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QUASISYMMETRIC EMBEDDINGS OF METRIC SPACES

P. TUKIA and J. VAISALA

1. Introduction

1.1. The theory of quasiconformal maps deals with embeddings f: G—R",
G open in the euclidean space R". The main motivation for the present paper was
the desire to extend the notion of quasiconformality to a more general setting, for
example, for embeddings f: G—~R", G open in R, p<n. More generally, we con-
sider embeddings f: X—~Y where X and Y are metric spaces. Using the Polish
notation |a—b| for the distance between @ and b in any metric space, we are interested
in what happens to the ratio
_la—x]|
e= |b—x|

for three points a, b, x in X with b=x. We say that f'is quasisymmetric, abbreviated
QS, if there is a homeomorphism #: [0, <) ~[0, =) such that

@) —f()] _
Fo—fom) =@

Jor all such triples a, b, x. We also say that f is n-quasisymmetric if (1.2) is satisfied
with a given function . Otherwise stated, an embedding f: X—Y is 5-QS if and
only if |a—x|=¢|b—x| implies |f(@)—f(x)|=n@)|f(b)—f(x)| for all a,b, xcX
and r=0. If fis n-QS with #(#)=t¢, we say that fis a similarity. Thus fis a similarity
if and only if there is L=0 such that | f(x)—f(y)|=L|x—y| for all x, y€X.

A curious fact is that for a large class of spaces X, including all connected spaces,
every QS embedding f: XY is n-QS with 5 of the form #(¢)=C max (¢ %)
(Corollary 3.12).

The term ‘“quasisymmetric” has been used in the theory of quasiconformal
maps [LV, I1.7.1] for increasing embeddings f: 4—~R', where 4C R! is an interval,
such that for some constant H,

(1.3) If(@—f®)| = H|f(b)—f(x)]

whenever |a—x|=|b—x|. The concept was introduced by Beurling and Ahlfors
[BA], the term by Kelingos [Ks]. For general metric spaces, we shall call an embedding

(1.2)
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f weakly quasisymmetric or weakly H-quasisymmetric if it satisfies (1.3). Every
n-QS embedding is weakly H-QS with H=#(1). The converse is not true, except
for some important special cases, for example, if X=R?, Y=R". A notion between
quasisymmetry and weak quasisymmetry is considered in Theorem 3.10. The weakly
QS embeddings in euclidean spaces have been considered by H. Renggli [Re,], [Re,],
who called them mappings of bounded triangular dilatation.

In the general case, quasisymmetry seems to be a more natural concept than
weak quasisymmetry. For example, the metric spaces and the QS embeddings form
a category, but the composition of two weakly QS embeddings need not be weakly QS.

An embedding f: R"—R" is quasiconformal if and only if it is QS. If G is
open in R”, a QS embedding f: G—R" is quasiconformal, but the converse is not
true. For example, a Mbius transformation of a ball onto a half space is not QS.
In fact, a QS image of a bounded space is always bounded. However, the concepts
“locally quasisymmetric” and ‘locally quasiconformal” are equivalent for em-
beddings and immersions f: G—R", G open in R".

In this paper we consider mainly the properties of quasisymmetry which are
independent of any euclidean structure. In particular, we study relations between
quasisymmetry and weak quasisymmetry. Section 3 deals with equicontinuity and
limits of QS maps. We also prove that a QS embedding of a bounded connected
space satisfies a Holder condition. Finally, in Section 4, we give a characteriza-
tion of QS arcs. The euclidean case will be considered in a later paper [V&,].

We wish to thank J. Luukkainen for careful reading of our manuscript and for
several valuable suggestions. The results 2.24 and 2.25 are due to him. Originally,
we only had a weaker form of 2.25.

1.4. Notation. All spaces in this paper are metric and usually denoted by X
or Y. The distance between two points a, b is written as |a—b|. We let d(4, B)
denote the distance between two sets A, B, and d(A) the diameter of a set A. The
open ball {x: [x—x,|<r} is written as B(x,, r) and the closed ball {x: |x—x,|=r}
as B,(x,, ). N is used for the set of positive integers.

2. Basic concepts

2.1. Preliminary remarks. In the definition of quasisymmetry, we assumed for
the sake of convenience that n: [0, «)—[0, =) is a homeomorphism. However,
an embedding f: X—Y is QS as soon as it satisfies the condition (1.2) with any
function  which is bounded on bounded sets and has the limit zero at the origin.
Indeed, we can then easily find a homeomorphism #;: [0, o) ~[0, =) such that
n(@)=n,(¢) for all =0.

Choosing a=b in (1.2) we see that #(1)=1 whenever card X=2. For con-
venience, we shall assume that #(1)=1 also in the trivial case card X=1. Similarly,
we shall assume that A=1 in (1.3).
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Changing the roles of @ and & in (1.2) we see that an #-QS embedding satisfies
the double inequality

e @) _
1@ = /) =G| =

for all a, b, x€X with b=#x and |a—x]|/|b—x|=
The definition of weak quasisymmetry can also be stated as follows: Let f: X—Y
be an embedding. For x¢X and r=0 set

L(xaf’ r) :Sup{lf(y)_f(x)]' ly_xl §r},
l(x’fa r)=1nf{|f(y)—f(x)|. |y_x] ér},
with the usual convention inf §=-eo. Then fis weakly H-QS if and only if L(x, f, r) =

Hi(x, f,r) for all xc¢X and r=0.
The following result is obvious:

(o)

2.2. Theorem. If f: XY is n-QS, the inverse map f~': fX—X is n-QS
with ' ()=n"2@ )™ for t=0. If f1 X->Y isn,-QS and g: Y—~Z n,-QS, then
gf is n-QS with n(t)=ny(n,(t)). A restriction of an n-QS embedding is n-QS. []

2.3. Examples. If f satisfies a two-sided Lipschitz condition

(2.4) =L = |f(x)—f(x)] = LIx—x|

for all x, x" in X, then fis n-QS with #(¢#)=L?*t. Conversely, let f be y-QS with
n(t)=at, a=1. Let xy, x;, x, X" be points in X with x3=x;x,, and let y,, y1, », )’
be their images. Then

bx—x'|

Pl otz B,

=l yo—

y—y1]=

which is easily seen to be true also for x=x;. Hence the right-hand side of (2.4)
is true with L=a?|y,—y1l/|Xo—x4]. Similarly, the left-hand side is true with
L=o?|xy—x,|/|yo—y1l. However, L cannot be chosen to depend only on «, as is
seen from the maps f: R"—R", f(x)=1x, A=0.

