every HTB space is separable. The
term "bounded turning" has been used for arcs and topological circles in the theory
of quasiconformal maps [LY, II.8.7 and II.8.8]. The set X: {(x, y)(R': x>0,lyl:f}
is neither pseudoconvex nor BT. The set of rational numbers is pseudoconvex but
not BT.

If X is k-HTB and if aL,...,as are points in B"(x, r) with la,-ail>r>0
whenever ilj, then s=k(rlt).

2.9. Theorem. If X r's ft-HTB ond c-BT, then X is C-pseudoconuex with
C(a):711ro1.



Quasisymmetric embeddings of metric spaces

Proof. Let a,b(X andlet O<r<la-å1. Choose aL arc AcX joining a and
å such that d(A)<cla-bl. Let < be the natural ordering of ,4 with a-b. Let
ao:a and define inductively points aj:lrirax {xCA: lx-a1-rl=r}. Then lai-ail>r
if i=.j and ailb. Hence a":b for some s. Since ,4c8"(a,cla-bl), we have

s<k(cla-bllr) for the first such s. tr
2.10. Theorem. If X rs k-HTB and if f: X* I rs 4-QS, then fX is k'-HTB,

where k' depends only on k and 11.

Proof. Wemayassumethat fX:Y. Let y(Y,r>O and a=112. Set x:/-1(y)
and Z:suplf-'(r)-f-'U)l over z(B"(y,r). We may assume L>0' Set

§:2lq-t(ll2a). Since Xis k-HTB, there is a covering Ar, ..., A" of .8"(x, Z) such

that s=k(P) and d(A)<LlB for all 7'. Set 3:f-18"(y,r) and A'i:AinA.
Then the sets fAl cover B"(y, r). Observing that d(B)>L and applying 2.5 with
A:Ali, we obtain

d(rA) = ,(21ff) o@"rr, t) = ,tet§) .2r : rta.

Hence Y is k'-HTB with k'(a): k(2la-L(ll2u)). tr
2.11. Theor em. Let X be c-BT and let f: X*Y be 4-QS. ThenfX is 2a@)-BT.

Proof. Let a, b(X, afb. Choose an arc A in X joining a and å such

that d(A)<cla*bl. lf x€A, then lx-al<cla-bl, and therefore lf(x)-f(a)l=
ry @)l f(a) -f(b)I. Consequentry, d(fA)=ztt k)l f@) -f(b)|. tr

2.12. Lemma. Suppose that f: XtY is weakly H-QS and that X is C-pseudo-

conuex. If a, b, x Q X and if la - xl I lb - xl - Q = l, then I f(a) -f(x)l =q k)lf(b) -f(x)l
where q(P):C(dgcat.

Proof. Set lb-xl:r. By pseudoconvexity, there are points x:xo, x1, ..., x":a
such that lxi+r-xil=lxi-xi-11<r and s=C(q). Then lf(xr)-f(x)l=
nlf@)-f(b)l,lf@,)-f(x,)l=H'lf@)-"t(b)l and so on. This vietds lf(a)-f(x)l=
z i I f(* ) -f(x, _ )l = z i H i I f@) -f(b)l = 

sr/" | /(x) -f(b)|. tr
2.13. Remark. Lemma 2.12 does not say that/is QS, since Z(S) is not defined

for g=1. In fact, f need not be QS; see the map f inthe last paragraph of this
paper.

The following result follows directly from the definition of pseudoconvexity:

2.14. Lemma. Suppose that X is pseudoconuex, that a, b are distinct points

in X and that 0=k<k'=1. Then there is x€X such that klb-al<lx-al-.
k'lb-al. tr

2.15. Theor em. Suppose that X is C-pseudoconuex and that Y is k-HTB. Then

euery weakly H-QS embedding f: X * I rs 4-QS, where 11 depends only on C, k
and H.

101
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Proof. Let a,b, x be distinct points in Xwith la-xlllb-xl:q, and set q':
lf@-1r'1111f(b)-f(x)1. By 2.12, q'=C(q)Hc(s) if q>1. For q=l we know
tbat q'=p, but we need an estimate g'=qk) where 4(q)*0 as q*Q.

Suppose that q<1. By 2.14, we can find a sequence bo,br,... of points in
x such that bo:$ and such that lbi-r-xll4<lbr-xl<.lbt-r-xll3 for all 7>1.
Then b,*x. Let s be the least integerT such that lbi-xl<.la-xl. Since lår-xl=
4-i 1b-x1, we obtain Q=4-".

Suppose that 0=i=7=5. Then lx-b,l=lx-bi*rl<lx-bS1l=lx-b,ll3
4lbt-bill3, which implies 2lx-bil=lb-bjl. Since la-xl=lb,-xl, this yields

lu-bil=lb,-b,1. Thus 2Hlf(b)-f(b)l=-lf(a)-f(b)l+lf@)-f(b)l=lf(a)-f(x)|.
Hence the distances between the points f(b), O=j=s- l, are at least lf(a)-f(x)llZn.
On the other hand, lbi-xl=lb-xl implies lf(b)-f(x)l=Hlf@)-f(x)1. Since

Iis ft-HTB, this yields s=kQ.Hzlp'). Since Q=4-', we obtain

1

log- = k(2H2lq)log{.

