
Annales Academire Scientiarum Fennicre
Series A. I. Mathematica
Volumen 5, 1980, 165-174

ON HYPERELLIPTIC SCHOTTKY GROUPS

LINDA KEEN

Section 1: Introrluction 
.

A compact Riemann surface of genus g is hyperelliptic if it is a two sheeted

covering of the Riemann sphere branched at 2(g*1) points; that is, if it satisfies

a polynomial equation of the form:

wz : (z - as)(z - ar) (z - ar) ... (, - orn *r),

whete ao, k:0,...,2g11 are distinct points on the Riemann sphere. There are

various characterizations of hyperelliptic surfaces in the literature but none of them

involve uniformization theory. In uniformization theory we begin with a surface 
^§,

a covering space § and the corresponding group of cover transformations G. If we

can realize § as a plane domain Q, and G as a group of linear fractional transforma-

tion.s i-, such that the projection map n: Q - Qlf : S is holomorphic, then .l- is said

to uniformize ^S. 
Schottky groups are realizations of the smallest covering groups

which correspond to planar covering surfaces. In this paper we will discuss those

Schottky groups which uniformize hyperelliptic surfaces.

We begin with a discussion of some geometric properties of linear fractional

transformations and their interpretation when the linear fractional transformations

are represented as elements of SL(Z, C). In Section 3 we discuss Schottky groups

in some detail and describe a set of moduli for them. In Section 4 we consider sur-

faces of genus two, all of which are hyperelliptic, and determine various properties

of the corresponding Schottky groups. Section 5 contains the main theorem, which
gives a description of the moduli space of those Schottky groups which uniformize

hyperelliptic groups and which reflect their hyperellipticity.

Section 2: Linear fractional transformations

In this section we state some facts about the relationships between the fixed

points of linear fractional transformations, the geometry of circles in the plane,

hyperbolic three space and Lie brackets of matrices in SL(2, C). In particular, we

determine a generulization of the concept of the intersection point of the axes of a
pair of hyperbolic elements of a Fuchsian group.
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Definition 1. Let (p,q) and (u,o) be two pairs of points in the complex
plane. They are called harmonic parrs if the cross ratio (p,q,u, u) has the value -1.

Geometrically, this means that if we form the hyperbolic pencil .F of circles
through (p, q) ard the elliptic pencil .E of circles orthogonal to those of ,8, then
(u, o) are the intersection points of a circle in E with one in ,E

Proposition 2.1. If we are gtuen two distinct pairs of points (p,q) and (r,(s
there is a unique pair of points (u, u) which is harmonic w*ith respect to both pairs.

Proof. First, assume the points in each pair are also distinct. There is a unique
linear fractional transformation 7 which sends p inlo q, q into p, and r into s. A trans-
formation which interchanges a pair of points must be an involution, so Z(s):r.
Its fixed point pair (u, o), is uniquely determined and is harmonic with respect to
both pairs (p, q) and (r, s).

If p:q or r:s then this point will be one of the points (u, u). If p:q and
r:s then p:u and r:u ([Fenchel,2]).

Definition 1a. Let A and B be a pair of linear fractional transformations
and let (po, qn), (pu, qr) be their respective fixed point pairs. The pair of points
(u,u)harmonic with respect to both pairs (pa,q) and (pu,qr) will also be called
the pair harmonic with respect to (A, B).

When pn, ee, pn and q3 are distinct and lie on a circle C, the group generated
by A and B is Fuchsian; (u, u) are the intersection points inside and outside the
circle C of the axes of A and,B - the axis of I (resp. B) is the circle through p,
and qn (resp. p, and q) which is orthogonal to the circle C; inside (or outside)
it is the unique geodesic joining the fixed points in the hyperbolic metric.

If we consider our transformations l, -B not only as mappings of the complex
plane but also as isometries of hyperbolic three space ä3, we can give another
interpretation of (u, o). There is a unique geodesic ha in HB which joins po and qo

which is invariant under the transformation l. (Here ho is the circle through p,
and qo orthogonal to the complex plane.) hn is called the ä3-axis of A. Let hu be
the äB-axis of .8. There is a unique perpendicular to ha and hu in H3. It has end-
points (u, o) in the complex plane.

The linear transformations can be represented as elements of SL(2,C)l XL
Given A and B we can form the Lie bracket E:AB-BA. Let ä:detE and
E:ö-Ltz E. Then ö+0 and E belongs to SL(2, C) provided (po, q) and (po, qr)
are disjoint pairs. The fixed points of E are (u,u) and E2:-I (f is the identity in
sL(2, C)).

