LIPSCHITZ AND QUASICONFOMAL TUBULAR NEIGHBOURHOODS OF SPHERES IN CODIMENSION TWO

DAVID GAULD

In this paper it is shown that if \(X \) is a codimension 2 sphere in \(S^n, n \neq 4, 5, 6 \), then \(X \) has either a Lipschitz or a quasiconformal tubular neighbourhood if \(X \) is either locally Lipschitz flat or locally quasiconformally flat.

The notation of this paper is the same as that established in [GV]. In particular \(C \) denotes either of the categories LIP or QC. Theorem 3.3 of [GV] tells us that if \(X \) is a locally \(C \)-flat codimension 2 sphere in \(S^n, n \neq 4, 6 \), and if \(X \) is homotopically unknotted in \(S^n \), then \((S^n, X)\) is \(C \)-homeomorphic to \((S^n, S^{n-2})\). In this paper we consider the case where \(X \) might be knotted, obtaining the following result.

Theorem 1. Let \(X \subseteq S^n \) be a locally \(C \)-flat \(\text{TOP} (n-2) \)-sphere in \(S^n \). If \(n \neq 4, 5 \) or 6 then there is a neighbourhood \(N \) of \(S^{n-2} \) in \(S^n \) and a \(C \)-embedding \((N, S^{n-2}) \to (S^n, X)\).

Analogously with Theorem 3.4 of [GV], we have the following result.

Theorem 2. Let \(g: S^{n-2} \to S^n \) be a locally \(C \)-flat embedding. If \(n \neq 4 \) or 5 then \(g \) extends to a \(C \)-embedding of a neighbourhood of \(S^{n-2} \) in \(S^n \).

Proof of Theorem 1. Encasing as in the proof of Theorem 3.3 of [GV], since \(n \neq 6 \Rightarrow n-2 \neq 4 \) we may assume that only two \(C \)-encasings are necessary to exhibit the local \(C \)-flatness of \(X \).

Now transfer everything to \(\mathbb{R}^n \). Using the \(C \)-Schoenflies theorem we may extend one of the encasings to a \(C \)-homeomorphism of \(\mathbb{R}^n \). If we replace \(X \) by its inverse image under this homeomorphism, we see that it may be assumed that one of the two \(C \)-encasings is the inclusion. By reflection, we may assume that we have the following situation: \(X \cap [\mathbb{R}^n \setminus B^n(a)] = \mathbb{R}^{n-2} \setminus B^{n-2}(a) \) for some \(a < 1 \), and there is a \(C \)-embedding \(h: B^n \to \mathbb{R}^n \) with \(h^{-1}X = B^{n-2} \) and \(X \cap B^n \subset hB^{n-2} \). Thus the knotted part of \(X \) is trapped inside \(B^n \) where it is encased by a single \(C \)-encasing. Assume that the norm on \(\mathbb{R}^n \) is \(|(x_i)| = \max \{|x_i|\} \) rather than the pythagorean norm so that \(B^n \) is a cubic ball rather than a round ball, thus allowing PL methods.

Choose \(\alpha: (V, \mathbb{R}^{n-2}) \to (\mathbb{R}^n, X) \), a topological embedding where \(V \) is a neighbourhood of \(\mathbb{R}^{n-2} \) in \(\mathbb{R}^n \). The existence of \(\alpha \) follows from the topological local flatness of \(X \) by [KS₂], \(X \) admits a normal disc bundle in \(\mathbb{R}^n \) since \(n \neq 4 \); as noted in [K],