Since the right side is decreasing in Q', we obtain p'=tlk) with 419;*9 ag

c*0. tr
2.16. Theorem. Let XcRp be c-BT, and let f: X-N be weakly ä-QS.

Then f is q-QS, and fX is c'-BT, where q and c' depend only on p, n, c and H.

Proof. Since euclidean spaces are HTB, this follows directly fuom 2.9, 2.ll
and 2.15. tr

2.17. Remark. It follows from 2.16 that the subsets of euclidean spaces which
are of bounded turning form a convenient class of spaces in the theory of QS maps,
since (1) it is closed with respect to QS embeddings and (2) there is no difference

between quasisymmetry and weak quasisymmetry. In particular, for maps of an
interval lcRt into .R1, our definition of quasisymmetry is equivalent to the usual

one, except that one customarily only considers increasing maps.

2.18. Continuify. Suppose that f: X*Y is a function (not necessarily con-
tinuous) and that there is ä=1 such that

(2.t9) lf @) -f (x)l = u lf (b) -f @)l

whenever la-xl<-lb-xl. Thus, if/is an embedding,/is weakly ä-QS. In general,

a function satisfying (2. 19) need not be continuous. For example , let X be any space

and let Ibe Xwith the metric la-bl:t for a*b. Then the identity map f: X*Y
satisfies (2.19) with H:1, but it is not usually continuous. Furthermore, even if f
is continuous, it need not be an embedding, since a constant function always satisfies

(2.19). We give two results which show that in certain important cases, conditions
like this imply that/is an embedding.
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2.20. Theotem. Suppose that H>l and that f: X*Y is a function satisfy'
ine Q.l9) wheneuer la-xl=lb-xl. If f it not constant in any non-empty open set,

thenf isinjectiueand f-|:fX*X iscontinuous. If Xisconnected,thisistruewhen-
euer f is non-constant. If euery bounded set in Y is totally bounded, f is continuous.

Proof. Suppose that/is not constant in any non-empty open set. lf f(x):f(y)
for some xty, then lf(x)-f(z)l=Ulf(*)-f(y\:0 for all z in B(x,lx-yl),
which is impossible. Hence/is injective. Let xo(X and e>0. Since {x6} is not open

in X,therc is xr(B(xs, e), xrlxs.If lx-xol>e, then lf@)-f(x)l>lf(x)-f(x)llH:
ä=0. Hence fB(xo, e) contains A(f@o), ö)afX, which implies that /-1 is con-

tinuous.
Next assume that X is connected and that f is not injective. By what was

proved above, there is /€ I such that ifif-L(y):U+0. If / is not constant,

U has a boundary point x. Choose b and c in U such that lx-cl=lå-cl. Then

I f (x) - yl= H I y - yl :0. Hence, if la - xl< lb - xl, I f@) - vl = H I f@) -.vl : 0. Thus

B(x,lb-xl)c t/, which is a contradiction.
Finally, assume that all bounded sets in Iare totally bounded. If/is not con-

tinuous at xn€X, there is a sequence of points x; converging to xo such that (1)

lx;-xol=lxr-xol, (2) lxi-xsl=lx;-.r;l for i=i, (l) lf@)-f(xo)l>r-0. Since

lf @)-f@)l=Hlf(xr)-f(xr)1, the set of all points/(x;) is totally bounded. Con-
sequently, there are arbitrarily small distances lf @)-f(x)|, ilj. On the other
hand, i =j implies I f @ ) -f(x )l=l "f@ ) -f(x)l I H > r I H. This contradiction proves

that/is continuous. tr
2.21. Theorem. Let 4: [0, -)*[0, *) be a homeomorphism. Let f: X-Y be

a function such that

lf (o)-f (*)l = 
q(p)lf (u)-!(x)l

whenerser la-xl=elb-xl. Then f is either constant or an ry-QS embedding.

Proof. Let xo(X and e=0. Fix b(X, b+xo. Choose q=0 such that
qk)lflb)-f(xo)l=e. Then lf(x)-f(xo)l=e for x€B(xo, slå-x'l). Thus/is con-

tinuous. Suppose that/is not constant.If f(x):f(y) for some xly andif zlx,
then, setting q :12 - xllly-xl, we obtain I fQ) -f(x)l=rtk)l fO) -f(r)l :0. Hence

/is injective. It remains to prove that f-r: fX*X is continuous at an arbitrary
point /(xo). If xo is not isolated in X, this can be proved as in 2.20. Suppose that
x, is isolated in X. We must show that /(x) is isolated h fX. If this is not true,
there is a sequence of points xiQ.X, xi*xo, such thatf(x)*f(xo). Choose g=0 such

that lx1-xol=slr;-rol for all 7>1. Then lf@r)-f(x)l=rt@)lf@i)-/(xJI*0,
which gives a contradiction. tr

2.22. Local quasisymmetry. The concepts locally quasisymmetric, locally 4-quasi-
symmetric, locally weakly quasisymmetric, and locally weakly fl-quasisymmetric are

defined in the obvious way. For example, an embedding f: X-Y is locally ry-QS
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if every point x in X has a neighborhood [/ such that flu is 4-QS. These concepts
are also meaningful for immersions.