The map f: [0, =) ~[0, ), f(x)=x?%, is n-QS with #(¢)=r2+2¢. Every quasi-
conformal map f: R"—~R" is QS. This follows, for example, from the proof of
[V4,, 22.3] and from Theorem 2.16 of the present paper. Further relations between
quasisymmetry and quasiconformality will be considered in [Vi,].

In the following example, we consider R? with the metric induced by the norm
|x|=max (|x,], |xa]). Let A={-1/2,0,1/2}, B={-1/4,0,1/2}, X=NXA4 and
Y=NXB. Let ¢: A—~B be the unique increasing bijection. Then f=idX¢: XY
is a homeomorphism, which is #-QS with #(z)=2¢. Let g: Y—R? be the embedding
defined by g(n, —1/4)=(n, —1/4n) and by g(n, a)=(n, a) for a=0,1/2. Then g
is weakly 1-QS. However, gf'is not weakly QS. On the other hand, (gf)~!: g¥Y—-X
is weakly QS. Observe that g is not QS.
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2.5. Theorem. Let f: X—Y ben-QS. Let ACBcCX with d(A)=0, d(B)< <.
Then d(fB)<-oo and

in(42) <848 1(28)

Proof. Choose points b,, b, in B such that |b, —b,| =d(B)/2 and that |6, —b,| ~d(B)
as n—oo. If bEB, |b—by|=2|b;—b,|, which implies | f(b)—f(b,)|=n2)| f(b)—f (b
Hence d(fB)=2n(2)| f(by) —f(b)| <<=

Let acA and neN. Then either 2|a—b,|=b,—b,| or 2|la—b,|=|b,—b,|, say
2la—b,|=|b,=b,|. If x€d, then |f(x)—f(@|=n(x—al/lb,—al|f(b,)—f(@)|=
n(2d(A)/|b,—b,|)d(fB). Hence d(fA)=n(2d(4)/|b,—b,|)d(fB), which yields the
second inequality as #n—eo.

Since f~': fX—-X is #”-QS with #’(t)=n"*(t"Y)~1, the first inequality fol-
lows from the second one. []

2.6. Corollary. 4 QS embedding maps every bounded set onto a bounded
set. [

2.7. Definitions. A space X is pseudoconvex if there is an increasing function
C: [1, «)—[1, =) with the following property: If a, b€¢X and O<r=|a—b|, then
there is a finite sequence of points a=ay, a;, ..., a,=b such that s=C(la—b|/r)
and |a;.;—aj|=laj—a;_,|=r for j=1,...,s—1. We also say that X is C-pseudo-
convex if this is true with a given function C.

A space X is homogeneously totally bounded, abbreviated HTB, if there is an
increasing function k: [1/2, )—[1, =) such that for every a=1/2, every closed
ball B,(x, r) can be covered with sets Ay, ..., 4; such that s=k(x) and d(4;)<r/a
for all j. We also say that X is k-HTB.

A space X is of bounded turning, abbreviated BT, if there is ¢=1 such that
each pair of distinct points a, b in X can be joined by an arc 4 with d(4)=cla—b|.
We also say that X is ¢-BT.

2.8. Remarks. Every convex set in a normed vector space is 1-BT and
C-pseudoconvex with C(a)=a+1. Every subset of a k-HTB space is k<-HTB. Every
subset of R” is k-HTB with k (a)=2"(an'?-+1)". Every HTB space is separable. The
term ““bounded turning’ has been used for arcs and topological circles in the theory
of quasiconformal maps [LV, I1.8.7 and II.8.8]. The set X = {(x, )€ R*: x=0, |y|=x2}
is neither pseudoconvex nor BT. The set of rational numbers is pseudoconvex but
not BT.

If X is k-HTB and if a,,...,a; are points in B, (x,r) with |a;—a;|=t=0
whenever i=#j, then s=k(r/t).

2.9. Theorem. If X is k-HTB and c¢-BT, then X is C-pseudoconvex with
C()=k(ca).
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Proof. Let a,bcX and let O0<r<|a—b|. Choose an arc ACX joining a and
b such that d(A)=cla—b|. Let = be the natural ordering of 4 with a<b. Let
a,=a and define inductively points a;=max {x€4: |x—a;_;|=r}. Then |a;—a;|=r
if i<j and a;#b. Hence a,=b for some s. Since ACB.(a, cla—b|), we have
s=k(cla—>b|/r) for the first such s. []

2.10. Theorem. If X is k-HTB and if f: X—Y is n-QS, then fX is k’-HTB,
where k’ depends only on k and 1.

Proof. We may assume that fX=Y. Let y€Y,r=0 and a=1/2. Set x=f"1(y)
and L=sup|f~t()—f*(»)| over z€B.(y,r). We may assume L=0. Set
B=2/n"1(1/2¢). Since X is k-HTB, there is a covering A;, ..., A, of B(x, L) such
that s=k(B) and d(4;)<L/p for all j. Set B=f"'B.(y,r) and Aj;=A4;nB.
Then the sets f4; cover B.(y, r). Observing that d(B)=L and applying 2.5 with
A=A}, we obtain

, 2d(A4;
a(r45) = 1 (2290) (3., ) = n@ipy 27 = rfe
d(B)
Hence Y is k-HTB with k'(«)=k(2/n72(1/20)). O

2.11. Theorem. Let X be ¢-BT and let f: X—Y ben-QS. Then fX is 2n(c)-BT.

Proof. Let a, beX, asb. Choose an arc 4 in X joining a and b such
that d(d)=cla—b|. If x€A, then |x—a|=cla—b|, and therefore |f(x)—f(a)|=
(o)l f(@)—f(®)]. Consequently, d(fA)=2n(c)|f(@—f(B). O

2.12. Lemma. Suppose that f: X—Y is weakly H-QS and that X is C-pseudo-
convex. If a, b, x€X andif la—x|/|b—x|=¢=1, then | f(a)—f(x)|=n(0)| /(B) —f ()|
where 1(0)=C(0)HC®.