The proof that (u, u) arc the endpoints of the hyperbolic perpendicular is not
djfficult but is not appropriate here since we will not need the techniques for any-
thing else in this paper. The proof that (u, rr) are the fixed points of the Lie bracket
is a straightforward computation which uses the fact that there is only one elliptic
transformation of order two which has (u, u) as fixed points (see [Jorgensen, 4]).
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Proposition 2.2. Let A and B be linear fractional transformations with no

common fixed point. Let (u, u) be harmonic with respect to (A, B). Then for any pair
m, n of non-zero integers:

(u, u) is harmonic with respect to (8, A) ond (A", B*),
(u, r) is harmonic with respect to (AB, BA),
(u, ,) is harntonic with respect to (A, A" B* A"),
if (u, u) ,s also ltarmonic with respect to (A, C), then it is harmonic with
respect to (8, C).

Proof. (i) follows from Deflnition la'since A and B appear symmetrically and.

it is only their fixed points which are relevant. We prove (ii) and leave (iii) and (iv)
to the reader, since the proofs are similar. First we recall that two linear fractional
transformations commute if, and only if, they have cofilmon fixed points. For
E:AB-BA, with equality taken as equality of linear transformations, we have:

E-L _ B-LA-|_A-tB-t. EAE: EAE-| : (AB_BA)A(A-rn-r_1-r3-t) :
: (AB - BA)(AB-| - B-rA)l-t.

By part (i), AB-r-B-rA-E so EAE:I-|. Similarly EBE:B-I. Set F:ABBA-
BAAB and look at EFE:EABZAE-EBAIBE:A-|B-zA-r-B-tA-28-L-
F-r:F. Since,E and F commute they have the same fixed points. They are both
elliptic transformations of order two hence they are equal.

Section 3: Schottky groups

Let Cr,Ci,,...,Cs,C;, g>2, be 29 Jordan curves on the Riemann sphere Ö
such that the curves are mutually disjoint and bound a 2g-connected domain D.
Call D the common exterior of all the curves, and suppose that for each k, k:1, . . ., g,

there exists a linear fractional transformation Aowith the properties:

i) Ak(c):c;;
ii) lo maps the exterior of Co onto the interior of Ci.

The transformations l1 must be loxodromic, the group i- they generate is necessarily

discontinuous and D is a fundamental domain for i-. i- is called a Schottky group
of genus g. Let Q:Uncr A($; A is the set of discontinuity, or the regular set

of i-. The limit set, tl:e -Q, is closed, perfect and totally disconnected. We
summarize the main results we need about Schottky groups below.

Theorem 3.1 [Maskit, 9]. A group of linear fractional transformations with a
non-empty domain of discontinuity (Kleinian group) is a Schottky group if, and only
if, it is finitely generated, free and purely loxodromic.

i)
ii)
iii)
iu)
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Theorem 3.2 [Chuckrow, 1]. If f is a Schottky group, then coruesponding to
any set of free generators, there is afundamental domain D, as aboue, whose boundary
curues are identified by the giuen generators.

Theorem 3.3 [Maskit, 101. If f and l' are two Schottky groups with regular
sets Q and d)', and limit sets tL and A' respectiuely, and if cp is a type-preseruing iso-
morphism, Ei l-l', then there is a quasiconformal mapping w: d)*d)', such that
f':wolow-l, and, moreouer, w can be extended as a quasiconformal homeomor-
phisrn to A, w: A*A'.

The image ,S, of the natural projection mapping n, n: d)*Qfl:5, is a com-
pact Riemann surface of genus g. The boundary curves, Ck, C;, k:1, ..., g, project
onto a set of g simple, mutually disjoint, homologically independent loops on the
surface ,S. Conversely, if we begin with a surface ,S, on which such a set of loops
is given, and form the highest regular covering § for ,S such that these loops lift
to loops, (the deflning subgroup for this covering is the smallest normal subgroup
of II'(^S) containing the loops) we can use Maskit's planarity theorem, [8], and
uniformization theory to obtain a Schottky group which uniformizes ,S. The Schottky
group is uniquely determined by S and the set of loops - up to conjugation by an
arbitrary linear fractional transformation. Although the group is uniquely deter-
mined, the generators are not. If we choose a base point å for the fundamental
group, and a set of paths from b to the loops, however, we do define a set of gen-

erators, ot marking, for the group. Different sets of loops on the surface can lead
to distinct Schottky groups.