2.23. Theorem. Suppose that X is compact. If an embedding f: X*Y is
locally QS or locally weakly QS, thenf rs QS or weakly QS, respectioely.

Proof. We prove the QS case; the weakly QS case is easier. Let f: X*Y be
a locally QS embedding. Choose an open covering {Ur,...,U} of X and a func-
tion 4 such that every flU, is 4-QS. Let ,1=0 be a Lebesgue number for the cover-
ing (U) such that ),-.d(U) whenever d(U)=0. By compactness, there is ä>0
such that lx-x'l>112 implies lf(x)-f(x')l=ä. Let a, b, x be distinct points in
X, and set q:la-xlllb-xl, q'-lf(a)-f(x)lllf@-f(x)1. We divide the rest of
the proof into four cases.

Case l. la-xl=)"/2 and lb-xl=A|2. Then there is7 such that {a, b, x}cUi,
and thus {=q@).

Case2. la-xl=)./2 and lå-xl>),12. Then there is7 such that {a,x}cUi.
Since )"=d(Ui), there is y€Ui such that 2ly-xl>,l. Then la-xllly-xl=2Sd(X)l)",
and we obtain

-, lf@)-f(x)l lf?)-I@)l - (la-xrt
n' :5ffiffi 

= 4 lffiJ d1x)lö = a(zqa61l)')d(fx)lö'

Case3. la-xl>)"/2 and lb-xl=),|2. A modification of the proof of Case2
yields the same estimate for p'.

Case 4. la-xl=),/2 and lb-xl=),|2. Then, q>)"12d(X) and q'<d(fx)lö. n
As mentioned in the introduction, Theorems 2.24 and2.25 are due to J. Luukkai-

nen. See also [Rer, Theorem 4].

2.24. Theorem. Let f: X*Y be 1-QS. Then f maps euery Cauchy sequence

in X to a Cauchy sequence. If X is totally bounded or complete, then fX is totally
bounded or complete, respectiuely.

Proof. We may assume that fX:Y. Let (x) be a Cauchy sequence in X. Then
g:{xr: /(N} is bounded, and Theorem2.5 implies

v@)-r@i)t=,(+#)duB)
Hence the sequence (f(.)) is Cauchy.

A space is totally bounded if and only if every sequence has a Cauchy sub-
sequence. Consequenfly, if X is totally bounded, so is f.

Suppose that X is complete. Let (yi) be a Cauchy sequence in L Since /-r
is QS, it follows from the first part of the theorem that the sequence (/-t(yr)) it
Cauchy and hence converges to a point x€X. Thus (4) converges to /(x). tr
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2.25. Theorem. Suppose that X and Y are spaces, that AcX, that f:
rs 4-QS and that fA is complete. Then f can be extended to an 4-QS embedding g :

Proof. By 2.24, the image of every Cauchy sequence in I is convergent. Hence

f has a unique extension to a continuous map g: ÄtL Since 4 is continuous, g
satisfies the inequaliry I s @) - s(x)l = 4 (s) I g @) - s @)l whenever la - xl =- q lb - xl.
By 2.21, g is 4-QS. tr

3. Equicontinuity and Hölder continuity

3.1. We recall that a family Fof maps f: X*Y is equicontinuous if for every
xo(X and e>0 there is a neighborhood U of xo such that lf@)-f(x)l=e when-
ever x€ U and fCF.

3.2. Theorem. Let H>l and let X and Y be spaces with Y totally bounded.

Then the family F of all weakly H-QS embeddings f: X-Y is equicontinuous.

Proof. Let xo(X and let e>0. We may assume that xo is not isolatedin X.
Choose an integer k such that Y can be covered with fr sets of diameter less than
el2H. Choose a sequence of distinct points x, converging to xo such that lxr-xol =
min (lx,-xol,lxi-x)12) for i=j. Set ä:lx1*1-xsl. We shall show that
lfk)-f(xr)l=e whenever f(F and lx-xol<ä. Chooseintegers i<j=k-11 such
that lf@)-f(x)l=el2H. Since lri-xol <lx1-x,ll2<l*i-*,1, lf(x)-f(x)l=
H I f(x ) -f(x,)l <. el 2. Since l* i - *l= lx; - x6l * lxo - xl = lxy - xol * ö <-Zlx 

1 - xol <
lx i - x il, I f@ j) -{(x)l = H I f@ ) -f(x )l < e I 2. Hence I f(x) -f(xo)l - e. tr

3.3. Remark. Theorem 3.2 cannot be extended to the case where I is not
totally bounded, even if weak quasisymmetry is replaced by quasisymmetry. For
example, the maps f: R"*R", f(x):),x, ),=0, are similarities, but their family
is not equicontinuous. However, we obtain equicontinuity by either putting an
additional condition on the maps or by assuming that the spaces are bounded.

