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NON.HOMOGEI{EOUS COMBINATIOI\S
OF COEFFICIEI{TS OF UI{IYAIENT FUI{CTIONS

R. A. KORTRAM and O. TAMMII)

Introduction

G. Schober communicated us in 1978 the following problem: Determine
ril/., Re (au*iar) (see also [4], p. 84). In this paper we consider the general prob-
lem of finding max Re (ar*).a2) for an arbitrary complex parameter ,1, and for
functions f<s(b). Löwner's parametric method shall be extensively used in the
following considerations.

Ihe case of ,S"(å)

Let b€(0,1) and let /:{zllzl=l}. The class,s^(å) consists of the univalent
functions f: /-/ for which f(z):b{z*azzr*a.rr"+...) with a1€R. The prob-
lem reduces to the study of ar*)"a, for 2(,R. In [2] pp. 8,9, l0 we have derived
the following sharp estimates for functions ftS"(å):

ar> afl-(l-bz),

asf r _ bz*al(t *#) if V,l = - zbtogb,

as € aZ+ l - b2 -2(o'- b') + 4o21og o if lorl = -2b log b.

The parameter o" is determined by o-o log o-b+larll2.
Taking into account that larl=2(l -b) we immediately obtain

1) This work was supported in part by a research grant from the Katholieke Universiteit
Nijmegen.

min (a,+ Äa,): I- 
(1 - b') - | r if l'tl = 4(r - b)'

[ : - 8b + sb| -2(1 - b)vl if lll = 4(r - b).
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The upper bound is more complicated. We have to distinguish between the

following two cases:

111) l+rogb<0, 2) l+rogb>o'

In both these cases we have to deal separately with the possibilities larl= -2blogb
and larl>-2b logä. After an elementary but rather long calculation we arrive
at the following result.

Case L: e-r=b<|.

It-n,-! t, ro1b = if lll = quorrog b),
l'" 4" l*logb "

max(as*)'a'':1, 
-bz+al(,-+p,1)+z1o-a1, ir aboilogb) - p.l- 4b,

t3-8b+sb'+2(t-b)V'l if v,l= qa.

The number o(lb,l) is determined by o logo*b:l)"114.

Case 2: O<$<s-t.

max(as*Äa,r: {' -b'z+V'l('-+p'1)+z@-r1z ir fi"l= 4b'

[3-sa+saz +2(1-b)l|l if lil= qa.

The number oelb,ll is determined by ologo+b:l,ll4.
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The general case S(å)

As usual, for å€(0, 1), ^S(å) consists of the univalent functions f: /-/ for
which f(z):b{z*arz2+arr'+...}. Instead of S we shall sometimes write ,S(0).

We shall consider the dense subclass of slit-functions. For these the following Löwner
expressions hold:

11
az: -2 [ "@) 

du, aB- aZ-2 I u%z(u) du,
bi

where x,(u):eie(z) is a continuous function. For a piecewise continuous I the for-
mulae (1) still define coefficients of functions f<S(b), å€[0, 1).

For a given number

we have

(2a) Re (au * )"ar)

(1)

1- F*iv

- 4(i cos,e(u) o,)'_.^(i sins (Ddu)'-z i

- 21t 1[ cos S (u) du *2, i sin g (u) du.

u cos 2S(u) du



Consider first the case v:0, i.e. ,t€R. In this case we have

(: \2 t t
Re (a,*pa,) = 4l I cos 9(a) aul -z ! u cos2s(u) du-2p ! cos 9(u) du.

bb

For the Löwner functions f(SR@) we have, according to [5] p. 10,

1

az:-2 | cosS(u)du, aa: a2-2 f u"os2l(u)du.

Thus in this case tt " ,lu*i*u- is attained in tf,"' subclass ,Sa(å), for which the
solution was determined above.

From now on we assume that
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v*0.
By consideri"efc4 instead of f(z) we see that v tlsins(u)du=0 in the maximum
case. Similarly, by considering -/(-z) instead of f(z) we find f /| cos S(u)du<-0
in the maximum case. For brevity, let us normalize

y > 0, p=O; { sins(u) du 3 0, { "osS(u) 
du > 0.

