Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 5, 1980, 125—130

ON THE OUTER COEFFICIENT OF QUASICONFORMALITY OF A CYLINDRICAL MAP OF A CONVEX DIHEDRAL WEDGE

KARI HAG and MARJATTA NÄÄTÄNEN

1. Introduction

Let D and D' be domains in \mathbb{R}^3 and let $f: D \rightarrow D'$ be a homeomorphism. With each f we can associate two numbers, the inner and outer dilatation of f,

$$K_I(f) = \sup_{\Gamma} \frac{M(f\Gamma)}{M(\Gamma)}, \quad K_O(f) = \sup_{\Gamma} \frac{M(\Gamma)}{M(f\Gamma)},$$

which measure how far f is from being conformal. Here $M(\Gamma)$ and $M(f\Gamma)$ are the moduli of the curve families Γ and $f\Gamma$, the suprema being taken over all families in D; see [6]. Further, the inner and outer coefficients of quasiconformality of D with respect to D' are defined as

$$K_I(D, D') = \inf_f K_I(f), \quad K_O(D, D') = \inf_f K_O(f).$$

The coefficients of quasiconformality have been calculated only for very few domains. For example, only $K_o(D, B^3)$ has been determined when D is an infinite cylinder or an infinite convex cone. On the other hand, only $K_I(D, B^3)$ is known when Dis a convex dihedral wedge. More precisely, Gehring and Väisälä ([3], [6; p. 134]) have found that $K_I(D, D') = \beta/\alpha$ in the case of convex dihedral wedges with angles α , β and $\alpha \leq \beta$. It is claimed by Syčev [4] that also $K_O(D, D') = \beta/\alpha$, but no proof is given. In Section 3 we show that this result follows easily for a subclass of mappings which satisfy a cylindrical condition; see 2.1. Taari [5] has obtained the same result for a subclass of mappings satisfying Taari's conditions to get a cylindrical map h with $K_O(f) \geq K_O(h)$. Hence Taari's result follows from our simpler argument.

2. Basic notation

2.1. Definitions. Let (t, ψ, φ) be spherical coordinates in \mathbb{R}^3 , where the polar angle φ is measured from the positive x_3 -axis. A domain in \mathbb{R}^3 is a convex dihedral wedge of angle α , $0 < \alpha \leq \pi$, if it can be mapped by a similarity transformation onto the domain $D_{\alpha} = \{(t, \psi, \varphi) | t > 0, \ 0 < \psi < \alpha, \ 0 < \varphi < \pi\}$.

Let *F* denote the class of homeomorphisms $f: \overline{D}_{\alpha} \rightarrow \overline{D}_{\pi}, 0 < \alpha \leq \pi$, whose restrictions $f|D_{\alpha}: D_{\alpha} \rightarrow D_{\pi}$ are quasiconformal, and for sufficiently small radii map the intersection of D_{α} and a circular infinite cylinder with axis the x_3 -axis onto the intersection of D_{π} and a similar cylinder. We call such a mapping $f \in F$ cylindrical.

Let F_L denote the class of homeomorphisms $f: \overline{D}_{\alpha} \rightarrow \overline{D}_{\pi}, 0 < \alpha \leq \pi$, whose restrictions $f|D_{\alpha}: D_{\alpha} \rightarrow D_{\pi}$ are quasiconformal, f(0)=0, and which satisfy the following condition at the origin:

$$\lim_{\substack{\delta_1 \to 0 \\ \delta_2 \to 0}} \max r'(x) / \min r'(x) = 1,$$

where $(r', \psi', z') = f(r, \psi, z)$ in terms of cylindrical coordinates, and the maximum and minimum are taken over $x \in S(\delta_1, \delta_2) = \{(r, \psi, z) | r = \delta_1, |z| \leq \delta_2\} \cap \overline{D}_{\alpha}$. We call such a mapping $f \in F_L$ cylindrical at the origin.

2.2. Remark. We can state the definitions for closures of wedges without loss of generality since every cylindrical quasiconformal mapping $f: D_{\alpha} \rightarrow D_{\pi}$, $0 < \alpha \leq \pi$, can be extended to a homeomorphism $f^*: \overline{D}_{\alpha} \rightarrow \overline{D}_{\pi}$, such that $f^*(x) \rightarrow \infty$ as $x \rightarrow \infty$.