3.4. Theorem. Let 4: [0, -)*10,-) be a homeomorphism. Let X and Y be

spaces, let M>0, and let a, b be distinct points in X. Then the family F of all 7-quasi-
symmetric embeddings f: XtY such that lf(a)-f(b)l=U is equicontinuous.

Proof. Let xo(X, xs*a. Then

tf @) -f @o)t=, ffi, 1 v @) -f (xo)t =, (m), (ffi) *
Hence ,F'is equicontinuous at xo. For xo:q change the roles of a and b. tr

3.5. Theorem. Let X and Y be bounded spaces and let 4: [0, -)*[0,*) be

a homeomorphism. Then the family F of all 7-QS embeddings f: XtY is uniformly

A*Y
Ä*Y.
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equicontinuous. More precisely, if x, !€X, x*!, "f€f , ilten

Proof. This is a special case of 2.5. D

3.6. Remarks. Let ,F be an equicontinuous family of maps f: X-Y, and

let F be the closure of tr, in the compact-open topology of the space C(X, I) of all

continuous maps I X*Y. From the Ascoli theorem lDu, 12.6.41it follows that
F is compact if the set ,F[x]: {f(x): fe p} has a compact closure for every x€X.
ln particular, this is true whenever Y is compact. In the situation of 3.2, the comple-

tion Z of I is compact. Thus -F has a compact closure in C(X, Z). In the situation

of 3.4, F is compact if we assume, in addition, that Y is boundedly compact and

that .F,[xo] is bounded for some x6€X. Indeed, the proof of 3.4 shows that .F'[x] is

then bounded for every x(X.
It follows from 2.20 and 2.21that the family F1f'' in 3.2, 3.4 and in 3.5 is

fairly small. For example, we easily obtain the following result:

3.7. Theorem. Let ft: X*Y be a sequence o/ry-QS embeddings conuerging

pointwise to a function f: X*Y. Then f is either constant or 4-QS. Moreouer, the

conuergence is unifurm on euery compact set.

Proof. The first assertion follows from 2.21. We may assume that X contains

two distinct points a and å. Since ("4) is convergent, the set of all distances

lfi@)-fi(b)l is bounded. By Theorem 3.4,the family {"4.: re N} is equicontinuous.

The second assertion then follows from [Ky, 7.15, p. 232]. tr

3.8. HD-spaces. Our next goal is to show that with some mild restrictions on

X, every QS embedding f: X* I is Hölder continuous and 4-QS with 4 of the

form 4(r):Cmax (t",t'1"). For this purpose, we introduce the following concept:

A space X is said to be homogeneously dense, abbreviated HD, if there are numbers

,1.r, ,1, such that 0<,tr< 7r<l and such that for each pair of points a, b in X there

is x€X satisfying the condition )"rlb-al=lx-al<)"rlb-al. We also say that Xis
(,11, ,lr)-HD or simply ),-HD, A:( 1, )"2).

A connected space is,t-HD for every ,16(0, l)'z with 1r=1r. A pseudoconvex

space is ,l-HD for every .i€(0, 1)2 with )n<)"r. The space [0, l]u[2, 3] and the

Cantor middle-third set are HD but neither connected nor pseudoconvex. A HD
space containing at least two points has no isolated points.

3.9. Lemma. (l) Let X be ()"r,,lr)-HD and let n be a positiue integer. Then X
is (1i,,,'ä)-HD.

(2) Let X be ),-HD andlet f: X*Y beq-QS. ThenfX is p-HD,where p depends

only on 11 and )..
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Proof. lteration of the definition of the property HD yields (l). To prove (2),

choose an integer n:n(q, 1) such that q}i)<|. Let a, b(X. By (l), there is
x(X such that ),ilb-al=lx-al<)"ilb-al. Hence

q(),,")-rll@)-f (a)l = lf (x)-f (a)l = n(Ai)lf (b)-f (a)1,

which proves (2). fl
3.10. Theorem. Suppose that 0<)1<12=1, that ll).l<h=H and that X is

,l-HD. Suppose also that f: X*Y is an embedding such that

(1) la-x1=716 -xl impties I "f@)-f(x)l= Hlf@)-f(x)|,
(2) la- xl=lb - xll H impties I f(a) -f(x)l=l f(b) -f(x)ll h.

Then there are C>l and a>1, depending only on )., h and H, such that f is 4-QS
with 11Q):Q max (t", ttl"1.

Proof. Let a,b, x be distinct points in X, and set q:la-xlllb-xl, q':
l"f@)-f(x)lllf@)-f(x)1. We must find C and a such that

e'= Cmax(e", e'l\.

Case l. g=1. Since X is ,t-HD, there is a finite sequence of points
A:Xo, Xa, .,., Jf", Jå0, SUCh that

)"rlxr-xl = lxi*r-xl < ).rlxi-xl, ,1,lx"-xl = lb-xl5 lx"-xl.

Set x"11:å. Since h>lf )'L, lxt-xl<hlxi*r-xl for all i€[0, s], and therefore

I f@ ) -f(x)l = 
H I f(x i * ) -f(x)|. Hence I f @) -f(x)l = H' +r 

I f (b) -f(x)|, which
gives Q'=H'+r. On the other hand, lb-xl<lx"-xl<Åila-xl, which yields

lr'=Q and thus H'=Q' with a--log Hllog),r. Consequently, Q'<HQ".

