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LIPSCHITZ AND QUASICONFORMAL TUBULAR
NEIGHBOURHOODS OF SPHERES IN CODIMENSION TWO

DAVID GAULD

In this paper it is shown that if X is a codimension 2 sphere in S", n#4, 5, 6,
then X has either a Lipschitz or a quasiconformal tubular neighbourhood if X is
either locally Lipschitz flat or locally quasiconformally flat.

The notation of this paper is the same as that established in [GV]. In particular
C denotes either of the categories LIP or QC. Theorem 3.3 of [GV] tells us that if,
X is a locally C-flat codimension 2 sphere in S”", n4, 6, and if X is homotopically
unknotted in S”, then (S”, X) is C-homeomorphic to (S”", S"%). In this paper we
consider the case where X might be knotted, obtaining the following result.

Theorem 1. Let X S™ be a locally C-flat TOP (n—2)-sphere in S". If
n#4,5 or 6 then there is a neighbourhood N of S"* in S™ and a C-embedding
(N, S"7%)—~(S", X).

Analogously with Theorem 3.4 of [GV], we have the following result.

Theorem 2. Let g: S"*—~S" be a locally C-flat embedding. If n=4 or 5
then g extends to a C-embedding of a neighbourhood of S"* in S™.

Proof of Theorem 1. Encasing as in the proof of Theorem 3.3 of [GV], since
n#6=>n—274 we may assume that only two C-encasings are necessary to exhibit
the local C-flatness of X.

Now transfer everything to R". Using the C-Schoenflies theorem we may extend
one of the encasings to a C-homeomorphism of R". If we replace X by its inverse
image under this homeomorphism, we see that it may be assumed that one of the
two C-encasings is the inclusion. By reflection, we may assume that we have the
following situation: Xn[R"™\B"(a)]=R"">\B""2(a) for some a<1, and there is
a C-embedding #: B"—R" with A 'X=B""% and XnB"chB" % Thus the
knotted part of X is trapped inside B” where it is encased by a single C-encasing.
Assume that the norm on R" is |(x;)|=max {|x;|} rather than the pythagorean
norm so that B" is a cubic ball rather than a round ball, thus allowing PL methods.

Choose a: (V, E"“z)—»(ﬁ", X), a topological embedding where V is a neigh-
bourhood of R"~% in R". The existence of « follows from the topological local flatness
of X: by [KS,], X admits a normal disc bundle in R" since n=4; as noted in [K],

doi:10.5186/aasfm.1980.0506


koskenoj
Typewritten text
doi:10.5186/aasfm.1980.0506


176 Davib GAULD

the 2-disc bundles are classified by H2(X; Z) which, when n>4, is the trivial group.
Thus X has a trivial normal disc bundle in R* thereby providing us with the embedding
a. Since oV is a neighbourhood of R"~2\ B"~2=Xn[R™\ B"], we may assume that
R™\B"CuaV so, using the relative TOP-Schoenflies theorem, [B] and [GV], we may
extend o|R™\B"(b) for some bé€(a,1) to a homeomorphism f of R" so that
BR*2=R""2. Choose r=0 sufficiently small so that B" ?XB2(r)c 'V and
af[B""2X B2(r)]chB". Let y=af|B" X B%(r). Then the embedding 7y satisfies
the following properties: im yCB"n/hB"; y is the identity on a neighbourhood of
S""3X B2(r); y[B"*X0]=XnB"
Suppose we can construct a C-embedding

§: B"?xB(r/2) - B"

which is the identity on a neighbourhood of S" %X B?(r/2) and satisfies XnB"C
S[B""2x0]. Let
N = [R™\B"|U[B"~*X B(r/2)],

and extend & over N by the identity. Then N is a neighbourhood of R*?in R" and
5 is a C-embedding. Moreover SR" =[R""2\B""2Ud[B" %X 0]=X. Thus, apart
from the change of scenery from S" to R, § is the required C-embedding. Thus it is
sufficient to construct the C-embedding J§ as above.

Consider the TOP handle y: this is PL straight on 0B""2X B2(r)=S""3X B2(r),
being the inclusion there. Since n=4 or 5, either n=3 or n—2%3 and n=5.
Using [M] in the former case and [KS,] in the latter case, we may straighten y. More
precisely, there is an isotopy y,: B""2X B2(r)—~B" (0=t=1) with y,=y, y;|B"*X
B2(r/2) PL and 7,=y on a neighbourhood of

[$"=2x BX(r)] U [B'=2 X (B (r)\B*())]
for some s<r. Let

Y = (R"~2\h~19[B"~2Xx0])uh~1y,[B"~2X0].

It is claimed that Y'is a locally C-flat TOP (n—2)-sphere in R* with R"\.Y homotopy
equivalent to S*.

(i YisaTOP (n—2)-sphere: this follows from the fact that y[B"~*X0] is homeo-
morphic to y;[B""2X0] by a homeomorphism which is the identity on the bound-
ary. Note that 7,[B" 2X0]nX\B"=0, since 79,[B" 2X0]cy,[B"2XB2(r)]=
y[B""2X B2(r)]CB", so that h~1y;[B""2X0]N(R"~*\/~1y[B"~*X0])=0.

(i) Y is locally C-flat: at points of R*“2\/~1y[B"~%x0] this is immediate; at
points of A~1y,[B""2X0] this follows from the fact that A=1y,|B" *XB%(r/2) is
a C-embedding; at the remaining points of ¥, viz 2~1[S"~3x0], it follows from
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the fact that y and v, are the inclusion on a neighbourhood of S"3X B2(r), so that
in a neighbourhood of A~1[S"~3x0], Y is still R"~2.

(iii) R™\Y is homotopy equivalent to S': in fact y, provides an isotopy of R"
throwing R"~2 onto Y, so Y is even topologically unknotted.

Now apply Theorem 3.3 of [GV] to (R, Y). Since n=4 or 6, there is a C-homeo-
morphism f: (R", E”‘z)»(ﬁ", Y). Moreover, because of the way the C-homeo-
morphism was constructed in [GV], we may assume that fis the identity on a neigh-
bourhood of R"™*\/~1y[B"~2x0]. Let 6=hf1h=1y,|B""2x B2(r/2). We check the
required properties of d.

(a) ¢ is a C-embedding:

11[B" 2 X BX(r/2)] € y,[B"*X B*(r)] = y[B"~2XB*(r)] C hB",
so 771y, |B""2X B%(r/2) is a C-embedding as, therefore, is f~1h~1y,|B"~%X B2(r/2)
Making r smaller if necessary, we can be sure that

SR ip[B R X B (r/2)] < B,

so that ¢ is a well-defined C-embedding.
(b) 0 is the identity on a neighbourhood of S"*XB2(r/2): this follows from the
facts that y, is the inclusion on such a set and f'is the identity on a neighbourhood of
R"~*\—1y[B"~2%0] hence on a neighbourhood of
h=1y[S"=3X B (r/2)] = h~ 'y, [S" > X B2(r/2)]

provided r is small enough.
(¢) XnB"c§[B"~%x0]: in fact,

f7rh= iy [B"72X0] = h=y[B"~*X0],

so S[B""2x0]=y[B""?x0] = XN B".

This completes the construction of é and hence completes the proof of Theo-
rem 1. [

Proof of Theorem 2. The proof of Theorem 2 is much the same as that of
Theorem 1 but one uses instead (C, g)-encasing and [GV, Theorem 3.4] neither of
which requires the restriction n#6. [
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