Rewriting (2a) we obtain

(2) Re (a s* Äaz') : t -bz + (icos s(r) ou)' -^(isin,e (D du)

Let us replace the maximizing S by § which is obtained from g by changing g into
z-9 on an arbitrary subinterval I of lb,ll. The functional (2) is then altered in
such a way that 

Re(ar*)"ar)-Re(dua)år)

: 
"U cos e(a) *-+)./cos e(u) du-16(1.", s@ au) .

We deduce from this that if cos9(z)+0 at some point, then cos9(a)>0, i.e.

in the maximum case. 
cos9(a) > o

Similarly, we can deduce from (2) that in the maximum case cos ,9 is decreas-

ing (and hence lsin Sl is increasing), since the only part depending on the arrange-
ment of the values of cos,9 is -/| ucosz S(u)du.

The part in (2) which depends explicitly on sin S is

-^(i sin s(a)da) *r" i sine(u) du.

-4 ,f "cosz 
S(r) dtt-2p ! cos S(u) du*r, ! sin S (u) du.
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If v>4(1 -b), it follows from (2) that in the maximum case

sin9(u) > 0.

For, if sin ,9 assumed negative values, we could change its sign without affecting
cos 9 and thus increase /| sin g(u)du, and by doing so, we would increase the
above mentioned part determined by sin.9. - Therefore, if in the maximum case

sin.9 assumes negative values, we must have v<4(1 -b) and fisin9(u)du:v14.
A necessary condition for the function ,9 to be extremal is that the first order

variation of (2) is zero. This leads to the condition

The perfect square representation

Let C be an arbitrary parameter. The identity

follows from the formulae (1). Hence

(3)

(i *' s (u) du - f, uJ r* nfrl * (i sin .e(a) d, - +u) cos s (u) : u sin .e(u) cos.e(u).

If I has to give rise to the maximum, then the second order variation has to be non-
positive. This leads to the following condition: For all piecewise continuous func-
tions g we have

(3a) (f -rrsine(n) *)'-(iE(u)cos s@)au)'

*(i 
'r, 

s@au-|") jr'r sin,e(a)du

n. (o, * a?-ca,++ c'bsb)
111

_-2 [ Re,42(u)du -21 lA@)l'du-4l (*. A(u))|du

_ t-bz-+pl'ros b +Re(eaz)- 
^ i(*. A(u))z du.

-(icos e(u) du-+ ,) j r'(rz) cos s(u) du

11
+ [ uEL(u) cos'}(u) du- I "E'@)sin2S(u) 

du = A.

as- aZ- car+ + cz bg b - - 2 j 
^, 

(u) ctu;

A(u)-{;(,@)-*;
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Let us make use of the choice

c - -(',**^)
which gives

(4) Re (a s* lar) - | -bz ++ vz -| ,'los b -[r* az*+ r)'

-(1+log b)(Re ar)z- ltRe ar log U-o j (xe,l,(u1), au.
b

lf b+e-|, this can be written as

Ua) rre(ar+).a,): ,-U'*|"'-| u'ffi- (r*r,** r)'

- (r +rog ry fne,, +^Jffi 
)' - ^ i (xe .t (u1), au.

We can also rewrite (4) in the form

(4b) Re(a,*).a,) : ,-U'*f,v2-(Re or;'-(ner, +l u)'rcet

-(r^,,* | ")' - 
o { (xe,t (u1)z au.

The representation (4) is closely related to those used by Haario and Jokinen in [1].

Extremals of type 2:2

Suppose that e-7 <.b<l (hence 1+1og b>0) and obtain from @a)

(5) Re(ar*).ar)= I -bz++vz-.ju'iäh
Equ ality is possible if and only if

i) rm ar++v - o,

ii) Rea ,* = =llo=Eb = - o.2 t z\*log b) - 
\t1

iii) Re r4(u) - 0 i.e. cos,9(u) - - 
Re a'* PlZ

2u'

We shall show that (5) is sharp for some numbers 
^- 

F*iv.
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Let us choose lpl=4b(1 *log å) and let

Irrl .) - 4(1 +lrog b) '

therefore 0= o=b. Define S in such a way that

cos 9(u) : 9,
u

The point c will be chosen later. For this I we have

thus ii) is satisfied. ,0"; it follows that

then

max Re(c, *)"ar)- I _ b2++v2_.I urffi
"fe s(a)

The maximum is reached -fo, a function mapping / onto Å minus two slits.

sine (u)-l{1'- 
b=ltsc'

\-{4ror c<u=r.

