LIPSCHITZ AND QUASICONFORMAL TUBULAR NEIGHBOURHOODS OF SPHERES IN CODIMENSION TWO

DAVID GAULD

In this paper it is shown that if X is a codimension 2 sphere in S^n , $n \neq 4$, 5, 6, then X has either a Lipschitz or a quasiconformal tubular neighbourhood if X is either locally Lipschitz flat or locally quasiconformally flat.

The notation of this paper is the same as that established in [GV]. In particular C denotes either of the categories LIP or QC. Theorem 3.3 of [GV] tells us that if, X is a locally C-flat codimension 2 sphere in S^n , $n \neq 4$, 6, and if X is homotopically unknotted in S^n , then (S^n, X) is C-homeomorphic to (S^n, S^{n-2}) . In this paper we consider the case where X might be knotted, obtaining the following result.

Theorem 1. Let $X \subset S^n$ be a locally C-flat TOP (n-2)-sphere in S^n . If $n \neq 4, 5$ or 6 then there is a neighbourhood N of S^{n-2} in S^n and a C-embedding $(N, S^{n-2}) \rightarrow (S^n, X)$.

Analogously with Theorem 3.4 of [GV], we have the following result.

Theorem 2. Let $g: S^{n-2} \rightarrow S^n$ be a locally C-flat embedding. If $n \neq 4$ or 5 then g extends to a C-embedding of a neighbourhood of S^{n-2} in S^n .

Proof of Theorem 1. Encasing as in the proof of Theorem 3.3 of [GV], since $n \neq 6 \Rightarrow n-2 \neq 4$ we may assume that only two C-encasings are necessary to exhibit the local C-flatness of X.

Now transfer everything to $\overline{\mathbf{R}}^n$. Using the C-Schoenflies theorem we may extend one of the encasings to a C-homeomorphism of $\overline{\mathbf{R}}^n$. If we replace X by its inverse image under this homeomorphism, we see that it may be assumed that one of the two C-encasings is the inclusion. By reflection, we may assume that we have the following situation: $X \cap [\overline{\mathbf{R}}^n \setminus B^n(a)] = \overline{\mathbf{R}}^{n-2} \setminus B^{n-2}(a)$ for some a < 1, and there is a C-embedding $h: B^n \to \mathbf{R}^n$ with $h^{-1}X = B^{n-2}$ and $X \cap \overline{B}^n \subset hB^{n-2}$. Thus the knotted part of X is trapped inside B^n where it is encased by a single C-encasing. Assume that the norm on \mathbf{R}^n is $|(x_i)| = \max \{|x_i|\}$ rather than the pythagorean norm so that B^n is a cubic ball rather than a round ball, thus allowing PL methods.

Choose $\alpha: (V, \overline{R}^{n-2}) \to (\overline{R}^n, X)$, a topological embedding where V is a neighbourhood of \overline{R}^{n-2} in \overline{R}^n . The existence of α follows from the topological local flatness of X: by [KS₂], X admits a normal disc bundle in \overline{R}^n since $n \neq 4$; as noted in [K],

the 2-disc bundles are classified by $H^2(X; \mathbb{Z})$ which, when $n \neq 4$, is the trivial group. Thus X has a trivial normal disc bundle in \overline{R}^n thereby providing us with the embedding α . Since αV is a neighbourhood of $\overline{R}^{n-2} \supset B^{n-2} = X \cap [\overline{R}^n \setminus B^n]$, we may assume that $\overline{R}^n \setminus B^n \subset \alpha V$ so, using the relative TOP-Schoenflies theorem, [B] and [GV], we may extend $\alpha |\overline{R}^n \setminus B^n(b)$ for some $b \in (a, 1)$ to a homeomorphism β of \overline{R}^n so that $\beta \overline{R}^{n-2} = \overline{R}^{n-2}$. Choose r > 0 sufficiently small so that $\overline{B}^{n-2} \times B^2(r) \subset \beta^{-1} V$ and $\alpha \beta [\overline{B}^{n-2} \times B^2(r)] \subset hB^n$. Let $\gamma = \alpha \beta |\overline{B}^{n-2} \times B^2(r)$. Then the embedding γ satisfies the following properties: im $\gamma \subset \overline{B}^n \cap hB^n$; γ is the identity on a neighbourhood of $S^{n-3} \times B^2(r)$; $\gamma [B^{n-2} \times 0] = X \cap B^n$.