3. The outer coefficient for cylindrical mappings

3.1. Theorem. For the class F of cylindrical mappings

$$\inf \{K_o(f) | f \in F\} = \pi/\alpha.$$

Proof. We show first that $K_0(f) \ge \pi/\alpha$ for $f \in F$. Using cylindrical coordinates, let $r_2 > r_1$ and $G_i = \{(r, \psi, z) | 0 < r < r_i, 0 < \psi < \alpha, z_1 < z < z_2\}$ for i=1, 2, and let Γ be the family of curves joining the set $\{(r, \psi, z) | r_1 \le r \le r_2, \psi = 0, z_1 \le z \le z_2\}$ to a similar set with $\psi = \alpha$, in the closure of $G_2 - G_1$. Then as in Gehring [2; Lemma 1],

(1)
$$M(\Gamma) = (r_1^{-1} - r_2^{-1})(z_2 - z_1)\alpha^{-2}$$

Let Γ_1 be the family of curves joining the sets $\overline{G}_1 \cap (r, \psi, z) | z = z_i$, i = 1, 2, in \overline{G}_1 . Then by Väisälä [6; 7.2],

(2)
$$M(\Gamma_1) = \alpha \pi r_1^2 / (2\pi (z_2 - z_1)^2).$$

By (1) and (2),

(3)
$$M(\Gamma)^2 M(\Gamma_1) = \frac{1}{2} \alpha^{-3} (1 - r_1/r_2)^2$$

Let r'_i be the radius of $f(G_i)$, i=1, 2, and let \overline{z}_i and \underline{z}_i be the maximal and minimal z-coordinates in the f-image of the set $\overline{G}_2 \cap \{(r, \psi, z) | z = z_i\}$ i=1, 2, respectively. Denote by Γ' and Γ'_1 the images of Γ and Γ_1 under f. Then

$$M(\Gamma') \leq (1/r_1' - 1/r_2')(\bar{z}_2 - \bar{z}_1)\pi^{-2},$$
$$M(\Gamma_1') \leq \frac{1}{2}\pi(r_1')^2(\bar{z}_2 - \bar{z}_1)^{-2},$$

and

(4)
$$M(\Gamma')^2 M(\Gamma'_1) \leq \frac{1}{2} \pi^{-3} (1 - r'_1/r'_2)^2 (\bar{z}_2 - \bar{z}_1)^2 (\bar{z}_2 - \bar{z}_1)^{-2}.$$

Next we consider $\bar{z}_2 - \underline{z}_2$. We extend f to a quasiconformal mapping \hat{f} of \mathbb{R}^3 using the same foldings as Taari [5]: Let $g: D_{\alpha} \rightarrow D_{\pi}$ denote the folding given by $g(r, \psi, z) =$ $(r, \pi \psi | \alpha, z)$. Next we extend $f \circ g^{-1}: D_{\pi} \rightarrow D_{\pi}$ to a quasiconformal mapping $f_1: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by reflection. Finally, let $f_2: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be $f_2(r, \psi, z) = (r, \psi', z)$, where

$$\psi' = \begin{cases} \alpha \psi/\pi & \text{for } 0 \leq \psi \leq \pi \\ \alpha + (2\pi - \alpha)\pi^{-1}(\psi - \pi) & \text{for } \pi \leq \psi \leq 2\pi. \end{cases}$$

Then $\hat{f}=f_1 \circ f_2^{-1}$: $\mathbb{R}^3 \to \mathbb{R}^3$ is quasiconformal and $\hat{f}|\bar{D}_{\alpha}=f$. Lemma 8.1 of [3] applies to $\hat{f}^{-1}|\{(r,\psi,z)|0 < r < r'_2\}$ followed by the map $h(r,\psi,z)=(t,\psi,\varphi)$ with $t=e^z$, $\varphi = \pi r/(2r_2)$. (We can assume f to be normalized in such a way that $f(0,0,z) \to +\infty$ as $z \to +\infty$.) We get

(5)
$$0 \leq \overline{z}_2 - \underline{z}_2 \leq r'_2 A K_I(h \circ \hat{f}^{-1}),$$

where A is an absolute constant.