1u^
Re azra lt: 2(l +log b) 

: -2o'

which means that iii) holds. In order to show i) we choose c such that Im or:
-2 !!sinS(u)du:-v12. This is possible so far as

r)
,lvl =2 .J lsin9(u)ldu,

D

i.e. lvl =+(yrl-p-yF=F+oärccos olb-o arccoso).
The equality case for p>O can be handled similarly. Collecting the results

we arrive at

Theorem l. Let e-r<b<.1, i:1tliv,6:lpll4(l+loeb). If
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Note. lf b:e-L, then similar arguments show that to each v with lvl<4(1 -r-')
there belongs a one-parametric family of extremal functions parametrized by
Re ar€l-2e-L,2e-L).

and thus
1

- 4/ (*.,q@))' du = 6t2 - 4t2 log t +2b2 -8fi +4t2 log b,

with the equalit, ,, and only if

Extremals of type 1 :2

Now we take (4b) as a starting point. Let lpl=4b, y: -(Re az*pl2)12. From
larl=2(l-b) it follows that 0<t31. In this notation we have

Rer(u):16("o, s(")-+).

For all functions I the following holds. If t=b, we have the trivial estimate

fcos.9(a)-f/zl =0 for b<u<|. If t>b, we can say more:

lcoss(u)-11 =ll,-*l 
for b<u<t,

| " ,t-[O for t=u=|.
Therefore, we have

-(Rer(a))'z =-{-"('-*)' 
ror b = u = t'

[0 for t=u=|,

b=u=t,
t=u=1.

s(t),

b-(t* az*l',

tz log t +2bz -8t

for 0< t=b,
for b = t = l.
:e

= 4b.

(l for
e(u):l+ 

for

Re (a, * ).ar) < ,

.4tz -2tp-4t, log

4t2-2tp*6tz-4t

rle on [0, 1] and

it -2p-8t log b l

Z1t- 8r log t -8b
-1< b=l and tak

4b(I*1og b) = lt l

)' 
for o= t=b,

b-[r* az*+,)'
for b=t<1.

COS ,Y

From (4b) we obtain now

where

[,- bz+]*-+t]-t
sQ)-{o \. / 

[, - bz+]*-+ pz_.4

This function g is differentiabl

(6) s'(t) - f-r:,
Consider flrst the case e-

4,
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on P, b) and hence g has its maximum on lb, lJ, where g' has one

is determined by the condition - 4o log o - 4b * p. We obtain

Eg, s(t) - s(r) - 1 +bz ++ vz -| u'*2oz - ou- 4ob

Now g'(t) =0
zero o. This o

and thus

con-

have

Re (arr ).ar) = t + u, +| v, -! u, +2oz - o p- 4ob,

where the equality occurs if and only if

[t for b<u.=o,
1) cosg(u):{o for o=u<1,

lu

ii) o:-|(*.r,*jr)
iir) -4ologo : 4b* p,

iv) Im ar+|t, : o.

In order to show that these conditions can be satisfied simultaneously we
sider p with

-4b=p<-4b(lflogb).
There is one o=e-L with -4ologo:4b*p. Define

fl for b<u<o,

""rs(r): t; ror o = u<1.

So far the conditions i), ii) and iii) are satisfied. In order to make iv) hold we
to require

1l
T lvl = J I'ir S(u)ldu.

The equality case p>0 is treated similarly. The results collected give

Theorem 2. Let e-r=b=|, ),:p*iv and o(le-r,ll be determined by

-4ologo:4b-lpl.
rf

14b(t+logb)<lpl<4b,
llvl = +(/-1 -o'-oiccos o),

we haue

ll
,18ö 

Rt (as+ 7a): |+b',-l4v2-4 ttz*2o2+o|pl-4ob'

The maximum is reachedfor afunction mapping / onto / minus aforked slit.
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Next consider the case 0<.5<s-1. From (6) we see that g'(t)>O on [0, å].
Thus, again, g has its maximum on [å, 1]. Arguments similar to those in the previous
case lead to

Theorem 3. Let g<b=e_L, ):p*iv and o(le_L, ll is determinedby

-4ologo: +t*lpl.
rf

llul=' +u,

llvl =- +(/ 1-;1 - oz- o ärc- cos o),
we haoe

ryö Re (a'*)'a') : t+t'+iv'-| u'+2o2+olpl-4ob'

The maximum is reached for a function mapping / onto / minus a forked slit.

