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NON-HOMOGENEOUS COMBINATIONS
OF COEFFICIENTS OF UNIVALENT FUNCTIONS

R. A. KORTRAM and O. TAMMI?

Introduction

G. Schober communicated us in 1978 the following problem: Determine
max;cs Re (a;+ia,) (see also [4], p. 84). In this paper we consider the general prob-
lem of finding max Re (a;+1a,) for an arbitrary complex parameter A and for
functions f€ S(b). Lowner’s parametric method shall be extensively used in the
following considerations.

The case of S (b)

Let 5€(0,1) and let 4 ={z||z|<1}. The class Sg(b) consists of the univalent
functions f: A—A4 for which f(z)=b{z+a,z%+a,z3+...} with @&ER. The prob-
lem reduces to the study of a,+Aa, for A€R. In [2] pp. 8, 9, 10 we have derived
the following sharp estimates for functions f€ Sy (b):

as = ai—(1-5b?),

1
=]1—p2 2 _ i =
ag=1-—>b%*+al (H_logb) if |a,] =—2blogh,

as = a5+ 1—b*—2(c?—b?)+402logs if |a,|> —2blogh.

The parameter ¢ is determined by o—o log a=b-+|a,|/2.
Taking into account that |a,|=2(1—b) we immediately obtain

1
—(1-b)——=22 if |1 =4(1-b),
min (4, 4 1a,) = e 4] = 4(1-b)

3—8b+5b2—2(1—b)[A] if |A| = 4(1—b).
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The upper bound is more complicated. We have to distinguish between the
following two cases:

1 1
1) 1+1——Ogb =0, 2 1+—logb = 0.
In both these cases we have to deal separately with the possibilities |a,|=—2blog b
and |a,|> —2blogh. After an elementary but rather long calculation we arrive

at the following result.

Case l: e71=b<1.

log b

1
_pr_je D57
1-b 4)L 1+logb

if |4 = 4b(1+logb),

max (4 +4d,) = 1—b2+|1|[a—%lll)+2(a—b)2 if  4b(1+logb) < |A| < 4b,

(3—8b+5b2+2(1—b)|A| if |A|=4b.
The number o€[b, 1] is determined by o log o+b=|1|/4.
Case2: 0<b<e™.

2 1 e _
max (az+1a,) = 1-b +[M[°’ 4lﬂ»|]‘|’2(0' b)? if |A| < 4b,

3—8b+5b%+2(1—b)|A| if |A] = 4b.
The number o€[b, 1] is determined by ¢ log o+b=|4|/4.

The general case S (b)

As usual, for b€(0, 1), S(b) consists of the univalent functions f: 4—-A4 for
which f(z)=b{z+a,z*+a,z3+...}. Instead of S we shall sometimes write S(0).
We shall consider the dense subclass of slit-functions. For these the following Léwner
expressions hold:

1 1
) a2=—2f%(u)du, a3=a§—2f ux?(u) du,
b b

where %(u)=e"® is a continuous function. For a piecewise continuous 9 the for-
mulae (1) still define coefficients of functions f€.S(b), b€[0, 1).
For a given number
A= pu+iv
we have

(2a) Re(a;+41a,) =4( f cos 9(u) du]2—4[ fl sin 9 (u) du)2—2 jl ucos 29(u) du
b b b

1
—2u [ cos §(u) du+2v [ sin 9(u)du.
b b
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Consider first the case v=0, i.e. A€R. In this case we have
1 2 1 1
Re (ag+pa,) = 4[/ cos9(u)du) =2 [ wcos29(u) du—2p [ cos 9(u) du.
b b b
For the Lowner functions f€ Sg(b) we have, according to [5] p. 10,
1 1
as =——2fcos9(u)du, a; = a§—2f u cos 29 (u) du.
b b

Thus in this case the maximum is attained in the subclass Sg(b), for which the
solution was determined above.
From now on we assume that
v#0.

By considering f(Zz) instead of f(z) we see that v f i sin 3u)du=0 in the maximum
case. Similarly, by considering —f(—z) instead of f(z) we find pu f ,1, cos 3 (u)du=0
in the maximum case. For brevity, let us normalize

1 1
v=0, u=0; fsinS(u)du%O, fcos&(u)du%O.
b b

Rewriting (2a) we obtain
2

(2) Re (az+4a,) = 1—b2+4[flcos 9(u) du] 4[fsin 9(u) du)2
b b

1 1 1
—4fucoszé)(u)du-—zu/cos9(u)du+2vfsinS(u)du.
b b b

Let us replace the maximizing 9 by § which is obtained from 8 by changing 9 into
n—3 on an arbitrary subinterval / of [b, 1]. The functional (2) is then altered in

such a way that
Re (a;+La,) —Re (d;+ Ady)

= 16(1;/‘l cos 3(u) du—%] l/cosS(u) du-—16(lfcos 9(u) du]z.