On the other hand, by (3) and (4),

$$\alpha^{-3}(1-r_1/r_2)^2 \leq K_O(f)^3 \pi^{-3}(\bar{z}_2-z_1)^2(z_2-\bar{z}_1)^{-2}.$$

Letting $z_2 \rightarrow \infty$ we get by (5)

$$\alpha^{-3}(1-r_1/r_2)^2 \leq K_O(f)^3 \pi^{-3}.$$

From this with $r_1 \rightarrow 0$ we see that $K_0(f) \ge \pi/\alpha$. On the other hand, if f is the cylindrical map

(6)
$$f(r, \psi, z) = (r, \pi \psi / \alpha, \pi z / \alpha)$$

we have equality so the bound is sharp.

The above result can be extended to locally cylindrical mappings as follows:

3.2. Theorem. For the class F_L of mappings cylindrical at the origin,

$$\inf \{K_O(f)|f\in F_L\} = \pi/\alpha.$$

Proof. Since the mapping (6) is cylindrical at the origin it suffices, by Theorem 3.1, to show that for each $f \in F_L$ there exists a $g \in F$ such that $K_o(f) \ge K_o(g)$. As in the proof of Theorem 3.1, each $f \in F_L$ can be extended to a quasiconformal mapping $\hat{f}: \mathbb{R}^3 \to \mathbb{R}^3$. Next, let $\hat{g}_n: \mathbb{R}^3 \to \mathbb{R}^3$ be the sequence defined by $\hat{g}_n(x) = a_n f(x/n)$, where a_n is chosen in such a way that $|\hat{g}_n(e_1)| = 1$. Since $\hat{g}_n(0) = 0$ we conclude by [6; 19.4, 20.5] that $\{\hat{g}_n\}$ is a normal family and there is a subsequence \hat{g}_j , $j \in J \subset N$, converging to a limit function $\hat{g}: \mathbb{R}^3 \to \mathbb{R}^3$. The convergence is uniform on compact subsets of \mathbb{R}^3 and \hat{g} is a homeomorphism since $\hat{g}(0) = 0$, $|\hat{g}(e_1)| = 1$; see [6; 21.3]. By [6; 37.2] \hat{g} is quasiconformal, $\hat{g}(D_\alpha) = D_\pi$, and $K_O(f) \ge K_O(g)$,

where $g = \hat{g} | \overline{D}_{\alpha}$. It follows that for each $r_0 > 0$ g maps the compact sets $\{(r, \psi, z) | r = r_0, |z| \leq M\} \cap \overline{D}_{\alpha}$ into some cylindrical surface. Also, g(0) = 0 and, by a simple topological argument, $g \in F$.

3.3. Remark. So far we have only considered the problem of determining $K_0(D_{\alpha}, D_{\beta})$, $0 < \alpha \le \beta < \pi$, for $\beta = \pi$. Composing $f: D_{\alpha} \rightarrow D_{\beta}$ with the standard folding (6), α replaced by β , we deduce that $K_0(D_{\alpha}, D_{\beta}) = \beta/\alpha$.

4. Application

As an application we construct in Theorem 4.3 a cylindrical map h from Taari's functions and show that Taari's result follows from our result.

4.1. Taari's conditions. Taari [5] considers the subclass of homeomorphisms $f: \overline{D}_{\alpha} \rightarrow \overline{D}_{\pi}, 0 < \alpha \leq \pi, f(0) = 0$, whose restrictions $f | D_{\alpha}$ are quasiconformal mappings onto D_{π} and which satisfy the following conditions at the origin:

Condition A. There is a polar angle φ_0 , $0 < \varphi_0 < \pi/2$ such that the limit

$$\lim_{t\to 0^+} f(te)/t = k(e) \neq 0, \infty$$

exists for every $e \in \overline{D}_{\alpha}$ with $0 \leq (e, e_3) \leq \varphi_0$, where (e, e_3) denotes the acute angle between the vectors e and e_3 .