doi:10.5186/aasfm.1980.0506
the 2-disc bundles are classified by \(H^2(X; \mathbb{Z}) \) which, when \(n \neq 4 \), is the trivial group. Thus \(X \) has a trivial normal disc bundle in \(\mathbb{R}^n \) thereby providing us with the embedding \(\alpha \). Since \(\alpha \V \) is a neighbourhood of \(\overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} = X \setminus \mathbb{R}^n \setminus B^n \), we may assume that \(\overline{\mathbb{R}^n} \setminus \mathbb{B}^n \subset \alpha \V \) so, using the relative TOP-Schoenflies theorem, \([B] \) and \([GV] \), we may extend \(\alpha |\overline{\mathbb{R}^n} \setminus B^n(b) \) for some \(b \in (a, 1) \) to a homeomorphism \(\beta \) of \(\mathbb{R}^n \) so that \(\beta \overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} = \overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} \). Choose \(r > 0 \) sufficiently small so that \(\overline{\mathbb{B}^{n-2} \times B^2(r)} \subset h \mathbb{B}^n \). Let \(\gamma = \alpha \beta |\overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} \times B^2(r) \). Then the embedding \(\gamma \) satisfies the following properties: \(\gamma \subset \mathbb{B}^n \cap h \mathbb{B}^n \); \(\gamma \) is the identity on a neighbourhood of \(S^{n-3} \times B^2(r) \); \(\gamma |\overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} \times 0 \cap X \cap \mathbb{B}^n \).

Suppose we can construct a \(C \)-embedding

\[
\delta: \overline{\mathbb{B}^{n-2} \times B^2(r/2)} \to \mathbb{B}^n
\]

which is the identity on a neighbourhood of \(S^{n-3} \times B^2(r/2) \) and satisfies \(X \cap \mathbb{B}^n \subset \delta |\overline{\mathbb{B}^{n-2} \times 0} \). Let

\[
N = [\overline{\mathbb{R}^n} \setminus \mathbb{B}^n] \cup [\overline{\mathbb{B}^{n-2} \times B^2(r/2)}]
\]

and extend \(\delta \) over \(N \) by the identity. Then \(N \) is a neighbourhood of \(\overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} \) in \(\mathbb{R}^n \) and \(\delta \) is a \(C \)-embedding. Moreover \(\delta \overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} = \overline{\mathbb{R}^n} \setminus \mathbb{B}^{n-2} \cup \delta |\overline{\mathbb{B}^{n-2} \times 0} = X \). Thus, apart from the change of scenery from \(S^n \) to \(\mathbb{R}^n \), \(\delta \) is the required \(C \)-embedding. Thus it is sufficient to construct the \(C \)-embedding \(\delta \) as above.

Consider the TOP handle \(\gamma \): this is PL straight on \(\partial \overline{\mathbb{B}^{n-2} \times B^2(r)} = S^{n-3} \times B^2(r) \), being the inclusion there. Since \(n \neq 4 \) or \(5 \), either \(n \leq 3 \) or \(n = 2 \neq 3 \) and \(n \geq 3 \). Using \([M]\) in the former case and \([KS]\) in the latter case, we may straighten \(\gamma \). More precisely, there is an isotopy \(\gamma_t: \overline{\mathbb{B}^{n-2} \times B^2(r)} \to \overline{\mathbb{B}^n} \) \((0 \leq t \leq 1) \) with \(\gamma_0 = \gamma, \gamma_1 |\overline{\mathbb{B}^{n-2} \times B^2(r/2)} \) PL and \(\gamma_t = \gamma \) on a neighbourhood of

\[
[S^{n-3} \times B^2(r)] \cup [\overline{\mathbb{B}^{n-2} \times (B^2(r) \setminus B^2(s))}]
\]

for some \(s < r \). Let

\[
Y = (\overline{\mathbb{R}^n} \setminus h^{-1} \gamma |\overline{\mathbb{B}^{n-2} \times 0}] \cup h^{-1} \gamma_1 |\overline{\mathbb{B}^{n-2} \times 0}.
\]

It is claimed that \(Y \) is a locally \(C \)-flat TOP \((n-2) \)-sphere in \(\mathbb{R}^n \) with \(\mathbb{R}^n \setminus Y \) homotopy equivalent to \(S^1 \).

(i) \(Y \) is a TOP \((n-2) \)-sphere: this follows from the fact that \(\gamma |\overline{\mathbb{B}^{n-2} \times 0} \) is homeomorphic to \(\gamma_1 |\overline{\mathbb{B}^{n-2} \times 0} \) by a homeomorphism which is the identity on the boundary. Note that \(\gamma_1 |\overline{\mathbb{R}^n} \setminus \mathbb{B}^n \setminus B^n = \emptyset \), since \(\gamma_1 |\overline{\mathbb{R}^n} \setminus \mathbb{B}^n \times B^2(r) \) \(\subset B^n \), so that \(h^{-1} \gamma_1 |\overline{\mathbb{B}^{n-2} \times 0} \cap (\overline{\mathbb{R}^n} \setminus h^{-1} \gamma |\overline{\mathbb{B}^{n-2} \times 0}) = \emptyset \).