Suppose we can construct a C-embedding

$$\delta: \ \overline{B}^{n-2} \times \overline{B}^2(r/2) \to \overline{B}^n$$

which is the identity on a neighbourhood of $S^{n-3} \times \overline{B}^2(r/2)$ and satisfies $X \cap \overline{B}^n \subset \delta[\overline{B}^{n-2} \times 0]$. Let

$$N = [\overline{R}^n \setminus \overline{B}^n] \cup [\overline{B}^{n-2} \times B^2(r/2)],$$

and extend δ over N by the identity. Then N is a neighbourhood of \overline{R}^{n-2} in \overline{R}^n and δ is a C-embedding. Moreover $\delta \overline{R}^{n-2} = [\overline{R}^{n-2} \setminus \overline{B}^{n-2}] \cup \delta [\overline{B}^{n-2} \times 0] = X$. Thus, apart from the change of scenery from S^n to \overline{R}^n , δ is the required C-embedding. Thus it is sufficient to construct the C-embedding δ as above.

Consider the TOP handle γ : this is PL straight on $\partial \overline{B}^{n-2} \times B^2(r) = S^{n-3} \times B^2(r)$, being the inclusion there. Since $n \neq 4$ or 5, either $n \leq 3$ or $n-2 \neq 3$ and $n \geq 5$. Using [M] in the former case and [KS₁] in the latter case, we may straighten γ . More precisely, there is an isotopy $\gamma_t: \overline{B}^{n-2} \times B^2(r) \to \overline{B}^n$ $(0 \leq t \leq 1)$ with $\gamma_0 = \gamma, \gamma_1 | \overline{B}^{n-2} \times \overline{B}^2(r/2)$ PL and $\gamma_t = \gamma$ on a neighbourhood of

$$[S^{n-3} \times B^2(r)] \cup \left[\overline{B}^{n-2} \times (B^2(r) \setminus \overline{B}^2(s))\right]$$

for some s < r. Let

$$Y = (\overline{R}^{n-2} h^{-1} \gamma [\overline{B}^{n-2} \times 0]) \cup h^{-1} \gamma_1 [\overline{B}^{n-2} \times 0].$$

It is claimed that Y is a locally C-flat TOP (n-2)-sphere in $\overline{\mathbb{R}}^n \setminus Y$ homotopy equivalent to S^1 .

(i) Y is a TOP (n-2)-sphere: this follows from the fact that $\gamma[\overline{B}^{n-2}\times 0]$ is homeomorphic to $\gamma_1[\overline{B}^{n-2}\times 0]$ by a homeomorphism which is the identity on the boundary. Note that $\gamma_1[B^{n-2}\times 0] \cap X \setminus B^n = \emptyset$, since $\gamma_1[B^{n-2}\times 0] \subset \gamma_1[B^{n-2}\times B^2(r)] = \gamma[B^{n-2}\times B^2(r)] \subset B^n$, so that $h^{-1}\gamma_1[B^{n-2}\times 0] \cap (\overline{R}^{n-2} \setminus h^{-1}\gamma[B^{n-2}\times 0]) = \emptyset$.

(ii) Y is locally C-flat: at points of $\overline{R}^{n-2} h^{-1}\gamma[\overline{B}^{n-2}\times 0]$ this is immediate; at points of $h^{-1}\gamma_1[B^{n-2}\times 0]$ this follows from the fact that $h^{-1}\gamma_1|B^{n-2}\times B^2(r/2)$ is a C-embedding; at the remaining points of Y, viz $h^{-1}[S^{n-3}\times 0]$, it follows from

the fact that γ and γ_t are the inclusion on a neighbourhood of $S^{n-3} \times B^2(r)$, so that in a neighbourhood of $h^{-1}[S^{n-3} \times 0]$, Y is still \overline{R}^{n-2} .