Condition B. For $e \in \overline{D}_{\alpha}$

 $\lim_{e \to 0^+} \max(k(e), k(e_3)) / \min(k(e), k(e_3)) = 1,$

where the maximum and minimum are over all vectors e such that $(e, e_3) = \varepsilon$.

4.2. Theorem. Let f be a mapping satisfying Taari's conditions stated in 4.1. Then there is a cylindrical map h such that $K_0(f) \ge K_0(h)$.

Proof. Given f we construct, stepwise, a map $\hat{h}: \mathbb{R}^3 \to \mathbb{R}^3$ whose restriction $h = \hat{h} | \overline{D}_{\alpha}$ will be cylindrical and satisfy $K_o(f) \ge K_o(h)$.

The first step is carried out in [5]. Using Condition A Taari constructs a mapping $g: \overline{D}_{\alpha} \rightarrow \overline{D}_{\pi}, g(0)=0$, such that for each $e \in \overline{D}_{\alpha}, 0 \leq (e, e_3) \leq \varphi_0$, the restriction of g to the ray $\{te|t\geq 0\}$ is linear, i.e. g(te)=tg(e). Furthermore, using additional rotation and stretching we can assume $g(e_3)=e_3$. Also, $K_Q(g) \leq K_Q(f)$.

Next the mapping g is extended to a quasiconformal map $\hat{g}: \mathbb{R}^3 \to \mathbb{R}^3$ as in the proof of Theorem 3.1. We observe, for later use, that if $0 \leq (e, e_3) \leq \varphi_0$, the restriction of \hat{g} to the ray $\{te|t\geq 0\}$ is linear. Now, let T_n denote translation by ne_3 and let $\hat{h}_n = T_{-n} \circ \hat{g} \circ T_n$. For $t \geq -n$, $\hat{h}_n(te_3) = T_{-n}(\hat{g}((t+n)e_3)) = te_3$; hence $\{\hat{h}_n\}$ is a normal family and has a subsequence $\hat{h}_j, j \in J \subset N$, converging to a quasiconformal mapping $\hat{h}: \mathbb{R}^3 \to \mathbb{R}^3$. The convergence is uniform on compact subsets of \mathbb{R}^3 , $\hat{h}(D_\alpha) = D_\pi$ and $K_0(h) \leq K_0(g)$, where $h = \hat{h} | \overline{D}_\alpha$. Hence $K_0(h) \leq K_0(f)$. To complete the proof we will show that if C is a circular cylinder (domain) with axis the x_3 -axis, then $\hat{h}(C)$ is a similar cylinder. For such a cylinder C let C_j be the cone determined by the circle $\partial C \cap \{x | x_3 = 0\}$ and the point $(-j)e_3$, and put $C'_j = \hat{h}_j(C_j)$. By Theorem 3 of Gehring [1] we find that $\hat{h}(C) = \text{Ker } C'_j$ since $C = \text{Ker } C_j$. Next we show that Ker C'_j is a cylinder, i.e. that if $x_0 \in \text{Ker } C'_j$, then $\{x_0 + te_3 | t \in \mathbf{R}\} \subset \text{Ker } C'_j$. Let (r_0, ψ_0, z_0) be the cylindrical coordinates of x_0 and let $x_0 \in \text{Ker } C'_j$. Then there exists an $\varepsilon > 0$, $\varepsilon < r_0$, such that the cylindrical neighborhood N with $|r - r_0| < \varepsilon$, $|\psi - \psi_0| < \varepsilon$, $|z - z_0| < \varepsilon$ is in C'_j for $j \ge j_0$. Next consider C'_j . For large j, \hat{g} maps $C_j + je_3$ in such a way that each ray through the origin is mapped onto a ray through the origin. This means that C'_j is a union of rays through $-je_3$; in particular, all rays through $-je_3$ meeting N are in C'_j . In the case t > 0 take j so large that also $z_0 + j > 0$ and

$$\arctan \frac{r_0 - \varepsilon}{z_0 + j + \varepsilon} \leq \arctan \frac{\varepsilon/2}{t - \varepsilon/2}.$$