(ii) \(Y \) is locally \(C \)-flat: at points of \(\overline{\mathbb{R}^n} \setminus h^{-1} \gamma |\overline{\mathbb{B}^{n-2} \times 0} \) this is immediate; at points of \(h^{-1} \gamma_1 |\overline{\mathbb{B}^{n-2} \times 0} \) this follows from the fact that \(h^{-1} \gamma_1 |\overline{\mathbb{B}^{n-2} \times B^2(r/2)} \) is a \(C \)-embedding; at the remaining points of \(Y \), viz \(h^{-1} [S^{n-3} \times 0] \), it follows from
the fact that γ and γ_1 are the inclusion on a neighbourhood of $S^{n-3} \times B^2(r)$, so that in a neighbourhood of $h^{-1}[S^{n-3} \times 0]$, Y is still \tilde{R}^{n-2}.

(iii) $\tilde{R}^{n} \setminus Y$ is homotopy equivalent to S^1: in fact γ_1 provides an isotopy of \tilde{R}^{n} throwing \tilde{R}^{n-2} onto Y, so Y is even topologically unknotted.

Now apply Theorem 3.3 of [GV] to (\tilde{R}^{n}, Y). Since $n \neq 4$ or 6, there is a C-homeomorphism $f: (\tilde{R}^{n}, \tilde{R}^{n-2}) \rightarrow (\tilde{R}^{n}, Y)$. Moreover, because of the way the C-homeomorphism was constructed in [GV], we may assume that f is the identity on a neighbourhood of $\tilde{R}^{n-2} \setminus h^{-1}\gamma[B^{n-2} \times 0]$. Let $\delta = hf^{-1}h^{-1}\gamma_1[\tilde{B}^{n-2} \times B^2(r/2)]$. We check the required properties of δ.

(a) δ is a C-embedding:

$$\gamma_1[\tilde{B}^{n-2} \times B^2(r/2)] \subset \gamma_1[\tilde{B}^{n-2} \times B^2(r)] = \gamma[\tilde{B}^{n-2} \times B^2(r)] \subset hB^n,$$

so $h^{-1}\gamma_1[\tilde{B}^{n-2} \times B^2(r/2)]$ is a C-embedding as, therefore, is $f^{-1}h^{-1}\gamma_1[\tilde{B}^{n-2} \times B^2(r/2)]$. Making r smaller if necessary, we can be sure that

$$f^{-1}h^{-1}\gamma_1[\tilde{B}^{n-2} \times B^2(r/2)] \subset B^n,$$

so that δ is a well-defined C-embedding.

(b) δ is the identity on a neighbourhood of $S^{n-3} \times \tilde{B}^2(r/2)$: this follows from the facts that γ_1 is the inclusion on such a set and f is the identity on a neighbourhood of $\tilde{R}^{n-2} \setminus h^{-1}\gamma[B^{n-2} \times 0]$ hence on a neighbourhood of

$$h^{-1}\gamma[S^{n-3} \times B^2(r/2)] = h^{-1}\gamma_1[S^{n-3} \times B^2(r/2)]$$

provided r is small enough.

(c) $X \cap \tilde{B}^n \subset \delta[\tilde{B}^{n-2} \times 0]$: in fact,

$$f^{-1}h^{-1}\gamma_1[\tilde{B}^{n-2} \times 0] = h^{-1}\gamma[\tilde{B}^{n-2} \times 0],$$

so

$$\delta[\tilde{B}^{n-2} \times 0] = \gamma[\tilde{B}^{n-2} \times 0] = X \cap \tilde{B}^n.$$

This completes the construction of δ and hence completes the proof of Theorem 1. \qed

Proof of Theorem 2. The proof of Theorem 2 is much the same as that of Theorem 1 but one uses instead (C, g)-encasing and [GV, Theorem 3.4] neither of which requires the restriction $n \neq 6$. \qed

References

University of Auckland
Department of Mathematics
Auckland
New Zealand

Received 17 September 1979
Revision received 6 November 1979