We deduce from this that if cos 3(#)>%0 at some point, then cos 3(u)=0, i.e.

cos3(u) =0
in the maximum case.

Similarly, we can deduce from (2) that in the maximum case cos 9 is decreas-
ing (and hence [sin §| is increasing), since the only part depending on the arrange-
ment of the values of cos 3 is — [} u cos? 9 (u)du.

The part in (2) which depends explicitly on sin 3 is

1 2 1
~4[f sin9(u)du] +2v [ sin 9(u) du.
b b
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If v=4(1-b), it follows from (2) that in the maximum case
sin 3(u) = 0.

For, if sin 8 assumed negative values, we could change its sign without affecting
cos § and thus increase f ; sin Hu)du, and by doing so, we would increase the
above mentioned part determined by sin 8. — Therefore, if in the maximum case
sin 3 assumes negative values, we must have v<4(1—5b) and f ,1, sin $(u)du=v/4.

A necessary condition for the function & to be extremal is that the first order
variation of (2) is zero. This leads to the condition

3)
1 1
(b[ cos 9 (u) du—%u] sinS(u)+(bf sin 9(u) du—%v] cos 9(u) = u sin 9(u) cos I (u).

If 9 has to give rise to the maximum, then the second order variation has to be non-
positive. This leads to the following condition: For all piecewise continuous func-
tions ¢ we have

(3a) ( fl o (u) sin 3(v) du]z—[ fl o (u) cos 3(u) du)2
b b

+(flsin.9(u) du——i—v] fl(pz(u) sin 3 (u) du
b b

—(I;flcosS(u)du—%y]l;/}qoz(u)cosé}(u)du

1 1
+ f u@?(u) cos23(u) du — f u@?(u) sin® 9(u) du = 0.
b b

The perfect square representation

Let C be an arbitrary parameter. The identity

1
a3—a§—Ca2+% C?logh =-2 f A%(u) du;
b

A() = Vﬂ—(% (w) _5Cu—]

follows from the formulae (1). Hence
Re (as—aﬁ—Caz—i—% C?log b)
1 1 1
=—2 [ReA*(u)du =2 [ |4@)Pdu—4 [ (Re 4(w)*du
b b b

1
= l—bz—%|C|Zlogb+Re((7a2)—4f(ReA(u))2du.
5
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Let us make use of the choice
_ 1 )
C - [a2 + 7 /1
which gives

2

©)] Re (a;+1ay) = 1—b2+—‘17v2—%y210g b—(Imaﬁ——é— vJ

1
—(1+log b)(Re ay)*—pt Reaylogb—4 [ (Re A(u))* du.
b
If b=#e~1, this can be written as
1 1 logb

(4a) Re (az+2a,) = 1——b2-|—zv2———u2

1 2
4" 1+logh —(Ima2+—v)

2

_ ulogh )2_ : .
(1+log b) [Rea2+_—__2(1+log B) 4J (Re A(w))? du.

We can also rewrite (4) in the form

2
(4b) Re(az+4ay) =1 —b“—% v2—(Re a,)*— (Re a, —I—%— u] logb
1 2 1
_(Ima2+3 v) —4bf (Re A(w))*du.

The representation (4) is closely related to those used by Haario and Jokinen in [1].

Extremals of type 2:2
Suppose that e"'<b<1 (hence 1+logb=0) and obtain from (4a)

1 1 log b
— 2 2 2
®) Re(az+2a,) =1-b%*+ 7V T Togb

Equality is possible if and only if

i) Im aﬁ—%v =0,

. plogh

ii) Rea,+ S0 tlogh) 0,
iif) Red(u) =0 ie. cos9(u) =—M§;—“/2_.

