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ON THE OUTER COEFFICIENT
OF QUASICONFORMALITY OF A CYLINDRICAL MAP
OF A CONVEX DIHEDRAL WEDGE

KARI HAG and MARJATTA NAATANEN

1. Introduction

Let D and D’ be domains in R® and let f: D—~D’ be a homeomorphism. With

each f we can associate two numbers, the inner and outer dilatation of £
_ M(fT) _ M)
Ki(f)y=swp 375> Kol =sypgrey

which measure how far f is from being conformal. Here M(I') and M (fT) are the
moduli of the curve families I' and fT, the suprema being taken over all families
in D; see [6]. Further, the inner and outer coefficients of quasiconformality of D
with respect to D’ are defined as

Ky (D, D) = inf K, (f), Ko(D,D’) =inf Ko(f).

The coefficients of quasiconformality have been calculated only for very few domains.
For example, only K,(D, B®) has been determined when D is an infinite cylinder
or an infinite convex cone. On the other hand, only K;(D, B®) is known when D
is a convex dihedral wedge. More precisely, Gehring and Viisald ([3], [6; p. 134])
have found that K,(D, D’)=p/o in the case of convex dihedral wedges with angles
a, p and a=p. It is claimed by Sy&ev [4] that also K,(D, D")=pf/«, but no proof
is given. In Section 3 we show that this result follows easily for a subclass of mappings
which satisfy a cylindrical condition; see 2.1. Taari [5] has obtained the same result
for a subclass of mappings satisfying two local conditions; see 4.1. In Section 4
we use a mapping f satisfying Taari’s conditions to get a cylindrical map / with
Ko(f)=K,(h). Hence Taari’s result follows from our simpler argument.

2. Basic notation

2.1. Definitions. Let (t,, ¢) be spherical coordinates in R® where the polar
angle ¢ is measured from the positive x3-axis. A domain in R® is a convex dihedral
wedge of angle «, O<a=m, if it can be mapped by a similarity transformation
onto the domain D,={(t, ¥, ¢)|t=0, O<yY<a, O<qp<m}.
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Let F denote the class of homeomorphisms f: D,—~D,, 0<a=n, whose restric-
tions f|D,: D,—~D, are quasiconformal, and for sufficiently small radii map the
intersection of D, and a circular infinite cylinder with axis the xj;-axis onto the
intersection of D, and a similar cylinder. We call such a mapping f€ F cylindrical.

Let F; denote the class of homeomorphisms f: D,~D,, O<a=mn, whose
restrictions f|D,: D,—~D, are quasiconformal, f(0)=0, and which satisfy the fol-
lowing condition at the origin:

61]1_% max #’(x)/min v’ (x) = 1,

390
where (', V', z’)=f(r, ¥, z) in terms of cylindrical coordinates, and the maximum
and minimum are taken over x€S(0;, 0,)={(r, ¥, 2)[r=08;, |z]=6,}nD,. We call
such a mapping f€ F; cylindrical at the origin.

2.2. Remark. We can state the definitions for closures of wedges without
loss of generality since every cylindrical quasiconformal mapping f: D,—~D,,
O<a=n, can be extended to a homeomorphism f*: D,~D,, such that f*(x)—>o
as x-—oo.

3. The outer coefficient for cylindrical mappings

3.1. Theorem. For the class F of cylindrical mappings

inf {Ko (f)|f€ F} = n/a.

Proof. We show first that K,(f) =n/a for f€ F. Using cylindrical coordinates,
let ro=r; and G;={(r, V¥, 2)|0<r<r;, O<yY <o, zy<z<z,} for i=I1,2, and let
I' be the family of curves joining the set {(r, ¥, 2)|r,=r=r,, Y =0, zy=z=z,} to
a similar set with Yy =«, in the closure of G,—G;. Then as in Gehring [2; Lemma 1],
)] M(I) = (r*—ryY(z— 2z
Let I'y be the family of curves joining the sets G,n(r, ¥, z)|z=z;}, i=1,2, in G;.
Then by Viisila [6; 7.2],

)] M(Iy) = onr3/(2n(z,— z,)?).

