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HARNACK'S INEQUALITY IN THE BORDERLINE CASE

SEPPO GRANLTIND

1. Introduction

Harnack's inequality for general quasi-linear elliptic equations has been proved
by Serrin [13] and Trudinger [1a]. In both papers the proofis based on the iteration
method introduced by Moser in [7] and [8]. In this method the lemma of John and
Nirenberg [4] is essential.

We consider variational integrals of the form

(1.1) I(u) - vu(x)) dm(x),! '(*'
where GcR" is a bounded domain, u<W:(q, and the kernel F: GXR"-R
satisfies the following conditions:

(1.2) The functions x*F(x,Vu(x)) are measurable for all u(W:(q.
(1.3) For a.e x€G the function z* F(x, z) is convex and alrl=F(x, r)=frlzl

for all z€R", whete a, B>0 are constants.

Let o€W)1q and write F*(G):{ueWl(G)lu-E<W:.r(G)}. A function
uo(%q(G) is an extremal for the integral (1.1) if I(u)>I(u) for all uQfr*(G). lt
can be proved that uo is locally Hölder continuous in G; see [6, Theorem 4.3.1]
and [3, Remark 5.7]. Let uobe an extremal for the integral (1.1) and uo(x)>0 for
x€G. Harnack's inequality takes the following form:

1.4. Theorem. Let B(*o,2r)cG. Then maxuo=cminus in B"(xr,r). The
constant c depends only on alP and n.

Our proof is based on an oscillation lemma for monotone functions in the
space ILj (G)n C(G). Lemmas of this type have been proved by Gehring [1, Lemma l]
and Mostow [9, Lemma4.l]. This makes it possible to avoid the lemma of John
and Nirenberg. In the case n:2 a similar method has been used earlier for linear
elliptic equations; see Gilbarg-Trudinger [2, p. 200].
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2. Preliminary lemmas

We flrst give the definition of monotone functions.

2.1. Definition. Let GcÄ' be a bounded domain. A function u€C(G) is

monotone in G if
sup rz(x): sup u(x) and inf u(x): inf a(x)
x€D x€AD x€D x€AD

for all domains D, DcG.
The following lemma gives an estimate for the oscillation of monotone func-

tions in the space W:(q.

2.2. Lemma. Let u€C(G)aWi(G) and B"(xo,2r)cG. If u is monotone in
G, we haue

,ffi ,, {'} =' (rr.!*,,rlY ul" dm)u"'

The constant y depends only on n.

Proof. The inequality can be easily derived from the oscillation lemma proved
in [9, Lemma4.ll; see also [1, Lemma l].

The next lemma gives a weak maximum principle for the extremals of the iutegral
(1.1). In what follows E€.W:(G) will be fixed.

2.3. Lemma. Let uo(%r(G) be an extremal for the integral (l.l). Then usis
monotone in G.

Proof. Suppose that there is a domain D, DcG, and a point xo€D such that

uo(xo)=ryaxuo(x):a.

Define ä(x):16 {uo@), a} for x(D. Then ö<9""(D) and Vä(x):0 a.e. on the

set {x(Dluo@)=-a}. It follows from the condition (1.3) that

I r@,Yå)dm(x)- [ r@,Yur)dm(x).
DD

This is a contradiction since zo is an extremal in the class $,o(D). Thus

:tBUo(x) 
: 

*r.rg 
ro(r).

We prove the corresponding equation for minimum values exactly by the same

argument. It follows that uo is monotone in G.

Let usQF*(O be an extremal for the integral (1.1) and no(x)>0 for x(G.
Define u(x):fsg uo(x) fot x(G.
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2.4. Lemma. Let B(xo,4rl3)cG. Then

*{,,nlYul" 
dm = co.

The constant co depends only on alB and n.

Proof. We may assume that uo(x)>(n-11't" for x(Bn(xo,4rl3). If this is
not the case we consider the function )ur, where 2>0 is large enough. The func-
tion luo is an extremal for a variational integral, which is of the form (l.l) and
satisfies the structure condition (1.3) with the same constants a ar,Ld §.

Let (€Cf"(B"(*o,arp)) be a non-negative function such that ((x):l for
x(Bo(xs,r) and lY((x)l=crlr. We choose

h(x) : q@)+-!Q-.
us(y)"-r'

Then hEfi*,(Bn(*o,4rl3)), and it has the generalized derivatives

h*, : uo,,+ffi €*,-(n -D #ru*, 
: (l -* - r#) uoxi+, # <",.

Write 5: {x6B'(x6 ,4r13)l((x):A}. Suppose that x(8"(xo, arl3)\^1. The
convexity and growth condition (1.3) yields

F(x,Yh)= (t -f, -, #) rr.,y u o) + @ -, # r(., # ? o r)

= (, -r, - rr#) F@,y uo) -t B @7y- tv u,.

= f,., (1- @-'#)F(x'Yu') dm(x)
Bn(xg,4'

+PT# 
Bn(xs,*f,,r, 

lv€l'dm+ f F(x,Yuu)dru(x1.

It follows from this that

(n_1),,.,o,n{,.,#F(x,Yuo)dm(x)=B#u^6!n,,,,|vc|,,dm.

Since zo is minimizing for the integral (1.1), we get

I F(x,yu) drn(x) <- I F(x,vh) dm(x)
Bn(xs, arl}) Bn(xs,arl})

- I F(x,vh)dm(x)+{F(x,yh)dm(x)
Bn(xs, rlB)\S S
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Notice that B"(*0, r)n,S:0. The condition (1.3) implies

--, !,Y# dru = -§-(å) " 

u*,*!nrur 
I Y ..ln dm 5 co'

Bn(xg, r)

The constant c0 depends only on al\ and n. Our lernma is proved.

Letuobe an extremal for the integral (1.1) and uo(x)>0 for x(G. Let e>0
and define u(x):1sg (ro(r)+u) for x€G. The function u is monotone in G since

zo is monotone by Lemma 2.3. We obtain a bound for the oscillation of u from

Lemma 2.2 and Lemma2.4:

,,?,r,f, {u} = v(*o!*,rlYul' dm)'t' =- vctt".

Then we have
log (max u6*e) -log (min u6 *e) = yrät"

on the set -B'(xo, r). Finally we get

maxuo+s = st"t/" (minu6*e).

Harnack's inequality follows if we let e*0.

3.1. Remark. Let f:(fr,...,f): G-R" be a quasiregular mapping; see [5],

[10]. Re§etnjak [11], [2] has shown that each of the coordinate functions of/mini-
mizes a variational integral of the form (1.1). Then it follows from Theorem 1.4

that Harnack's inequality is valid for the coordinate functions. This fact has been

proved earlier by Re§etnjak, who used Serrin's paper [13].

3. Proof for Theorem L.4
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