Case2. q<i. Choose an integer n:n(),,/I) such that Li<l/fl Since Xis
()"i, 1;)-HD, there is a finite sequence b: *r, ..., x" of points in X such that

lilx;xl = lxi*r-xl = lilx,-xl, lilx"-xl = ia-xl = lx"-xl.

Then lxi*r-xl=lx,-xllH for all ,':0,...,^r-1, and hence lf(nå-f(x)l=
lf(x)-f(x)llh, which implies lf@,)-f(x)l=lf(b)-f(x)llh'. Furthermore,

lf(a)-f(x)l=Hlf(x")-f(x)l and thus p'=Hh '. On the other hand, la-xl=
1|ls+r)lb-xl, which gives q>,tf(§+1)>å-u(s+1) and hence Q'=H4prl"=H'Q'l'. n

3.11. Remark. The proof of 3.10 gives the following more precise results:

We can always choose C:Hz. If Xis connected, we can choose a:log Hllogh.
Indeed, in Case 2 of the proof, we can then take lxi+r-xl :lx,-xllH and la-xl>
lx"-xllH.

3.12. Corollary. Suppose that X is L-}{D and that f: X*Y is 1-QS. Then

fr.rryfQS, q'G):cmax(t",trlq), where c>l and u=l dependonlyon4andl.
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Proof. The conditions of 3.10 are satisfi.ed with h:ll)., and
H : rr&x (q(1r'), rt-' Q,r)-', 1r'). n

3.13. Remark. If X is connected, we may choose 1t:112. Hence we may
take in 3.12 C:Hz and a:log Hllog2 where H:rDaxQtQ),q-'Ol2)-',2).

3.14. Theorem. Suppose that X is ),-HD, that f: X*Y is rl-QS and that
AcX is bounded. Then flA satisfies a two-sided Hölder condition

lx- yl"lc = l.f @)-f (y)l = ,lx- yl'to

for x, y(A, where the constant u>l depending only on q and )" is as in 3.12 and c

depends only on 11, )", d(A) and d(fA).

Proof. By 3.l2we may assume that q(t):Cmax(t",rrt"). Let x,y(A. Then
3.5 implies

(3.15)

lf@)-f@l
If lx-yl=d(A)|z, 3.5 also gives

lf (x)-f 0)l

Since l/(x)-/(Dl=-d(fA\ this is also true when lx-yl=d(A)12. tr
3.16. Remarks. l. Let X be the set consisting of 0 and the numbers e-'!,

n:2,3,.... Define f: X*Rrby f(x):-lllogx for x=0 and/(0):Q. A straight-
forward but tedious proof shows that f is QS. However, / does not satisfy a Hölder
condition. Hence the HD-condition is essential in 3.14.

2. Let X be a space with d(X)<e-z. Then we can define the logarithmic metric
ä ofXby

ö(x, y): _rog+=rl

for xty and ä(x,x):0. It is not difficult to show that an embedding f: X-Y
with d(X),d(Y)<e-z satisfies the condition (3.15) if and only if f: (X, ä)*(f,ä)
is a Lipschitz embedding, that is, there is a constant Z>l such that

ö(x, y)lL = ö(f (x),f (y)) = Lö(x, y)

for all x, y(X. In particular, this is true whenever X is HD and / is QS. On the

other hand, the condition (3.15) does not imply quasisymmetry. For example, the
homeomorphism I ILtIr defined by f(x):v for x<0 and f(x):x2 for x=0
satisfies (3.15) but is not QS.

3.17. Hausdorff dimension The Hausdorff dimension dim, A of a set A in a
metric space Xis the infimum of all numbers ä>0 such that for every e>0 there

is a countable covering U;:/(N) of ,4 with the property that d(At)=e for all
j and that ), d(A,)ö+'=e.
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If / satisfies (3.15), then d(B)lc=d(fB)=cd19yt" for every BcX. Hence
3.14 gives as a corollary:

3.18. Theorem. LetXbe),-HD.Let f: X-Y beq-QS. If AcX, then

dims Ala = dimrfA < adrmo A

where a, depending only on q and )., is as in Theorem 3.12. tr
3.19. Theor em. If X is ft-HTB, then dim, X=M(k)= -.
Proof. We may assume that d(X)=l and that im kcN. Set n:k(2). Every

se| EcX can be covered with n sets of diameter at most d(E)12- Hence we can

inductively choose coverings ,ilrof X suchthat card ili:ni and such that d(A)<2- |

for all AQdi- Let a>log nllog2. Then 2-"n<1, and we obtain

nä,d(n)"-(2-"n)i 
*Q

as ,*-. This proves the theorem with M(k):logk(2)llog2. tr
3.20. Remark (added November 8, 1979). J. Luukkainen pointed out that

a metric space is HTB if and only if it is of finite metric dimension in the sense of
P. Assouad, C. R. Acad. Sci. Paris 288, 1979, 731-734. From Remark2, p. 732,

of Assouad it follows that every HTB space can be QS embedded into a euclidean
space.