Since a linear fractional transformation is uniquely determined by its trace and
its fixed points, it is not hard to prove:

Theorem 3.4. Let I be the space of marked Schottky groups,

g : df : (Ar, A2, ..., As>\,

let xo:11ase Ap, mtd let the fixed points of Ap be ro and s*, k:1, ..., g. Assume
11:1, s1: -1, rr: -sr, then a set of moduli for I is the set of 3r-3 complex num-
bers, x1, ..., Xgr,92, rB, sg, ..., rg, Sg.

Section 4

In [5] and [6] we considered pairs of punctured tori uniformized by Fuchsian
and quasi-Fuchsian groups respectively. These groups are on the boundary of the
Schott§ space of surfaces of genus two, and in this section we will show that some
of the properties we found for boundary groups extend into the interior.

First of all, every surface S of genus two is hyperelliptic and so admits an
involution å. Set ^Sr: S/å; ,So is a surface of genus zero with six ramification points
(po, ..., pt), each of order two.
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Second, any Schottky group I which represents ,S is a free group on two gen-
erators. Let f :(A,B), let A:Q(f) be its regular set, and nr:v: O*,S be
the natural projection. Also let Eo:AB-BA. The fixed points (po,qi of .Eo are
harmonic with respect to the transformations A end B.

Theorem 4.1. i) V[/e canfcrin an extension G of f, G-(Eo,f) such that f
has index two in G.

ii) Eo commutes with h; i.e., hor,:TEoEo.
iii) Er:Eo1 and Er:firfi are also elliptic of order two; and if the fixed points of
Ei are (pi, 8i), i:0, 1,2, then the fixed points of h, are precisely n(p), r(q), nQtr),
n(q), TE(pz) and n(qr).

Proof. Assume ,S has no other conformal self mappings except h - the generic
case. Normalize so that

Eo:

It follows that B must have

A-*(:x:)(; 
-:) 

and

the form

. _ 1 (y -Ir)o:zl-yl, 
,)

and that the fixed points of Eoare (0, -), those of A are (*1, -1) and those of
B arc (+r, -r), where X2:x2-4, Y2:y2-4. The proof of Proposition2.2
implies EoAEo:1-t, ErBEo:3-I hence EslEn:f , E,(Q):Q un6 6:(Eo,f)
is a Z, extension of l-, as asserted in i).

The map En: Q*Q induces a conformal mapping of ,S onto itself, of order 2.
Since the only conformal selfmapping § admits is h, we have proved (ii).

To prove (iii), write down Er:Eo A and Ez:EoB. They are clearly elliptic
and their fixed points, together with those of Eo project to fixed points of å on S.
To see these are distinct, note that A and,B are distinct coset representatives of
Glf and that therefore Eo, E, and E, are a set of generators for G. tr

We give another proof of (ii) which, while it is not as simple as the one above,
sheds more light on the situation in higher genus. Let D be a fundamental domain
for l- with boundary curves yt, Ar(y), yr, and Ar(yr).Each pair, (yr, Ar(D) projects
onto a simple closed curve y, on S; i:1,2. Let ilr(^S, å) be the fundamental group
of ,S with base point b, and, choose apath o, from b to li. The curves öi:oi"lioir
determine the Schottky group i- with its marking <A, B>, up to normalization.
Similarly, the curves lt:h(ö) determine another Schottky group f with a marking
(2, B)which can also be normalized. Normalize both these groups as in the hypoth-
esis. Using the isomorphism E: l-*I given by q(A):Ä, E(B):$, we can lift å
to a mappin1 H: Q(f)-O(f) so that nyoH:honr.

The groups i- and f are both Schottky, so ä can be extended to the limit set
;l(i-) (Theorem 3.3) and, since å is conformal, Il is a linear fractional transforma-
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tion. Since å has order two, ä is elliptic of order 2. We have f :Hol oH-L' if
vre form Eo:ÄB-BÄ ur6 @:(f,Eo) we also have G:HoGoH-r and in
particular Eo:HoEooH-L. However, we have normalized both groups so that
Eo:Eo. ä commutes with Eo ar.Ld therefore has the same fixed points. Since it is

also elliptic of order two iI:Eo. Consequently, F:f and H:Eo is the lift of fr.