Then the cylindrical neighborhood of x_0+te_3 with $|r-r_0| < \varepsilon/2$, $|\psi-\psi_0| < \varepsilon/2$, $|z-(z_0+t)| < \varepsilon/2$ is in C'_j . Hence $\{x_0+te_3|t \ge 0\} \subset \text{Ker } C'_j$. Similarly, $\{x_0+te_3|t< 0\} \subset \text{Ker } C'_j$. Finally we use Condition B to show that $\hat{h}(C)$ is circular with axis the x_3 -axis. Since k(e)=g(e), we see by Condition B that for all j

$$\lim_{\delta\to 0+} \max\left(\hat{g}(T_j x), e_3\right) / \min\left(\hat{g}(T_j x), e_3\right) = 1,$$

where maximum and minimum are taken over all x such that $(T_j x, e_3) = \delta$. Let r > 0 and put $S = \{(r, \psi, z) | r = r_0, z = z_0\}$. For $j \ge j_1$ we have by the above

(7)
$$\max_{x \in S} \left(\hat{g}(T_j x), e_3 \right) / \min_{x \in S} \left(\hat{g}(T_j x), e_3 \right) < 1 + \varepsilon.$$

The continuity of \hat{g} at e_3 , the linearity of \hat{g} on rays close to the x_3 -axis, and the fact that $\hat{g}(e_3)=e_3$ together imply that

(8)
$$1-\varepsilon < |\hat{g}(x+je_3)|/|x+je_3| < 1+\varepsilon$$

for $j \ge j_2$, $x \in S$. Suppose that $j \ge j_1, j_2$ and let $\varphi_j = \min_{x \in S} (\hat{g}(T_j x), e_3)$, $\bar{\varphi}_j = \max_{x \in S} (\hat{g}(T_j x), e_3)$. By (7) (9) $\bar{\varphi}_j < (1+\varepsilon)\varphi_j$.

From (8) we get for $x \in S$

(10)
$$(1-\varepsilon)\sqrt{r_0^2+(z_0+j)^2} < |\hat{g}(x+je_3)| < (1+\varepsilon)\sqrt{r_0^2+(z_0+j)^2}.$$

Then by (9) and (10)

(11)
$$\frac{\max_{x \in S} r(\hat{g}(x+je_3))}{\min_{x \in S} r(\hat{g}(x+je_3))} < \frac{(1+\varepsilon)\sin(1+\varepsilon)\varphi_j}{(1-\varepsilon)\sin\varphi_j}.$$

Since $\hat{h}_j(x) = \hat{g}(x+je_3) - je_3$, we can replace $r(\hat{g}(x+je_3))$ by $r(\hat{h}_j(x))$ in (11). Since S is compact, $\hat{h}_j \rightarrow \hat{h}$ uniformly on S. Also, $\underline{\phi}_j \rightarrow 0$ as $j \rightarrow \infty$, and the upper bound in (11) can be replaced by $(1+\varepsilon)^3/(1-\varepsilon)$. Since $\varepsilon > 0$ was arbitrary,

$$\max r(\hat{h}(x)) / \min r(\hat{h}(x)) = 1$$

for $x \in S$.

References

- GEHRING, F. W.: The Carathéodory convergence theorem for quasiconformal mappings in space. - Ann. Acad. Sci. Fenn. Ser. A I 336/11, 1963, 1–21.
- [2] GEHRING, F. W.: Extremal mappings between tori. Amer. Math. Soc. Transl. (2) 104, 1976, 129-134.
- [3] GEHRING, F. W., and J. VÄISÄLÄ: The coefficients of quasiconformality of domains in space. Acta Math. 114, 1965, 1-70.
- [4] SYČEV, A. V.: The coefficients of quasiconformality of dihedral wedges. Soviet Math. Dokl. 19, No. 2, 1978, 328—331.
- [5] TAARI, O.: On the outer coefficient of quasiconformality of a convex dihedral wedge. Ann. Acad. Sci. Fenn. Ser. A I 3, 1977, 215-221.
- [6] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin—Heidelberg—New York, 1971.

University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 USA

University of Trondheim Department of Mathematics, NTH N-7034 Trondheim Norway University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 31 July 1979