Proof. Set |b—x|=r. By pseudoconvexity, there are points x=x,, X, ..., X;=a
such that |x;;;—x;|=|x;—x;4/=r and s=C(g). Then |f(x)—f(x)=
H| f(x)=f®)l, | f(xo) —f(x)I =H?| f(x)—f(b)] and so on. This yields |f(a)—f(x)|=
il feep)=fx;-nl =25 H | f(x)=fB)| =sH* | f()—f). O

2.13. Remark. Lemma 2.12 does not say that fis QS, since 5 (p) is not defined
for ¢=1. In fact, f need not be QS; see the map f in the last paragraph of this

paper.
The following result follows directly from the definition of pseudoconvexity:

2.14. Lemma. Suppose that X is pseudoconvex, that a, b are distinct points
in X and that 0sk<k'=1. Then there is x€X such that kl|b—a|<|x—a|<
k'lb—al. O

2.15. Theorem. Suppose that X is C-pseudoconvex and that Y is k-HTB. Then
every weakly H-QS embedding f+ X —~Y is n-QS, where n depends only on C, k
and H.
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Proof. Let a, b, x be distinct points in X with |a—x|/|b—x|=¢, and set ¢'=
| £(@)—fCO| fB)—f(x)|. By 2.12, ¢’=C(Q)H @ if ¢=1. For ¢<1 we know
that ¢’=H, but we need an estimate @ =#n(g) where n(g)—>0 as ¢—0.

Suppose that g<1. By 2.14, we can find a sequence by, b;, ... of points in
X such that b,=b and such that |b;_,—x|/4<|b;—x|<|b;_;—x|/3 for all j=1.
Then b;—x. Let s be the least integer j such that |b;—x|<|a—x|. Since |b;—x|>
477 |b—x|, we obtain ¢=>4"".

Suppose that O=i<j<s. Then |x—bj|=|x—b; . |<|x—b;|/3=|x—b;|/3
+1b,—b;l/3, which implies 2|x—b;|=|b;—b;|. Since |a—x|=|b;—x]|, this yields
lu—b;|=1b;—b;|. Thus 2H| f(b)—f(b))|=| f(@—f )l +| /() —f )l =] fl@)—f(x)|.
Hence the distances between the points f(b;), 0=j=s—1, are atleast | f(a)—f(x)|/2H.
On the other hand, |b;—x|=|b—x| implies |f(b;)—f(x)|=H]|f(b)—f(x)|. Since
Y is k-HTB, this yields s=k(2H?/¢’). Since ¢=4"°, we obtain

log—;- < k(2H? ¢")log 4.

Since the right side is decreasing in o', we obtain ¢'=#%(9) with 5(9)—~0 as
¢~0. O

2.16. Theorem. Let XCRP be c¢-BT, and let f: X—R" be weakly H-QS.
Then f is 4-QS, and fX is ¢’-BT, where n and ¢’ depend only on p, n, ¢ and H.

Proof. Since euclidean spaces are HTB, this follows directly from 2.9, 2.11
and 2.15. O

2.17. Remark. It follows from 2.16 that the subsets of euclidean spaces which
are of bounded turning form a convenient class of spaces in the theory of QS maps,
since (1) it is closed with respect to QS embeddings and (2) there is no difference
between quasisymmetry and weak quasisymmetry. In particular, for maps of an
interval AC R into R, our definition of quasisymmetry is equivalent to the usual
one, except that one customarily only considers increasing maps.

2.18. Continuity. Suppose that f: X—Y is a function (not necessarily con-
tinuous) and that there is H=1 such that

(2.19) If(@—f)| = H|f(b)—f(x)]

whenever |a—x|=|b—x|. Thus, if fis an embedding, fis weakly H-QS. In general,
a function satisfying (2.19) need not be continuous. For example, let X be any space
and let ¥ be X with the metric |[a—b|=1 for a=b. Then the identity map f: XY
satisfies (2.19) with H=1, but it is not usually continuous. Furthermore, even if f
is continuous, it need not be an embedding, since a constant function always satisfies
(2.19). We give two results which show that in certain important cases, conditions
like this imply that fis an embedding.
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2.20. Theorem. Suppose that H=1 and that f: X—~Y is a function satisfy-
ing (2.19) whenever |a—x|=|b—x|. If f is not constant in any non-empty open set,
then f is injective and f~': fX—~X is continuous. If X is connected, this is true when-
ever f is non-constant. If every bounded set in Y is totally bounded, f is continuous.

Proof. Suppose that fis not constant in any non-empty open set. If f(x)=/(»)
for some x=y, then |f(x)—f(@)|=H|f(x)—f(»)|=0 for all z in B(x, [x—})]),
which is impossible. Hence f'is injective. Let x,€X and &=0. Since {x,} is not open
in X, there is x;€ B(x,, €), x; % X,. If |x —xo| =¢, then | f(x) —f(xp)| = | f(x) —f(xp) |/ H=
5=>0. Hence fB(x,, ¢) contains B(f(xy), d)nfX, which implies that f~* is con-
tinuous.

Next assume that X is connected and that f is not injective. By what was
proved above, there is y€Y such that intf~(y)=U0. If f is not constant,
U has a boundary point x. Choose b and ¢ in U such that |x—c|=|b—c¢|. Then
| f(x)—y|=H|y—y|=0. Hence, if |a—x|<|b—x|, | f(a)—y|=H]| f(b)—y|=0. Thus
B(x, |b—x)c U, which is a contradiction.

Finally, assume that all bounded sets in Y are totally bounded. If fis not con-
tinuous at x,€X, there is a sequence of points x; converging to x, such that (1)
lx;—xol =[xy =Xol, (2) [x;—xo|=|x;—x;] for i=<j, (3) [f(x;)—f(x0)|=r=0. Since
If () =f(xl = H]| f(x1) —f(xo)l, the set of all points f(x)) is totally bounded. Con-
sequently, there are arbitrarily small distances |f(x;)—f(x))l, i#j. On the other
hand, i<j implies | f(x;)—f(x))|=]f(x;) —f(xp)|/H=r/H. This contradiction proves
that f is continuous. []

2.21. Theorem. Let 5: [0, «)—~[0, =) be a homeomorphism. Let f: X—~Y be
a function such that

If(@)=f(x)| = n(o) |f(b)—f(x)]
whenever |a—x|=g|b—x|. Then f is either constant or an y-QS embedding.