Corollary 4.1. Let f:(C,D) be any marking Jbr the group f. Then

E:C"D*-D^C" belongs to G, for any pair of integers, m and n.

Proof. Apply elementary Nielsen transformations to the pair of generators

(A, B> aird use Proposition 2.2 in Section 2.

Theorem 4.1 and Corollary 4.1 imply

Corollary 4.2. Let S be a surfoce of genus two and let f be any Schottky
group representing S. The fixed points of the hyperelliptic inaolution can always be

determined as follows: let (A, B) be any set of generators for f ; then the fixed points

of the Lie brackets, {A, B}, {A, A-18\ and {A, BA-r}, proiect to the fixed points of h.

The presentation G:(Eo , Er, E) of the group G reflects better than the pres-

entation G:(Eo,I), the factthat the underlying surface, So:O(G)/G, is a sphere

with six ramification points of order two. Since these six points are the images of
the fixed points of the elliptic transformations, they are paired by the transforma-

tions. This pairing depends on the group G, and hence .l-, but it is independent of
the marking for .l-. If we begin with the surface So:O(G)lG, pair the ramifica-

tion points, and then choosethreeloops in I1r(So) each of which separates one pair
of points from the other two pairs, we determine a group G:(Eo,Er,Er). In
general, the groups G and G are not the same. Indeed, as Figure I indicates, the

different choices of loops do lead to different groups. We will not pursue here the

question of which choices do lead to the same - but differently marked groups.

- - 1" set of LooPs

2'd set of LooPs

I
{

\
,/ ,/,/ ,/ ./

' 

,/ ,t/
z.z./

Figure I
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In Figure 2 we indicate a fundamental domain A for G; such always exists ([l]).
It is bounded by three disjoint simple closed curves Co, Cr, Cr, such that C; contains
pi and qi and is invariant under the elliptic transformation Ei, r:0, l, 2. A funda-
mental D domain for i- is D:/vEo(/).

t7t

ffi>tr'

,,Å0, Pz''v'' ö,,C! V
Figure 2
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k - l, ..., g, Eo

O-
Section 5

Suppose now that ,S is a hyperelliptic Riemann surface of genus g, g>2. lJsing
the previous section as a guide, we want to determine which Schottky uniformizations
of § contain the information that § is hyperelliptic.

To this end, we first construct the genus g analogue ofthe group G ofthe previ-
ous section, with its fundamental domain /. Let (pr,qr), (pr,qr.),...,(pn,q) be
g*1 pairs of points which lie in a half plane. Suppose that po:O,40:-. The
elliptic transformation E'o of order two which has pk, qk as fixed points has the form

('r:'r -to!I';rr)
If the points are sufficiently far apart we can find curves Cp passing through (po, qo)

and containing (pi, O;) in their exterior, j*k, such that Eo(Cp):Co. Although
G:(E,,...,En) is not a Schottky group, the common exterior of the curves Co,
k:0, ..., g, is a fundamental domain / for it. Such a group is called a Schottky-
type group. The group J- generated by (Ar, ..., A), where Ao:EoE1,, k:1, ..., g,

ffi>r-fl
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is a Schottky group with fundamental d.omain

have the form
D - Åv Er(Å). The elements Ak

2(po* qo)
where Xp )

P*- Qn

Xi:*X-+ and. 4:y'ffi. The flxed points of Aoare toand -lo. We see that
(0, -) is harmonic with respect to (Ai, A), ilk,l=i, k=g.

Definition. Let f :(Ar,...,As) be a Schott§ group and let (p,q) be a
pair of points such that (p, q) is harmonic with respect to any pair of generators

(Ai, A).Then we szy (Ar, ..., An) is a mutually harmonic set of generators for l-.

Lemma l. If f is a Schottky group which admits a mutually harmonic set of
generators it represents a hyperelliptic surfoce.

Proof. Given f :(Ar,...,Au), set Eo:ArAr-ArAr. If we assume (p,q\:
(0, -), the condition of being mutually harmonic becomes the condition that the

fixed points to, s1,of lo satisfy s*:-t* for all k:|, ..., g. Moreovet, Es:AiAk-
AoAi for any distinct pair of generators At and A1,. The elements E*:EoA* &re

also elliptic of order two, and we can look at the extended group G:(l-, Eo). Since

EsAeEs:Akt, f has index 2 in G, the projection Q*QIG is well defined and

the quotient can be identified as a sphere ramified at 2g*2 points. Moreover since

G is normal in.l- we obtain a covering S:Qlf -QlG which is two to one except

at the ramification points. The "sheet interchange" lifts to the map Es: Q*Q.