(iii) $\overline{R}^n \setminus Y$ is homotopy equivalent to S^1 : in fact γ_t provides an isotopy of \overline{R}^n throwing \overline{R}^{n-2} onto Y, so Y is even topologically unknotted.

Now apply Theorem 3.3 of [GV] to $(\overline{\mathbf{R}}^n, Y)$. Since $n \neq 4$ or 6, there is a *C*-homeomorphism $f: (\overline{\mathbf{R}}^n, \overline{\mathbf{R}}^{n-2}) \rightarrow (\overline{\mathbf{R}}^n, Y)$. Moreover, because of the way the *C*-homeomorphism was constructed in [GV], we may assume that f is the identity on a neighbourhood of $\overline{\mathbf{R}}^{n-2} \wedge h^{-1}\gamma[B^{n-2}\times 0]$. Let $\delta = hf^{-1}h^{-1}\gamma_1|\overline{B}^{n-2}\times \overline{B}^2(r/2)$. We check the required properties of δ .

(a) δ is a *C*-embedding:

$$\gamma_1[\overline{B}^{n-2} \times B^2(r/2)] \subset \gamma_1[\overline{B}^{n-2} \times B^2(r)] = \gamma[\overline{B}^{n-2} \times B^2(r)] \subset hB^n,$$

so $h^{-1}\gamma_1|\overline{B}^{n-2}\times B^2(r/2)$ is a C-embedding as, therefore, is $f^{-1}h^{-1}\gamma_1|\overline{B}^{n-2}\times B^2(r/2)$ Making r smaller if necessary, we can be sure that

$$f^{-1}h^{-1}\gamma_1[\overline{B}^{n-2}\times B^2(r/2)]\subset B^n,$$

so that δ is a well-defined *C*-embedding.

(b) δ is the identity on a neighbourhood of $S^{n-3} \times \overline{B}^2(r/2)$: this follows from the facts that γ_1 is the inclusion on such a set and f is the identity on a neighbourhood of $\overline{R}^{n-2} \wedge h^{-1}\gamma[B^{n-2} \times 0]$ hence on a neighbourhood of

$$h^{-1}\gamma[S^{n-3} \times B^2(r/2)] = h^{-1}\gamma_1[S^{n-3} \times B^2(r/2)]$$

provided r is small enough.

(c) $X \cap \overline{B}^n \subset \delta[\overline{B}^{n-2} \times 0]$: in fact,

$$f^{-1}h^{-1}\gamma_1[\overline{B}^{n-2}\times 0] = h^{-1}\gamma[\overline{B}^{n-2}\times 0],$$

so $\delta[\overline{B}^{n-2}\times 0] = \gamma[\overline{B}^{n-2}\times 0] = X \cap \overline{B}^n.$

This completes the construction of δ and hence completes the proof of Theorem 1. \Box

Proof of Theorem 2. The proof of Theorem 2 is much the same as that of Theorem 1 but one uses instead (C, g)-encasing and [GV, Theorem 3.4] neither of which requires the restriction $n \neq 6$. \Box

References

- [B] BRAKES, W. R.: Quickly unknotting topological spheres. Proc. Amer. Math. Soc. 72, 1978, 413-416.
- [GV] GAULD, D. B., and J. VÄISÄLÄ: Lipschitz and quasiconformal flattening of spheres and cells. Ann. Acad. Sci. Fenn. Ser. A I 4, 1979, 371-382.

- [K] KIRBY, R. C.: Codimension two locally flat imbeddings have normal bundles. Topology of manifolds, Markham, Chicago, 1970, 416–423.
- [KS₁] KIRBY, R. C., and L. C. SIEBENMANN: On the triangulation of manifolds and the Hauptvermutung. - Bull. Amer. Math. Soc. 75, 1969, 742-749.
- [KS₂] KIRBY, R. C., and L. C. SIEBENMANN: Normal bundles for codimension 2 locally flat imbeddings. - Geometric topology, Lecture Notes in Mathematics 438, Springer-Verlag, Berlin—Heidelberg—New York, 1975, 310—324.
- [M] MOISE, E. E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. - Ann. of Math. 56, 1952, 96-114.

University of Auckland Department of Mathematics Auckland New Zealand

Received 17 September 1979 Revision received 6 November 1979