Proof. Let x,X and &>0. Fix b€X, bsx,. Choose ¢=0 such that
(o) f(b)—f(xo)l <e. Then | f(x)—f(xo)l<e for x€B(xo, ¢|b—>xol). Thus f'is con-
tinuous. Suppose that f is not constant. If f(x)=f(y) for some x>y and if z=x,
then, setting o=|z—x|/|y—x|, we obtain | f(z) —f(x)|=n(0)| f(¥)—f(x)|=0. Hence
f is injective. It remains to prove that f~1: fX—X is continuous at an arbitrary
point f(x,). If x, is not isolated in X, this can be proved as in 2.20. Suppose that
X, is isolated in X. We must show that f(x,) is isolated in fX. If this is not true,
there is a sequence of points x;€X, x;# x,, such that f(x;) >f(x;). Choose ¢=0 such
that |x;—xX,|=¢lx;—x,| for all j=1. Then |f(x)—f(xpl=n()lf(x;)—f(x0) -0,
which gives a contradiction. []

2.22. Local quasisymmetry. The concepts locally quasisymmetric, locally #-quasi-
symmetric, locally weakly quasisymmetric, and locally weakly H-quasisymmetric are
defined in the obvious way. For example, an embedding f: X—Y is locally #-QS
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if every point x in X has a neighborhood U such that f|U is 4-QS. These concepts
are also meaningful for immersions.

2.23. Theorem. Suppose that X is compact. If an embedding f: X—~Y is
locally QS or locally weakly QS, then f is QS or weakly QS, respectively.

Proof. We prove the QS case; the weakly QS case is easier. Let f: X—Y be
a locally QS embedding. Choose an open covering {Uj, ..., U} of X and a func-
tion n such that every f|U; is n-QS. Let A>0 be a Lebesgue number for the cover-
ing (U;) such that A<d(U;) whenever d(U;)=0. By compactness, there is >0
such that |x—x’|=4/2 implies |f(x)—f(x")|=d. Let a, b, x be distinct points in
X, and set g=la—x|/|b—x|, o'=|f(@—f(X)|/| f(B)—f(x)|. We divide the rest of
the proof into four cases.

Case 1. la—x|=2/2 and |b—x|=4/2. Then there is j such that {a, b, x}c U;,
and thus o"=7(p).

Case 2. la—x|=2/2 and [b—x|>2/2. Then there is j such that {a, x}CU;.
Since A<d(U)), there is y€ U; such that 2|y —x|=/. Then |a—x|/|y—x|=20d(X)/2,
and we obtain

,_ @@ O~ _ (la=x] _ ,
=) @ T ] = (Iy—xl] 4UX[0 = n(20d(X)/2)d(FX)o.

Case 3. la—x|=A/2 and |b—x|=41/2. A modification of the proof of Case 2
yields the same estimate for g’.

Case 4. |a—x|=2/2 and |b—x|=21/2. Then ¢=4/2d(X) and ¢'=d(fX)/5. O

As mentioned in the introduction, Theorems 2.24 and 2.25 are due to J. Luukkai-
nen. See also [Re,;, Theorem 4].

2.24. Theorem. Let f: X—Y be n-QS. Then f maps every Cauchy sequence
in X to a Cauchy sequence. If X is totally bounded or complete, then fX is totally
bounded or complete, respectively.

Proof. We may assume that fX=1Y. Let (x;) be a Cauchy sequence in X. Then
B={x;: jeN} is bounded, and Theorem 2.5 implies

fe—~f )l = (254 acsm),

Hence the sequence ( f(x;)) is Cauchy.

A space is totally bounded if and only if every sequence has a Cauchy sub-
sequence. Consequently, if X is totally bounded, so is Y.

Suppose that X is complete. Let (y;) be a Cauchy sequence in Y. Since f~1
is QS, it follows from the first part of the theorem that the sequence (f~(y))) is
Cauchy and hence converges to a point x€X. Thus (y;) converges to f(x). [
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2.25. Theorem. Suppose that X and Y are spaces, that ACX, that f: A~Y
isn-QS and that}’z is complete. Then f can be extended to an n-QS embedding g: A—Y.

Proof. By 2.24, the image of every Cauchy sequence in A4 is convergent. Hence
f has a unique extension to a continuous map g: A—Y. Since # is continuous, g
satisfies the inequality |g(a)—g(x)|=n(0)|g(b)—g(x)] whenever |a—x|=¢|b—x]|.
By 2.21, gis #-QS. [

3. Equicontinuity and Hélder continuity

3.1. We recall that a family F of maps f: X—~Y is equicontinuous if for every
Xo€X and e=0 there is a neighborhood U of x, such that |f(x)—f(x,)|<¢ when-
ever xcU and f€F.

3.2. Theorem. Let H=1 and let X and Y be spaces with Y totally bounded.
Then the family F of all weakly H-QS embeddings f: X—Y is equicontinuous.

Proof. Let x,cX and let ¢=0. We may assume that x, is not isolated in X.
Choose an integer k such that Y can be covered with k sets of diameter less than
¢/2H. Choose a sequence of distinct points x; converging to x, such that |x;—x,|=
min (|x;— x|, |x;—x;|/2) for i<j. Set J=|xx.1—x)]. We shall show that
| f(x)—f(xo)|<e whenever f€F and |x—xo|<6. Choose integers i<j=k-+1 such
that |f(x)—f(x)|<e/2H. Since |x;—xo|=|x;—x|2=|x;—x)], |f(x)—f(xp)=
H| f(x)—f(x)l=<e/2. Since |x;—x|=|x;—xo| +[Xo— x| <|x;— xo| + 0 =2]x;— xo| =

Ix;—xl, | f(xe)—fOI=H| f(x))—f(x)|<e/2. Hence |f(x)—f(x)l<e. O

3.3. Remark. Theorem 3.2 cannot be extended to the case where Y is not
totally bounded, even if weak quasisymmetry is replaced by quasisymmetry. For
example, the maps f: R"—R", f(x)=Ax, A=0, are similarities, but their family
is not equicontinuous. However, we obtain equicontinuity by either putting an
additional condition on the maps or by assuming that the spaces are bounded.