Lemma 2. If S is hyperelliptic it can be unifurmized by a Schottky group which

admits a mutually harmonic set of generators.

Proof. Let h be the hyperelliptic involution of ,S. On S/å:,So determine a

pairing of the ramification points. We can find a set of g* 1 loops each of which

separates one pair of ramification points from all the other pairs. These loops deter-

mine a Schottky type group G, G:(Eo, ..., En), uniformizing ,So. The subgroup

| : (Ar, ..., Au) of G, where Ay: EoE1r, k : l, ..., g, has index 2 in G, has a mutually
harmonic set of generators and uniformizes S. Clearly, the elements .Eo, which con-
jugate l-, project to the hyperelliptic involution å.

Lemma 3. If f is a Schottky group representing a hyperelliptic surface S and

if I is inuariant under the hyperelliptic inuolution h, then I admits a mutually harmonic

set of generators.

Proof. Let i- be given with presentation l-:(Br , ..., Bn) and let D be a funda-

mental domain for l- corresponding to this set of generators. Project the boundary

curvesofDtoloops (yr, ...,Ts) on,S.Chooseabasepointåon^Sandpaths or,...,ou
ftom b to 7o so that yo:6oyr,oyt, k:1, ..', g, form a set of elements of I1, (§, å) which
give rise to the marked group f :(8r., ..., Bn). The elements h(y)<Dr(^S, å) give

rise to the marked group f :18r,...,8). The assumption that l- is invariant

Ax: *(! *r,,r- 
*;'r)

172
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tnder h says that ,F:l-. We have an automorphism q: l 'F given by E(B):B,,
k:1, ...,g. Lift h to Q, H: Q*Q using this automorphism. As in the genus two

case, H can be extended to the limit set and must be a linear fractional transformation

which is elliptic of order two. Rename H, Eo; renormalize so that E6 has fixed points

(0, -) and so that they belong to D.
z(0) and z(-) are two of the flxed points of h. Let 11 be anothet, and p, a

lift of firin D. Since z oEoQtr):h(pr):pr, and since Eof Eo:f by assumption,

there is an element l1(i- such that ArQtr):Eo(pt). Et:EoAt is elliptic of order

two. To see this, set Är:fioa'.E,. Then, Er:Eolr-lrZo so E!:ÄrArqf. Since

p. is a fixed point of El and p$Q, El must be the identity. Let q, be the other

fixed point of 81. Continue in this manner to define elements Er, ..., Eu where

each 81,, k:2, ...,g is elliptic of order two and has fixed pointspp, qo. The projec-

tions of these points constitute the full set of 2g*2 fixed points of the hyperelliptic

involution. The elements Ar,...,A* A*:EoE*, k:1,...,g form a mutually har-

monic set. We claim they generate i-.

axis 4
€r^. \

xq<,zt;l

ffi;)

öl\
(F<

o
a
x
d

.ö\'e

Figure 3
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Let G:(f ,no). f is a subgroup of index two in G since f :EofEo. We
can also write G:(i-,E1,), k:1,...,gi each Eo preserves the set of flxed points
of elliptic elements of G so that G:(Eo,...,En). Now since the Ao also generate

a subgroup of index two in G,that subgroup must be l-. Taken together these lemmas
imply:

Theorem 5.1. The sublocus of the moduli space I of Theorem3.4, which is

defined by the g-2 equations sk:-tk, k:2,...,8, consists precisely of those

Schottky groups which represent hyperelliptic surfoces and which are inuariant under

the hyperelliptic inuolution.

Remark. Suppose .l- is a Schottky group with a mutually harmonic set of
generators (Ar,...,An), g>2. It is no longer the case, as it was when g:), 17a1

the extended group G:(,1-,.80) contains the Lie bracket of any pair of elements,

which constitute part of a set of generators for l-. To see this, consider for example,
Figure 3 where we have taken i- to be a Fuchsian group of the second kind and S
to be a surface of genus three. We can find harmonic points easily since we need

only draw axes. The point p indicated there is the fixed point of the Lie bracket

{A;'Ar,lr}. Since this point lies inside the fundamental domain for i-, and is
distinct from the flxed point (po,qo), k:0,...,3, it is not conjugate to any of the
fixed points of the elliptic elements of G, and does not project to a fixed point of
the hyperelliptic involution.
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