3.21. We shall apply the results of this section to give acharacterization of QS
embeddings f: Re *Rn, p<n, in terms of compact families of embeddin5s.If p:n,
the result is well known; the case p:n: I is due to Beurling and Ahlfors [BA, 2.5],

the case p:n>-2 to Gehring [Ge, Theorem 18].

By 2.16, an embedding f: Rp *N is QS if and only if it is weakly QS. There-
fore we simply say thatlis ä-QS if it is weakly ä-QS.

Fix integers n>:p>|. For ä> 1 let Q* be the family of all II-QS embeddings

f: Re*N such that "f(0):0 and f(er):sr:(l,0,...,0). As in 3.6, we consider
C(Ap, R') with the compact-open topology, or equivalently, with the topology of
uniform convergence on compact sets. By 3.4, Qn is equicontinuous. By 3.6, Q,
is compact. By 3.7, every element of 0ä\Oä is an embedding and hence ä-QS.
Thus Q*:Q, is compact.

lf f: Re t fi" is an embedding, we let W t denote the family of all maps g : Rp *Å'
such that 8(0):0, g(er):er, and g:df| for some similarity maps d: Ä'*R'
and. B; RP*Rp.If /is II-QS, every member of 14, is ä-QS. Therefore Wris con-
tained in the compact family Qr.

Conversely, assume that f: JtprÅn is an embedding such that Wl is contained
in some compact family ^F of embeddings .Rp*Än. We show that / is QS. Since F
and .8"(0, 1) are compact,

sup {lg0)l : v€8,(0, l), se F} - Hr { oo.
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Let a,b,x(Rp with 0=lx-al=lx-bl. Let f be a similarity map of Äp such that

fr(o):x, fl(er):b. Then lB-1(a)l<1. Since/is injective, there is a similarity map

a of Ro strch that afBQ):A and ufB@r):er. Then C:dfP(Wrc.F, and hence

lf (a) -f (x)l

lf (b) -f (x)l

Thus f is äu-QS. We have proved:

3.22.Theorem. Let L=p=n and let f: Rp*N be an embedding. Then f
is QS if and only if l[/t is contained in a compact family of embeddings ,R'P*År.

More precisely, for euery H>L there is a compact family Qu of embeddings

Rp*lR' such that WrcQ, wheneuer / rs ä-QS. Conuersely, for euery compact

family F of embeddings rRp*An there is HF=l such that WtcF implies that f
is flr-QS.

4. Quasisymmetric arcs and curves

4.1. Terminology. A space I is an arc if it is homeomorphic to 7:[0, 1];

Y is a curue if it is homeomorphic to the circle §r : {x( R2: lxl : 1}. If the homeo-

morphism can be chosen to be QS, I is called a quasisymmetric arc or curve.

4.2. Characterization of QS arcs and curues. Since / and 
^S1 

are HTB and BT,
it follows from 2.10 and 2.11 that every QS arc and curve is HTB and BT. In fact,
if X:I or X:,S1 and if f: X-Y is a weakly II-QS homeomorphism, the proof
of 2.ll shows that Y is 2H-BT. However, I need not be HTB; see Example 4.12.

The purpose of this section is to show that conversely, if I is an arc or a curve
which is HTB and BT, y is quasisymmetric. By an example we show that the BT-
property alone does not suffice: there is an arc which is BT but not HTB.

For arcs and curves in the plane R2, this result is well known from the theory
of quasiconformal maps. In fact, if Yc.Rz is a BT arc or curve, there is a quasi-

conformal homeomorphism /: Ä2*-R2 mapping I onto 1or 
^§1. 

See [LV, II.8.7]
and [Ri].

4.3. Subdiuisions. Throughout this section we assume that all arcs and curves

are oriented. Subarcs have the induced orientation. The initial point of an arc J
is denoted by A(J), the terminal point by B(J). A subdiuision of ,I is a finite sequence

of subarcs Jr, ...,,I, such that J:Jtv...uJ,, A(J):11111, B(J):311,1 and that
A(li*r):B(J) for i=n. If "Iis a curve, Jr,.'.,Jo is a subdivision of ,Iif either
Jt:J or n>l and "f are subarcs such that A(Jr):B(J,) and that Jr,...,Jn-t
is a subdivision of "r\ntd.

4.4. Lemma. Let k: lll2, *)*ll, -) be increasing, c>7 and 0<e <1. Then

there are numbers ö:ö(k, c, e)>0 and p:p(k, c, e)6N such that if J is an arc

- lg$-'(r))l= H,.
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or a curue, which is k-HTB and c-BT, there is a subdiuision Jr, ..., J, of J wilh

öd(J)=d(J,)=ed(J)
for i<p.

Proof. We may assume that imfrcN. We will show that the lemma is true
with p:l1p4cle) and, ö:2-t-tr. By a change of scale we may assume that d(J):|.