We shall show that (5) is sharp for some numbers A=p+iv.
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Let us choose |[u|=4b(1+logb) and let

|u]

®= 4(I+logh)’

therefore 0=0=5. Define 9 in such a way that

o
cos@(u)—;,
2
1—% for b=u=c,
sin 3(u) =
2
— 1-—6—2 for c<u=1.
u

The point ¢ will be chosen later. For this 3 we have

1
- _ lullogh  plogh
Rea, = 2bfc059(u)du T 2(+logh) _ 2(Itlogh)’

thus ii) is satisfied. Now it follows that

1 u _
Rea2+5 = 20 +logb) =—20,
which means that iii) holds. In order to show i) we choose ¢ such that Im a,=
—2 [} sin $(w)du= —v/2. This is possible so far as

1 F
—2-|vl =2bf Isin 8 (u)| du,

ie. [v|=4(V1—0®—Vb*—0*+ 0 arc cos a/b—o arc cos ).
The equality case for p=0 can be handled similarly. Collecting the results
we arrive at

Theorem 1. Let e '<b<l, i=pu+iv, o=|u|/4(1+logb). If
lul = 4b(1 +1og b),

lv]§4[Vl_—?—]/bz—oz-l—az;c_:cos%——aa?:cosa),

then
1 1 log b
R —1—_—ph21L __y2_ 2___'
20! e(aytlay) = 1=b*+7vi-Zu 1+loghb

The maximum is reached for a function mapping A onto A minus two slits.
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Note. If b=e™1, then similar arguments show that to each v with |[v|<4(1—e™%)
there belongs a one-parametric family of extremal functions parametrized by
Re a,€[—2e71, 2¢71).

Extremals of type 1:2

Now we take (4b) as a starting point. Let |u|=4b, t=—(Re a,+p/2)/2. From
|a,| =2(1—5) it follows that 0=¢=1. In this notation we have

Re A(u) = Vu [cos S(u)——;—J .

For all functions 9 the following holds. If t=b, we have the trivial estimate
|cos () —t/u|=0 for b=u=1. If t=b, we can say more:

ll——tl for b=u=1,
u

lcosS(u)—%' =
0 for t=u=1.

Therefore, we have
2
t
—] for b=u=1,

—(Re d(w)* = _“(1 u
0 for t=u=1,

and thus
1
—4 f (Red (w))? du = 6r2—4t%log t+2b2—8tb+4t2log b,
b
with the equality if and only if
1 for b=u=1,

cos §(u) =1 for t=u=1.

From (4b) we obtain now
Re (as+4ap) = g(2),

where
1 | 1 2
1—b2+z v2—z,u2—4t2—2tu—4t2log b—(Im a2+—5 v] for 0=¢=b,
g(t)= 11 1)
1_b2+7 vz—z,u2—4t2—2t,u—l—6t2—-4t210gt—|—2b2—8tb—(1ma2+7 v]
for b=tr=1.
This function g is differentiable on [0, 1] and
i —8t—2u—8tlogh for 0=:¢=b,
©) g=1{_ ) _
2u—8tlogt—8b for b=tr=1.

Consider first the case e '<b<1 and take
4b(1+log b) = |u| = 4b.
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Now g’(t)=0 on [0, b) and hence g has its maximum on [b, 1], where g’ has one
zero o. This o is determined by the condition —4¢ log o=4b+p. We obtain

1 1
— — 2 2 2 2
Ons_l:'iéxlg(t)—g(a)-l—kb +4v TH +20%—ou—40b
and thus

1
Re(az+7a,) =1 +b2+%v2——4— L*+202 —ou—4ob,

where the equality occurs if and only if

1 for b=u=o,
Y cos & (u) = g for o=u=1,
.. 1 1
i) o=—= (Rea2+7 ]
ii) —4ologo = 4b+y,
iv) Im az—l—%v: 0.

In order to show that these conditions can be satisfied simultaneously we con-
sider p with
—4b = u =—4b(1 +logb).
There is one o=e~! with —40 log o=4b+u. Define
1 for b=u=o,
cos 3(u) = % for c=u=1.

So far the conditions i), ii) and iii) are satisfied. In order to make iv) hold we have
to require

% = bf Isin 9 ()| du.

The equality case u=0 is treated similarly. The results collected give

Theorem 2. Let e t<b<]1, Ai=p+iv and o€le™, 1] be determined by

—4ologo = 4b— |u|.
If
{4b(1 +log b) = |p| = 4b,
|v| = 4(Y1—02—0 arccos o),
we have
1

1
J— 2 2 __ 2 —
max Re (az+4ay) = 1+b%+ 7V u2420%+o0|u|—40b.

The maximum is reached for a function mapping A onto A minus a forked slit.
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Next consider the case O0<b=e™!. From (6) we see that g’(#)=0 on [0, 5].
Thus, again, g has its maximum on [b, 1]. Arguments similar to those in the previous
case lead to

Theorem 3. Let O<b=e™, A=p+iv and o€le™Y, 1] is determined by

—4ologo = 4b— |u|.
If
{]ﬂl = 4b,
lv| = 4(Y1—0®—0c arc cos o),
we have

1 1
— 2 2__ 2 2
max Re (az+4a,) = 1+ 5%+ 7V +20%+0|p|—40b.