By (1) and (2),

® MY M) = 5 2= (1 =iy

Let r{ be the radius of f(G)), i=1, 2, and let Z; and z, be the maximal and minimal
z-coordinates in the f-image of the set G,n{(r, V¥, z)|z=z;} i=1,2, respectively.
Denote by I'” and I'; the images of I' and I'y under f. Then

MI) = (ri=1/r)(Z—z)77%

7 1 ’ = -
M) = ‘2"775(71)2(22_21) ?
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and

@ MR M(T) = 5 2= rifr G20 (2~ 2)

Next we consider Z;—z,. We extend f to a quasiconformal mapping f of R® using
the same foldings as Taari[5]: Let g: D,—D, denote the folding given by g(r, Y, z)=
(r, my/a, z). Next we extend fog™': D, —D,_ to aquasiconformal mappingf;: R®*—~R?
by reflection. Finally, let f,: R®*—R?® be f,(r, V¥, z)=(r, ¥, z), where

, af/n for 0=y =n
l//:{oc+(27t—oz)7t‘1(tﬁ—77:) for n=y =2n.

Then f=f,o f,71: R3—>R® is quasiconformal and f|D,=f. Lemma 8.1 of [3] applies
to f7Y{(r, ¥, 2)|0<r<rj} followed by the map h(r, ¥, 2)=(t, ¥, ¢) with r=e?
@=mr/(2r,). (We can assume f to be normalized in such a way that f(0, 0, z) > +
as z—+.) We get

(5) 0=Z—z,= réAKI(hof_l),

where A is an absolute constant.
On the other hand, by (3) and (4),

a3 (1=ri/ry)* = Ko (f P 3(Z,—21)% (2. —2) 2
Letting z,—>< we get by (5)
a=B(1—ry/ry)* = Ko (f)Pn~2

From this with ;>0 we see that K,(f)=n/a. On the other hand, if fis the cylin-
drical map

(©) f@roh, 2) = (r, myfo, nzja)

we have equality so the bound is sharp.
The above result can be extended to locally cylindrical mappings as follows:

3.2. Theorem. For the class F; of mappings cylindrical at the origin,

inf {Ko (NI fE FL} = n/a.

Proof. Since the mapping (6) is cylindrical at the origin it suffices, by Theo-
rem 3.1, to show that for each f¢F, there exists a g€ F such that K,(f)=K,(g).
As in the proof of Theorem 3.1, each f€ F; can be extended to a quasiconformal
mapping f: R®—~R®. Next, let g,: R3—~R3 be the sequence defined by g,(x)=
a, f(x/n), where a, is chosen in such a way that |g,(e;)|=1. Since g,(0)=0 we
conclude by [6; 19.4, 20.5] that {g,} is a normal family and there is a subsequence g;,
jeJC N, converging to a limit function g: R®—R3. The convergence is uniform
on compact subsets of R® and g is a homeomorphism since g(0)=0, |g(e))|=1;
see [6; 21.3]. By [6; 37.2] § is quasiconformal, g(D,)=D,, and K,(f)=K,(g),
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where g=g|D,. It follows that for each r,>0 g maps the compact sets
{(r, ¥, 2)|r=ry, |zZ|=M}nD, into some cylindrical surface. Also, g(0)=0 and,
by a simple topological argument, g€ F.

3.3. Remark. So far we have only considered the problem of determining
Ky(D,, Dy), 0<a=p<m, for f=n. Composing f: D,~D, with the standard
folding (6), « replaced by f, we deduce that K,(D,, Dy)=p]a.

4, Application

As an application we construct in Theorem 4.3 a cylindrical map # from Taari’s
functions and show that Taari’s result follows from our result.

4.1. Taari’s conditions. Taari [5] considers the subclass of homeomorphisms
f: D,~D,,0<a=mr, f(0)=0, whose restrictions f|D, are quasiconformal mappings
onto D, and which satisfy the following conditions at the origin:

Condition A. There is a polar angle ¢,, 0<@,<n/2 such that the limit
lim f(t0))t = k() # 0, =

exists for every e€D, with 0=(e, e;)=¢,, where (e, e;) denotes the acute angle
between the vectors e and e;.

Condition B. For ecD,
sl_}f)r}r max (k(e), k(eg))/min (k(e), k(es)) = 1,

where the maximum and minimum are over all vectors e such that (e, e;)=e.

4.2. Theorem. Let f be a mapping satisfying Taari’s conditions stated in 4.1.
Then there is a cylindrical map h such that Ky(f)=Ky(h).