We define inductively arcs ,Ir, ...tJn+r as follows: Let a:A(J), if "I is an
arc; if "Iis a curve,let abe an arbitrary point of J.Let,I, be the maximal subarc
of ,I such that A(Jr):a and such that JrcB"(a, e/4). Since e<1, there is such

an arc..Ir, and el4<d(Jr)<e12. Suppose that Jr,...,J, have been constructed.
If Jrv...vJt:J, the process ends. Otherwise we let Jr*, be the maximal subarc of
,I\int (Jrv...vJ) such that A(Ji*1):B(Ji) and such that Ji+rc.B"(B(J;),e14).
Since "I is compact, the process ends after a finite number of steps, and we obtain a

subdivision Jr,...,J,*, of ./ satisfying d(J,)=el2 for all i and d(J,)>el4 for
i<n. Deletiag Jn+r and replacing J,by the subarc with the initial point A(J,) and
the terminal point ,B(.Q (if "r is an arc) or a (if ./ is a curve), we get a subdivision
Jr, ...,J, of J such that el4=d(lr1=s for all i.

Assume that l=i=j=n and let J' be a subarc of ,I with endpoints l({)
andA(J).Then d(J')>ei4, whichimplies lA(Jt)-A(Jj)l=elqc. Since"Iis k-HTB,
this yields n<k(4cle):p. lf n:p, there is nothing more to be done. Otherwise
we divide./, into two subarcs of diameter at least e/8. Repeating this p-n times
we obtain a new subdivision written as 11, ..., Jp, such that 2-p-l e=d(Ji)=e for
all i=p. n

4.5. Some constructions. Let k and c be as in Lemma4.4.We fix e :ll2 and
obtain by 4.4 numbers ö:ö(k,c,l12):59;, c) and p:p(k,c,l12):p(k, c). We
mayassumethat ä<114. We set g:q(k, c):el$:ll2ö. Then q>2 and Qz=llö.

We next choose positive integers m:m(k, c)>2 and n:n(k, c) such that

2" Z Q*,
(4.6)

4n1-3 < p-.

To see the existence of such m and n, find first m and n that satisfy the first inequality.
If they do not satisfy the second inequality, double them, and repeat this until the
second inequality is also satisfied.

We set N:N(k, c):p^*2n(p_l).
Let W be the set of words that can be formed of the numbers 1, ..., N. Thus

the elements of W are finite sequences w:t\...fln whete l=ni<N and q=0;
also the empty sequence 0 is in I4t. The length l(w) of a word w:nr...nq is the
number q>0. Two words w:nr...nn and u:ml..,mr can be concatenated to
a new word wu:n1,..rtor/|1,.,flrr.

4.7. Lemma. Let J be an arc or a curue, which is k-HTB and c-BT. Then there

are subarcs JncJ, w(W, (Jg is a curue if J is a curue) such that:

111
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(i) ts:1.
(ii) /"o, ..., J*N is a subdiuision of J-for w(W.
(iii) d (J -) = )- 

t<-t d (J).
(iv) If u,w(W,l(u):11r1, and if J, and Jn are adjacent, then

Q-^'' = d(J )ld(J *) = Q^ 
*2.

Proof. We construct the arcs "I. by induction on /(w). We set Jg:J. Assume

then that we have constructed J- if l(w)-.s such that the conditions of 4.7 arc
satisfied. We construct now the arcs J., /(w):s.

We first divide every Jn, l(w):s-l, into p subarcs as in Lemma4.4. Each
of these subarcs is again divided into p subarcs as in Lemma4.4.We repeat this
m times and thus divide "I. into M:p* subarcs, denoted J,14,...,"Ijrn. These

satisfy

ö* d(J*) = d(Ji") = 2-m d(J*),

Q-m=d(J{,)ld(Ji")sQ*

(4.8)

for all i=M and j=M.
We now fix w( W, l(w):s- 1. By (4.8), the ratios d(Jit)ld(4(t*r1) lie in the

desired range, but this may not be true for r:d(Ji"r)ld(Ji,Å when Ji* and Ji,
are adjacent, l(u):s-l. However, in any case we have p-z^-'=r=q"*'. Thit
follows from (4.8) and from the inductive hypothesis. If r(lq-^-', Q^+1, we do

nothing. If this is not true, we must perform some further subdivision. Assume,

for instance, that r>q-+2. Then we subdivide Jirittto p subarcs \Lr,...,J;1,
as in Lemma 4.4. If still d(J;n)ld(4M)- Q*+', we repeat this with respect to "/jrr. We
continue in this way and stop as soon as we get J'*r...r:J', such that d(4)ld(J:A<
g'+'. By (4.6), this happens after atmostz steps. Since ö=Q-',we have d(4)ld(J',å>
Q^=Q-*-'. If r=Q-^-', we subdivide Ji* instead. We do this for all w€W,
l(w):5- 1. We get new subdivisions J'ii, l=i=N*, of the arcs,[.. Here M<Nn4
M*2n(p-l):N and N-N. is divisible by p-1.

If N,<N, we must still perform some subdivision. Let dn:(N-N-)l(p-l).
We subdivide the arcs Ji,r,Ji"u,...,Jlu,r+ro*, which are also arcs in the subdivision
J';L, ..., J'i*_, into p subarcs as in Lemma 4.4.We get a new subdivision J.t, ..., JwN

of J.. This is the final subdivision. Note that the arcs Jl,J;r,...,4,,r*ro*,4u*
exist and are pairwise disjoint, since dn<2n and 4n*3<M.