3.4. Theorem. Let 5: [0, «)>[0, «) be a homeomorphism. Let X and Y be
spaces, let M=0, and let a, b be distinct points in X. Then the family F of all n-quasi-
symmetric embeddings f: X—~Y such that | f(a)—f(b)|=M is equicontinuous.

Proof. Let x,€X, xg%a. Then

=1l = (2] 1@~ ) = [ E=22L) (L=l .

la— x| la—b|
Hence F is equicontinuous at x,. For x,=a change the roles of @ and b. []

3.5. Theorem. Let X and Y be bounded spaces and let n: [0, «)—~[0, =) be
a homeomorphism. Then the family F of all n-QS embeddings f: X—Y is uniformly
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equicontinuous. More precisely, if x, yeX, x#y, f€F, then

a0 (49 = 11— o)) =0 (B2 a0 = n (2222 aery.
] P16%) P163)

Proof. This is a special case of 2.5. [J

3.6. Remarks. Let F be an equicontinuous family of maps f: X—Y, and
let F be the closure of F in the compact-open topology of the space C(X, Y) of all
continuous maps f: X—Y. From the Ascoli theorem [Du, 12.6.4] it follows that
F is compact if the set F[x]={f(x): f€ F} has a compact closure for every x¢€JX.
In particular, this is true whenever Y is compact. In the situation of 3.2, the comple-
tion Z of Y is compact. Thus F has a compact closure in C(X, Z). In the situation
of 3.4, F is compact if we assume, in addition, that Y is boundedly compact and
that F[x,] is bounded for some x,€X. Indeed, the proof of 3.4 shows that F[x] is
then bounded for every x€X.

It follows from 2.20 and 2.21 that the family F\ F in 3.2, 3.4 and in 3.5 is
fairly small. For example, we easily obtain the following result:

3.7. Theorem. Let f;: X—Y be a sequence of n-QS embeddings converging
pointwise to a function f: X—Y. Then f is either constant or n-QS. Moreover, the
convergence is uniform on every compact set.

Proof. The first assertion follows from 2.21. We may assume that X contains
two distinct points a and b. Since (f}) is convergent, the set of all distances
| fi(a@)—f;(b)| is bounded. By Theorem 3.4, the family {f;: j€N} is equicontinuous.
The second assertion then follows from [Ky, 7.15, p. 232]. [

3.8. HD-spaces. Our next goal is to show that with some mild restrictions on
X, every QS embedding f: X—7VY is Holder continuous and #-QS with #n of the
form #(t)=C max (% t'/*). For this purpose, we introduce the following concept:
A space X is said to be homogeneously dense, abbreviated HD, if there are numbers
)1, 75 such that 0<A;=2,<1 and such that for each pair of points g, b in X there
is x€X satisfying the condition A,|b—a|=|x—a|=4,|b—a]. We also say that X is
(A1, A)-HD or simply A-HD, A=(4;, 4,).

A connected space is A-HD for every A€(0, 1) with 4,=4,. A pseudoconvex
space is A-HD for every A€(0, 1)> with A,<A,. The space [0, 1]Ju[2, 3] and the
Cantor middle-third set are HD but neither connected nor pseudoconvex. A HD
space containing at least two points has no isolated points.

3.9. Lemma. (1) Let X be ()1, A)-HD and let n be a positive integer. Then X
is (A7, 23)-HD.

(2) Let X be 7-HD and let f: X—~Y ben-QS. Then fX is u-HD, where p depends
only on n and ).
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Proof. Iteration of the definition of the property HD yields (1). To prove (2),
choose an integer n=n(y, ) such that n(13)<1. Let a,beX. By (1), there is
x€X such that A}|b—a|=|x—a|=A}|b—al. Hence

()G —f@)] = [fx)—f(@)] = n(@DIf(B)—f(a)l,
which proves (2). [

3.10. Theorem. Suppose that 0<X,=i,<]1, that 1/,,=h=H and that X is
J-HD. Suppose also that f: X—~Y is an embedding such that

(1) la—x|=h|b—x| implies | f(a)—f(x)|=H| f(b)—f(x)l,

() la—x|=1b—x|/H implies | f(a)—f(O|=|f(b)—f(x)l/h.
Then there are C=1 and a=1, depending only on A, h and H, such that f is n-QS
with n(t)=C max (¢%, t'%).

Proof. Let a,b, x be distinct points in X, and set g=l|a—x]|/|b—x]|, ¢'=
| fl@)—f()|/) f(B)—f(x)]. We must find C and o such that

o’ = Cmax (g% o'%.

Case 1. g=1. Since X is A-HD, there is a finite sequence of points
A=Xg, X1, ..., Xg, $=0, such that

MxXi—x] = [X01—X] = A lx;—x|, Alx,—x| = |b—x| = |x,—x].

Set x,.,=b. Since h=1/A,, [x;—x|=h|x;1;—x| for all i€[0,s], and therefore
| fCe) —fI=H| f(x14)—f(x)].  Hence | f(a)—f()|=H""*|f(b)—f(x)l, which
gives ¢’=H*™. On the other hand, |b—x|=|x,—x|=4la—x|, which yields
/7 °=¢ and thus H° =¢* with «= —log H/log A,. Consequently, ¢ =Ho"

Case 2. g<1. Choose an integer n=n(4, H) such that A;=1/H. Since X is
(7}, A3)-HD, there is a finite sequence b=x,, ..., x, of points in X such that

Alxi—x] =[x —x| = A lx—x|, Aflx—x] = 0—x] = |x,—x|.

Then |x;.,—x|=|x;—x|/H for all i=0,...,s—1, and hence |f(x;;,)—f(X)|=
| f(x)—fCo)l/h,  which implies | f(x)—f(X)|=|f(b)—f(x)|/h°. Furthermore,
| fla)—f(x)|=H| f(xy)—f(x)] and thus @"=HAh™°. On the other hand, |a—x|=
AM6*D|p— x|, which gives o=1¢tD=}="*D and hence o' =Hho'"=H2o'". [

3.11. Remark. The proof of 3.10 gives the following more precise results:
We can always choose C=H?2 If X is connected, we can choose a=log H/log k.
Indeed, in Case 2 of the proof, we can then take |x;,,—x|=|x;—x|/H and |a—x|=
|xs_x|/H'

3.12. Corollary. Suppose that X is -HD and that f: X—Y is n-QS. Then
fis w’-QS, #'(t)=C max (¢% t**), where C=1 and a=1 depend only on n and J.
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Proof. The conditions of 3.10 are satisfied with A=1/1; and
H=max(n(A; ), n ()75 471, O

3.13. Remark. If X is connected, we may choose A;=1/2. Hence we may
take in 3.12 C=H? and a=log H/log2 where H=max (n(2),n7*(1/2)7%,2).