Extremals of §pe I :1

A particular case of extremals of type 1 : 1 is obtained if p:9. From (3) we see

that for such an extremal we have

sing(u)./'cos[(u)du*cosS(a)./'sinS (u)du-usin9(z)cos,9 (O:+"{"osk(u)du.
bb

Integration over [å, 1] gives

11111
2 ! sins(u)du ! cos9(u)dr- I"sin,9(z)cos9(a) a":it' f cosl(u)itu.

bb5

We consider only those cases where v>4(l-å). We know that in the maximum
case sin.g(t)=O and thus

,./ cos S(u)du=8 I sing(a) du I cosg(u)du< 8(1-b) f cosS(u)ilu.
bbbb

Therefore, if /| cos S(u)du*O, we must have v=8(l -b). It is clear that we have
even v=8(1-å).

Theorem 4. For O=b<l assume that lvl>8(l-b). Then

J?3ä 
R" (agttua,): -3*8å-5b2+2(t-å) lvl'

The maximum is reached for a function f for which

,(oi): ,-lxz(t-b)i-
This function maps / onto / minus a rectilinear slit.



140 R. A. Konrnl,u and O. Taurrar

If e-7=b<.1, we can say more. From (4) we see that

Re (ar+;var1= t-b'z+!v'-(tmar+ +")' .

If v>4(l -b), it follows from larl<2(l-b) that

I ll I
. lIm 

az+7 ul =- Z v -2(t - b) ;

Pie(arlitar) = -3+8b -5b2+2(l-b)v.
The equality sign holds if sin.9(u):l. Negative values of v can be treated sim-
ilarly.

Theorem 5- For e-r<b<l assume that lvl> (l-b). Then

,P3ö 
R" (a,*iva,): -3*8b- 5b2+2(l-å)lvl'

The msximum is reached for a function f for which

t(t-il: ,-L*z(t-b)i.

This function maps A onto / minus a rectilinear slit.

The general cases 1 :1 remain to be discussed. Let

p: I'cos.9(u) du-|u=0, s: isin,9(u) au-|n.
b

The variational formula (3) thus assumes the form

(7) p sin S(u)* 4 cos S(u) : a sin S(a) cos 9(a).

We have to consider four alternatives with respect to sin 9(z) and cos 9(a).

10 There exists a value u for which sin S(a):0.
From (7) iffollows that q:Q and hence v=4(l-å). We can say even more.

Because lsin,9l is increasing, there exists a number c(lb,l) such that sin9(z):g
onfb,c), sin,9(a)+0 on (c, ll. Therefore we see from (7) that

I I on [b, c),

coss(u):lr on (c,lj; c> p.

From 4:Q it follows further that

't]11

iu = / Irin e(u)ldu: I /t=71* au = ! /-t-p'1u'au :y;p2-parccos p;

thus

v<a(/t- nz-p"rccosp).
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By using (2)

is minimal,

we decide that for a prescr ibed p, Re (a, * )'ar) is maximal if

j 
"cosz 

s (r) ctu - * r* - b') - p'log c

i.e. if c:p. Thus the maximizing choice of c and cos S(r) is

( I on lb, p),
I

cos S(u) - 1o on lp, tl,lu

i rore(r) du-)u- p_-b-plos p-|r,
which gives

i.e.

-4PlogP:4b+P'

If e-L=b<l, the previous condition implies, because p(lb,ll, that

4b(r+togb)=lpl=4b.

Similarly, if O<.b3e-1, we obtain
lpl = 4b.

Therefore, in the case lo Re(ar*).ar) is maximized, according to Theorems 1

and 3, by extremal functions of the type 1:1.

Next, consider the remaining cases where

20 sin 9(u)+0.
The following alternatives are to be checked.

l) P:o'
r-1

0 = + 
p: J cos 9(u) du> 0.

Thus
p :0, cos 9(u) = 0 and [sin 9(u)i = l'

There are two possibilities available.