We must show that the arcs J-, w€W, I(w)=s, satisfy (i)-(iv). The condi-
tions (i) and (ii) are trivial, and (iii) follows from (4.8). We prove (iv). If J,n and
J*, are adjacent, u,w([l', l(u):l(y.e):s-1, then d(J.)ld(J,N)€lQ---', Q**'J by
construction. If J*i and J-i are adjacent and both of them are of the form Jio,
then r:d(J,)ld(J*)ela-^, Q^7. If only one of them is of the form ,Iir, then
r€lQ-^ö, s-lölclp-^-', e-+'1. If neither of them is of this form, r€[ä/a, Qlö)c
LQ-*-', Q-+'f, tr

We are now ready to prove the main theorem of this section.
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4.9. The o re m. Let J be an arc or a curoe. Then "r ,s QS if and only if J is IJTB
andBT.

More precisely,if J is k-HTB and c-BT, there is an4-QS homeomorphismf: X*J,
X:I or SL, with q depending only on k and c. Conuersely, if J:fX for some 1-eS
homeomorphism f, then J is h-HTB and c-BT with k and c depending only on q.

Proof. ln 4.2 we already proved the last statement of the theorem with c :2q (l).
Inspection of the proof of 2.10 would give the explicit estimate k (u):l *2nlq-1(ll2u).

Conversely, assume that J is ft-HTB and c-BT. In view of 2.15, it suffices to
find a homeomorphism f: X*J which is weakly .FI-QS with H:H(k, c).

If X:^S1, we let la-bl be ll2n times the length of the shorter arc joining
the points a and b in ,S1. Then la-xl=lb-xl if and only if lla-xll=llå=xll where
llTll is the ordinary inner product norm of 7€R2. consequently, both metrics give
the same class of weakly ä-QS embeddings of ,S1.

Let N:tr[(k, c) be as in 4.5, and choose the subarcs ln, w(W, of .I as in
4.7. We subdivide X into N subarcs f!,...,1" of length l/tr[. These in turn are
divided into .1y'2 subarcs lrr,...,fnx. Continuing in this manner we get subarcs
In for w(W like the subarcs Jn of J. The length of 1, is /y'-r(,). There is a unique
homeomorphism I X*"I such that fI*:Jn for all w(W. We will show that f
is weakly ä(k, c)-QS.

Let a,b,x(X with 0<la-xl=lb-xl. Let s be the smallest integer such
that N-'=lb-xll2. Let I'be the shortest arc of Xwith endpoints å and x. Then
1'contains an arc 1. with /(w):5. 1h.n

(4.10) lf @-f (x)l = d(f I')l' > d(J*)lc.

On the other hand, N-§+l=lå-xll2>la-xll2, implying la-xl<21tJ-'+t and
la-bl<la-xl+lx-OFq,iy'-s+1. Hence there is a sequence of arcs IwG\, ...t Iw(,\
following one another such that w(i)(W, l(w(i)):s, r<4Nl-1, w(l):w, and
a(Ino). In the same manner, lb-xl<2N-s+l implies that there is a sequcnce of
arcs 1,,rr,...tfo(,,) following one another such that u(i)(W, l(u(i)):s, y,=
2N+1, u(l):,,at and x(1,p,.1. Let M:q-+2 where g is as in 4.5. Then (iv) of Lemma
4.7 implies that for every u(I*, we have lf@)-f(u)l<Q+M+...tM,)d(J*)=
5NM5Nd(J.) and' lf@)-f(u)l<(t+M +...+ M/)d(J_)<3NM\NdU*)'.'rrrus
lf@)-f(x)l=8NM5N d(J*). Together with (4.10) this gives lf(a)-f(x)l=
ScNMsNlf(b)-/(x)1. Hence/is weakly I/-eS with H:8cNM,N:H(k,c). tr

4.11. Corollary. An arc or a curue in R" is QS if and only if ir,r BT. tr
4.12. Example. In 2.8 we constructed an arc which is HTB but not BT. We

will now construct an arc which is BT but not HTB, and hence not es. Let R-
be the space of all sequences ,r:(x,, x2, ...) such that xj*O for only flnitely many
j. Let the metric of R- be induced by the norm lxl:max;lxj. Let €1,€2,...
be the standard basis of rR- and let ur:erfi. Let Å, be the line segment joining a,
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and ui +r.Then the union .4 of all / , and the origin is arr arc, and it is easily seen to

be BT. However, I is not HTB. To see this, consider the ball B:8"(0,lln)aA.
Then ui€B for j>n. lf n<i-i=2n, then lui-uil:lli=ll2n. Thus .B contains

r * I points of mutual distance >ll2n. If A were Ä-HTB, this would imply n* 1=

k(2) for all n and hence a contradiction'
we remark that a homeomorphism f: l0,ll*a, which is weakly QS, is obtained

as follows: /(0):0, fQ-\:ttj+,, and f maps [2-j-',z-if affinely onto /i+t'
The inverse map f-L is not weakly QS.
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