Proof. Given f we construct, stepwise, a map /: R®—~R® whose restriction
h=h|D, will be cylindrical and satisfy K,(f)=K,(h).

The first step is carried out in [5]. Using Condition A Taari constructs a mapping
g: D,~D,, g(0)=0, such that for each e€D,, 0=(e, e;)=¢,, the restriction of
g to the ray {te|t=0} is linear, i.e. g(te)=tg(e). Furthermore, using additional
rotation and stretching we can assume g(e;)=e;. Also, K,(2)=K,(f).

Next the mapping g is extended to a quasiconformal map g: R®*—~R® as in
the proof of Theorem 3.1. We observe, for later use, that if 0=(e, e;))=¢,, the
restriction of ¢ to the ray {re|t=0} is linear. Now, let T, denote translation by
ne; and let h,=T_,0g0T,. For t=-—n, h,(te)=T_,(¢((t+n)e;))=te;; hence
{h,} is a normal family and has a subsequence # i, JEJCN, converging to a quasi-
conformal mapping /4: R®—~RS. The convergence is uniform on compact subsets
of R}, h(D)=D, and K,(h)=K,(g), where h=Ah|D,. Hence Ky(h)=K,(f).
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To complete the proof we will show that if C is a circular cylinder (domain)
with axis the x,-axis, then A(C) is a similar cylinder. For such a cylinder C let C;
be the cone determined by the circle dCn{x|x;=0} and the point (—j)e;, and
put C}:ﬁj(Cj). By Theorem 3 of Gehring [1] we find that A(C)=Ker C; since
C=Ker C;. Next we show that Ker Cj is a cylinder, i.e. that if x,€Ker Cj, then
{xo+tesltcR}cKer C;. Let (ry, Yy, z,) be the cylindrical coordinates of x, and let
xo€Ker C;. Then there exists an >0, e<ry, such that the cylindrical neighborhood
N with |r—rg|<e, [Y—ol<e, |z—2z|<e is in C] for j=j,. Next consider Cj.
For large j, § maps C;+je; in such a way that each ray through the origin is mapped
onto a ray through the origin. This means that C; is a union of rays through —jes;
in particular, all rays through —je; meeting N are in Cj. In the case =0 take j
so large that also zy+j=0 and

Fo—& g2

- = arctan .
Zo+j+e t—ef2

arc tan

Then the cylindrical neighborhood of x,+fe; with |r—rg|<e/2, | —y|<¢g/2,
|z—(zo+1)|<&/2 isin Cj. Hence {x,+te;|t=0}cCKer C}. Similarly, {x,+e;|t<0}c
Ker Cj}. Finally we use Condition B to show that h(C) is circular with axis the
xs-axis. Since k(e)=g(e), we see by Condition B that for all j

6_133 max (8(T;x), es)/min (3(T;x), e5) =1,

where maximum and minimum are taken over all x such that (T;x,e;)=4. Let
r=0 and put S= {(r, ¥, 2)[r=r,, z=2z,}. For j=j, we have by the above

@) max (§(7;x), es)/min (§(7;x), es) < 1+e.

The continuity of ¢ at e,, the linearity of ¢ on rays close to the x;-axis, and the fact
that g(e;)=e; together imply that

®) l—g < [8(x+jes)|/|x+jes) < 1+e

for j=j,, x€S. Suppose that j=j,j, and let ¢;=min,cs ($(T;x),e,),
Pj=max,¢s(&(T;x), es)- By (7)

©) P <(1+89;.

From (8) we get for x€S

(10) (1=e)Vrg+(2+)® < |8(x+jes)l < (1 +¢) Vr3+(zo+j)2~

Then by (9) and (10)

max, s (2 (x+jes)) _ (I1+¢)sin(1+¢)o;
mines r(&(x +Jes)) (1—¢)sin g;

(11)
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Since f;(x)=g(x+jes)—jes, we can replace r(g(x+je;)) by r(h;(x))in (11). Since
S is compact, fzj—»fz uniformly on §. Also, ¢;~0 as j—<, and the upper bound
in (11) can be replaced by (1+¢)%/(1 —¢). Since ¢=0 was arbitrary,

max r(A(x))/min r(h(x)) = 1
for x€S.
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