The maximum is reached for a function mapping A onto A minus a forked slit.

Extremals of type 1:1

A particular case of extremals of type 1:1 is obtained if ©=0. From (3) we see
that for such an extremal we have

1 1 1
sin 8(u) [ cos 9 () du+cos 9 (u) J sin 9 () du—usin 9 (u) cos 9 (u) = %v [ cos 9 (u) du.
b b b
Integration over [b, 1] gives
1 1 1 1 1
21;/ sin §(u) du J cos S(u)du—bfu sin 3 (u) cos $(u) du = 7 vl;/' cos 3 (u) du.

We consider only those cases where v=4(1 —b). We know that in the maximum
case sin 9(u)=0 and thus

1 1 1 1
vfcosS(u)duéS fsinS(u)dufcosS(u)duéS(l—b)f cos 9(u) du.
b b b b

Therefore, if [} cos $(u)du=0, we must have v=8(1—b). It is clear that we have
even v<8(1—0).
Theorem 4. For O<b<1 assume that |v|=8(1—b). Then

max Re (ag+iva,) =—3+8b—5b%+2(1—b)v|.

Fes®
The maximum is reached for a function f for which
b(f—i] =z— ! +2(1—b)i
7= ~+ i.

This function maps A onto A minus a rectilinear slit.
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If e7'=b<1, we can say more. From (4) we see that
. 1 1y
Re (az+ivay) =1 ——b2+-4— v2—|Im a2+7 v] .
If v=4(1-b), it follows from [a,|=2(1—b) that

1 1
. ‘Imaz—i—EV =~ v—2(1—0b);

Re (ag+ivay) = —3+8b—5b2+2(1—b)v.

The equality sign holds if sin $(u)=1. Negative values of v can be treated sim-
ilarly.

Theorem 5. For e *=b<1 assume that |v|=4(1—b). Then

. — _ 2 —
}g?();)Re(ayl—zvaz)—— 3+8b—5b%42(1—b)v|.

The maximum is reached for a function f for which

1 ] 1
——| = z——42(1-Db)i.
b[f 7 z 2_2(1 b)i
This function maps A onto A minus a rectilinear slit.

The general cases 1:1 remain to be discussed. Let
! 1 : 1
P=beOS9(u)du—zlt§0, q=bf sm9(u)du—zv.

The variational formula (3) thus assumes the form
@) psin 3(u)+ g cos §(u) = u sin 3(u) cos 3 (u).

We have to consider four alternatives with respect to sin $(z) and cos 3(u).

1° There exists a value u for which sin 3(x)=0.

From (7) if follows that ¢=0 and hence v=4(1—5). We can say even more.
Because [sin 9| is increasing, there exists a number c¢€[b, 1] such that sin 3(u)=0
on [b, ¢), sin (u)=0 on (c, 1]. Therefore we see from (7) that

1 on [b,o),
cos $(u) = % on (c,1]; c=p.

From ¢=0 it follows further that
1 1 s r L
Zvébf |sm9(u)|du=!Vl—pz/uzduél;/‘Vl——pz/uzdu=V1—p2—parccosp;

thus
v = 4(Y1—p*—parc cos p).
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By using (2) we decide that for a prescribed p, Re (as+2ay) is maximal if

1
f ucos? 3(u)du = %(cz—bg)—pﬂogc

b
is minimal, i.e. if ¢=p. Thus the maximizing choice of ¢ and cos 3(u) is

1 on [b,p]
cos $(u) =\ P
u

which gives

1
1 1
p—!cosS(u)du——Zy_p—b—plog —

ie.
—4plogp = 4b+p.

If e-l<b<1, the previous condition implies, because p€[b, 1], that
4b(1+4logb) = |u| = 4b.

Similarly, if 0<b=e~!, we obtain
|| = 4b.

Therefore, in the case 1° Re (a;+7ay) is maximized, according to Theorems 1
and 3, by extremal functions of the type 1:1.

Next, consider the remaining cases where

2° sin 9(u)#0.

The following alternatives are to be checked.

1) p=0.

1 1
Th= [ cos 9 (u)du = 0.

b

0

v

Thus
p=0, cos3()=0 and [sinI(u)|=1.

There are two possibilities available.
If v=4(1—b), we know that in the maximum case sin 3(u)=0, i.e. sin Huw)=1,
and therefore we are led to the cases of Theorem 5, where

Re (a5 ivay) = —3+8b—5b2+2v(1—b).