If v>4(l -å), we know that in the maximum case sin 9(a)>0, i.e. sin '9(z): 1,

and therefore we are led to the cases of Theorem 5, where

Re(ar*iva) : -3+8b- 5b2+2v(l-b)'

tf v<4(1-å), we see from (2) that

Re (ag! ).a) :, - u' * f, v' -(tm a,+ t)' = | - b' + f, f ,
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where the equality, making Im ar: -vf2, is reached for

[ ' on [''T*å]'
sin 9(u) : {

[-' on (Y*å''J
This maximum thus belongs to the cases of Theorem 1.

2) P>0, q:O.
From (7) we see that cos S(u):plu, p<b arrd lsin S(a)l:l/l:W. Further,

lsin S(u)ldu {t n*0"

: ffnz-@lpr+ p un"ot$-näEcos p.

Because p: !! cos S(u)du- pl4, we have

1 - -uP+ZP:-Ptogb; P:7..t*,.

From p>0 it follows now that b((e-',l), and therefore we are in the cases of
Theorem 1.

3) p>0, q>0.
Now we have vl4<.[!sinS(u)du=l-å. Here one can repeat the conclusions

onpp. 132-134, i.e.changingthe signs of I propelywithoutaffecting cosS wecan
always diminish !! sin 9(u)du into the vafue t'f 4. This new ,9 increases Re (ar* ).ar)
to its maximum. Because for the new S 4:0, we see that 3) is not the maximum case.

3o sin 9(z) obtains negative values.

According to the remark on p. 134 we know that in the maximum case necessarily

llsing(u)du:v14, i.e. {:0. From (7) we see that we can now go back to the

function ,9 which was defined in 10 and thus we end up with the same conclusions

as in 10.

40 There exists a value u for which cos S(z):Q.
Inthiscase p-0, butbecause cos '9(a)=0 and p--0, wemusthavecos.9(a):0

and p:6. We are led back to the beginning of 20, where this case was handled

under the assumption p:0.
From 1o-4o we decide now that in the cases not handled yet there are

p>0, 4<0, cos9>0, sin9=0.

1;
7'= I :rf

Rewrite (7) in the form

(7 a) F(s, u):#+;Ifu -u - o'

142



Two more equations can be obtained from

(

t
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Because Fs('g, a)=0 we see that (7a) determines ,9 as a differentiable function
of z and

, (psin,9 asinS).^
au : [foee -ffi14s.

It follows from the Löwner theory [3] that such a function I determines a solu-
tion of type I :1.

If we denote
a : -9(l), c,l : -.9(b),

we obtain from (3) the equations

(8a)

(8b)

f f sin d,- q cos a - sin a cos d,
I
I p sin @- q cos @ - b sin (o cos (0.

p-;d.or,e(u) du-jr: _[,"qosr[ffil-#) ,, -+r
:-: olos #å - q(cot a-cot (D + a- a)) -+ ,

1a.

q- /sin.9(rr) du-+t pgana-tan a)-d,+o))_ qlog,H -+.

From (2) we see that

p?Ä Re (au * ),ar) - 1 - bz -+ trz ++ ,'- ptt* qv * 4pq (tan a- tan c»)
,fe s(a)

-rr,(#-**)
For the original problem max/€s Re (ar*zar) we have determined the follow-

ing numerical solution:

1u 
: -0.528'513'532,

tar: -0.066'344'080;

ma; Re (as* ia2) : 3. 190'298' 109.

Note l. From (3a) it follows that g:nl2 gives at least a local maximum if
and only if

UtE @)du)'- [l uEz (u) du
y > 4(L-b)+4

ll E'@) du
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for all piecewise continuous functions E on lb,l). If b([e-l, l), we have from
Schwarz's inequality

V q@)d'4'= I du
u
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1

uEz (u) du.
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Department of Mathematics
SF-00100 Helsinki 10

Finland

o"= //
The condition for v is thus in accordance with Theorem 5.

Note 2. By solving the system (8) with the aid of power series in the neigh-

bourhood of d:e):7T12 we find that for lvl>4(l-b)aaQ-eb)l@-l) the func-

tions with one rectilinear slit give max/€s(ä) Re (ar*ivar).

Note 3. The problem of determining mileslrlRe(ar*)"a2) is easily reduced

to the problem studied here. By considering -f(ir) instead of f(z) we see that

ffi Re (a s't )'a ) : -r?r?ö Re (ar* il"a r).

Note 4. By using the same arguments as before one can also determine the

part of the coefficient body (ar, q) of S(å) where the boundary functions are of
the type 1:1.
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