3.14. Theorem. Suppose that X is A-HD, that f: X—Y is n-QS and that
AcCX is bounded. Then f|A satisfies a two-sided Hdélder condition

(3.15) [x—yPlec = fX)—fW)] = clx—y['=

for x,y€A, where the constant o=1 depending only on n and A is as in 3.12 and ¢
depends only on 3, A, d(A) and d( fA).

Proof. By 3.12 we may assume that 5 (¢)=C max (¢% t"*). Let x, y€A. Then
3.5 implies

10)-f 0l = 5 a0 (E2).
If |x—y|=d(4)/2, 3.5 also gives

-] = a5

Since | f(x)—f(y)|=d(fA4), this is also true when |[x—y|=d(4)/2. O

3.16. Remarks. 1. Let X be the set consisting of 0 and the numbers e ™™,
n=2,3,.... Define f: X—~R' by f(x) =—1/log x for x>0 and f(0)=0. A straight-
forward but tedious proof shows that fis QS. However, f does not satisfy a Holder
condition. Hence the HD-condition is essential in 3.14.

2. Let X be a space with d(X)=e~2. Then we can define the logarithmic metric
o of X by

l

o(x, y) = _W-y—l

for x=y and d(x, x)=0. It is not difficult to show that an embedding f: X—~Y
with d(X), d(Y)=e~? satisfies the condition (3.15) if and only if f: (X, §)—(¥, d)
is a Lipschitz embedding, that is, there is a constant L=1 such that

8(x, YIL = 6(f(x),f(») = L3(x, y)
for all x, y€X. In particular, this is true whenever X is HD and f is QS. On the
other hand, the condition (3.15) does not imply quasisymmetry. For example, the
homeomorphism f: I'—I' defined by f(x)=x for x=0 and f(x)=x2 for x>0
satisfies (3.15) but is not QS.

3.17. Hausdorff dimension. The Hausdorff dimension dimy 4 of a set 4 in a
metric space X is the infimum of all numbers 6=0 such that for every ¢=0 there
is a countable covering {4;: jEN} of 4 with the property that d(4;)=¢ for all
j and that 3 d(4;)°**=e.
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If f satisfies (3.15), then d(B)*/c=d(fB)=cd(B)"* for every BcX. Hence
3.14 gives as a corollary:

3.18. Theorem. Let X be J-HD. Let f: X—Y be n-QS. If ACX, then
dimy A/a = dimy f4 = o dimy 4
where o, depending only on n and A, is as in Theorem 3.12. []
3.19. Theorem. If X is k-HTB, then dimy X =M (k)< .

Proof. We may assume that d(X)=1 and that im kcN. Set n=k(2). Every
set ECX can be covered with n sets of diameter at most d(E)/2. Hence we can
inductively choose coverings &, of X such that card &4=nr' and such that d(4)=2""
for all A€.«/. Let a=logn/log2. Then 2 *n<1, and we obtain

> d(A) =2 *n) -0
A€,
as i—oo, This proves the theorem with M (k)=log k(2)/log2. O

3.20. Remark (added November 8, 1979). J. Luukkainen pointed out that
a metric space is HTB if and only if it is of finite metric dimension in the sense of
P. Assouad, C. R. Acad. Sci. Paris 288, 1979, 731—734. From Remark 2, p. 732,
of Assouad it follows that every HTB space can be QS embedded into a euclidean
space.

3.21. We shall apply the results of this section to give a characterization of QS
embeddings f: R?—~R", p=n, in terms of compact families of embeddings. If p=n,
the result is well known; the case p=n=1 is due to Beurling and Ahlfors [BA, 2.5],
the case p=n=2 to Gehring [Ge, Theorem 18].

By 2.16, an embedding f: R?—~R" is QS if and only if it is weakly QS. There-
fore we simply say that fis H-QS if it is weakly H-QS.

Fix integers n=p=1. For H=1 let Qy be the family of all H-QS embeddings
f: RP—~R" such that f(0)=0 and f(e;))=e;=(1,0,...,0). As in 3.6, we consider
C(RP, R") with the compact-open topology, or equivalently, with the topology of
uniform convergence on compact sets. By 3.4, Qy is equicontinuous. By 3.6, Oy
is compact. By 3.7, every element of Q,\Qy is an embedding and hence H-QS.
Thus Qx=0Qy is compact.

If f: RP—>R"is an embedding, we let W, denote the family of all maps g: R?—~R"
such that g(0)=0, g(e;)=e¢;, and g=ofB for some similarity maps «: R"—~R"
and f: R?—~RP. If fis H-QS, every member of W, is H-QS. Therefore W, is con-
tained in the compact family Q.

Conversely, assume that f: R~ R" is an embedding such that W, is contained
in some compact family F of embeddings R?—~R". We show that fis QS. Since F
and B,(0, 1) are compact,

sup {|g(»)|: y€B,(0, 1), gEF} = Hp <oo.
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Let a, b, x€R? with O<|x—a|=|x—b|. Let § be a similarity map of R” such that
B(0)=x, B(e;))=b. Then |B~(a)|=1. Since f is injective, there is a similarity map
o of R" such that afff(0)=0 and off(e;)=e;. Then g=affc W,CF, and hence

If(@)—f(0)]
If (B)—f (x)]

Thus fis Hp-QS. We have proved:

= lg(ﬁ"l(a))] = Hy.

3.22. Theorem. Let 1=p=n and let f: R°P—~R" be an embedding. Then f
is QS if and only if W, is contained in a compact family of embeddings R”—~R".

More precisely, for every H=1 there is a compact family Qy of embeddings
RP—~R" such that W,CQy whenever f is H-QS. Conversely, for every compact
Sfamily F of embeddings RP?—~R" there is Hy=1 such that W, CF implies that f
is Hg-QS.