If v<4(1—b), we see from (2) that

1 2
Re(as+2ay) = 1—b2+zv2—[lma2+—;—) = 1—b2+7i—v2,
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where the equality, making Im a,= —v/2, is reached for

1+b v

| Lo [n 5242,
sin $(u) = 1+b v

—1 on [T+§-,1].

This maximum thus belongs to the cases of Theorem 1.
2) p=0, ¢g=0.
From (7) we see that cos $(u)=p/u, p=b and [sin 9(u)|=}1—p*ut. Further,

1

|

1 1
v= f |sin 3(u)|du = fVl—pz/u_zdu
b b

= Vl——pz—l/bz—pz—l-p;r?:cos%—pa—f—écos D

Because p= [} cos 9(u)du—pu/4, we have

—u

1
p_l_?’u _—plogb’ p_m

From p=0 it follows now that b€(e™?, 1), and therefore we are in the cases of
Theorem 1.

3) p=0, g=0.

Now we have v/4< f 11, sin $(u)du=1—b. Here one can repeat the conclusions
on pp. 132—134, i.e. changing the signs of 9 propely without affecting cos § we can
always diminish f > sin 9(u)du into the value v/4. This new 9 increases Re (a5+2ay)
to its maximum. Because for the new 3 ¢=0, we see that 3) is not the maximum case.

3° sin 9(u) obtains negative values.

According to the remark on p. 134 we know that in the maximum case necessarily
f ,f sin 3(u)du=v/4, i.e. q=0. From (7) we see that we can now go back to the
function 9 which was defined in 1° and thus we end up with the same conclusions
asin 1°,

4° There exists a value u for which cos 3(u)=0.

In this case p=0, but because cos 9(x)=0 and p=0, we must have cos §(1)=0
and p=0. We are led back to the beginning of 2°, where this case was handled
under the assumption p=0.

From 1°—4° we decide now that in the cases not handled yet there are

p=>0, ¢g<0, cosy=0, sin3=0.

Rewrite (7) in the form

(Ta) FOu=—L_+-2 4=
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Because Fy(9, u)=0 we see that (7a) determines 9 as a differentiable function
of u and

v = (psinS _ qsin9)
cos? 9 sin? § )

It follows from the Lowner theory [3] that such a function 9 determines a solu-
tion of type 1:1.
If we denote
o=—39(1), w=-3(b),

we obtain from (3) the equations

(8a)

{psinoz—qcosoc = sin & cos a,

psinw—gcos ® = bsin @ cos .

Two more equations can be obtained from

psin 9 qcosS] 1

1 —a
_ 1 _ (
P= bf cos 8 (u) du it = _-u[ cos 9 cos2d  sin%d Pia

cos
i —q(cotoc—cotaH—a—co)—ﬁ

(8b) =—plog cos @ 4’

1 .
. 1 sina v
qzbfsmz9(u)du—zv:—p(tanoc—tanco—oc+w)—qlogsinw—Z.

From (2) we see that

1 1
— 1 —h2 2L y2__ —
frrel?()b() Re(az+la,) =1-b Tk + 7" pu+qv+4pg (tan o —tan w)

1 1 )
_ 92 _
2q (sinzoc sin2w )/’

For the original problem max;cs Re (a;+ia,) we have determined the follow-
ing numerical solution:
{oc =—0.528-513-532,

o =—0.066344-080;

max Re (a; +iay) = 3.190°298°109.

Note 1. From (3a) it follows that 9=mr/2 gives at least a local maximum if
and only if
([y0@)du)>— [}, up® () du

P T W a
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for all piecewise continuous functions ¢ on [b, 1]. If b€[e™?, 1), we have from
Schwarz’s inequality

(I;/}go(u)du]2 = I;/ld—;l-l;/ugoz(u)du =~logbfu¢2(u)du _S_ju(pz(u)du.

The condition for v is thus in accordance with Theorem 5.

Note 2. By solving the system (8) with the aid of power series in the neigh-
bourhood of a=w=n/2 we find that for |v|=4(1—b)+4(1 —eb)/(e—1) the func-
tions with one rectilinear slit give max;¢s,y Re (a3 4 ivay).

Note 3. The problem of determining min g, Re (a3+4a,) is easily reduced
to the problem studied here. By considering —if(iz) instead of f(z) we see that

min Re (az;+4ay) = —flglszgg Re (az+ilay).

Note 4. By using the same arguments as before one can also determine the
part of the coefficient body (a,, a;) of S(b) where the boundary functions are of
the type 1:1.
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