4. Quasisymmetric arcs and curves

4.1. Terminology. A space Y is an arc if it is homeomorphic to 7=[0, 1];
Y is a curve if it is homeomorphic to the circle S*={x€R?: |x|=1}. If the homeo-
morphism can be chosen to be QS, Y is called a quasisymmetric arc or curve.

4.2. Characterization of QS arcs and curves. Since I and S are HTB and BT,
it follows from 2.10 and 2.11 that every QS arc and curve is HTB and BT. In fact,
if X=I or X=S" and if f: XY is a weakly H-QS homeomorphism, the proof
of 2.11 shows that Y is 2H-BT. However, Y need not be HTB; see Example 4.12.

The purpose of this section is to show that conversely, if Y is an arc or a curve
which is HTB and BT, Y is quasisymmetric. By an example we show that the BT-
property alone does not suffice: there is an arc which is BT but not HTB.

For arcs and curves in the plane R?, this result is well known from the theory
of quasiconformal maps. In fact, if Y R? is a BT arc or curve, there is a quasi-
conformal homeomorphism f: R*—~R* mapping Y onto I or S'. See [LV, 11.8.7]
and [Ri].

4.3. Subdivisions. Throughout this section we assume that all arcs and curves
are oriented. Subarcs have the induced orientation. The initial point of an arc J
is denoted by 4 (J), the terminal point by B(J). A subdivision of J is a finite sequence
of subarcs Ji, ..., J, such that J=Jyu...0J,, A(J)=A4(,), B(J)=B(J,) and that
A(J;1)=B() for i<n. If Jis a curve, Jq, ..., J, is a subdivision of J if either
Ji;=J or n>1 and J, are subarcs such that A4(J;)=B(J,) and that Jy,...,J,,
is a subdivision of J\int J,.

44. Lemma. Let k: [1/2, «)—[1, =) be increasing, c=1 and O<e<1. Then
there are numbers 6=06(k, c,&)=0 and p=p(k,c, &)eN such that if J is an arc .
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or a curve, which is k-HTB and ¢-BT, there is a subdivision Jy, ..., J, of J with

od(J)y=d(J) =ed(J))
for i=p.

Proof. We may assume that im kcN. We will show that the lemma is true
with p=k(4c/e) and §=2"P~1l¢. By a change of scale we may assume that d(J)=1.

We define inductively arcs Jq, ..., J,4; as follows: Let a=A4(J), if J is an
arc; if J is a curve, let a be an arbitrary point of J. Let J; be the maximal subarc
of J such that 4(J;)=a and such that J,CB.(a, ¢/4). Since e¢<1, there is such
an arc J;, and ¢/4=d(J;)=¢/2. Suppose that J,...,J; have been constructed.
If Jyu...uJ;=J, the process ends. Otherwise we let J;,, be the maximal subarc of
JNint (J;u...0J) such that A(J;,,)=B(J) and such that J,.,CB.(B(J), ¢/4).
Since J is compact, the process ends after a finite number of steps, and we obtain a
subdivision Ji, ..., J,;; of J satisfying d(J)=e/2 for all i and d(J)=e/4 for
i=n. Deleting J,,, and replacing J, by the subarc with the initial point 4(J,) and
the terminal point B(J) (if J is an arc) or a (if J is a curve), we get a subdivision
Ji, ..., J, of Jsuch that g/4=d(J)=¢ for all i.

Assume that 1=i<j=rn and let J’ be a subarc of J with endpeints A(J)
and A(J;). Then d(J")=¢/4, which implies |4 (J;})—A(J;)|=¢/4c. Since Jis k-HTB,
this yields n=k(4c/e)=p. If n=p, there is nothing more to be done. Otherwise
we divide J; into two subarcs of diameter at least ¢/8. Repeating this p—n times
we obtain a new subdivision written as J, ..., J,, such that 277 'e=d(J;)=e¢ for
all i=p. O

4.5. Some constructions. Let k and ¢ be as in Lemma 4.4. We fix ¢=1/2 and
obtain by 4.4 numbers 6=06(k, ¢, 1/2)=06(k,c) and p=p(k,c, 1/2)=p(k, c). We
may assume that §=1/4. We set g=g9(k, c)=¢/0=1/26. Then ¢=2 and @*=1/s.

We next choose positive integers m=m(k, c)=2 and n=n(k, c) such that

2= on
(4.6)
4n+3 = p™.

To see the existence of such m and n, find first m and » that satisfy the first inequality.
If they do not satisfy the second inequality, double them, and repeat this until the
second inequality is also satisfied.

We set N=N(k, c)=p™+2n(p—1).

Let W be the set of words that can be formed of the numbers 1, ..., N. Thus
the elements of W are finite sequences w=n,;...n, where 1=n,=N and ¢=0;
also the empty sequence @ is in W. The length /(w) of a word w=n,...n, is the
number ¢=0. Two words w=n;...n, and v=m;...m, can be concatenated to
a new word wo=n,...n,my...m,.

4.7. Lemma. Let J be an arc or a curve, which is k-HTB and c-BT. Then there
are subarcs J,cJ, weW, (Jyis a curve if J is a curve) such that:
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(i) Jp=J.
(i) J,15 --es Iy s a subdivision of J,, for weW.
(iii) d(J,)=2"""4d(J).
@iv) If v, weW, l(v)=I(w), and if J, and J,, are adjacent, then
0"t = dU/d(,) = o

Proof. We construct the arcs J,, by induction on /(w). We set Jyp=J. Assume
then that we have constructed J,, if /(w)<s such that the conditions of 4.7 are
satisfied. We construct now the arcs J,,, I(w)=s.

We first divide every J,,, /(w)=s—1, into p subarcs as in Lemma 4.4. Each
of these subarcs is again divided into p subarcs as in Lemma 4.4. We repeat this
m times and thus divide J,, into M=p™ subarcs, denoted J,, ..., J,,. These
satisfy

4.3) omd(J,) =d(J,) =2""d(J,),
e m=d(Jw/d(y) ="
for all i=M and j=M.

We now fix weW, I(w)=s—1. By (4.8), the ratios d(J,,)/d(/,;,y) lie in the
desired range, but this may not be true for r=d(J,)/d(J,,,) when J,, and J;;
are adjacent, /(v)=s—1. However, in any case we have ¢ 2" 2=r=?"*2 This
follows from (4.8) and from the inductive hypothesis. If ré[p™™72, ™%, we do
nothing. If this is not true, we must perform some further subdivision. Assume,
for instance, that r=¢™*% Then we subdivide J, into p subarcs J,;, ..., J.;,
asin Lemma 4.4. If still d(J.,,)/d(J},,)=0™"?, we repeat this with respectto J,;,. We
continue in this way and stop as soon as we get J,, =J, such that d(J))/d(J,,,) =
o™ 2. By (4.6), this happens after at most z steps. Since § = ¢ =2, we have d(J)/d(J,,) =
o"=0 "% If r<o ™%, we subdivide J),, instead. We do this for all weW,
I(w)=s—1. We get new subdivisions J/;,, 1=i=N,, of thearcs J,,. Here M=N, =
M+2n(p—1)=N and N-—N,, is divisible by p—1.

If N,<N, we must still perform some subdivision. Let d,=(N—N,)/(p—1).
We subdivide the arcs J;g, Js, ...s Jy, 1144, Which are also arcs in the subdivision
Jlis s J(;Nw, into p subarcs as in Lemma 4.4. We get a new subdivision J,;, ..., J,x
of J,,. This is the final subdivision. Note that the arcs J;, Jrgs oo Iy 1400, Jomr
exist and are pairwise disjoint, since d,=2n and 4n+3=M.

We must show that the arcs J,,, weW, [(w)=s, satisfy (i)—(iv). The condi-
tions (i) and (ii) are trivial, and (iii) follows from (4.8). We prove (iv). If J,y and
J,. are adjacent, v, we€ W, [(v)=I(w)=s5s—1, then d(J,)/d(Jn)€[e~™% ¢"*?] by
construction. If J,; and J,; are adjacent and both of them are of the form J‘;q,
then r=d(J,)/d(J,;)€[e™", ¢"]. If only one of them is of the form J , then
réfo~™8, o™/5]c[e™ ™2, o™*?. If neither of them is of this form, r€[d/e, o/d]C
[e™"7% """ O

We are now ready to prove the main theorem of this section.
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4.9. Theorem. Let J be an arc or a curve. Then J is QS if and only if J is HTB
and BT.

More precisely, if J is k-HTB and ¢-BT, there is an 4-QS homeomorphism f: X —J,
X=I or S, with n depending only on k and c. Conversely, if J=fX for some n-QS
homeomorphism f, then J is k-HTB and c¢-BT with k and ¢ depending only on 1.

Proof. In 4.2 we already proved the last statement of the theorem with ¢=27(1).
Inspection of the proof of 2.10 would give the explicit estimate k (o) =14 27/~ (1/200).

Conversely, assume that J is k<-HTB and ¢-BT. In view of 2.15, it suffices to
find a homeomorphism f: X—J which is weakly H-QS with H=H(k, c).

If X=S8*, welet |[a—b| be 1/2n times the length of the shorter arc joining
the points g and b in S*. Then |a—x|=|b—x| if and only if |ja—x||=|b—x|| where
[ ¥l is the ordinary inner product norm of y€R2 Consequently, both metrics give
the same class of weakly H-QS embeddings of S*.

Let N=N(k,c) be as in 4.5, and choose the subarcs J,,, weW, of J as in
4.7. We subdivide X into N subarcs Iy, ..., Iy of length 1/N. These in turn are
divided into N2 subarcs Iy, ..., Iyy. Continuing in this manner we get subarcs
I, for we W like the subarcs J,, of J. The length of I, is N~/ There is a unique
homeomorphism f: X—J such that f7,=J, for all wecW. We will show that f
is weakly H(k, c)-QS.

Let a,b,x€X with O<|a—x|=|b—x|. Let s be the smallest integer such
that N ~=|b—x|/2. Let I’ be the shortest arc of X with endpoints » and x. Then
I’ contains an arc I, with /(w)=s. Then

(4.10) If®)—=fx)| = d(fI)]c = d(J,)]c.
On the other hand, N~**'=|b—x|/2=|a—x|/2, implying |a—x|=2N"**! and
la—b|=|a—x|+|x—b|=4N~**1. Hence there is a sequence of arcs Lyays -5 Loy

following one another such that w(@)eW, I(w(@))=s, r=4N+1, w(l)=w, and
acl,qy. In the same manner, |b—x|=2N"**' implies that there is a sequence of
arcs Ioay, .o, Loy following one another such that v()eW, I(v(i))=s, r'=
2N+1, v(1)=w and x€1,,. Let M= ™** where ¢ is as in 4.5. Then (iv) of Lemma
4.7 implies that for every u€l,, we have |f(@)—fW)|=(1+M+...+M"d(J,)=
SNM*Nd(J,) and [ f)—f@)|=(1+M+...+M")d(J,)=3NM?*Nd(J,). Thus
| fl@)—f(x)|=8NM>Vd(J,). Together with (4.10) this gives |f(a)—f(x)|=
8cNM®M| f(b)—f(x)|. Hence f is weakly H-QS with H=8cNM**=H(k, ¢). 0O

4.11. Corollary. An arc or a curve in R" is QS if and only if it is BT. []

4.12. Example. In 2.8 we constructed an arc which is HTB but not BT. We
will now construct an arc which is BT but not HTB, and hence not QS. Let R~
be the space of all sequences x=(x;, X,, ...) such that x;#0 for only finitely many
J. Let the metric of R* be induced by the norm |x|=max; [x;|. Let e,e,, ...
be the standard basis of R and let u;=e¢;/j. Let 4 ; be the line segment joining u;
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and u;,,. Then the union A4 of all 4; and the origin is an arc, and it is easily seen to
be BT. However, A is not HTB. To see this, consider the ball B=B (0, 1/n)nA.
Then u;¢B for j=n. If n=i<j=2n, then |u;—u;|=1/i=1/2n. Thus B contains
n+1 points of mutual distance =1/2n. If 4 were k-HTB, this would imply n+1=
k(2) for all n and hence a contradiction.

We remark that a homeomorphism f: [0, 1]—4, which is weakly QS, is obtained
as follows: f(0)=0, f(2™/)=u;,;, and f maps [27/7%, 277] affinely onto 4.
The inverse map /! is not weakly QS.
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